/* * Intel IO-APIC support for multi-Pentium hosts. * * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo * * Many thanks to Stig Venaas for trying out countless experimental * patches and reporting/debugging problems patiently! * * (c) 1999, Multiple IO-APIC support, developed by * Ken-ichi Yaku and * Hidemi Kishimoto , * further tested and cleaned up by Zach Brown * and Ingo Molnar * * Fixes * Maciej W. Rozycki : Bits for genuine 82489DX APICs; * thanks to Eric Gilmore * and Rolf G. Tews * for testing these extensively * Paul Diefenbaugh : Added full ACPI support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* time_after() */ #ifdef CONFIG_ACPI #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __apicdebuginit(type) static type __init /* * Is the SiS APIC rmw bug present ? * -1 = don't know, 0 = no, 1 = yes */ int sis_apic_bug = -1; static DEFINE_SPINLOCK(ioapic_lock); static DEFINE_SPINLOCK(vector_lock); /* * # of IRQ routing registers */ int nr_ioapic_registers[MAX_IO_APICS]; /* I/O APIC entries */ struct mpc_ioapic mp_ioapics[MAX_IO_APICS]; int nr_ioapics; /* IO APIC gsi routing info */ struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS]; /* MP IRQ source entries */ struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; /* # of MP IRQ source entries */ int mp_irq_entries; #if defined (CONFIG_MCA) || defined (CONFIG_EISA) int mp_bus_id_to_type[MAX_MP_BUSSES]; #endif DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); int skip_ioapic_setup; void arch_disable_smp_support(void) { #ifdef CONFIG_PCI noioapicquirk = 1; noioapicreroute = -1; #endif skip_ioapic_setup = 1; } static int __init parse_noapic(char *str) { /* disable IO-APIC */ arch_disable_smp_support(); return 0; } early_param("noapic", parse_noapic); struct irq_pin_list; /* * This is performance-critical, we want to do it O(1) * * the indexing order of this array favors 1:1 mappings * between pins and IRQs. */ struct irq_pin_list { int apic, pin; struct irq_pin_list *next; }; static struct irq_pin_list *get_one_free_irq_2_pin(int node) { struct irq_pin_list *pin; pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node); return pin; } struct irq_cfg { struct irq_pin_list *irq_2_pin; cpumask_var_t domain; cpumask_var_t old_domain; unsigned move_cleanup_count; u8 vector; u8 move_in_progress : 1; }; /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */ #ifdef CONFIG_SPARSE_IRQ static struct irq_cfg irq_cfgx[] = { #else static struct irq_cfg irq_cfgx[NR_IRQS] = { #endif [0] = { .vector = IRQ0_VECTOR, }, [1] = { .vector = IRQ1_VECTOR, }, [2] = { .vector = IRQ2_VECTOR, }, [3] = { .vector = IRQ3_VECTOR, }, [4] = { .vector = IRQ4_VECTOR, }, [5] = { .vector = IRQ5_VECTOR, }, [6] = { .vector = IRQ6_VECTOR, }, [7] = { .vector = IRQ7_VECTOR, }, [8] = { .vector = IRQ8_VECTOR, }, [9] = { .vector = IRQ9_VECTOR, }, [10] = { .vector = IRQ10_VECTOR, }, [11] = { .vector = IRQ11_VECTOR, }, [12] = { .vector = IRQ12_VECTOR, }, [13] = { .vector = IRQ13_VECTOR, }, [14] = { .vector = IRQ14_VECTOR, }, [15] = { .vector = IRQ15_VECTOR, }, }; int __init arch_early_irq_init(void) { struct irq_cfg *cfg; struct irq_desc *desc; int count; int node; int i; cfg = irq_cfgx; count = ARRAY_SIZE(irq_cfgx); node= cpu_to_node(boot_cpu_id); for (i = 0; i < count; i++) { desc = irq_to_desc(i); desc->chip_data = &cfg[i]; zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node); zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node); if (i < NR_IRQS_LEGACY) cpumask_setall(cfg[i].domain); } return 0; } #ifdef CONFIG_SPARSE_IRQ static struct irq_cfg *irq_cfg(unsigned int irq) { struct irq_cfg *cfg = NULL; struct irq_desc *desc; desc = irq_to_desc(irq); if (desc) cfg = desc->chip_data; return cfg; } static struct irq_cfg *get_one_free_irq_cfg(int node) { struct irq_cfg *cfg; cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node); if (cfg) { if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) { kfree(cfg); cfg = NULL; } else if (!alloc_cpumask_var_node(&cfg->old_domain, GFP_ATOMIC, node)) { free_cpumask_var(cfg->domain); kfree(cfg); cfg = NULL; } else { cpumask_clear(cfg->domain); cpumask_clear(cfg->old_domain); } } return cfg; } int arch_init_chip_data(struct irq_desc *desc, int node) { struct irq_cfg *cfg; cfg = desc->chip_data; if (!cfg) { desc->chip_data = get_one_free_irq_cfg(node); if (!desc->chip_data) { printk(KERN_ERR "can not alloc irq_cfg\n"); BUG_ON(1); } } return 0; } /* for move_irq_desc */ static void init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node) { struct irq_pin_list *old_entry, *head, *tail, *entry; cfg->irq_2_pin = NULL; old_entry = old_cfg->irq_2_pin; if (!old_entry) return; entry = get_one_free_irq_2_pin(node); if (!entry) return; entry->apic = old_entry->apic; entry->pin = old_entry->pin; head = entry; tail = entry; old_entry = old_entry->next; while (old_entry) { entry = get_one_free_irq_2_pin(node); if (!entry) { entry = head; while (entry) { head = entry->next; kfree(entry); entry = head; } /* still use the old one */ return; } entry->apic = old_entry->apic; entry->pin = old_entry->pin; tail->next = entry; tail = entry; old_entry = old_entry->next; } tail->next = NULL; cfg->irq_2_pin = head; } static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg) { struct irq_pin_list *entry, *next; if (old_cfg->irq_2_pin == cfg->irq_2_pin) return; entry = old_cfg->irq_2_pin; while (entry) { next = entry->next; kfree(entry); entry = next; } old_cfg->irq_2_pin = NULL; } void arch_init_copy_chip_data(struct irq_desc *old_desc, struct irq_desc *desc, int node) { struct irq_cfg *cfg; struct irq_cfg *old_cfg; cfg = get_one_free_irq_cfg(node); if (!cfg) return; desc->chip_data = cfg; old_cfg = old_desc->chip_data; memcpy(cfg, old_cfg, sizeof(struct irq_cfg)); init_copy_irq_2_pin(old_cfg, cfg, node); } static void free_irq_cfg(struct irq_cfg *old_cfg) { kfree(old_cfg); } void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc) { struct irq_cfg *old_cfg, *cfg; old_cfg = old_desc->chip_data; cfg = desc->chip_data; if (old_cfg == cfg) return; if (old_cfg) { free_irq_2_pin(old_cfg, cfg); free_irq_cfg(old_cfg); old_desc->chip_data = NULL; } } /* end for move_irq_desc */ #else static struct irq_cfg *irq_cfg(unsigned int irq) { return irq < nr_irqs ? irq_cfgx + irq : NULL; } #endif struct io_apic { unsigned int index; unsigned int unused[3]; unsigned int data; unsigned int unused2[11]; unsigned int eoi; }; static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) { return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) + (mp_ioapics[idx].apicaddr & ~PAGE_MASK); } static inline void io_apic_eoi(unsigned int apic, unsigned int vector) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(vector, &io_apic->eoi); } static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(reg, &io_apic->index); return readl(&io_apic->data); } static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(reg, &io_apic->index); writel(value, &io_apic->data); } /* * Re-write a value: to be used for read-modify-write * cycles where the read already set up the index register. * * Older SiS APIC requires we rewrite the index register */ static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value) { struct io_apic __iomem *io_apic = io_apic_base(apic); if (sis_apic_bug) writel(reg, &io_apic->index); writel(value, &io_apic->data); } static bool io_apic_level_ack_pending(struct irq_cfg *cfg) { struct irq_pin_list *entry; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); entry = cfg->irq_2_pin; for (;;) { unsigned int reg; int pin; if (!entry) break; pin = entry->pin; reg = io_apic_read(entry->apic, 0x10 + pin*2); /* Is the remote IRR bit set? */ if (reg & IO_APIC_REDIR_REMOTE_IRR) { spin_unlock_irqrestore(&ioapic_lock, flags); return true; } if (!entry->next) break; entry = entry->next; } spin_unlock_irqrestore(&ioapic_lock, flags); return false; } union entry_union { struct { u32 w1, w2; }; struct IO_APIC_route_entry entry; }; static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) { union entry_union eu; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); eu.w1 = io_apic_read(apic, 0x10 + 2 * pin); eu.w2 = io_apic_read(apic, 0x11 + 2 * pin); spin_unlock_irqrestore(&ioapic_lock, flags); return eu.entry; } /* * When we write a new IO APIC routing entry, we need to write the high * word first! If the mask bit in the low word is clear, we will enable * the interrupt, and we need to make sure the entry is fully populated * before that happens. */ static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) { union entry_union eu = {{0, 0}}; eu.entry = e; io_apic_write(apic, 0x11 + 2*pin, eu.w2); io_apic_write(apic, 0x10 + 2*pin, eu.w1); } void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) { unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); __ioapic_write_entry(apic, pin, e); spin_unlock_irqrestore(&ioapic_lock, flags); } /* * When we mask an IO APIC routing entry, we need to write the low * word first, in order to set the mask bit before we change the * high bits! */ static void ioapic_mask_entry(int apic, int pin) { unsigned long flags; union entry_union eu = { .entry.mask = 1 }; spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(apic, 0x10 + 2*pin, eu.w1); io_apic_write(apic, 0x11 + 2*pin, eu.w2); spin_unlock_irqrestore(&ioapic_lock, flags); } /* * The common case is 1:1 IRQ<->pin mappings. Sometimes there are * shared ISA-space IRQs, so we have to support them. We are super * fast in the common case, and fast for shared ISA-space IRQs. */ static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin) { struct irq_pin_list *entry; entry = cfg->irq_2_pin; if (!entry) { entry = get_one_free_irq_2_pin(node); if (!entry) { printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n", apic, pin); return; } cfg->irq_2_pin = entry; entry->apic = apic; entry->pin = pin; return; } while (entry->next) { /* not again, please */ if (entry->apic == apic && entry->pin == pin) return; entry = entry->next; } entry->next = get_one_free_irq_2_pin(node); entry = entry->next; entry->apic = apic; entry->pin = pin; } /* * Reroute an IRQ to a different pin. */ static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node, int oldapic, int oldpin, int newapic, int newpin) { struct irq_pin_list *entry = cfg->irq_2_pin; int replaced = 0; while (entry) { if (entry->apic == oldapic && entry->pin == oldpin) { entry->apic = newapic; entry->pin = newpin; replaced = 1; /* every one is different, right? */ break; } entry = entry->next; } /* why? call replace before add? */ if (!replaced) add_pin_to_irq_node(cfg, node, newapic, newpin); } static inline void io_apic_modify_irq(struct irq_cfg *cfg, int mask_and, int mask_or, void (*final)(struct irq_pin_list *entry)) { int pin; struct irq_pin_list *entry; for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) { unsigned int reg; pin = entry->pin; reg = io_apic_read(entry->apic, 0x10 + pin * 2); reg &= mask_and; reg |= mask_or; io_apic_modify(entry->apic, 0x10 + pin * 2, reg); if (final) final(entry); } } static void __unmask_IO_APIC_irq(struct irq_cfg *cfg) { io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL); } #ifdef CONFIG_X86_64 static void io_apic_sync(struct irq_pin_list *entry) { /* * Synchronize the IO-APIC and the CPU by doing * a dummy read from the IO-APIC */ struct io_apic __iomem *io_apic; io_apic = io_apic_base(entry->apic); readl(&io_apic->data); } static void __mask_IO_APIC_irq(struct irq_cfg *cfg) { io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync); } #else /* CONFIG_X86_32 */ static void __mask_IO_APIC_irq(struct irq_cfg *cfg) { io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL); } static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg) { io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER, IO_APIC_REDIR_MASKED, NULL); } static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg) { io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, IO_APIC_REDIR_LEVEL_TRIGGER, NULL); } #endif /* CONFIG_X86_32 */ static void mask_IO_APIC_irq_desc(struct irq_desc *desc) { struct irq_cfg *cfg = desc->chip_data; unsigned long flags; BUG_ON(!cfg); spin_lock_irqsave(&ioapic_lock, flags); __mask_IO_APIC_irq(cfg); spin_unlock_irqrestore(&ioapic_lock, flags); } static void unmask_IO_APIC_irq_desc(struct irq_desc *desc) { struct irq_cfg *cfg = desc->chip_data; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); __unmask_IO_APIC_irq(cfg); spin_unlock_irqrestore(&ioapic_lock, flags); } static void mask_IO_APIC_irq(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); mask_IO_APIC_irq_desc(desc); } static void unmask_IO_APIC_irq(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); unmask_IO_APIC_irq_desc(desc); } static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) { struct IO_APIC_route_entry entry; /* Check delivery_mode to be sure we're not clearing an SMI pin */ entry = ioapic_read_entry(apic, pin); if (entry.delivery_mode == dest_SMI) return; /* * Disable it in the IO-APIC irq-routing table: */ ioapic_mask_entry(apic, pin); } static void clear_IO_APIC (void) { int apic, pin; for (apic = 0; apic < nr_ioapics; apic++) for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) clear_IO_APIC_pin(apic, pin); } #ifdef CONFIG_X86_32 /* * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to * specific CPU-side IRQs. */ #define MAX_PIRQS 8 static int pirq_entries[MAX_PIRQS] = { [0 ... MAX_PIRQS - 1] = -1 }; static int __init ioapic_pirq_setup(char *str) { int i, max; int ints[MAX_PIRQS+1]; get_options(str, ARRAY_SIZE(ints), ints); apic_printk(APIC_VERBOSE, KERN_INFO "PIRQ redirection, working around broken MP-BIOS.\n"); max = MAX_PIRQS; if (ints[0] < MAX_PIRQS) max = ints[0]; for (i = 0; i < max; i++) { apic_printk(APIC_VERBOSE, KERN_DEBUG "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); /* * PIRQs are mapped upside down, usually. */ pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; } return 1; } __setup("pirq=", ioapic_pirq_setup); #endif /* CONFIG_X86_32 */ struct IO_APIC_route_entry **alloc_ioapic_entries(void) { int apic; struct IO_APIC_route_entry **ioapic_entries; ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics, GFP_ATOMIC); if (!ioapic_entries) return 0; for (apic = 0; apic < nr_ioapics; apic++) { ioapic_entries[apic] = kzalloc(sizeof(struct IO_APIC_route_entry) * nr_ioapic_registers[apic], GFP_ATOMIC); if (!ioapic_entries[apic]) goto nomem; } return ioapic_entries; nomem: while (--apic >= 0) kfree(ioapic_entries[apic]); kfree(ioapic_entries); return 0; } /* * Saves all the IO-APIC RTE's */ int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) { int apic, pin; if (!ioapic_entries) return -ENOMEM; for (apic = 0; apic < nr_ioapics; apic++) { if (!ioapic_entries[apic]) return -ENOMEM; for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) ioapic_entries[apic][pin] = ioapic_read_entry(apic, pin); } return 0; } /* * Mask all IO APIC entries. */ void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) { int apic, pin; if (!ioapic_entries) return; for (apic = 0; apic < nr_ioapics; apic++) { if (!ioapic_entries[apic]) break; for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { struct IO_APIC_route_entry entry; entry = ioapic_entries[apic][pin]; if (!entry.mask) { entry.mask = 1; ioapic_write_entry(apic, pin, entry); } } } } /* * Restore IO APIC entries which was saved in ioapic_entries. */ int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) { int apic, pin; if (!ioapic_entries) return -ENOMEM; for (apic = 0; apic < nr_ioapics; apic++) { if (!ioapic_entries[apic]) return -ENOMEM; for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) ioapic_write_entry(apic, pin, ioapic_entries[apic][pin]); } return 0; } void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries) { int apic; for (apic = 0; apic < nr_ioapics; apic++) kfree(ioapic_entries[apic]); kfree(ioapic_entries); } /* * Find the IRQ entry number of a certain pin. */ static int find_irq_entry(int apic, int pin, int type) { int i; for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].irqtype == type && (mp_irqs[i].dstapic == mp_ioapics[apic].apicid || mp_irqs[i].dstapic == MP_APIC_ALL) && mp_irqs[i].dstirq == pin) return i; return -1; } /* * Find the pin to which IRQ[irq] (ISA) is connected */ static int __init find_isa_irq_pin(int irq, int type) { int i; for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].srcbus; if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].irqtype == type) && (mp_irqs[i].srcbusirq == irq)) return mp_irqs[i].dstirq; } return -1; } static int __init find_isa_irq_apic(int irq, int type) { int i; for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].srcbus; if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].irqtype == type) && (mp_irqs[i].srcbusirq == irq)) break; } if (i < mp_irq_entries) { int apic; for(apic = 0; apic < nr_ioapics; apic++) { if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic) return apic; } } return -1; } #if defined(CONFIG_EISA) || defined(CONFIG_MCA) /* * EISA Edge/Level control register, ELCR */ static int EISA_ELCR(unsigned int irq) { if (irq < NR_IRQS_LEGACY) { unsigned int port = 0x4d0 + (irq >> 3); return (inb(port) >> (irq & 7)) & 1; } apic_printk(APIC_VERBOSE, KERN_INFO "Broken MPtable reports ISA irq %d\n", irq); return 0; } #endif /* ISA interrupts are always polarity zero edge triggered, * when listed as conforming in the MP table. */ #define default_ISA_trigger(idx) (0) #define default_ISA_polarity(idx) (0) /* EISA interrupts are always polarity zero and can be edge or level * trigger depending on the ELCR value. If an interrupt is listed as * EISA conforming in the MP table, that means its trigger type must * be read in from the ELCR */ #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq)) #define default_EISA_polarity(idx) default_ISA_polarity(idx) /* PCI interrupts are always polarity one level triggered, * when listed as conforming in the MP table. */ #define default_PCI_trigger(idx) (1) #define default_PCI_polarity(idx) (1) /* MCA interrupts are always polarity zero level triggered, * when listed as conforming in the MP table. */ #define default_MCA_trigger(idx) (1) #define default_MCA_polarity(idx) default_ISA_polarity(idx) static int MPBIOS_polarity(int idx) { int bus = mp_irqs[idx].srcbus; int polarity; /* * Determine IRQ line polarity (high active or low active): */ switch (mp_irqs[idx].irqflag & 3) { case 0: /* conforms, ie. bus-type dependent polarity */ if (test_bit(bus, mp_bus_not_pci)) polarity = default_ISA_polarity(idx); else polarity = default_PCI_polarity(idx); break; case 1: /* high active */ { polarity = 0; break; } case 2: /* reserved */ { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } case 3: /* low active */ { polarity = 1; break; } default: /* invalid */ { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } } return polarity; } static int MPBIOS_trigger(int idx) { int bus = mp_irqs[idx].srcbus; int trigger; /* * Determine IRQ trigger mode (edge or level sensitive): */ switch ((mp_irqs[idx].irqflag>>2) & 3) { case 0: /* conforms, ie. bus-type dependent */ if (test_bit(bus, mp_bus_not_pci)) trigger = default_ISA_trigger(idx); else trigger = default_PCI_trigger(idx); #if defined(CONFIG_EISA) || defined(CONFIG_MCA) switch (mp_bus_id_to_type[bus]) { case MP_BUS_ISA: /* ISA pin */ { /* set before the switch */ break; } case MP_BUS_EISA: /* EISA pin */ { trigger = default_EISA_trigger(idx); break; } case MP_BUS_PCI: /* PCI pin */ { /* set before the switch */ break; } case MP_BUS_MCA: /* MCA pin */ { trigger = default_MCA_trigger(idx); break; } default: { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 1; break; } } #endif break; case 1: /* edge */ { trigger = 0; break; } case 2: /* reserved */ { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 1; break; } case 3: /* level */ { trigger = 1; break; } default: /* invalid */ { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 0; break; } } return trigger; } static inline int irq_polarity(int idx) { return MPBIOS_polarity(idx); } static inline int irq_trigger(int idx) { return MPBIOS_trigger(idx); } int (*ioapic_renumber_irq)(int ioapic, int irq); static int pin_2_irq(int idx, int apic, int pin) { int irq, i; int bus = mp_irqs[idx].srcbus; /* * Debugging check, we are in big trouble if this message pops up! */ if (mp_irqs[idx].dstirq != pin) printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n"); if (test_bit(bus, mp_bus_not_pci)) { irq = mp_irqs[idx].srcbusirq; } else { /* * PCI IRQs are mapped in order */ i = irq = 0; while (i < apic) irq += nr_ioapic_registers[i++]; irq += pin; /* * For MPS mode, so far only needed by ES7000 platform */ if (ioapic_renumber_irq) irq = ioapic_renumber_irq(apic, irq); } #ifdef CONFIG_X86_32 /* * PCI IRQ command line redirection. Yes, limits are hardcoded. */ if ((pin >= 16) && (pin <= 23)) { if (pirq_entries[pin-16] != -1) { if (!pirq_entries[pin-16]) { apic_printk(APIC_VERBOSE, KERN_DEBUG "disabling PIRQ%d\n", pin-16); } else { irq = pirq_entries[pin-16]; apic_printk(APIC_VERBOSE, KERN_DEBUG "using PIRQ%d -> IRQ %d\n", pin-16, irq); } } } #endif return irq; } /* * Find a specific PCI IRQ entry. * Not an __init, possibly needed by modules */ int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin, struct io_apic_irq_attr *irq_attr) { int apic, i, best_guess = -1; apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", bus, slot, pin); if (test_bit(bus, mp_bus_not_pci)) { apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus); return -1; } for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].srcbus; for (apic = 0; apic < nr_ioapics; apic++) if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic || mp_irqs[i].dstapic == MP_APIC_ALL) break; if (!test_bit(lbus, mp_bus_not_pci) && !mp_irqs[i].irqtype && (bus == lbus) && (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) { int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq); if (!(apic || IO_APIC_IRQ(irq))) continue; if (pin == (mp_irqs[i].srcbusirq & 3)) { set_io_apic_irq_attr(irq_attr, apic, mp_irqs[i].dstirq, irq_trigger(i), irq_polarity(i)); return irq; } /* * Use the first all-but-pin matching entry as a * best-guess fuzzy result for broken mptables. */ if (best_guess < 0) { set_io_apic_irq_attr(irq_attr, apic, mp_irqs[i].dstirq, irq_trigger(i), irq_polarity(i)); best_guess = irq; } } } return best_guess; } EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); void lock_vector_lock(void) { /* Used to the online set of cpus does not change * during assign_irq_vector. */ spin_lock(&vector_lock); } void unlock_vector_lock(void) { spin_unlock(&vector_lock); } static int __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) { /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0; unsigned int old_vector; int cpu, err; cpumask_var_t tmp_mask; if ((cfg->move_in_progress) || cfg->move_cleanup_count) return -EBUSY; if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC)) return -ENOMEM; old_vector = cfg->vector; if (old_vector) { cpumask_and(tmp_mask, mask, cpu_online_mask); cpumask_and(tmp_mask, cfg->domain, tmp_mask); if (!cpumask_empty(tmp_mask)) { free_cpumask_var(tmp_mask); return 0; } } /* Only try and allocate irqs on cpus that are present */ err = -ENOSPC; for_each_cpu_and(cpu, mask, cpu_online_mask) { int new_cpu; int vector, offset; apic->vector_allocation_domain(cpu, tmp_mask); vector = current_vector; offset = current_offset; next: vector += 8; if (vector >= first_system_vector) { /* If out of vectors on large boxen, must share them. */ offset = (offset + 1) % 8; vector = FIRST_DEVICE_VECTOR + offset; } if (unlikely(current_vector == vector)) continue; if (test_bit(vector, used_vectors)) goto next; for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) if (per_cpu(vector_irq, new_cpu)[vector] != -1) goto next; /* Found one! */ current_vector = vector; current_offset = offset; if (old_vector) { cfg->move_in_progress = 1; cpumask_copy(cfg->old_domain, cfg->domain); } for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) per_cpu(vector_irq, new_cpu)[vector] = irq; cfg->vector = vector; cpumask_copy(cfg->domain, tmp_mask); err = 0; break; } free_cpumask_var(tmp_mask); return err; } static int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) { int err; unsigned long flags; spin_lock_irqsave(&vector_lock, flags); err = __assign_irq_vector(irq, cfg, mask); spin_unlock_irqrestore(&vector_lock, flags); return err; } static void __clear_irq_vector(int irq, struct irq_cfg *cfg) { int cpu, vector; BUG_ON(!cfg->vector); vector = cfg->vector; for_each_cpu_and(cpu, cfg->domain, cpu_online_mask) per_cpu(vector_irq, cpu)[vector] = -1; cfg->vector = 0; cpumask_clear(cfg->domain); if (likely(!cfg->move_in_progress)) return; for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) { for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { if (per_cpu(vector_irq, cpu)[vector] != irq) continue; per_cpu(vector_irq, cpu)[vector] = -1; break; } } cfg->move_in_progress = 0; } void __setup_vector_irq(int cpu) { /* Initialize vector_irq on a new cpu */ /* This function must be called with vector_lock held */ int irq, vector; struct irq_cfg *cfg; struct irq_desc *desc; /* Mark the inuse vectors */ for_each_irq_desc(irq, desc) { cfg = desc->chip_data; if (!cpumask_test_cpu(cpu, cfg->domain)) continue; vector = cfg->vector; per_cpu(vector_irq, cpu)[vector] = irq; } /* Mark the free vectors */ for (vector = 0; vector < NR_VECTORS; ++vector) { irq = per_cpu(vector_irq, cpu)[vector]; if (irq < 0) continue; cfg = irq_cfg(irq); if (!cpumask_test_cpu(cpu, cfg->domain)) per_cpu(vector_irq, cpu)[vector] = -1; } } static struct irq_chip ioapic_chip; static struct irq_chip ir_ioapic_chip; #define IOAPIC_AUTO -1 #define IOAPIC_EDGE 0 #define IOAPIC_LEVEL 1 #ifdef CONFIG_X86_32 static inline int IO_APIC_irq_trigger(int irq) { int apic, idx, pin; for (apic = 0; apic < nr_ioapics; apic++) { for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { idx = find_irq_entry(apic, pin, mp_INT); if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin))) return irq_trigger(idx); } } /* * nonexistent IRQs are edge default */ return 0; } #else static inline int IO_APIC_irq_trigger(int irq) { return 1; } #endif static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger) { if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || trigger == IOAPIC_LEVEL) desc->status |= IRQ_LEVEL; else desc->status &= ~IRQ_LEVEL; if (irq_remapped(irq)) { desc->status |= IRQ_MOVE_PCNTXT; if (trigger) set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, handle_fasteoi_irq, "fasteoi"); else set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, handle_edge_irq, "edge"); return; } if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || trigger == IOAPIC_LEVEL) set_irq_chip_and_handler_name(irq, &ioapic_chip, handle_fasteoi_irq, "fasteoi"); else set_irq_chip_and_handler_name(irq, &ioapic_chip, handle_edge_irq, "edge"); } int setup_ioapic_entry(int apic_id, int irq, struct IO_APIC_route_entry *entry, unsigned int destination, int trigger, int polarity, int vector, int pin) { /* * add it to the IO-APIC irq-routing table: */ memset(entry,0,sizeof(*entry)); if (intr_remapping_enabled) { struct intel_iommu *iommu = map_ioapic_to_ir(apic_id); struct irte irte; struct IR_IO_APIC_route_entry *ir_entry = (struct IR_IO_APIC_route_entry *) entry; int index; if (!iommu) panic("No mapping iommu for ioapic %d\n", apic_id); index = alloc_irte(iommu, irq, 1); if (index < 0) panic("Failed to allocate IRTE for ioapic %d\n", apic_id); memset(&irte, 0, sizeof(irte)); irte.present = 1; irte.dst_mode = apic->irq_dest_mode; /* * Trigger mode in the IRTE will always be edge, and the * actual level or edge trigger will be setup in the IO-APIC * RTE. This will help simplify level triggered irq migration. * For more details, see the comments above explainig IO-APIC * irq migration in the presence of interrupt-remapping. */ irte.trigger_mode = 0; irte.dlvry_mode = apic->irq_delivery_mode; irte.vector = vector; irte.dest_id = IRTE_DEST(destination); /* Set source-id of interrupt request */ set_ioapic_sid(&irte, apic_id); modify_irte(irq, &irte); ir_entry->index2 = (index >> 15) & 0x1; ir_entry->zero = 0; ir_entry->format = 1; ir_entry->index = (index & 0x7fff); /* * IO-APIC RTE will be configured with virtual vector. * irq handler will do the explicit EOI to the io-apic. */ ir_entry->vector = pin; } else { entry->delivery_mode = apic->irq_delivery_mode; entry->dest_mode = apic->irq_dest_mode; entry->dest = destination; entry->vector = vector; } entry->mask = 0; /* enable IRQ */ entry->trigger = trigger; entry->polarity = polarity; /* Mask level triggered irqs. * Use IRQ_DELAYED_DISABLE for edge triggered irqs. */ if (trigger) entry->mask = 1; return 0; } static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc, int trigger, int polarity) { struct irq_cfg *cfg; struct IO_APIC_route_entry entry; unsigned int dest; if (!IO_APIC_IRQ(irq)) return; cfg = desc->chip_data; if (assign_irq_vector(irq, cfg, apic->target_cpus())) return; dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); apic_printk(APIC_VERBOSE,KERN_DEBUG "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> " "IRQ %d Mode:%i Active:%i)\n", apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector, irq, trigger, polarity); if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry, dest, trigger, polarity, cfg->vector, pin)) { printk("Failed to setup ioapic entry for ioapic %d, pin %d\n", mp_ioapics[apic_id].apicid, pin); __clear_irq_vector(irq, cfg); return; } ioapic_register_intr(irq, desc, trigger); if (irq < NR_IRQS_LEGACY) disable_8259A_irq(irq); ioapic_write_entry(apic_id, pin, entry); } static struct { DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1); } mp_ioapic_routing[MAX_IO_APICS]; static void __init setup_IO_APIC_irqs(void) { int apic_id = 0, pin, idx, irq; int notcon = 0; struct irq_desc *desc; struct irq_cfg *cfg; int node = cpu_to_node(boot_cpu_id); apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); #ifdef CONFIG_ACPI if (!acpi_disabled && acpi_ioapic) { apic_id = mp_find_ioapic(0); if (apic_id < 0) apic_id = 0; } #endif for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) { idx = find_irq_entry(apic_id, pin, mp_INT); if (idx == -1) { if (!notcon) { notcon = 1; apic_printk(APIC_VERBOSE, KERN_DEBUG " %d-%d", mp_ioapics[apic_id].apicid, pin); } else apic_printk(APIC_VERBOSE, " %d-%d", mp_ioapics[apic_id].apicid, pin); continue; } if (notcon) { apic_printk(APIC_VERBOSE, " (apicid-pin) not connected\n"); notcon = 0; } irq = pin_2_irq(idx, apic_id, pin); /* * Skip the timer IRQ if there's a quirk handler * installed and if it returns 1: */ if (apic->multi_timer_check && apic->multi_timer_check(apic_id, irq)) continue; desc = irq_to_desc_alloc_node(irq, node); if (!desc) { printk(KERN_INFO "can not get irq_desc for %d\n", irq); continue; } cfg = desc->chip_data; add_pin_to_irq_node(cfg, node, apic_id, pin); /* * don't mark it in pin_programmed, so later acpi could * set it correctly when irq < 16 */ setup_IO_APIC_irq(apic_id, pin, irq, desc, irq_trigger(idx), irq_polarity(idx)); } if (notcon) apic_printk(APIC_VERBOSE, " (apicid-pin) not connected\n"); } /* * Set up the timer pin, possibly with the 8259A-master behind. */ static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin, int vector) { struct IO_APIC_route_entry entry; if (intr_remapping_enabled) return; memset(&entry, 0, sizeof(entry)); /* * We use logical delivery to get the timer IRQ * to the first CPU. */ entry.dest_mode = apic->irq_dest_mode; entry.mask = 0; /* don't mask IRQ for edge */ entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus()); entry.delivery_mode = apic->irq_delivery_mode; entry.polarity = 0; entry.trigger = 0; entry.vector = vector; /* * The timer IRQ doesn't have to know that behind the * scene we may have a 8259A-master in AEOI mode ... */ set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); /* * Add it to the IO-APIC irq-routing table: */ ioapic_write_entry(apic_id, pin, entry); } __apicdebuginit(void) print_IO_APIC(void) { int apic, i; union IO_APIC_reg_00 reg_00; union IO_APIC_reg_01 reg_01; union IO_APIC_reg_02 reg_02; union IO_APIC_reg_03 reg_03; unsigned long flags; struct irq_cfg *cfg; struct irq_desc *desc; unsigned int irq; if (apic_verbosity == APIC_QUIET) return; printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); for (i = 0; i < nr_ioapics; i++) printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", mp_ioapics[i].apicid, nr_ioapic_registers[i]); /* * We are a bit conservative about what we expect. We have to * know about every hardware change ASAP. */ printk(KERN_INFO "testing the IO APIC.......................\n"); for (apic = 0; apic < nr_ioapics; apic++) { spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(apic, 0); reg_01.raw = io_apic_read(apic, 1); if (reg_01.bits.version >= 0x10) reg_02.raw = io_apic_read(apic, 2); if (reg_01.bits.version >= 0x20) reg_03.raw = io_apic_read(apic, 3); spin_unlock_irqrestore(&ioapic_lock, flags); printk("\n"); printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid); printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries); printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version); /* * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, * but the value of reg_02 is read as the previous read register * value, so ignore it if reg_02 == reg_01. */ if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); } /* * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 * or reg_03, but the value of reg_0[23] is read as the previous read * register value, so ignore it if reg_03 == reg_0[12]. */ if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && reg_03.raw != reg_01.raw) { printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); } printk(KERN_DEBUG ".... IRQ redirection table:\n"); printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol" " Stat Dmod Deli Vect: \n"); for (i = 0; i <= reg_01.bits.entries; i++) { struct IO_APIC_route_entry entry; entry = ioapic_read_entry(apic, i); printk(KERN_DEBUG " %02x %03X ", i, entry.dest ); printk("%1d %1d %1d %1d %1d %1d %1d %02X\n", entry.mask, entry.trigger, entry.irr, entry.polarity, entry.delivery_status, entry.dest_mode, entry.delivery_mode, entry.vector ); } } printk(KERN_DEBUG "IRQ to pin mappings:\n"); for_each_irq_desc(irq, desc) { struct irq_pin_list *entry; cfg = desc->chip_data; entry = cfg->irq_2_pin; if (!entry) continue; printk(KERN_DEBUG "IRQ%d ", irq); for (;;) { printk("-> %d:%d", entry->apic, entry->pin); if (!entry->next) break; entry = entry->next; } printk("\n"); } printk(KERN_INFO ".................................... done.\n"); return; } __apicdebuginit(void) print_APIC_field(int base) { int i; if (apic_verbosity == APIC_QUIET) return; printk(KERN_DEBUG); for (i = 0; i < 8; i++) printk(KERN_CONT "%08x", apic_read(base + i*0x10)); printk(KERN_CONT "\n"); } __apicdebuginit(void) print_local_APIC(void *dummy) { unsigned int i, v, ver, maxlvt; u64 icr; if (apic_verbosity == APIC_QUIET) return; printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n", smp_processor_id(), hard_smp_processor_id()); v = apic_read(APIC_ID); printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id()); v = apic_read(APIC_LVR); printk(KERN_INFO "... APIC VERSION: %08x\n", v); ver = GET_APIC_VERSION(v); maxlvt = lapic_get_maxlvt(); v = apic_read(APIC_TASKPRI); printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); if (APIC_INTEGRATED(ver)) { /* !82489DX */ if (!APIC_XAPIC(ver)) { v = apic_read(APIC_ARBPRI); printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v, v & APIC_ARBPRI_MASK); } v = apic_read(APIC_PROCPRI); printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v); } /* * Remote read supported only in the 82489DX and local APIC for * Pentium processors. */ if (!APIC_INTEGRATED(ver) || maxlvt == 3) { v = apic_read(APIC_RRR); printk(KERN_DEBUG "... APIC RRR: %08x\n", v); } v = apic_read(APIC_LDR); printk(KERN_DEBUG "... APIC LDR: %08x\n", v); if (!x2apic_enabled()) { v = apic_read(APIC_DFR); printk(KERN_DEBUG "... APIC DFR: %08x\n", v); } v = apic_read(APIC_SPIV); printk(KERN_DEBUG "... APIC SPIV: %08x\n", v); printk(KERN_DEBUG "... APIC ISR field:\n"); print_APIC_field(APIC_ISR); printk(KERN_DEBUG "... APIC TMR field:\n"); print_APIC_field(APIC_TMR); printk(KERN_DEBUG "... APIC IRR field:\n"); print_APIC_field(APIC_IRR); if (APIC_INTEGRATED(ver)) { /* !82489DX */ if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); v = apic_read(APIC_ESR); printk(KERN_DEBUG "... APIC ESR: %08x\n", v); } icr = apic_icr_read(); printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr); printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32)); v = apic_read(APIC_LVTT); printk(KERN_DEBUG "... APIC LVTT: %08x\n", v); if (maxlvt > 3) { /* PC is LVT#4. */ v = apic_read(APIC_LVTPC); printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v); } v = apic_read(APIC_LVT0); printk(KERN_DEBUG "... APIC LVT0: %08x\n", v); v = apic_read(APIC_LVT1); printk(KERN_DEBUG "... APIC LVT1: %08x\n", v); if (maxlvt > 2) { /* ERR is LVT#3. */ v = apic_read(APIC_LVTERR); printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v); } v = apic_read(APIC_TMICT); printk(KERN_DEBUG "... APIC TMICT: %08x\n", v); v = apic_read(APIC_TMCCT); printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v); v = apic_read(APIC_TDCR); printk(KERN_DEBUG "... APIC TDCR: %08x\n", v); if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { v = apic_read(APIC_EFEAT); maxlvt = (v >> 16) & 0xff; printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v); v = apic_read(APIC_ECTRL); printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v); for (i = 0; i < maxlvt; i++) { v = apic_read(APIC_EILVTn(i)); printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v); } } printk("\n"); } __apicdebuginit(void) print_all_local_APICs(void) { int cpu; preempt_disable(); for_each_online_cpu(cpu) smp_call_function_single(cpu, print_local_APIC, NULL, 1); preempt_enable(); } __apicdebuginit(void) print_PIC(void) { unsigned int v; unsigned long flags; if (apic_verbosity == APIC_QUIET) return; printk(KERN_DEBUG "\nprinting PIC contents\n"); spin_lock_irqsave(&i8259A_lock, flags); v = inb(0xa1) << 8 | inb(0x21); printk(KERN_DEBUG "... PIC IMR: %04x\n", v); v = inb(0xa0) << 8 | inb(0x20); printk(KERN_DEBUG "... PIC IRR: %04x\n", v); outb(0x0b,0xa0); outb(0x0b,0x20); v = inb(0xa0) << 8 | inb(0x20); outb(0x0a,0xa0); outb(0x0a,0x20); spin_unlock_irqrestore(&i8259A_lock, flags); printk(KERN_DEBUG "... PIC ISR: %04x\n", v); v = inb(0x4d1) << 8 | inb(0x4d0); printk(KERN_DEBUG "... PIC ELCR: %04x\n", v); } __apicdebuginit(int) print_all_ICs(void) { print_PIC(); /* don't print out if apic is not there */ if (!cpu_has_apic || disable_apic) return 0; print_all_local_APICs(); print_IO_APIC(); return 0; } fs_initcall(print_all_ICs); /* Where if anywhere is the i8259 connect in external int mode */ static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; void __init enable_IO_APIC(void) { union IO_APIC_reg_01 reg_01; int i8259_apic, i8259_pin; int apic; unsigned long flags; /* * The number of IO-APIC IRQ registers (== #pins): */ for (apic = 0; apic < nr_ioapics; apic++) { spin_lock_irqsave(&ioapic_lock, flags); reg_01.raw = io_apic_read(apic, 1); spin_unlock_irqrestore(&ioapic_lock, flags); nr_ioapic_registers[apic] = reg_01.bits.entries+1; } for(apic = 0; apic < nr_ioapics; apic++) { int pin; /* See if any of the pins is in ExtINT mode */ for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { struct IO_APIC_route_entry entry; entry = ioapic_read_entry(apic, pin); /* If the interrupt line is enabled and in ExtInt mode * I have found the pin where the i8259 is connected. */ if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) { ioapic_i8259.apic = apic; ioapic_i8259.pin = pin; goto found_i8259; } } } found_i8259: /* Look to see what if the MP table has reported the ExtINT */ /* If we could not find the appropriate pin by looking at the ioapic * the i8259 probably is not connected the ioapic but give the * mptable a chance anyway. */ i8259_pin = find_isa_irq_pin(0, mp_ExtINT); i8259_apic = find_isa_irq_apic(0, mp_ExtINT); /* Trust the MP table if nothing is setup in the hardware */ if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); ioapic_i8259.pin = i8259_pin; ioapic_i8259.apic = i8259_apic; } /* Complain if the MP table and the hardware disagree */ if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) { printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); } /* * Do not trust the IO-APIC being empty at bootup */ clear_IO_APIC(); } /* * Not an __init, needed by the reboot code */ void disable_IO_APIC(void) { /* * Clear the IO-APIC before rebooting: */ clear_IO_APIC(); /* * If the i8259 is routed through an IOAPIC * Put that IOAPIC in virtual wire mode * so legacy interrupts can be delivered. * * With interrupt-remapping, for now we will use virtual wire A mode, * as virtual wire B is little complex (need to configure both * IOAPIC RTE aswell as interrupt-remapping table entry). * As this gets called during crash dump, keep this simple for now. */ if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) { struct IO_APIC_route_entry entry; memset(&entry, 0, sizeof(entry)); entry.mask = 0; /* Enabled */ entry.trigger = 0; /* Edge */ entry.irr = 0; entry.polarity = 0; /* High */ entry.delivery_status = 0; entry.dest_mode = 0; /* Physical */ entry.delivery_mode = dest_ExtINT; /* ExtInt */ entry.vector = 0; entry.dest = read_apic_id(); /* * Add it to the IO-APIC irq-routing table: */ ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); } /* * Use virtual wire A mode when interrupt remapping is enabled. */ if (cpu_has_apic) disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1); } #ifdef CONFIG_X86_32 /* * function to set the IO-APIC physical IDs based on the * values stored in the MPC table. * * by Matt Domsch Tue Dec 21 12:25:05 CST 1999 */ static void __init setup_ioapic_ids_from_mpc(void) { union IO_APIC_reg_00 reg_00; physid_mask_t phys_id_present_map; int apic_id; int i; unsigned char old_id; unsigned long flags; if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids()) return; /* * Don't check I/O APIC IDs for xAPIC systems. They have * no meaning without the serial APIC bus. */ if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) || APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) return; /* * This is broken; anything with a real cpu count has to * circumvent this idiocy regardless. */ phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map); /* * Set the IOAPIC ID to the value stored in the MPC table. */ for (apic_id = 0; apic_id < nr_ioapics; apic_id++) { /* Read the register 0 value */ spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(apic_id, 0); spin_unlock_irqrestore(&ioapic_lock, flags); old_id = mp_ioapics[apic_id].apicid; if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) { printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", apic_id, mp_ioapics[apic_id].apicid); printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", reg_00.bits.ID); mp_ioapics[apic_id].apicid = reg_00.bits.ID; } /* * Sanity check, is the ID really free? Every APIC in a * system must have a unique ID or we get lots of nice * 'stuck on smp_invalidate_needed IPI wait' messages. */ if (apic->check_apicid_used(phys_id_present_map, mp_ioapics[apic_id].apicid)) { printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", apic_id, mp_ioapics[apic_id].apicid); for (i = 0; i < get_physical_broadcast(); i++) if (!physid_isset(i, phys_id_present_map)) break; if (i >= get_physical_broadcast()) panic("Max APIC ID exceeded!\n"); printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", i); physid_set(i, phys_id_present_map); mp_ioapics[apic_id].apicid = i; } else { physid_mask_t tmp; tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid); apic_printk(APIC_VERBOSE, "Setting %d in the " "phys_id_present_map\n", mp_ioapics[apic_id].apicid); physids_or(phys_id_present_map, phys_id_present_map, tmp); } /* * We need to adjust the IRQ routing table * if the ID changed. */ if (old_id != mp_ioapics[apic_id].apicid) for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].dstapic == old_id) mp_irqs[i].dstapic = mp_ioapics[apic_id].apicid; /* * Read the right value from the MPC table and * write it into the ID register. */ apic_printk(APIC_VERBOSE, KERN_INFO "...changing IO-APIC physical APIC ID to %d ...", mp_ioapics[apic_id].apicid); reg_00.bits.ID = mp_ioapics[apic_id].apicid; spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(apic_id, 0, reg_00.raw); spin_unlock_irqrestore(&ioapic_lock, flags); /* * Sanity check */ spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(apic_id, 0); spin_unlock_irqrestore(&ioapic_lock, flags); if (reg_00.bits.ID != mp_ioapics[apic_id].apicid) printk("could not set ID!\n"); else apic_printk(APIC_VERBOSE, " ok.\n"); } } #endif int no_timer_check __initdata; static int __init notimercheck(char *s) { no_timer_check = 1; return 1; } __setup("no_timer_check", notimercheck); /* * There is a nasty bug in some older SMP boards, their mptable lies * about the timer IRQ. We do the following to work around the situation: * * - timer IRQ defaults to IO-APIC IRQ * - if this function detects that timer IRQs are defunct, then we fall * back to ISA timer IRQs */ static int __init timer_irq_works(void) { unsigned long t1 = jiffies; unsigned long flags; if (no_timer_check) return 1; local_save_flags(flags); local_irq_enable(); /* Let ten ticks pass... */ mdelay((10 * 1000) / HZ); local_irq_restore(flags); /* * Expect a few ticks at least, to be sure some possible * glue logic does not lock up after one or two first * ticks in a non-ExtINT mode. Also the local APIC * might have cached one ExtINT interrupt. Finally, at * least one tick may be lost due to delays. */ /* jiffies wrap? */ if (time_after(jiffies, t1 + 4)) return 1; return 0; } /* * In the SMP+IOAPIC case it might happen that there are an unspecified * number of pending IRQ events unhandled. These cases are very rare, * so we 'resend' these IRQs via IPIs, to the same CPU. It's much * better to do it this way as thus we do not have to be aware of * 'pending' interrupts in the IRQ path, except at this point. */ /* * Edge triggered needs to resend any interrupt * that was delayed but this is now handled in the device * independent code. */ /* * Starting up a edge-triggered IO-APIC interrupt is * nasty - we need to make sure that we get the edge. * If it is already asserted for some reason, we need * return 1 to indicate that is was pending. * * This is not complete - we should be able to fake * an edge even if it isn't on the 8259A... */ static unsigned int startup_ioapic_irq(unsigned int irq) { int was_pending = 0; unsigned long flags; struct irq_cfg *cfg; spin_lock_irqsave(&ioapic_lock, flags); if (irq < NR_IRQS_LEGACY) { disable_8259A_irq(irq); if (i8259A_irq_pending(irq)) was_pending = 1; } cfg = irq_cfg(irq); __unmask_IO_APIC_irq(cfg); spin_unlock_irqrestore(&ioapic_lock, flags); return was_pending; } #ifdef CONFIG_X86_64 static int ioapic_retrigger_irq(unsigned int irq) { struct irq_cfg *cfg = irq_cfg(irq); unsigned long flags; spin_lock_irqsave(&vector_lock, flags); apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector); spin_unlock_irqrestore(&vector_lock, flags); return 1; } #else static int ioapic_retrigger_irq(unsigned int irq) { apic->send_IPI_self(irq_cfg(irq)->vector); return 1; } #endif /* * Level and edge triggered IO-APIC interrupts need different handling, * so we use two separate IRQ descriptors. Edge triggered IRQs can be * handled with the level-triggered descriptor, but that one has slightly * more overhead. Level-triggered interrupts cannot be handled with the * edge-triggered handler, without risking IRQ storms and other ugly * races. */ #ifdef CONFIG_SMP static void send_cleanup_vector(struct irq_cfg *cfg) { cpumask_var_t cleanup_mask; if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) { unsigned int i; cfg->move_cleanup_count = 0; for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) cfg->move_cleanup_count++; for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR); } else { cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask); cfg->move_cleanup_count = cpumask_weight(cleanup_mask); apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); free_cpumask_var(cleanup_mask); } cfg->move_in_progress = 0; } static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg) { int apic, pin; struct irq_pin_list *entry; u8 vector = cfg->vector; entry = cfg->irq_2_pin; for (;;) { unsigned int reg; if (!entry) break; apic = entry->apic; pin = entry->pin; /* * With interrupt-remapping, destination information comes * from interrupt-remapping table entry. */ if (!irq_remapped(irq)) io_apic_write(apic, 0x11 + pin*2, dest); reg = io_apic_read(apic, 0x10 + pin*2); reg &= ~IO_APIC_REDIR_VECTOR_MASK; reg |= vector; io_apic_modify(apic, 0x10 + pin*2, reg); if (!entry->next) break; entry = entry->next; } } static int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask); /* * Either sets desc->affinity to a valid value, and returns * ->cpu_mask_to_apicid of that, or returns BAD_APICID and * leaves desc->affinity untouched. */ static unsigned int set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask) { struct irq_cfg *cfg; unsigned int irq; if (!cpumask_intersects(mask, cpu_online_mask)) return BAD_APICID; irq = desc->irq; cfg = desc->chip_data; if (assign_irq_vector(irq, cfg, mask)) return BAD_APICID; cpumask_copy(desc->affinity, mask); return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain); } static int set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask) { struct irq_cfg *cfg; unsigned long flags; unsigned int dest; unsigned int irq; int ret = -1; irq = desc->irq; cfg = desc->chip_data; spin_lock_irqsave(&ioapic_lock, flags); dest = set_desc_affinity(desc, mask); if (dest != BAD_APICID) { /* Only the high 8 bits are valid. */ dest = SET_APIC_LOGICAL_ID(dest); __target_IO_APIC_irq(irq, dest, cfg); ret = 0; } spin_unlock_irqrestore(&ioapic_lock, flags); return ret; } static int set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask) { struct irq_desc *desc; desc = irq_to_desc(irq); return set_ioapic_affinity_irq_desc(desc, mask); } #ifdef CONFIG_INTR_REMAP /* * Migrate the IO-APIC irq in the presence of intr-remapping. * * For both level and edge triggered, irq migration is a simple atomic * update(of vector and cpu destination) of IRTE and flush the hardware cache. * * For level triggered, we eliminate the io-apic RTE modification (with the * updated vector information), by using a virtual vector (io-apic pin number). * Real vector that is used for interrupting cpu will be coming from * the interrupt-remapping table entry. */ static int migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask) { struct irq_cfg *cfg; struct irte irte; unsigned int dest; unsigned int irq; int ret = -1; if (!cpumask_intersects(mask, cpu_online_mask)) return ret; irq = desc->irq; if (get_irte(irq, &irte)) return ret; cfg = desc->chip_data; if (assign_irq_vector(irq, cfg, mask)) return ret; dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask); irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); /* * Modified the IRTE and flushes the Interrupt entry cache. */ modify_irte(irq, &irte); if (cfg->move_in_progress) send_cleanup_vector(cfg); cpumask_copy(desc->affinity, mask); return 0; } /* * Migrates the IRQ destination in the process context. */ static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask) { return migrate_ioapic_irq_desc(desc, mask); } static int set_ir_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask) { struct irq_desc *desc = irq_to_desc(irq); return set_ir_ioapic_affinity_irq_desc(desc, mask); } #else static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask) { return 0; } #endif asmlinkage void smp_irq_move_cleanup_interrupt(void) { unsigned vector, me; ack_APIC_irq(); exit_idle(); irq_enter(); me = smp_processor_id(); for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { unsigned int irq; unsigned int irr; struct irq_desc *desc; struct irq_cfg *cfg; irq = __get_cpu_var(vector_irq)[vector]; if (irq == -1) continue; desc = irq_to_desc(irq); if (!desc) continue; cfg = irq_cfg(irq); spin_lock(&desc->lock); if (!cfg->move_cleanup_count) goto unlock; if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) goto unlock; irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); /* * Check if the vector that needs to be cleanedup is * registered at the cpu's IRR. If so, then this is not * the best time to clean it up. Lets clean it up in the * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR * to myself. */ if (irr & (1 << (vector % 32))) { apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); goto unlock; } __get_cpu_var(vector_irq)[vector] = -1; cfg->move_cleanup_count--; unlock: spin_unlock(&desc->lock); } irq_exit(); } static void irq_complete_move(struct irq_desc **descp) { struct irq_desc *desc = *descp; struct irq_cfg *cfg = desc->chip_data; unsigned vector, me; if (likely(!cfg->move_in_progress)) return; vector = ~get_irq_regs()->orig_ax; me = smp_processor_id(); if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) send_cleanup_vector(cfg); } #else static inline void irq_complete_move(struct irq_desc **descp) {} #endif static void ack_apic_edge(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); irq_complete_move(&desc); move_native_irq(irq); ack_APIC_irq(); } atomic_t irq_mis_count; static void ack_apic_level(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); #ifdef CONFIG_X86_32 unsigned long v; int i; #endif struct irq_cfg *cfg; int do_unmask_irq = 0; irq_complete_move(&desc); #ifdef CONFIG_GENERIC_PENDING_IRQ /* If we are moving the irq we need to mask it */ if (unlikely(desc->status & IRQ_MOVE_PENDING)) { do_unmask_irq = 1; mask_IO_APIC_irq_desc(desc); } #endif #ifdef CONFIG_X86_32 /* * It appears there is an erratum which affects at least version 0x11 * of I/O APIC (that's the 82093AA and cores integrated into various * chipsets). Under certain conditions a level-triggered interrupt is * erroneously delivered as edge-triggered one but the respective IRR * bit gets set nevertheless. As a result the I/O unit expects an EOI * message but it will never arrive and further interrupts are blocked * from the source. The exact reason is so far unknown, but the * phenomenon was observed when two consecutive interrupt requests * from a given source get delivered to the same CPU and the source is * temporarily disabled in between. * * A workaround is to simulate an EOI message manually. We achieve it * by setting the trigger mode to edge and then to level when the edge * trigger mode gets detected in the TMR of a local APIC for a * level-triggered interrupt. We mask the source for the time of the * operation to prevent an edge-triggered interrupt escaping meanwhile. * The idea is from Manfred Spraul. --macro */ cfg = desc->chip_data; i = cfg->vector; v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); #endif /* * We must acknowledge the irq before we move it or the acknowledge will * not propagate properly. */ ack_APIC_irq(); /* Now we can move and renable the irq */ if (unlikely(do_unmask_irq)) { /* Only migrate the irq if the ack has been received. * * On rare occasions the broadcast level triggered ack gets * delayed going to ioapics, and if we reprogram the * vector while Remote IRR is still set the irq will never * fire again. * * To prevent this scenario we read the Remote IRR bit * of the ioapic. This has two effects. * - On any sane system the read of the ioapic will * flush writes (and acks) going to the ioapic from * this cpu. * - We get to see if the ACK has actually been delivered. * * Based on failed experiments of reprogramming the * ioapic entry from outside of irq context starting * with masking the ioapic entry and then polling until * Remote IRR was clear before reprogramming the * ioapic I don't trust the Remote IRR bit to be * completey accurate. * * However there appears to be no other way to plug * this race, so if the Remote IRR bit is not * accurate and is causing problems then it is a hardware bug * and you can go talk to the chipset vendor about it. */ cfg = desc->chip_data; if (!io_apic_level_ack_pending(cfg)) move_masked_irq(irq); unmask_IO_APIC_irq_desc(desc); } #ifdef CONFIG_X86_32 if (!(v & (1 << (i & 0x1f)))) { atomic_inc(&irq_mis_count); spin_lock(&ioapic_lock); __mask_and_edge_IO_APIC_irq(cfg); __unmask_and_level_IO_APIC_irq(cfg); spin_unlock(&ioapic_lock); } #endif } #ifdef CONFIG_INTR_REMAP static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg) { int apic, pin; struct irq_pin_list *entry; entry = cfg->irq_2_pin; for (;;) { if (!entry) break; apic = entry->apic; pin = entry->pin; io_apic_eoi(apic, pin); entry = entry->next; } } static void eoi_ioapic_irq(struct irq_desc *desc) { struct irq_cfg *cfg; unsigned long flags; unsigned int irq; irq = desc->irq; cfg = desc->chip_data; spin_lock_irqsave(&ioapic_lock, flags); __eoi_ioapic_irq(irq, cfg); spin_unlock_irqrestore(&ioapic_lock, flags); } static void ir_ack_apic_edge(unsigned int irq) { ack_APIC_irq(); } static void ir_ack_apic_level(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); ack_APIC_irq(); eoi_ioapic_irq(desc); } #endif /* CONFIG_INTR_REMAP */ static struct irq_chip ioapic_chip __read_mostly = { .name = "IO-APIC", .startup = startup_ioapic_irq, .mask = mask_IO_APIC_irq, .unmask = unmask_IO_APIC_irq, .ack = ack_apic_edge, .eoi = ack_apic_level, #ifdef CONFIG_SMP .set_affinity = set_ioapic_affinity_irq, #endif .retrigger = ioapic_retrigger_irq, }; static struct irq_chip ir_ioapic_chip __read_mostly = { .name = "IR-IO-APIC", .startup = startup_ioapic_irq, .mask = mask_IO_APIC_irq, .unmask = unmask_IO_APIC_irq, #ifdef CONFIG_INTR_REMAP .ack = ir_ack_apic_edge, .eoi = ir_ack_apic_level, #ifdef CONFIG_SMP .set_affinity = set_ir_ioapic_affinity_irq, #endif #endif .retrigger = ioapic_retrigger_irq, }; static inline void init_IO_APIC_traps(void) { int irq; struct irq_desc *desc; struct irq_cfg *cfg; /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ for_each_irq_desc(irq, desc) { cfg = desc->chip_data; if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { /* * Hmm.. We don't have an entry for this, * so default to an old-fashioned 8259 * interrupt if we can.. */ if (irq < NR_IRQS_LEGACY) make_8259A_irq(irq); else /* Strange. Oh, well.. */ desc->chip = &no_irq_chip; } } } /* * The local APIC irq-chip implementation: */ static void mask_lapic_irq(unsigned int irq) { unsigned long v; v = apic_read(APIC_LVT0); apic_write(APIC_LVT0, v | APIC_LVT_MASKED); } static void unmask_lapic_irq(unsigned int irq) { unsigned long v; v = apic_read(APIC_LVT0); apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); } static void ack_lapic_irq(unsigned int irq) { ack_APIC_irq(); } static struct irq_chip lapic_chip __read_mostly = { .name = "local-APIC", .mask = mask_lapic_irq, .unmask = unmask_lapic_irq, .ack = ack_lapic_irq, }; static void lapic_register_intr(int irq, struct irq_desc *desc) { desc->status &= ~IRQ_LEVEL; set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, "edge"); } static void __init setup_nmi(void) { /* * Dirty trick to enable the NMI watchdog ... * We put the 8259A master into AEOI mode and * unmask on all local APICs LVT0 as NMI. * * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire') * is from Maciej W. Rozycki - so we do not have to EOI from * the NMI handler or the timer interrupt. */ apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ..."); enable_NMI_through_LVT0(); apic_printk(APIC_VERBOSE, " done.\n"); } /* * This looks a bit hackish but it's about the only one way of sending * a few INTA cycles to 8259As and any associated glue logic. ICR does * not support the ExtINT mode, unfortunately. We need to send these * cycles as some i82489DX-based boards have glue logic that keeps the * 8259A interrupt line asserted until INTA. --macro */ static inline void __init unlock_ExtINT_logic(void) { int apic, pin, i; struct IO_APIC_route_entry entry0, entry1; unsigned char save_control, save_freq_select; pin = find_isa_irq_pin(8, mp_INT); if (pin == -1) { WARN_ON_ONCE(1); return; } apic = find_isa_irq_apic(8, mp_INT); if (apic == -1) { WARN_ON_ONCE(1); return; } entry0 = ioapic_read_entry(apic, pin); clear_IO_APIC_pin(apic, pin); memset(&entry1, 0, sizeof(entry1)); entry1.dest_mode = 0; /* physical delivery */ entry1.mask = 0; /* unmask IRQ now */ entry1.dest = hard_smp_processor_id(); entry1.delivery_mode = dest_ExtINT; entry1.polarity = entry0.polarity; entry1.trigger = 0; entry1.vector = 0; ioapic_write_entry(apic, pin, entry1); save_control = CMOS_READ(RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, RTC_FREQ_SELECT); CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); i = 100; while (i-- > 0) { mdelay(10); if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) i -= 10; } CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); clear_IO_APIC_pin(apic, pin); ioapic_write_entry(apic, pin, entry0); } static int disable_timer_pin_1 __initdata; /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ static int __init disable_timer_pin_setup(char *arg) { disable_timer_pin_1 = 1; return 0; } early_param("disable_timer_pin_1", disable_timer_pin_setup); int timer_through_8259 __initdata; /* * This code may look a bit paranoid, but it's supposed to cooperate with * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ * is so screwy. Thanks to Brian Perkins for testing/hacking this beast * fanatically on his truly buggy board. * * FIXME: really need to revamp this for all platforms. */ static inline void __init check_timer(void) { struct irq_desc *desc = irq_to_desc(0); struct irq_cfg *cfg = desc->chip_data; int node = cpu_to_node(boot_cpu_id); int apic1, pin1, apic2, pin2; unsigned long flags; int no_pin1 = 0; local_irq_save(flags); /* * get/set the timer IRQ vector: */ disable_8259A_irq(0); assign_irq_vector(0, cfg, apic->target_cpus()); /* * As IRQ0 is to be enabled in the 8259A, the virtual * wire has to be disabled in the local APIC. Also * timer interrupts need to be acknowledged manually in * the 8259A for the i82489DX when using the NMI * watchdog as that APIC treats NMIs as level-triggered. * The AEOI mode will finish them in the 8259A * automatically. */ apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); init_8259A(1); #ifdef CONFIG_X86_32 { unsigned int ver; ver = apic_read(APIC_LVR); ver = GET_APIC_VERSION(ver); timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver)); } #endif pin1 = find_isa_irq_pin(0, mp_INT); apic1 = find_isa_irq_apic(0, mp_INT); pin2 = ioapic_i8259.pin; apic2 = ioapic_i8259.apic; apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " "apic1=%d pin1=%d apic2=%d pin2=%d\n", cfg->vector, apic1, pin1, apic2, pin2); /* * Some BIOS writers are clueless and report the ExtINTA * I/O APIC input from the cascaded 8259A as the timer * interrupt input. So just in case, if only one pin * was found above, try it both directly and through the * 8259A. */ if (pin1 == -1) { if (intr_remapping_enabled) panic("BIOS bug: timer not connected to IO-APIC"); pin1 = pin2; apic1 = apic2; no_pin1 = 1; } else if (pin2 == -1) { pin2 = pin1; apic2 = apic1; } if (pin1 != -1) { /* * Ok, does IRQ0 through the IOAPIC work? */ if (no_pin1) { add_pin_to_irq_node(cfg, node, apic1, pin1); setup_timer_IRQ0_pin(apic1, pin1, cfg->vector); } else { /* for edge trigger, setup_IO_APIC_irq already * leave it unmasked. * so only need to unmask if it is level-trigger * do we really have level trigger timer? */ int idx; idx = find_irq_entry(apic1, pin1, mp_INT); if (idx != -1 && irq_trigger(idx)) unmask_IO_APIC_irq_desc(desc); } if (timer_irq_works()) { if (nmi_watchdog == NMI_IO_APIC) { setup_nmi(); enable_8259A_irq(0); } if (disable_timer_pin_1 > 0) clear_IO_APIC_pin(0, pin1); goto out; } if (intr_remapping_enabled) panic("timer doesn't work through Interrupt-remapped IO-APIC"); local_irq_disable(); clear_IO_APIC_pin(apic1, pin1); if (!no_pin1) apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " "8254 timer not connected to IO-APIC\n"); apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " "(IRQ0) through the 8259A ...\n"); apic_printk(APIC_QUIET, KERN_INFO "..... (found apic %d pin %d) ...\n", apic2, pin2); /* * legacy devices should be connected to IO APIC #0 */ replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2); setup_timer_IRQ0_pin(apic2, pin2, cfg->vector); enable_8259A_irq(0); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); timer_through_8259 = 1; if (nmi_watchdog == NMI_IO_APIC) { disable_8259A_irq(0); setup_nmi(); enable_8259A_irq(0); } goto out; } /* * Cleanup, just in case ... */ local_irq_disable(); disable_8259A_irq(0); clear_IO_APIC_pin(apic2, pin2); apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); } if (nmi_watchdog == NMI_IO_APIC) { apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work " "through the IO-APIC - disabling NMI Watchdog!\n"); nmi_watchdog = NMI_NONE; } #ifdef CONFIG_X86_32 timer_ack = 0; #endif apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer as Virtual Wire IRQ...\n"); lapic_register_intr(0, desc); apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ enable_8259A_irq(0); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); goto out; } local_irq_disable(); disable_8259A_irq(0); apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer as ExtINT IRQ...\n"); init_8259A(0); make_8259A_irq(0); apic_write(APIC_LVT0, APIC_DM_EXTINT); unlock_ExtINT_logic(); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); goto out; } local_irq_disable(); apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " "report. Then try booting with the 'noapic' option.\n"); out: local_irq_restore(flags); } /* * Traditionally ISA IRQ2 is the cascade IRQ, and is not available * to devices. However there may be an I/O APIC pin available for * this interrupt regardless. The pin may be left unconnected, but * typically it will be reused as an ExtINT cascade interrupt for * the master 8259A. In the MPS case such a pin will normally be * reported as an ExtINT interrupt in the MP table. With ACPI * there is no provision for ExtINT interrupts, and in the absence * of an override it would be treated as an ordinary ISA I/O APIC * interrupt, that is edge-triggered and unmasked by default. We * used to do this, but it caused problems on some systems because * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using * the same ExtINT cascade interrupt to drive the local APIC of the * bootstrap processor. Therefore we refrain from routing IRQ2 to * the I/O APIC in all cases now. No actual device should request * it anyway. --macro */ #define PIC_IRQS (1 << PIC_CASCADE_IR) void __init setup_IO_APIC(void) { /* * calling enable_IO_APIC() is moved to setup_local_APIC for BP */ io_apic_irqs = ~PIC_IRQS; apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); /* * Set up IO-APIC IRQ routing. */ #ifdef CONFIG_X86_32 if (!acpi_ioapic) setup_ioapic_ids_from_mpc(); #endif sync_Arb_IDs(); setup_IO_APIC_irqs(); init_IO_APIC_traps(); check_timer(); } /* * Called after all the initialization is done. If we didnt find any * APIC bugs then we can allow the modify fast path */ static int __init io_apic_bug_finalize(void) { if (sis_apic_bug == -1) sis_apic_bug = 0; return 0; } late_initcall(io_apic_bug_finalize); struct sysfs_ioapic_data { struct sys_device dev; struct IO_APIC_route_entry entry[0]; }; static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS]; static int ioapic_suspend(struct sys_device *dev, pm_message_t state) { struct IO_APIC_route_entry *entry; struct sysfs_ioapic_data *data; int i; data = container_of(dev, struct sysfs_ioapic_data, dev); entry = data->entry; for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ ) *entry = ioapic_read_entry(dev->id, i); return 0; } static int ioapic_resume(struct sys_device *dev) { struct IO_APIC_route_entry *entry; struct sysfs_ioapic_data *data; unsigned long flags; union IO_APIC_reg_00 reg_00; int i; data = container_of(dev, struct sysfs_ioapic_data, dev); entry = data->entry; spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(dev->id, 0); if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) { reg_00.bits.ID = mp_ioapics[dev->id].apicid; io_apic_write(dev->id, 0, reg_00.raw); } spin_unlock_irqrestore(&ioapic_lock, flags); for (i = 0; i < nr_ioapic_registers[dev->id]; i++) ioapic_write_entry(dev->id, i, entry[i]); return 0; } static struct sysdev_class ioapic_sysdev_class = { .name = "ioapic", .suspend = ioapic_suspend, .resume = ioapic_resume, }; static int __init ioapic_init_sysfs(void) { struct sys_device * dev; int i, size, error; error = sysdev_class_register(&ioapic_sysdev_class); if (error) return error; for (i = 0; i < nr_ioapics; i++ ) { size = sizeof(struct sys_device) + nr_ioapic_registers[i] * sizeof(struct IO_APIC_route_entry); mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL); if (!mp_ioapic_data[i]) { printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); continue; } dev = &mp_ioapic_data[i]->dev; dev->id = i; dev->cls = &ioapic_sysdev_class; error = sysdev_register(dev); if (error) { kfree(mp_ioapic_data[i]); mp_ioapic_data[i] = NULL; printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); continue; } } return 0; } device_initcall(ioapic_init_sysfs); static int nr_irqs_gsi = NR_IRQS_LEGACY; /* * Dynamic irq allocate and deallocation */ unsigned int create_irq_nr(unsigned int irq_want, int node) { /* Allocate an unused irq */ unsigned int irq; unsigned int new; unsigned long flags; struct irq_cfg *cfg_new = NULL; struct irq_desc *desc_new = NULL; irq = 0; if (irq_want < nr_irqs_gsi) irq_want = nr_irqs_gsi; spin_lock_irqsave(&vector_lock, flags); for (new = irq_want; new < nr_irqs; new++) { desc_new = irq_to_desc_alloc_node(new, node); if (!desc_new) { printk(KERN_INFO "can not get irq_desc for %d\n", new); continue; } cfg_new = desc_new->chip_data; if (cfg_new->vector != 0) continue; desc_new = move_irq_desc(desc_new, node); if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0) irq = new; break; } spin_unlock_irqrestore(&vector_lock, flags); if (irq > 0) { dynamic_irq_init(irq); /* restore it, in case dynamic_irq_init clear it */ if (desc_new) desc_new->chip_data = cfg_new; } return irq; } int create_irq(void) { int node = cpu_to_node(boot_cpu_id); unsigned int irq_want; int irq; irq_want = nr_irqs_gsi; irq = create_irq_nr(irq_want, node); if (irq == 0) irq = -1; return irq; } void destroy_irq(unsigned int irq) { unsigned long flags; struct irq_cfg *cfg; struct irq_desc *desc; /* store it, in case dynamic_irq_cleanup clear it */ desc = irq_to_desc(irq); cfg = desc->chip_data; dynamic_irq_cleanup(irq); /* connect back irq_cfg */ if (desc) desc->chip_data = cfg; free_irte(irq); spin_lock_irqsave(&vector_lock, flags); __clear_irq_vector(irq, cfg); spin_unlock_irqrestore(&vector_lock, flags); } /* * MSI message composition */ #ifdef CONFIG_PCI_MSI static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg) { struct irq_cfg *cfg; int err; unsigned dest; if (disable_apic) return -ENXIO; cfg = irq_cfg(irq); err = assign_irq_vector(irq, cfg, apic->target_cpus()); if (err) return err; dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); if (irq_remapped(irq)) { struct irte irte; int ir_index; u16 sub_handle; ir_index = map_irq_to_irte_handle(irq, &sub_handle); BUG_ON(ir_index == -1); memset (&irte, 0, sizeof(irte)); irte.present = 1; irte.dst_mode = apic->irq_dest_mode; irte.trigger_mode = 0; /* edge */ irte.dlvry_mode = apic->irq_delivery_mode; irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); /* Set source-id of interrupt request */ set_msi_sid(&irte, pdev); modify_irte(irq, &irte); msg->address_hi = MSI_ADDR_BASE_HI; msg->data = sub_handle; msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | MSI_ADDR_IR_SHV | MSI_ADDR_IR_INDEX1(ir_index) | MSI_ADDR_IR_INDEX2(ir_index); } else { if (x2apic_enabled()) msg->address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest); else msg->address_hi = MSI_ADDR_BASE_HI; msg->address_lo = MSI_ADDR_BASE_LO | ((apic->irq_dest_mode == 0) ? MSI_ADDR_DEST_MODE_PHYSICAL: MSI_ADDR_DEST_MODE_LOGICAL) | ((apic->irq_delivery_mode != dest_LowestPrio) ? MSI_ADDR_REDIRECTION_CPU: MSI_ADDR_REDIRECTION_LOWPRI) | MSI_ADDR_DEST_ID(dest); msg->data = MSI_DATA_TRIGGER_EDGE | MSI_DATA_LEVEL_ASSERT | ((apic->irq_delivery_mode != dest_LowestPrio) ? MSI_DATA_DELIVERY_FIXED: MSI_DATA_DELIVERY_LOWPRI) | MSI_DATA_VECTOR(cfg->vector); } return err; } #ifdef CONFIG_SMP static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) { struct irq_desc *desc = irq_to_desc(irq); struct irq_cfg *cfg; struct msi_msg msg; unsigned int dest; dest = set_desc_affinity(desc, mask); if (dest == BAD_APICID) return -1; cfg = desc->chip_data; read_msi_msg_desc(desc, &msg); msg.data &= ~MSI_DATA_VECTOR_MASK; msg.data |= MSI_DATA_VECTOR(cfg->vector); msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; msg.address_lo |= MSI_ADDR_DEST_ID(dest); write_msi_msg_desc(desc, &msg); return 0; } #ifdef CONFIG_INTR_REMAP /* * Migrate the MSI irq to another cpumask. This migration is * done in the process context using interrupt-remapping hardware. */ static int ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) { struct irq_desc *desc = irq_to_desc(irq); struct irq_cfg *cfg = desc->chip_data; unsigned int dest; struct irte irte; if (get_irte(irq, &irte)) return -1; dest = set_desc_affinity(desc, mask); if (dest == BAD_APICID) return -1; irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); /* * atomically update the IRTE with the new destination and vector. */ modify_irte(irq, &irte); /* * After this point, all the interrupts will start arriving * at the new destination. So, time to cleanup the previous * vector allocation. */ if (cfg->move_in_progress) send_cleanup_vector(cfg); return 0; } #endif #endif /* CONFIG_SMP */ /* * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, * which implement the MSI or MSI-X Capability Structure. */ static struct irq_chip msi_chip = { .name = "PCI-MSI", .unmask = unmask_msi_irq, .mask = mask_msi_irq, .ack = ack_apic_edge, #ifdef CONFIG_SMP .set_affinity = set_msi_irq_affinity, #endif .retrigger = ioapic_retrigger_irq, }; static struct irq_chip msi_ir_chip = { .name = "IR-PCI-MSI", .unmask = unmask_msi_irq, .mask = mask_msi_irq, #ifdef CONFIG_INTR_REMAP .ack = ir_ack_apic_edge, #ifdef CONFIG_SMP .set_affinity = ir_set_msi_irq_affinity, #endif #endif .retrigger = ioapic_retrigger_irq, }; /* * Map the PCI dev to the corresponding remapping hardware unit * and allocate 'nvec' consecutive interrupt-remapping table entries * in it. */ static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec) { struct intel_iommu *iommu; int index; iommu = map_dev_to_ir(dev); if (!iommu) { printk(KERN_ERR "Unable to map PCI %s to iommu\n", pci_name(dev)); return -ENOENT; } index = alloc_irte(iommu, irq, nvec); if (index < 0) { printk(KERN_ERR "Unable to allocate %d IRTE for PCI %s\n", nvec, pci_name(dev)); return -ENOSPC; } return index; } static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq) { int ret; struct msi_msg msg; ret = msi_compose_msg(dev, irq, &msg); if (ret < 0) return ret; set_irq_msi(irq, msidesc); write_msi_msg(irq, &msg); if (irq_remapped(irq)) { struct irq_desc *desc = irq_to_desc(irq); /* * irq migration in process context */ desc->status |= IRQ_MOVE_PCNTXT; set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge"); } else set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge"); dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq); return 0; } int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) { unsigned int irq; int ret, sub_handle; struct msi_desc *msidesc; unsigned int irq_want; struct intel_iommu *iommu = NULL; int index = 0; int node; /* x86 doesn't support multiple MSI yet */ if (type == PCI_CAP_ID_MSI && nvec > 1) return 1; node = dev_to_node(&dev->dev); irq_want = nr_irqs_gsi; sub_handle = 0; list_for_each_entry(msidesc, &dev->msi_list, list) { irq = create_irq_nr(irq_want, node); if (irq == 0) return -1; irq_want = irq + 1; if (!intr_remapping_enabled) goto no_ir; if (!sub_handle) { /* * allocate the consecutive block of IRTE's * for 'nvec' */ index = msi_alloc_irte(dev, irq, nvec); if (index < 0) { ret = index; goto error; } } else { iommu = map_dev_to_ir(dev); if (!iommu) { ret = -ENOENT; goto error; } /* * setup the mapping between the irq and the IRTE * base index, the sub_handle pointing to the * appropriate interrupt remap table entry. */ set_irte_irq(irq, iommu, index, sub_handle); } no_ir: ret = setup_msi_irq(dev, msidesc, irq); if (ret < 0) goto error; sub_handle++; } return 0; error: destroy_irq(irq); return ret; } void arch_teardown_msi_irq(unsigned int irq) { destroy_irq(irq); } #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP) #ifdef CONFIG_SMP static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask) { struct irq_desc *desc = irq_to_desc(irq); struct irq_cfg *cfg; struct msi_msg msg; unsigned int dest; dest = set_desc_affinity(desc, mask); if (dest == BAD_APICID) return -1; cfg = desc->chip_data; dmar_msi_read(irq, &msg); msg.data &= ~MSI_DATA_VECTOR_MASK; msg.data |= MSI_DATA_VECTOR(cfg->vector); msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; msg.address_lo |= MSI_ADDR_DEST_ID(dest); dmar_msi_write(irq, &msg); return 0; } #endif /* CONFIG_SMP */ static struct irq_chip dmar_msi_type = { .name = "DMAR_MSI", .unmask = dmar_msi_unmask, .mask = dmar_msi_mask, .ack = ack_apic_edge, #ifdef CONFIG_SMP .set_affinity = dmar_msi_set_affinity, #endif .retrigger = ioapic_retrigger_irq, }; int arch_setup_dmar_msi(unsigned int irq) { int ret; struct msi_msg msg; ret = msi_compose_msg(NULL, irq, &msg); if (ret < 0) return ret; dmar_msi_write(irq, &msg); set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq, "edge"); return 0; } #endif #ifdef CONFIG_HPET_TIMER #ifdef CONFIG_SMP static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask) { struct irq_desc *desc = irq_to_desc(irq); struct irq_cfg *cfg; struct msi_msg msg; unsigned int dest; dest = set_desc_affinity(desc, mask); if (dest == BAD_APICID) return -1; cfg = desc->chip_data; hpet_msi_read(irq, &msg); msg.data &= ~MSI_DATA_VECTOR_MASK; msg.data |= MSI_DATA_VECTOR(cfg->vector); msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; msg.address_lo |= MSI_ADDR_DEST_ID(dest); hpet_msi_write(irq, &msg); return 0; } #endif /* CONFIG_SMP */ static struct irq_chip hpet_msi_type = { .name = "HPET_MSI", .unmask = hpet_msi_unmask, .mask = hpet_msi_mask, .ack = ack_apic_edge, #ifdef CONFIG_SMP .set_affinity = hpet_msi_set_affinity, #endif .retrigger = ioapic_retrigger_irq, }; int arch_setup_hpet_msi(unsigned int irq) { int ret; struct msi_msg msg; struct irq_desc *desc = irq_to_desc(irq); ret = msi_compose_msg(NULL, irq, &msg); if (ret < 0) return ret; hpet_msi_write(irq, &msg); desc->status |= IRQ_MOVE_PCNTXT; set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq, "edge"); return 0; } #endif #endif /* CONFIG_PCI_MSI */ /* * Hypertransport interrupt support */ #ifdef CONFIG_HT_IRQ #ifdef CONFIG_SMP static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector) { struct ht_irq_msg msg; fetch_ht_irq_msg(irq, &msg); msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK); msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK); msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest); msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest); write_ht_irq_msg(irq, &msg); } static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask) { struct irq_desc *desc = irq_to_desc(irq); struct irq_cfg *cfg; unsigned int dest; dest = set_desc_affinity(desc, mask); if (dest == BAD_APICID) return -1; cfg = desc->chip_data; target_ht_irq(irq, dest, cfg->vector); return 0; } #endif static struct irq_chip ht_irq_chip = { .name = "PCI-HT", .mask = mask_ht_irq, .unmask = unmask_ht_irq, .ack = ack_apic_edge, #ifdef CONFIG_SMP .set_affinity = set_ht_irq_affinity, #endif .retrigger = ioapic_retrigger_irq, }; int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev) { struct irq_cfg *cfg; int err; if (disable_apic) return -ENXIO; cfg = irq_cfg(irq); err = assign_irq_vector(irq, cfg, apic->target_cpus()); if (!err) { struct ht_irq_msg msg; unsigned dest; dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest); msg.address_lo = HT_IRQ_LOW_BASE | HT_IRQ_LOW_DEST_ID(dest) | HT_IRQ_LOW_VECTOR(cfg->vector) | ((apic->irq_dest_mode == 0) ? HT_IRQ_LOW_DM_PHYSICAL : HT_IRQ_LOW_DM_LOGICAL) | HT_IRQ_LOW_RQEOI_EDGE | ((apic->irq_delivery_mode != dest_LowestPrio) ? HT_IRQ_LOW_MT_FIXED : HT_IRQ_LOW_MT_ARBITRATED) | HT_IRQ_LOW_IRQ_MASKED; write_ht_irq_msg(irq, &msg); set_irq_chip_and_handler_name(irq, &ht_irq_chip, handle_edge_irq, "edge"); dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq); } return err; } #endif /* CONFIG_HT_IRQ */ #ifdef CONFIG_X86_UV /* * Re-target the irq to the specified CPU and enable the specified MMR located * on the specified blade to allow the sending of MSIs to the specified CPU. */ int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade, unsigned long mmr_offset) { const struct cpumask *eligible_cpu = cpumask_of(cpu); struct irq_cfg *cfg; int mmr_pnode; unsigned long mmr_value; struct uv_IO_APIC_route_entry *entry; unsigned long flags; int err; BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long)); cfg = irq_cfg(irq); err = assign_irq_vector(irq, cfg, eligible_cpu); if (err != 0) return err; spin_lock_irqsave(&vector_lock, flags); set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq, irq_name); spin_unlock_irqrestore(&vector_lock, flags); mmr_value = 0; entry = (struct uv_IO_APIC_route_entry *)&mmr_value; entry->vector = cfg->vector; entry->delivery_mode = apic->irq_delivery_mode; entry->dest_mode = apic->irq_dest_mode; entry->polarity = 0; entry->trigger = 0; entry->mask = 0; entry->dest = apic->cpu_mask_to_apicid(eligible_cpu); mmr_pnode = uv_blade_to_pnode(mmr_blade); uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value); if (cfg->move_in_progress) send_cleanup_vector(cfg); return irq; } /* * Disable the specified MMR located on the specified blade so that MSIs are * longer allowed to be sent. */ void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset) { unsigned long mmr_value; struct uv_IO_APIC_route_entry *entry; int mmr_pnode; BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long)); mmr_value = 0; entry = (struct uv_IO_APIC_route_entry *)&mmr_value; entry->mask = 1; mmr_pnode = uv_blade_to_pnode(mmr_blade); uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value); } #endif /* CONFIG_X86_64 */ int __init io_apic_get_redir_entries (int ioapic) { union IO_APIC_reg_01 reg_01; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); reg_01.raw = io_apic_read(ioapic, 1); spin_unlock_irqrestore(&ioapic_lock, flags); return reg_01.bits.entries; } void __init probe_nr_irqs_gsi(void) { int nr = 0; nr = acpi_probe_gsi(); if (nr > nr_irqs_gsi) { nr_irqs_gsi = nr; } else { /* for acpi=off or acpi is not compiled in */ int idx; nr = 0; for (idx = 0; idx < nr_ioapics; idx++) nr += io_apic_get_redir_entries(idx) + 1; if (nr > nr_irqs_gsi) nr_irqs_gsi = nr; } printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi); } #ifdef CONFIG_SPARSE_IRQ int __init arch_probe_nr_irqs(void) { int nr; if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) nr_irqs = NR_VECTORS * nr_cpu_ids; nr = nr_irqs_gsi + 8 * nr_cpu_ids; #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) /* * for MSI and HT dyn irq */ nr += nr_irqs_gsi * 16; #endif if (nr < nr_irqs) nr_irqs = nr; return 0; } #endif static int __io_apic_set_pci_routing(struct device *dev, int irq, struct io_apic_irq_attr *irq_attr) { struct irq_desc *desc; struct irq_cfg *cfg; int node; int ioapic, pin; int trigger, polarity; ioapic = irq_attr->ioapic; if (!IO_APIC_IRQ(irq)) { apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n", ioapic); return -EINVAL; } if (dev) node = dev_to_node(dev); else node = cpu_to_node(boot_cpu_id); desc = irq_to_desc_alloc_node(irq, node); if (!desc) { printk(KERN_INFO "can not get irq_desc %d\n", irq); return 0; } pin = irq_attr->ioapic_pin; trigger = irq_attr->trigger; polarity = irq_attr->polarity; /* * IRQs < 16 are already in the irq_2_pin[] map */ if (irq >= NR_IRQS_LEGACY) { cfg = desc->chip_data; add_pin_to_irq_node(cfg, node, ioapic, pin); } setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity); return 0; } int io_apic_set_pci_routing(struct device *dev, int irq, struct io_apic_irq_attr *irq_attr) { int ioapic, pin; /* * Avoid pin reprogramming. PRTs typically include entries * with redundant pin->gsi mappings (but unique PCI devices); * we only program the IOAPIC on the first. */ ioapic = irq_attr->ioapic; pin = irq_attr->ioapic_pin; if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) { pr_debug("Pin %d-%d already programmed\n", mp_ioapics[ioapic].apicid, pin); return 0; } set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed); return __io_apic_set_pci_routing(dev, irq, irq_attr); } u8 __init io_apic_unique_id(u8 id) { #ifdef CONFIG_X86_32 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && !APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) return io_apic_get_unique_id(nr_ioapics, id); else return id; #else int i; DECLARE_BITMAP(used, 256); bitmap_zero(used, 256); for (i = 0; i < nr_ioapics; i++) { struct mpc_ioapic *ia = &mp_ioapics[i]; __set_bit(ia->apicid, used); } if (!test_bit(id, used)) return id; return find_first_zero_bit(used, 256); #endif } #ifdef CONFIG_X86_32 int __init io_apic_get_unique_id(int ioapic, int apic_id) { union IO_APIC_reg_00 reg_00; static physid_mask_t apic_id_map = PHYSID_MASK_NONE; physid_mask_t tmp; unsigned long flags; int i = 0; /* * The P4 platform supports up to 256 APIC IDs on two separate APIC * buses (one for LAPICs, one for IOAPICs), where predecessors only * supports up to 16 on one shared APIC bus. * * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full * advantage of new APIC bus architecture. */ if (physids_empty(apic_id_map)) apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map); spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(ioapic, 0); spin_unlock_irqrestore(&ioapic_lock, flags); if (apic_id >= get_physical_broadcast()) { printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " "%d\n", ioapic, apic_id, reg_00.bits.ID); apic_id = reg_00.bits.ID; } /* * Every APIC in a system must have a unique ID or we get lots of nice * 'stuck on smp_invalidate_needed IPI wait' messages. */ if (apic->check_apicid_used(apic_id_map, apic_id)) { for (i = 0; i < get_physical_broadcast(); i++) { if (!apic->check_apicid_used(apic_id_map, i)) break; } if (i == get_physical_broadcast()) panic("Max apic_id exceeded!\n"); printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " "trying %d\n", ioapic, apic_id, i); apic_id = i; } tmp = apic->apicid_to_cpu_present(apic_id); physids_or(apic_id_map, apic_id_map, tmp); if (reg_00.bits.ID != apic_id) { reg_00.bits.ID = apic_id; spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(ioapic, 0, reg_00.raw); reg_00.raw = io_apic_read(ioapic, 0); spin_unlock_irqrestore(&ioapic_lock, flags); /* Sanity check */ if (reg_00.bits.ID != apic_id) { printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic); return -1; } } apic_printk(APIC_VERBOSE, KERN_INFO "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); return apic_id; } #endif int __init io_apic_get_version(int ioapic) { union IO_APIC_reg_01 reg_01; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); reg_01.raw = io_apic_read(ioapic, 1); spin_unlock_irqrestore(&ioapic_lock, flags); return reg_01.bits.version; } int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity) { int i; if (skip_ioapic_setup) return -1; for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].irqtype == mp_INT && mp_irqs[i].srcbusirq == bus_irq) break; if (i >= mp_irq_entries) return -1; *trigger = irq_trigger(i); *polarity = irq_polarity(i); return 0; } /* * This function currently is only a helper for the i386 smp boot process where * we need to reprogram the ioredtbls to cater for the cpus which have come online * so mask in all cases should simply be apic->target_cpus() */ #ifdef CONFIG_SMP void __init setup_ioapic_dest(void) { int pin, ioapic = 0, irq, irq_entry; struct irq_desc *desc; const struct cpumask *mask; if (skip_ioapic_setup == 1) return; #ifdef CONFIG_ACPI if (!acpi_disabled && acpi_ioapic) { ioapic = mp_find_ioapic(0); if (ioapic < 0) ioapic = 0; } #endif for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) { irq_entry = find_irq_entry(ioapic, pin, mp_INT); if (irq_entry == -1) continue; irq = pin_2_irq(irq_entry, ioapic, pin); desc = irq_to_desc(irq); /* * Honour affinities which have been set in early boot */ if (desc->status & (IRQ_NO_BALANCING | IRQ_AFFINITY_SET)) mask = desc->affinity; else mask = apic->target_cpus(); if (intr_remapping_enabled) set_ir_ioapic_affinity_irq_desc(desc, mask); else set_ioapic_affinity_irq_desc(desc, mask); } } #endif #define IOAPIC_RESOURCE_NAME_SIZE 11 static struct resource *ioapic_resources; static struct resource * __init ioapic_setup_resources(void) { unsigned long n; struct resource *res; char *mem; int i; if (nr_ioapics <= 0) return NULL; n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); n *= nr_ioapics; mem = alloc_bootmem(n); res = (void *)mem; if (mem != NULL) { mem += sizeof(struct resource) * nr_ioapics; for (i = 0; i < nr_ioapics; i++) { res[i].name = mem; res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; sprintf(mem, "IOAPIC %u", i); mem += IOAPIC_RESOURCE_NAME_SIZE; } } ioapic_resources = res; return res; } void __init ioapic_init_mappings(void) { unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; struct resource *ioapic_res; int i; ioapic_res = ioapic_setup_resources(); for (i = 0; i < nr_ioapics; i++) { if (smp_found_config) { ioapic_phys = mp_ioapics[i].apicaddr; #ifdef CONFIG_X86_32 if (!ioapic_phys) { printk(KERN_ERR "WARNING: bogus zero IO-APIC " "address found in MPTABLE, " "disabling IO/APIC support!\n"); smp_found_config = 0; skip_ioapic_setup = 1; goto fake_ioapic_page; } #endif } else { #ifdef CONFIG_X86_32 fake_ioapic_page: #endif ioapic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE); ioapic_phys = __pa(ioapic_phys); } set_fixmap_nocache(idx, ioapic_phys); apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n", __fix_to_virt(idx), ioapic_phys); idx++; if (ioapic_res != NULL) { ioapic_res->start = ioapic_phys; ioapic_res->end = ioapic_phys + (4 * 1024) - 1; ioapic_res++; } } } void __init ioapic_insert_resources(void) { int i; struct resource *r = ioapic_resources; if (!r) { if (nr_ioapics > 0) printk(KERN_ERR "IO APIC resources couldn't be allocated.\n"); return; } for (i = 0; i < nr_ioapics; i++) { insert_resource(&iomem_resource, r); r++; } } int mp_find_ioapic(int gsi) { int i = 0; /* Find the IOAPIC that manages this GSI. */ for (i = 0; i < nr_ioapics; i++) { if ((gsi >= mp_gsi_routing[i].gsi_base) && (gsi <= mp_gsi_routing[i].gsi_end)) return i; } printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); return -1; } int mp_find_ioapic_pin(int ioapic, int gsi) { if (WARN_ON(ioapic == -1)) return -1; if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end)) return -1; return gsi - mp_gsi_routing[ioapic].gsi_base; } static int bad_ioapic(unsigned long address) { if (nr_ioapics >= MAX_IO_APICS) { printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded " "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics); return 1; } if (!address) { printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address" " found in table, skipping!\n"); return 1; } return 0; } void __init mp_register_ioapic(int id, u32 address, u32 gsi_base) { int idx = 0; if (bad_ioapic(address)) return; idx = nr_ioapics; mp_ioapics[idx].type = MP_IOAPIC; mp_ioapics[idx].flags = MPC_APIC_USABLE; mp_ioapics[idx].apicaddr = address; set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address); mp_ioapics[idx].apicid = io_apic_unique_id(id); mp_ioapics[idx].apicver = io_apic_get_version(idx); /* * Build basic GSI lookup table to facilitate gsi->io_apic lookups * and to prevent reprogramming of IOAPIC pins (PCI GSIs). */ mp_gsi_routing[idx].gsi_base = gsi_base; mp_gsi_routing[idx].gsi_end = gsi_base + io_apic_get_redir_entries(idx); printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, " "GSI %d-%d\n", idx, mp_ioapics[idx].apicid, mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr, mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end); nr_ioapics++; }