/* * Mars MR97310A library * * The original mr97310a driver, which supported the Aiptek Pencam VGA+, is * Copyright (C) 2009 Kyle Guinn * * Support for the MR97310A cameras in addition to the Aiptek Pencam VGA+ * and for the routines for detecting and classifying these various cameras, * is Copyright (C) 2009 Theodore Kilgore * * Support for the control settings for the CIF cameras is * Copyright (C) 2009 Hans de Goede and * Thomas Kaiser * * Support for the control settings for the VGA cameras is * Copyright (C) 2009 Theodore Kilgore * * Several previously unsupported cameras are owned and have been tested by * Hans de Goede and * Thomas Kaiser and * Theodore Kilgore and * Edmond Rodriguez and * Aurelien Jacobs * * The MR97311A support in gspca/mars.c has been helpful in understanding some * of the registers in these cameras. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #define MODULE_NAME "mr97310a" #include "gspca.h" #define CAM_TYPE_CIF 0 #define CAM_TYPE_VGA 1 #define MR97310A_BRIGHTNESS_DEFAULT 0 #define MR97310A_EXPOSURE_MIN 0 #define MR97310A_EXPOSURE_MAX 4095 #define MR97310A_EXPOSURE_DEFAULT 1000 #define MR97310A_GAIN_MIN 0 #define MR97310A_GAIN_MAX 31 #define MR97310A_GAIN_DEFAULT 25 #define MR97310A_MIN_CLOCKDIV_MIN 3 #define MR97310A_MIN_CLOCKDIV_MAX 8 #define MR97310A_MIN_CLOCKDIV_DEFAULT 3 MODULE_AUTHOR("Kyle Guinn ," "Theodore Kilgore "); MODULE_DESCRIPTION("GSPCA/Mars-Semi MR97310A USB Camera Driver"); MODULE_LICENSE("GPL"); /* global parameters */ static int force_sensor_type = -1; module_param(force_sensor_type, int, 0644); MODULE_PARM_DESC(force_sensor_type, "Force sensor type (-1 (auto), 0 or 1)"); /* specific webcam descriptor */ struct sd { struct gspca_dev gspca_dev; /* !! must be the first item */ u8 sof_read; u8 cam_type; /* 0 is CIF and 1 is VGA */ u8 sensor_type; /* We use 0 and 1 here, too. */ u8 do_lcd_stop; u8 adj_colors; int brightness; u16 exposure; u8 gain; u8 min_clockdiv; }; struct sensor_w_data { u8 reg; u8 flags; u8 data[16]; int len; }; static void sd_stopN(struct gspca_dev *gspca_dev); static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val); static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val); static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val); static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setmin_clockdiv(struct gspca_dev *gspca_dev, __s32 val); static int sd_getmin_clockdiv(struct gspca_dev *gspca_dev, __s32 *val); static void setbrightness(struct gspca_dev *gspca_dev); static void setexposure(struct gspca_dev *gspca_dev); static void setgain(struct gspca_dev *gspca_dev); /* V4L2 controls supported by the driver */ static const struct ctrl sd_ctrls[] = { /* Separate brightness control description for Argus QuickClix as it has different limits from the other mr97310a cameras */ { #define NORM_BRIGHTNESS_IDX 0 { .id = V4L2_CID_BRIGHTNESS, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Brightness", .minimum = -254, .maximum = 255, .step = 1, .default_value = MR97310A_BRIGHTNESS_DEFAULT, .flags = 0, }, .set = sd_setbrightness, .get = sd_getbrightness, }, { #define ARGUS_QC_BRIGHTNESS_IDX 1 { .id = V4L2_CID_BRIGHTNESS, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Brightness", .minimum = 0, .maximum = 15, .step = 1, .default_value = MR97310A_BRIGHTNESS_DEFAULT, .flags = 0, }, .set = sd_setbrightness, .get = sd_getbrightness, }, { #define EXPOSURE_IDX 2 { .id = V4L2_CID_EXPOSURE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Exposure", .minimum = MR97310A_EXPOSURE_MIN, .maximum = MR97310A_EXPOSURE_MAX, .step = 1, .default_value = MR97310A_EXPOSURE_DEFAULT, .flags = 0, }, .set = sd_setexposure, .get = sd_getexposure, }, { #define GAIN_IDX 3 { .id = V4L2_CID_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Gain", .minimum = MR97310A_GAIN_MIN, .maximum = MR97310A_GAIN_MAX, .step = 1, .default_value = MR97310A_GAIN_DEFAULT, .flags = 0, }, .set = sd_setgain, .get = sd_getgain, }, { #define MIN_CLOCKDIV_IDX 4 { .id = V4L2_CID_PRIVATE_BASE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Minimum Clock Divider", .minimum = MR97310A_MIN_CLOCKDIV_MIN, .maximum = MR97310A_MIN_CLOCKDIV_MAX, .step = 1, .default_value = MR97310A_MIN_CLOCKDIV_DEFAULT, .flags = 0, }, .set = sd_setmin_clockdiv, .get = sd_getmin_clockdiv, }, }; static const struct v4l2_pix_format vga_mode[] = { {160, 120, V4L2_PIX_FMT_MR97310A, V4L2_FIELD_NONE, .bytesperline = 160, .sizeimage = 160 * 120, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 4}, {176, 144, V4L2_PIX_FMT_MR97310A, V4L2_FIELD_NONE, .bytesperline = 176, .sizeimage = 176 * 144, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 3}, {320, 240, V4L2_PIX_FMT_MR97310A, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 2}, {352, 288, V4L2_PIX_FMT_MR97310A, V4L2_FIELD_NONE, .bytesperline = 352, .sizeimage = 352 * 288, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1}, {640, 480, V4L2_PIX_FMT_MR97310A, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0}, }; /* the bytes to write are in gspca_dev->usb_buf */ static int mr_write(struct gspca_dev *gspca_dev, int len) { int rc; rc = usb_bulk_msg(gspca_dev->dev, usb_sndbulkpipe(gspca_dev->dev, 4), gspca_dev->usb_buf, len, NULL, 500); if (rc < 0) PDEBUG(D_ERR, "reg write [%02x] error %d", gspca_dev->usb_buf[0], rc); return rc; } /* the bytes are read into gspca_dev->usb_buf */ static int mr_read(struct gspca_dev *gspca_dev, int len) { int rc; rc = usb_bulk_msg(gspca_dev->dev, usb_rcvbulkpipe(gspca_dev->dev, 3), gspca_dev->usb_buf, len, NULL, 500); if (rc < 0) PDEBUG(D_ERR, "reg read [%02x] error %d", gspca_dev->usb_buf[0], rc); return rc; } static int sensor_write_reg(struct gspca_dev *gspca_dev, u8 reg, u8 flags, const u8 *data, int len) { gspca_dev->usb_buf[0] = 0x1f; gspca_dev->usb_buf[1] = flags; gspca_dev->usb_buf[2] = reg; memcpy(gspca_dev->usb_buf + 3, data, len); return mr_write(gspca_dev, len + 3); } static int sensor_write_regs(struct gspca_dev *gspca_dev, const struct sensor_w_data *data, int len) { int i, rc; for (i = 0; i < len; i++) { rc = sensor_write_reg(gspca_dev, data[i].reg, data[i].flags, data[i].data, data[i].len); if (rc < 0) return rc; } return 0; } static int sensor_write1(struct gspca_dev *gspca_dev, u8 reg, u8 data) { struct sd *sd = (struct sd *) gspca_dev; u8 buf, confirm_reg; int rc; buf = data; if (sd->cam_type == CAM_TYPE_CIF) { rc = sensor_write_reg(gspca_dev, reg, 0x01, &buf, 1); confirm_reg = sd->sensor_type ? 0x13 : 0x11; } else { rc = sensor_write_reg(gspca_dev, reg, 0x00, &buf, 1); confirm_reg = 0x11; } if (rc < 0) return rc; buf = 0x01; rc = sensor_write_reg(gspca_dev, confirm_reg, 0x00, &buf, 1); if (rc < 0) return rc; return 0; } static int cam_get_response16(struct gspca_dev *gspca_dev, u8 reg, int verbose) { int err_code; gspca_dev->usb_buf[0] = reg; err_code = mr_write(gspca_dev, 1); if (err_code < 0) return err_code; err_code = mr_read(gspca_dev, 16); if (err_code < 0) return err_code; if (verbose) PDEBUG(D_PROBE, "Register: %02x reads %02x%02x%02x", reg, gspca_dev->usb_buf[0], gspca_dev->usb_buf[1], gspca_dev->usb_buf[2]); return 0; } static int zero_the_pointer(struct gspca_dev *gspca_dev) { __u8 *data = gspca_dev->usb_buf; int err_code; u8 status = 0; int tries = 0; err_code = cam_get_response16(gspca_dev, 0x21, 0); if (err_code < 0) return err_code; err_code = mr_write(gspca_dev, 1); data[0] = 0x19; data[1] = 0x51; err_code = mr_write(gspca_dev, 2); if (err_code < 0) return err_code; err_code = cam_get_response16(gspca_dev, 0x21, 0); if (err_code < 0) return err_code; data[0] = 0x19; data[1] = 0xba; err_code = mr_write(gspca_dev, 2); if (err_code < 0) return err_code; err_code = cam_get_response16(gspca_dev, 0x21, 0); if (err_code < 0) return err_code; data[0] = 0x19; data[1] = 0x00; err_code = mr_write(gspca_dev, 2); if (err_code < 0) return err_code; err_code = cam_get_response16(gspca_dev, 0x21, 0); if (err_code < 0) return err_code; data[0] = 0x19; data[1] = 0x00; err_code = mr_write(gspca_dev, 2); if (err_code < 0) return err_code; while (status != 0x0a && tries < 256) { err_code = cam_get_response16(gspca_dev, 0x21, 0); status = data[0]; tries++; if (err_code < 0) return err_code; } if (status != 0x0a) PDEBUG(D_ERR, "status is %02x", status); tries = 0; while (tries < 4) { data[0] = 0x19; data[1] = 0x00; err_code = mr_write(gspca_dev, 2); if (err_code < 0) return err_code; err_code = cam_get_response16(gspca_dev, 0x21, 0); status = data[0]; tries++; if (err_code < 0) return err_code; } data[0] = 0x19; err_code = mr_write(gspca_dev, 1); if (err_code < 0) return err_code; err_code = mr_read(gspca_dev, 16); if (err_code < 0) return err_code; return 0; } static int stream_start(struct gspca_dev *gspca_dev) { gspca_dev->usb_buf[0] = 0x01; gspca_dev->usb_buf[1] = 0x01; return mr_write(gspca_dev, 2); } static void stream_stop(struct gspca_dev *gspca_dev) { gspca_dev->usb_buf[0] = 0x01; gspca_dev->usb_buf[1] = 0x00; if (mr_write(gspca_dev, 2) < 0) PDEBUG(D_ERR, "Stream Stop failed"); } static void lcd_stop(struct gspca_dev *gspca_dev) { gspca_dev->usb_buf[0] = 0x19; gspca_dev->usb_buf[1] = 0x54; if (mr_write(gspca_dev, 2) < 0) PDEBUG(D_ERR, "LCD Stop failed"); } static int isoc_enable(struct gspca_dev *gspca_dev) { gspca_dev->usb_buf[0] = 0x00; gspca_dev->usb_buf[1] = 0x4d; /* ISOC transfering enable... */ return mr_write(gspca_dev, 2); } /* This function is called at probe time */ static int sd_config(struct gspca_dev *gspca_dev, const struct usb_device_id *id) { struct sd *sd = (struct sd *) gspca_dev; struct cam *cam; int err_code; cam = &gspca_dev->cam; cam->cam_mode = vga_mode; cam->nmodes = ARRAY_SIZE(vga_mode); sd->do_lcd_stop = 0; /* Several of the supported CIF cameras share the same USB ID but * require different initializations and different control settings. * The same is true of the VGA cameras. Therefore, we are forced * to start the initialization process in order to determine which * camera is present. Some of the supported cameras require the * memory pointer to be set to 0 as the very first item of business * or else they will not stream. So we do that immediately. */ err_code = zero_the_pointer(gspca_dev); if (err_code < 0) return err_code; err_code = stream_start(gspca_dev); if (err_code < 0) return err_code; if (id->idProduct == 0x0110 || id->idProduct == 0x010e) { sd->cam_type = CAM_TYPE_CIF; cam->nmodes--; err_code = cam_get_response16(gspca_dev, 0x06, 1); if (err_code < 0) return err_code; /* * All but one of the known CIF cameras share the same USB ID, * but two different init routines are in use, and the control * settings are different, too. We need to detect which camera * of the two known varieties is connected! * * A list of known CIF cameras follows. They all report either * 0002 for type 0 or 0003 for type 1. * If you have another to report, please do * * Name sd->sensor_type reported by * * Sakar Spy-shot 0 T. Kilgore * Innovage 0 T. Kilgore * Vivitar Mini 0 H. De Goede * Vivitar Mini 0 E. Rodriguez * Vivitar Mini 1 T. Kilgore * Elta-Media 8212dc 1 T. Kaiser * Philips dig. keych. 1 T. Kilgore * Trust Spyc@m 100 1 A. Jacobs */ switch (gspca_dev->usb_buf[1]) { case 2: sd->sensor_type = 0; break; case 3: sd->sensor_type = 1; break; default: PDEBUG(D_ERR, "Unknown CIF Sensor id : %02x", gspca_dev->usb_buf[1]); return -ENODEV; } PDEBUG(D_PROBE, "MR97310A CIF camera detected, sensor: %d", sd->sensor_type); } else { sd->cam_type = CAM_TYPE_VGA; err_code = cam_get_response16(gspca_dev, 0x07, 1); if (err_code < 0) return err_code; /* * Here is a table of the responses to the previous command * from the known MR97310A VGA cameras. * * Name gspca_dev->usb_buf[] sd->sensor_type * sd->do_lcd_stop * Aiptek Pencam VGA+ 0300 0 1 * ION digital 0350 0 1 * Argus DC-1620 0450 1 0 * Argus QuickClix 0420 1 1 * * Based upon these results, we assume default settings * and then correct as necessary, as follows. * */ sd->sensor_type = 1; sd->do_lcd_stop = 0; sd->adj_colors = 0; if ((gspca_dev->usb_buf[0] != 0x03) && (gspca_dev->usb_buf[0] != 0x04)) { PDEBUG(D_ERR, "Unknown VGA Sensor id Byte 0: %02x", gspca_dev->usb_buf[1]); PDEBUG(D_ERR, "Defaults assumed, may not work"); PDEBUG(D_ERR, "Please report this"); } /* Sakar Digital color needs to be adjusted. */ if ((gspca_dev->usb_buf[0] == 0x03) && (gspca_dev->usb_buf[1] == 0x50)) sd->adj_colors = 1; if (gspca_dev->usb_buf[0] == 0x04) { sd->do_lcd_stop = 1; switch (gspca_dev->usb_buf[1]) { case 0x50: sd->sensor_type = 0; PDEBUG(D_PROBE, "sensor_type corrected to 0"); break; case 0x20: /* Nothing to do here. */ break; default: PDEBUG(D_ERR, "Unknown VGA Sensor id Byte 1: %02x", gspca_dev->usb_buf[1]); PDEBUG(D_ERR, "Defaults assumed, may not work"); PDEBUG(D_ERR, "Please report this"); } } PDEBUG(D_PROBE, "MR97310A VGA camera detected, sensor: %d", sd->sensor_type); } /* Stop streaming as we've started it to probe the sensor type. */ sd_stopN(gspca_dev); if (force_sensor_type != -1) { sd->sensor_type = !!force_sensor_type; PDEBUG(D_PROBE, "Forcing sensor type to: %d", sd->sensor_type); } /* Setup controls depending on camera type */ if (sd->cam_type == CAM_TYPE_CIF) { /* No brightness for sensor_type 0 */ if (sd->sensor_type == 0) gspca_dev->ctrl_dis = (1 << NORM_BRIGHTNESS_IDX) | (1 << ARGUS_QC_BRIGHTNESS_IDX); else gspca_dev->ctrl_dis = (1 << ARGUS_QC_BRIGHTNESS_IDX) | (1 << MIN_CLOCKDIV_IDX); } else { /* All controls need to be disabled if VGA sensor_type is 0 */ if (sd->sensor_type == 0) gspca_dev->ctrl_dis = (1 << NORM_BRIGHTNESS_IDX) | (1 << ARGUS_QC_BRIGHTNESS_IDX) | (1 << EXPOSURE_IDX) | (1 << GAIN_IDX) | (1 << MIN_CLOCKDIV_IDX); else if (sd->do_lcd_stop) /* Argus QuickClix has different brightness limits */ gspca_dev->ctrl_dis = (1 << NORM_BRIGHTNESS_IDX); else gspca_dev->ctrl_dis = (1 << ARGUS_QC_BRIGHTNESS_IDX); } sd->brightness = MR97310A_BRIGHTNESS_DEFAULT; sd->exposure = MR97310A_EXPOSURE_DEFAULT; sd->gain = MR97310A_GAIN_DEFAULT; sd->min_clockdiv = MR97310A_MIN_CLOCKDIV_DEFAULT; return 0; } /* this function is called at probe and resume time */ static int sd_init(struct gspca_dev *gspca_dev) { return 0; } static int start_cif_cam(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; __u8 *data = gspca_dev->usb_buf; int err_code; const __u8 startup_string[] = { 0x00, 0x0d, 0x01, 0x00, /* Hsize/8 for 352 or 320 */ 0x00, /* Vsize/4 for 288 or 240 */ 0x13, /* or 0xbb, depends on sensor */ 0x00, /* Hstart, depends on res. */ 0x00, /* reserved ? */ 0x00, /* Vstart, depends on res. and sensor */ 0x50, /* 0x54 to get 176 or 160 */ 0xc0 }; /* Note: Some of the above descriptions guessed from MR97113A driver */ memcpy(data, startup_string, 11); if (sd->sensor_type) data[5] = 0xbb; switch (gspca_dev->width) { case 160: data[9] |= 0x04; /* reg 8, 2:1 scale down from 320 */ /* fall thru */ case 320: default: data[3] = 0x28; /* reg 2, H size/8 */ data[4] = 0x3c; /* reg 3, V size/4 */ data[6] = 0x14; /* reg 5, H start */ data[8] = 0x1a + sd->sensor_type; /* reg 7, V start */ break; case 176: data[9] |= 0x04; /* reg 8, 2:1 scale down from 352 */ /* fall thru */ case 352: data[3] = 0x2c; /* reg 2, H size/8 */ data[4] = 0x48; /* reg 3, V size/4 */ data[6] = 0x06; /* reg 5, H start */ data[8] = 0x06 - sd->sensor_type; /* reg 7, V start */ break; } err_code = mr_write(gspca_dev, 11); if (err_code < 0) return err_code; if (!sd->sensor_type) { const struct sensor_w_data cif_sensor0_init_data[] = { {0x02, 0x00, {0x03, 0x5a, 0xb5, 0x01, 0x0f, 0x14, 0x0f, 0x10}, 8}, {0x0c, 0x00, {0x04, 0x01, 0x01, 0x00, 0x1f}, 5}, {0x12, 0x00, {0x07}, 1}, {0x1f, 0x00, {0x06}, 1}, {0x27, 0x00, {0x04}, 1}, {0x29, 0x00, {0x0c}, 1}, {0x40, 0x00, {0x40, 0x00, 0x04}, 3}, {0x50, 0x00, {0x60}, 1}, {0x60, 0x00, {0x06}, 1}, {0x6b, 0x00, {0x85, 0x85, 0xc8, 0xc8, 0xc8, 0xc8}, 6}, {0x72, 0x00, {0x1e, 0x56}, 2}, {0x75, 0x00, {0x58, 0x40, 0xa2, 0x02, 0x31, 0x02, 0x31, 0x80, 0x00}, 9}, {0x11, 0x00, {0x01}, 1}, {0, 0, {0}, 0} }; err_code = sensor_write_regs(gspca_dev, cif_sensor0_init_data, ARRAY_SIZE(cif_sensor0_init_data)); } else { /* sd->sensor_type = 1 */ const struct sensor_w_data cif_sensor1_init_data[] = { /* Reg 3,4, 7,8 get set by the controls */ {0x02, 0x00, {0x10}, 1}, {0x05, 0x01, {0x22}, 1}, /* 5/6 also seen as 65h/32h */ {0x06, 0x01, {0x00}, 1}, {0x09, 0x02, {0x0e}, 1}, {0x0a, 0x02, {0x05}, 1}, {0x0b, 0x02, {0x05}, 1}, {0x0c, 0x02, {0x0f}, 1}, {0x0d, 0x02, {0x07}, 1}, {0x0e, 0x02, {0x0c}, 1}, {0x0f, 0x00, {0x00}, 1}, {0x10, 0x00, {0x06}, 1}, {0x11, 0x00, {0x07}, 1}, {0x12, 0x00, {0x00}, 1}, {0x13, 0x00, {0x01}, 1}, {0, 0, {0}, 0} }; /* Without this command the cam won't work with USB-UHCI */ gspca_dev->usb_buf[0] = 0x0a; gspca_dev->usb_buf[1] = 0x00; err_code = mr_write(gspca_dev, 2); if (err_code < 0) return err_code; err_code = sensor_write_regs(gspca_dev, cif_sensor1_init_data, ARRAY_SIZE(cif_sensor1_init_data)); } return err_code; } static int start_vga_cam(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; __u8 *data = gspca_dev->usb_buf; int err_code; const __u8 startup_string[] = {0x00, 0x0d, 0x01, 0x00, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x50, 0xc0}; /* What some of these mean is explained in start_cif_cam(), above */ memcpy(data, startup_string, 11); if (!sd->sensor_type) { data[5] = 0x00; data[10] = 0x91; } switch (gspca_dev->width) { case 160: data[9] |= 0x0c; /* reg 8, 4:1 scale down */ /* fall thru */ case 320: data[9] |= 0x04; /* reg 8, 2:1 scale down */ /* fall thru */ case 640: default: data[3] = 0x50; /* reg 2, H size/8 */ data[4] = 0x78; /* reg 3, V size/4 */ data[6] = 0x04; /* reg 5, H start */ data[8] = 0x03; /* reg 7, V start */ if (sd->do_lcd_stop) data[8] = 0x04; /* Bayer tile shifted */ break; case 176: data[9] |= 0x04; /* reg 8, 2:1 scale down */ /* fall thru */ case 352: data[3] = 0x2c; /* reg 2, H size */ data[4] = 0x48; /* reg 3, V size */ data[6] = 0x94; /* reg 5, H start */ data[8] = 0x63; /* reg 7, V start */ if (sd->do_lcd_stop) data[8] = 0x64; /* Bayer tile shifted */ break; } err_code = mr_write(gspca_dev, 11); if (err_code < 0) return err_code; if (!sd->sensor_type) { /* The only known sensor_type 0 cam is the Argus DC-1620 */ const struct sensor_w_data vga_sensor0_init_data[] = { {0x01, 0x00, {0x0c, 0x00, 0x04}, 3}, {0x14, 0x00, {0x01, 0xe4, 0x02, 0x84}, 4}, {0x20, 0x00, {0x00, 0x80, 0x00, 0x08}, 4}, {0x25, 0x00, {0x03, 0xa9, 0x80}, 3}, {0x30, 0x00, {0x30, 0x18, 0x10, 0x18}, 4}, {0, 0, {0}, 0} }; err_code = sensor_write_regs(gspca_dev, vga_sensor0_init_data, ARRAY_SIZE(vga_sensor0_init_data)); } else { /* sd->sensor_type = 1 */ const struct sensor_w_data color_adj[] = { {0x02, 0x00, {0x06, 0x59, 0x0c, 0x16, 0x00, /* adjusted blue, green, red gain correct too much blue from the Sakar Digital */ 0x05, 0x01, 0x04}, 8} }; const struct sensor_w_data color_no_adj[] = { {0x02, 0x00, {0x06, 0x59, 0x0c, 0x16, 0x00, /* default blue, green, red gain settings */ 0x07, 0x00, 0x01}, 8} }; const struct sensor_w_data vga_sensor1_init_data[] = { {0x11, 0x04, {0x01}, 1}, {0x0a, 0x00, {0x00, 0x01, 0x00, 0x00, 0x01, /* These settings may be better for some cameras */ /* {0x0a, 0x00, {0x01, 0x06, 0x00, 0x00, 0x01, */ 0x00, 0x0a}, 7}, {0x11, 0x04, {0x01}, 1}, {0x12, 0x00, {0x00, 0x63, 0x00, 0x70, 0x00, 0x00}, 6}, {0x11, 0x04, {0x01}, 1}, {0, 0, {0}, 0} }; if (sd->adj_colors) err_code = sensor_write_regs(gspca_dev, color_adj, ARRAY_SIZE(color_adj)); else err_code = sensor_write_regs(gspca_dev, color_no_adj, ARRAY_SIZE(color_no_adj)); if (err_code < 0) return err_code; err_code = sensor_write_regs(gspca_dev, vga_sensor1_init_data, ARRAY_SIZE(vga_sensor1_init_data)); } return err_code; } static int sd_start(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int err_code; sd->sof_read = 0; /* Some of the VGA cameras require the memory pointer * to be set to 0 again. We have been forced to start the * stream in sd_config() to detect the hardware, and closed it. * Thus, we need here to do a completely fresh and clean start. */ err_code = zero_the_pointer(gspca_dev); if (err_code < 0) return err_code; err_code = stream_start(gspca_dev); if (err_code < 0) return err_code; if (sd->cam_type == CAM_TYPE_CIF) { err_code = start_cif_cam(gspca_dev); } else { err_code = start_vga_cam(gspca_dev); } if (err_code < 0) return err_code; setbrightness(gspca_dev); setexposure(gspca_dev); setgain(gspca_dev); return isoc_enable(gspca_dev); } static void sd_stopN(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; stream_stop(gspca_dev); /* Not all the cams need this, but even if not, probably a good idea */ zero_the_pointer(gspca_dev); if (sd->do_lcd_stop) lcd_stop(gspca_dev); } static void setbrightness(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; u8 val; u8 sign_reg = 7; /* This reg and the next one used on CIF cams. */ u8 value_reg = 8; /* VGA cams seem to use regs 0x0b and 0x0c */ const u8 quick_clix_table[] = /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ { 0, 4, 8, 12, 1, 2, 3, 5, 6, 9, 7, 10, 13, 11, 14, 15}; /* * This control is disabled for CIF type 1 and VGA type 0 cameras. * It does not quite act linearly for the Argus QuickClix camera, * but it does control brightness. The values are 0 - 15 only, and * the table above makes them act consecutively. */ if ((gspca_dev->ctrl_dis & (1 << NORM_BRIGHTNESS_IDX)) && (gspca_dev->ctrl_dis & (1 << ARGUS_QC_BRIGHTNESS_IDX))) return; if (sd->cam_type == CAM_TYPE_VGA) { sign_reg += 4; value_reg += 4; } /* Note register 7 is also seen as 0x8x or 0xCx in some dumps */ if (sd->brightness > 0) { sensor_write1(gspca_dev, sign_reg, 0x00); val = sd->brightness; } else { sensor_write1(gspca_dev, sign_reg, 0x01); val = (257 - sd->brightness); } /* Use lookup table for funky Argus QuickClix brightness */ if (sd->do_lcd_stop) val = quick_clix_table[val]; sensor_write1(gspca_dev, value_reg, val); } static void setexposure(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int exposure; u8 buf[2]; if (gspca_dev->ctrl_dis & (1 << EXPOSURE_IDX)) return; if (sd->cam_type == CAM_TYPE_CIF && sd->sensor_type == 1) { /* This cam does not like exposure settings < 300, so scale 0 - 4095 to 300 - 4095 */ exposure = (sd->exposure * 9267) / 10000 + 300; sensor_write1(gspca_dev, 3, exposure >> 4); sensor_write1(gspca_dev, 4, exposure & 0x0f); } else { /* We have both a clock divider and an exposure register. We first calculate the clock divider, as that determines the maximum exposure and then we calculate the exposure register setting (which goes from 0 - 511). Note our 0 - 4095 exposure is mapped to 0 - 511 milliseconds exposure time */ u8 clockdiv = (60 * sd->exposure + 7999) / 8000; /* Limit framerate to not exceed usb bandwidth */ if (clockdiv < sd->min_clockdiv && gspca_dev->width >= 320) clockdiv = sd->min_clockdiv; else if (clockdiv < 2) clockdiv = 2; if (sd->cam_type == CAM_TYPE_VGA && clockdiv < 4) clockdiv = 4; /* Frame exposure time in ms = 1000 * clockdiv / 60 -> exposure = (sd->exposure / 8) * 511 / (1000 * clockdiv / 60) */ exposure = (60 * 511 * sd->exposure) / (8000 * clockdiv); if (exposure > 511) exposure = 511; /* exposure register value is reversed! */ exposure = 511 - exposure; buf[0] = exposure & 0xff; buf[1] = exposure >> 8; sensor_write_reg(gspca_dev, 0x0e, 0, buf, 2); sensor_write1(gspca_dev, 0x02, clockdiv); } } static void setgain(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (gspca_dev->ctrl_dis & (1 << GAIN_IDX)) return; if (sd->cam_type == CAM_TYPE_CIF && sd->sensor_type == 1) { sensor_write1(gspca_dev, 0x0e, sd->gain); } else { sensor_write1(gspca_dev, 0x10, sd->gain); } } static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->brightness = val; if (gspca_dev->streaming) setbrightness(gspca_dev); return 0; } static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->brightness; return 0; } static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->exposure = val; if (gspca_dev->streaming) setexposure(gspca_dev); return 0; } static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->exposure; return 0; } static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->gain = val; if (gspca_dev->streaming) setgain(gspca_dev); return 0; } static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->gain; return 0; } static int sd_setmin_clockdiv(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->min_clockdiv = val; if (gspca_dev->streaming) setexposure(gspca_dev); return 0; } static int sd_getmin_clockdiv(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->min_clockdiv; return 0; } /* Include pac common sof detection functions */ #include "pac_common.h" static void sd_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, /* isoc packet */ int len) /* iso packet length */ { struct sd *sd = (struct sd *) gspca_dev; unsigned char *sof; sof = pac_find_sof(&sd->sof_read, data, len); if (sof) { int n; /* finish decoding current frame */ n = sof - data; if (n > sizeof pac_sof_marker) n -= sizeof pac_sof_marker; else n = 0; gspca_frame_add(gspca_dev, LAST_PACKET, data, n); /* Start next frame. */ gspca_frame_add(gspca_dev, FIRST_PACKET, pac_sof_marker, sizeof pac_sof_marker); len -= sof - data; data = sof; } gspca_frame_add(gspca_dev, INTER_PACKET, data, len); } /* sub-driver description */ static const struct sd_desc sd_desc = { .name = MODULE_NAME, .ctrls = sd_ctrls, .nctrls = ARRAY_SIZE(sd_ctrls), .config = sd_config, .init = sd_init, .start = sd_start, .stopN = sd_stopN, .pkt_scan = sd_pkt_scan, }; /* -- module initialisation -- */ static const __devinitdata struct usb_device_id device_table[] = { {USB_DEVICE(0x08ca, 0x0110)}, /* Trust Spyc@m 100 */ {USB_DEVICE(0x08ca, 0x0111)}, /* Aiptek Pencam VGA+ */ {USB_DEVICE(0x093a, 0x010f)}, /* All other known MR97310A VGA cams */ {USB_DEVICE(0x093a, 0x010e)}, /* All known MR97310A CIF cams */ {} }; MODULE_DEVICE_TABLE(usb, device_table); /* -- device connect -- */ static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) { return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), THIS_MODULE); } static struct usb_driver sd_driver = { .name = MODULE_NAME, .id_table = device_table, .probe = sd_probe, .disconnect = gspca_disconnect, #ifdef CONFIG_PM .suspend = gspca_suspend, .resume = gspca_resume, #endif }; /* -- module insert / remove -- */ static int __init sd_mod_init(void) { int ret; ret = usb_register(&sd_driver); if (ret < 0) return ret; PDEBUG(D_PROBE, "registered"); return 0; } static void __exit sd_mod_exit(void) { usb_deregister(&sd_driver); PDEBUG(D_PROBE, "deregistered"); } module_init(sd_mod_init); module_exit(sd_mod_exit);