// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include #include #include #include "intel_gt.h" #include "i915_drv.h" #include "i915_scatterlist.h" #include "i915_vgpu.h" #include "intel_gtt.h" static int i915_get_ggtt_vma_pages(struct i915_vma *vma); static void i915_ggtt_color_adjust(const struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { if (i915_node_color_differs(node, color)) *start += I915_GTT_PAGE_SIZE; /* * Also leave a space between the unallocated reserved node after the * GTT and any objects within the GTT, i.e. we use the color adjustment * to insert a guard page to prevent prefetches crossing over the * GTT boundary. */ node = list_next_entry(node, node_list); if (node->color != color) *end -= I915_GTT_PAGE_SIZE; } static int ggtt_init_hw(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); ggtt->vm.is_ggtt = true; /* Only VLV supports read-only GGTT mappings */ ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; if (ggtt->mappable_end) { if (!io_mapping_init_wc(&ggtt->iomap, ggtt->gmadr.start, ggtt->mappable_end)) { ggtt->vm.cleanup(&ggtt->vm); return -EIO; } ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); } i915_ggtt_init_fences(ggtt); return 0; } /** * i915_ggtt_init_hw - Initialize GGTT hardware * @i915: i915 device */ int i915_ggtt_init_hw(struct drm_i915_private *i915) { int ret; stash_init(&i915->mm.wc_stash); /* * Note that we use page colouring to enforce a guard page at the * end of the address space. This is required as the CS may prefetch * beyond the end of the batch buffer, across the page boundary, * and beyond the end of the GTT if we do not provide a guard. */ ret = ggtt_init_hw(&i915->ggtt); if (ret) return ret; return 0; } /* * Certain Gen5 chipsets require require idling the GPU before * unmapping anything from the GTT when VT-d is enabled. */ static bool needs_idle_maps(struct drm_i915_private *i915) { /* * Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active(); } static void ggtt_suspend_mappings(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; /* * Don't bother messing with faults pre GEN6 as we have little * documentation supporting that it's a good idea. */ if (INTEL_GEN(i915) < 6) return; intel_gt_check_and_clear_faults(ggtt->vm.gt); ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); ggtt->invalidate(ggtt); } void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915) { ggtt_suspend_mappings(&i915->ggtt); } void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) { struct intel_uncore *uncore = ggtt->vm.gt->uncore; spin_lock_irq(&uncore->lock); intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); spin_unlock_irq(&uncore->lock); } static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) { struct intel_uncore *uncore = ggtt->vm.gt->uncore; /* * Note that as an uncached mmio write, this will flush the * WCB of the writes into the GGTT before it triggers the invalidate. */ intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); } static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) { struct intel_uncore *uncore = ggtt->vm.gt->uncore; struct drm_i915_private *i915 = ggtt->vm.i915; gen8_ggtt_invalidate(ggtt); if (INTEL_GEN(i915) >= 12) intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR, GEN12_GUC_TLB_INV_CR_INVALIDATE); else intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); } static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt) { intel_gtt_chipset_flush(); } static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) { writeq(pte, addr); } static void gen8_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 unused) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen8_pte_t __iomem *pte = (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; gen8_set_pte(pte, gen8_pte_encode(addr, level, 0)); ggtt->invalidate(ggtt); } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); struct sgt_iter sgt_iter; gen8_pte_t __iomem *gtt_entries; const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0); dma_addr_t addr; /* * Note that we ignore PTE_READ_ONLY here. The caller must be careful * not to allow the user to override access to a read only page. */ gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE; for_each_sgt_daddr(addr, sgt_iter, vma->pages) gen8_set_pte(gtt_entries++, pte_encode | addr); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(ggtt); } static void gen6_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *pte = (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; iowrite32(vm->pte_encode(addr, level, flags), pte); ggtt->invalidate(ggtt); } /* * Binds an object into the global gtt with the specified cache level. * The object will be accessible to the GPU via commands whose operands * reference offsets within the global GTT as well as accessible by the GPU * through the GMADR mapped BAR (i915->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE; struct sgt_iter iter; dma_addr_t addr; for_each_sgt_daddr(addr, iter, vma->pages) iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(ggtt); } static void nop_clear_range(struct i915_address_space *vm, u64 start, u64 length) { } static void gen8_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned int first_entry = start / I915_GTT_PAGE_SIZE; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; const gen8_pte_t scratch_pte = vm->scratch[0].encode; gen8_pte_t __iomem *gtt_base = (gen8_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; for (i = 0; i < num_entries; i++) gen8_set_pte(>t_base[i], scratch_pte); } static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) { /* * Make sure the internal GAM fifo has been cleared of all GTT * writes before exiting stop_machine(). This guarantees that * any aperture accesses waiting to start in another process * cannot back up behind the GTT writes causing a hang. * The register can be any arbitrary GAM register. */ intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); } struct insert_page { struct i915_address_space *vm; dma_addr_t addr; u64 offset; enum i915_cache_level level; }; static int bxt_vtd_ggtt_insert_page__cb(void *_arg) { struct insert_page *arg = _arg; gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 unused) { struct insert_page arg = { vm, addr, offset, level }; stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); } struct insert_entries { struct i915_address_space *vm; struct i915_vma *vma; enum i915_cache_level level; u32 flags; }; static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) { struct insert_entries *arg = _arg; gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct insert_entries arg = { vm, vma, level, flags }; stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned int first_entry = start / I915_GTT_PAGE_SIZE; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; gen6_pte_t scratch_pte, __iomem *gtt_base = (gen6_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->scratch[0].encode; for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, >t_base[i]); } static void i915_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level cache_level, u32 unused) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); } static void i915_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, flags); } static void i915_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); } static int ggtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_i915_gem_object *obj = vma->obj; u32 pte_flags; /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ pte_flags = 0; if (i915_gem_object_is_readonly(obj)) pte_flags |= PTE_READ_ONLY; vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; /* * Without aliasing PPGTT there's no difference between * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally * upgrade to both bound if we bind either to avoid double-binding. */ atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags); return 0; } static void ggtt_unbind_vma(struct i915_vma *vma) { vma->vm->clear_range(vma->vm, vma->node.start, vma->size); } static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) { u64 size; int ret; if (!USES_GUC(ggtt->vm.i915)) return 0; GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); size = ggtt->vm.total - GUC_GGTT_TOP; ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size, GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, PIN_NOEVICT); if (ret) drm_dbg(&ggtt->vm.i915->drm, "Failed to reserve top of GGTT for GuC\n"); return ret; } static void ggtt_release_guc_top(struct i915_ggtt *ggtt) { if (drm_mm_node_allocated(&ggtt->uc_fw)) drm_mm_remove_node(&ggtt->uc_fw); } static void cleanup_init_ggtt(struct i915_ggtt *ggtt) { ggtt_release_guc_top(ggtt); if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); mutex_destroy(&ggtt->error_mutex); } static int init_ggtt(struct i915_ggtt *ggtt) { /* * Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ unsigned long hole_start, hole_end; struct drm_mm_node *entry; int ret; /* * GuC requires all resources that we're sharing with it to be placed in * non-WOPCM memory. If GuC is not present or not in use we still need a * small bias as ring wraparound at offset 0 sometimes hangs. No idea * why. */ ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, intel_wopcm_guc_size(&ggtt->vm.i915->wopcm)); ret = intel_vgt_balloon(ggtt); if (ret) return ret; mutex_init(&ggtt->error_mutex); if (ggtt->mappable_end) { /* Reserve a mappable slot for our lockless error capture */ ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); if (ret) return ret; } /* * The upper portion of the GuC address space has a sizeable hole * (several MB) that is inaccessible by GuC. Reserve this range within * GGTT as it can comfortably hold GuC/HuC firmware images. */ ret = ggtt_reserve_guc_top(ggtt); if (ret) goto err; /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { drm_dbg_kms(&ggtt->vm.i915->drm, "clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt->vm.clear_range(&ggtt->vm, hole_start, hole_end - hole_start); } /* And finally clear the reserved guard page */ ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); return 0; err: cleanup_init_ggtt(ggtt); return ret; } static int aliasing_gtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { u32 pte_flags; int ret; /* Currently applicable only to VLV */ pte_flags = 0; if (i915_gem_object_is_readonly(vma->obj)) pte_flags |= PTE_READ_ONLY; if (flags & I915_VMA_LOCAL_BIND) { struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias; if (flags & I915_VMA_ALLOC) { ret = alias->vm.allocate_va_range(&alias->vm, vma->node.start, vma->size); if (ret) return ret; set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)); } GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))); alias->vm.insert_entries(&alias->vm, vma, cache_level, pte_flags); } if (flags & I915_VMA_GLOBAL_BIND) vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); return 0; } static void aliasing_gtt_unbind_vma(struct i915_vma *vma) { if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { struct i915_address_space *vm = vma->vm; vm->clear_range(vm, vma->node.start, vma->size); } if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) { struct i915_address_space *vm = &i915_vm_to_ggtt(vma->vm)->alias->vm; vm->clear_range(vm, vma->node.start, vma->size); } } static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) { struct i915_ppgtt *ppgtt; int err; ppgtt = i915_ppgtt_create(ggtt->vm.gt); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { err = -ENODEV; goto err_ppgtt; } /* * Note we only pre-allocate as far as the end of the global * GTT. On 48b / 4-level page-tables, the difference is very, * very significant! We have to preallocate as GVT/vgpu does * not like the page directory disappearing. */ err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total); if (err) goto err_ppgtt; ggtt->alias = ppgtt; ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; return 0; err_ppgtt: i915_vm_put(&ppgtt->vm); return err; } static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) { struct i915_ppgtt *ppgtt; ppgtt = fetch_and_zero(&ggtt->alias); if (!ppgtt) return; i915_vm_put(&ppgtt->vm); ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; } int i915_init_ggtt(struct drm_i915_private *i915) { int ret; ret = init_ggtt(&i915->ggtt); if (ret) return ret; if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { ret = init_aliasing_ppgtt(&i915->ggtt); if (ret) cleanup_init_ggtt(&i915->ggtt); } return 0; } static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) { struct i915_vma *vma, *vn; atomic_set(&ggtt->vm.open, 0); rcu_barrier(); /* flush the RCU'ed__i915_vm_release */ flush_workqueue(ggtt->vm.i915->wq); mutex_lock(&ggtt->vm.mutex); list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) WARN_ON(__i915_vma_unbind(vma)); if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); mutex_destroy(&ggtt->error_mutex); ggtt_release_guc_top(ggtt); intel_vgt_deballoon(ggtt); ggtt->vm.cleanup(&ggtt->vm); mutex_unlock(&ggtt->vm.mutex); i915_address_space_fini(&ggtt->vm); arch_phys_wc_del(ggtt->mtrr); if (ggtt->iomap.size) io_mapping_fini(&ggtt->iomap); } /** * i915_ggtt_driver_release - Clean up GGTT hardware initialization * @i915: i915 device */ void i915_ggtt_driver_release(struct drm_i915_private *i915) { struct pagevec *pvec; fini_aliasing_ppgtt(&i915->ggtt); ggtt_cleanup_hw(&i915->ggtt); pvec = &i915->mm.wc_stash.pvec; if (pvec->nr) { set_pages_array_wb(pvec->pages, pvec->nr); __pagevec_release(pvec); } } static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; #ifdef CONFIG_X86_32 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ if (bdw_gmch_ctl > 4) bdw_gmch_ctl = 4; #endif return bdw_gmch_ctl << 20; } static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; gmch_ctrl &= SNB_GMCH_GGMS_MASK; if (gmch_ctrl) return 1 << (20 + gmch_ctrl); return 0; } static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = i915->drm.pdev; phys_addr_t phys_addr; int ret; /* For Modern GENs the PTEs and register space are split in the BAR */ phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; /* * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range * will be dropped. For WC mappings in general we have 64 byte burst * writes when the WC buffer is flushed, so we can't use it, but have to * resort to an uncached mapping. The WC issue is easily caught by the * readback check when writing GTT PTE entries. */ if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10) ggtt->gsm = ioremap_nocache(phys_addr, size); else ggtt->gsm = ioremap_wc(phys_addr, size); if (!ggtt->gsm) { DRM_ERROR("Failed to map the ggtt page table\n"); return -ENOMEM; } ret = setup_scratch_page(&ggtt->vm, GFP_DMA32); if (ret) { DRM_ERROR("Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(ggtt->gsm); return ret; } ggtt->vm.scratch[0].encode = ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]), I915_CACHE_NONE, 0); return 0; } int ggtt_set_pages(struct i915_vma *vma) { int ret; GEM_BUG_ON(vma->pages); ret = i915_get_ggtt_vma_pages(vma); if (ret) return ret; vma->page_sizes = vma->obj->mm.page_sizes; return 0; } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); iounmap(ggtt->gsm); cleanup_scratch_page(vm); } static struct resource pci_resource(struct pci_dev *pdev, int bar) { return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar), pci_resource_len(pdev, bar)); } static int gen8_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = i915->drm.pdev; unsigned int size; u16 snb_gmch_ctl; int err; /* TODO: We're not aware of mappable constraints on gen8 yet */ if (!IS_DGFX(i915)) { ggtt->gmadr = pci_resource(pdev, 2); ggtt->mappable_end = resource_size(&ggtt->gmadr); } err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); if (err) DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); if (IS_CHERRYVIEW(i915)) size = chv_get_total_gtt_size(snb_gmch_ctl); else size = gen8_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->vm.insert_page = gen8_ggtt_insert_page; ggtt->vm.clear_range = nop_clear_range; if (intel_scanout_needs_vtd_wa(i915)) ggtt->vm.clear_range = gen8_ggtt_clear_range; ggtt->vm.insert_entries = gen8_ggtt_insert_entries; /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ if (intel_ggtt_update_needs_vtd_wa(i915) || IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) { ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; } ggtt->invalidate = gen8_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; ggtt->vm.pte_encode = gen8_pte_encode; setup_private_pat(ggtt->vm.gt->uncore); return ggtt_probe_common(ggtt, size); } static u64 snb_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (level) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static u64 ivb_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (level) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static u64 byt_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; if (!(flags & PTE_READ_ONLY)) pte |= BYT_PTE_WRITEABLE; if (level != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static u64 hsw_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; if (level != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static u64 iris_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (level) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE3; break; default: pte |= HSW_WB_ELLC_LLC_AGE3; break; } return pte; } static int gen6_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = i915->drm.pdev; unsigned int size; u16 snb_gmch_ctl; int err; ggtt->gmadr = pci_resource(pdev, 2); ggtt->mappable_end = resource_size(&ggtt->gmadr); /* * 64/512MB is the current min/max we actually know of, but this is * just a coarse sanity check. */ if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end); return -ENXIO; } err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); if (err) DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); size = gen6_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; ggtt->vm.clear_range = nop_clear_range; if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915)) ggtt->vm.clear_range = gen6_ggtt_clear_range; ggtt->vm.insert_page = gen6_ggtt_insert_page; ggtt->vm.insert_entries = gen6_ggtt_insert_entries; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->invalidate = gen6_ggtt_invalidate; if (HAS_EDRAM(i915)) ggtt->vm.pte_encode = iris_pte_encode; else if (IS_HASWELL(i915)) ggtt->vm.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(i915)) ggtt->vm.pte_encode = byt_pte_encode; else if (INTEL_GEN(i915) >= 7) ggtt->vm.pte_encode = ivb_pte_encode; else ggtt->vm.pte_encode = snb_pte_encode; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; return ggtt_probe_common(ggtt, size); } static void i915_gmch_remove(struct i915_address_space *vm) { intel_gmch_remove(); } static int i915_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; phys_addr_t gmadr_base; int ret; ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL); if (!ret) { DRM_ERROR("failed to set up gmch\n"); return -EIO; } intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); ggtt->gmadr = (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end); ggtt->do_idle_maps = needs_idle_maps(i915); ggtt->vm.insert_page = i915_ggtt_insert_page; ggtt->vm.insert_entries = i915_ggtt_insert_entries; ggtt->vm.clear_range = i915_ggtt_clear_range; ggtt->vm.cleanup = i915_gmch_remove; ggtt->invalidate = gmch_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; if (unlikely(ggtt->do_idle_maps)) dev_notice(i915->drm.dev, "Applying Ironlake quirks for intel_iommu\n"); return 0; } static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; int ret; ggtt->vm.gt = gt; ggtt->vm.i915 = i915; ggtt->vm.dma = &i915->drm.pdev->dev; if (INTEL_GEN(i915) <= 5) ret = i915_gmch_probe(ggtt); else if (INTEL_GEN(i915) < 8) ret = gen6_gmch_probe(ggtt); else ret = gen8_gmch_probe(ggtt); if (ret) return ret; if ((ggtt->vm.total - 1) >> 32) { DRM_ERROR("We never expected a Global GTT with more than 32bits" " of address space! Found %lldM!\n", ggtt->vm.total >> 20); ggtt->vm.total = 1ULL << 32; ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->vm.total); } if (ggtt->mappable_end > ggtt->vm.total) { DRM_ERROR("mappable aperture extends past end of GGTT," " aperture=%pa, total=%llx\n", &ggtt->mappable_end, ggtt->vm.total); ggtt->mappable_end = ggtt->vm.total; } /* GMADR is the PCI mmio aperture into the global GTT. */ DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20); DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); DRM_DEBUG_DRIVER("DSM size = %lluM\n", (u64)resource_size(&intel_graphics_stolen_res) >> 20); return 0; } /** * i915_ggtt_probe_hw - Probe GGTT hardware location * @i915: i915 device */ int i915_ggtt_probe_hw(struct drm_i915_private *i915) { int ret; ret = ggtt_probe_hw(&i915->ggtt, &i915->gt); if (ret) return ret; if (intel_vtd_active()) dev_info(i915->drm.dev, "VT-d active for gfx access\n"); return 0; } int i915_ggtt_enable_hw(struct drm_i915_private *i915) { if (INTEL_GEN(i915) < 6 && !intel_enable_gtt()) return -EIO; return 0; } void i915_ggtt_enable_guc(struct i915_ggtt *ggtt) { GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate); ggtt->invalidate = guc_ggtt_invalidate; ggtt->invalidate(ggtt); } void i915_ggtt_disable_guc(struct i915_ggtt *ggtt) { /* XXX Temporary pardon for error unload */ if (ggtt->invalidate == gen8_ggtt_invalidate) return; /* We should only be called after i915_ggtt_enable_guc() */ GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate); ggtt->invalidate = gen8_ggtt_invalidate; ggtt->invalidate(ggtt); } static void ggtt_restore_mappings(struct i915_ggtt *ggtt) { struct i915_vma *vma; bool flush = false; int open; intel_gt_check_and_clear_faults(ggtt->vm.gt); mutex_lock(&ggtt->vm.mutex); /* First fill our portion of the GTT with scratch pages */ ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); /* Skip rewriting PTE on VMA unbind. */ open = atomic_xchg(&ggtt->vm.open, 0); /* clflush objects bound into the GGTT and rebind them. */ list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) continue; clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma)); WARN_ON(i915_vma_bind(vma, obj ? obj->cache_level : 0, PIN_GLOBAL, NULL)); if (obj) { /* only used during resume => exclusive access */ flush |= fetch_and_zero(&obj->write_domain); obj->read_domains |= I915_GEM_DOMAIN_GTT; } } atomic_set(&ggtt->vm.open, open); ggtt->invalidate(ggtt); mutex_unlock(&ggtt->vm.mutex); if (flush) wbinvd_on_all_cpus(); } void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = &i915->ggtt; ggtt_restore_mappings(ggtt); if (INTEL_GEN(i915) >= 8) setup_private_pat(ggtt->vm.gt->uncore); } static struct scatterlist * rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, unsigned int width, unsigned int height, unsigned int stride, struct sg_table *st, struct scatterlist *sg) { unsigned int column, row; unsigned int src_idx; for (column = 0; column < width; column++) { src_idx = stride * (height - 1) + column + offset; for (row = 0; row < height; row++) { st->nents++; /* * We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); sg_dma_address(sg) = i915_gem_object_get_dma_address(obj, src_idx); sg_dma_len(sg) = I915_GTT_PAGE_SIZE; sg = sg_next(sg); src_idx -= stride; } } return sg; } static noinline struct sg_table * intel_rotate_pages(struct intel_rotation_info *rot_info, struct drm_i915_gem_object *obj) { unsigned int size = intel_rotation_info_size(rot_info); struct drm_i915_private *i915 = to_i915(obj->base.dev); struct sg_table *st; struct scatterlist *sg; int ret = -ENOMEM; int i; /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, size, GFP_KERNEL); if (ret) goto err_sg_alloc; st->nents = 0; sg = st->sgl; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { sg = rotate_pages(obj, rot_info->plane[i].offset, rot_info->plane[i].width, rot_info->plane[i].height, rot_info->plane[i].stride, st, sg); } return st; err_sg_alloc: kfree(st); err_st_alloc: drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); return ERR_PTR(ret); } static struct scatterlist * remap_pages(struct drm_i915_gem_object *obj, unsigned int offset, unsigned int width, unsigned int height, unsigned int stride, struct sg_table *st, struct scatterlist *sg) { unsigned int row; for (row = 0; row < height; row++) { unsigned int left = width * I915_GTT_PAGE_SIZE; while (left) { dma_addr_t addr; unsigned int length; /* * We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ addr = i915_gem_object_get_dma_address_len(obj, offset, &length); length = min(left, length); st->nents++; sg_set_page(sg, NULL, length, 0); sg_dma_address(sg) = addr; sg_dma_len(sg) = length; sg = sg_next(sg); offset += length / I915_GTT_PAGE_SIZE; left -= length; } offset += stride - width; } return sg; } static noinline struct sg_table * intel_remap_pages(struct intel_remapped_info *rem_info, struct drm_i915_gem_object *obj) { unsigned int size = intel_remapped_info_size(rem_info); struct drm_i915_private *i915 = to_i915(obj->base.dev); struct sg_table *st; struct scatterlist *sg; int ret = -ENOMEM; int i; /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, size, GFP_KERNEL); if (ret) goto err_sg_alloc; st->nents = 0; sg = st->sgl; for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) { sg = remap_pages(obj, rem_info->plane[i].offset, rem_info->plane[i].width, rem_info->plane[i].height, rem_info->plane[i].stride, st, sg); } i915_sg_trim(st); return st; err_sg_alloc: kfree(st); err_st_alloc: drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size); return ERR_PTR(ret); } static noinline struct sg_table * intel_partial_pages(const struct i915_ggtt_view *view, struct drm_i915_gem_object *obj) { struct sg_table *st; struct scatterlist *sg, *iter; unsigned int count = view->partial.size; unsigned int offset; int ret = -ENOMEM; st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, count, GFP_KERNEL); if (ret) goto err_sg_alloc; iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); GEM_BUG_ON(!iter); sg = st->sgl; st->nents = 0; do { unsigned int len; len = min(iter->length - (offset << PAGE_SHIFT), count << PAGE_SHIFT); sg_set_page(sg, NULL, len, 0); sg_dma_address(sg) = sg_dma_address(iter) + (offset << PAGE_SHIFT); sg_dma_len(sg) = len; st->nents++; count -= len >> PAGE_SHIFT; if (count == 0) { sg_mark_end(sg); i915_sg_trim(st); /* Drop any unused tail entries. */ return st; } sg = __sg_next(sg); iter = __sg_next(iter); offset = 0; } while (1); err_sg_alloc: kfree(st); err_st_alloc: return ERR_PTR(ret); } static int i915_get_ggtt_vma_pages(struct i915_vma *vma) { int ret; /* * The vma->pages are only valid within the lifespan of the borrowed * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so * must be the vma->pages. A simple rule is that vma->pages must only * be accessed when the obj->mm.pages are pinned. */ GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); switch (vma->ggtt_view.type) { default: GEM_BUG_ON(vma->ggtt_view.type); /* fall through */ case I915_GGTT_VIEW_NORMAL: vma->pages = vma->obj->mm.pages; return 0; case I915_GGTT_VIEW_ROTATED: vma->pages = intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); break; case I915_GGTT_VIEW_REMAPPED: vma->pages = intel_remap_pages(&vma->ggtt_view.remapped, vma->obj); break; case I915_GGTT_VIEW_PARTIAL: vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); break; } ret = 0; if (IS_ERR(vma->pages)) { ret = PTR_ERR(vma->pages); vma->pages = NULL; drm_err(&vma->vm->i915->drm, "Failed to get pages for VMA view type %u (%d)!\n", vma->ggtt_view.type, ret); } return ret; }