/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "i915_drv.h" #include "intel_atomic.h" #include "intel_audio.h" #include "intel_cdclk.h" #include "intel_display_types.h" #include "intel_lpe_audio.h" /** * DOC: High Definition Audio over HDMI and Display Port * * The graphics and audio drivers together support High Definition Audio over * HDMI and Display Port. The audio programming sequences are divided into audio * codec and controller enable and disable sequences. The graphics driver * handles the audio codec sequences, while the audio driver handles the audio * controller sequences. * * The disable sequences must be performed before disabling the transcoder or * port. The enable sequences may only be performed after enabling the * transcoder and port, and after completed link training. Therefore the audio * enable/disable sequences are part of the modeset sequence. * * The codec and controller sequences could be done either parallel or serial, * but generally the ELDV/PD change in the codec sequence indicates to the audio * driver that the controller sequence should start. Indeed, most of the * co-operation between the graphics and audio drivers is handled via audio * related registers. (The notable exception is the power management, not * covered here.) * * The struct &i915_audio_component is used to interact between the graphics * and audio drivers. The struct &i915_audio_component_ops @ops in it is * defined in graphics driver and called in audio driver. The * struct &i915_audio_component_audio_ops @audio_ops is called from i915 driver. */ /* DP N/M table */ #define LC_810M 810000 #define LC_540M 540000 #define LC_270M 270000 #define LC_162M 162000 struct dp_aud_n_m { int sample_rate; int clock; u16 m; u16 n; }; struct hdmi_aud_ncts { int sample_rate; int clock; int n; int cts; }; /* Values according to DP 1.4 Table 2-104 */ static const struct dp_aud_n_m dp_aud_n_m[] = { { 32000, LC_162M, 1024, 10125 }, { 44100, LC_162M, 784, 5625 }, { 48000, LC_162M, 512, 3375 }, { 64000, LC_162M, 2048, 10125 }, { 88200, LC_162M, 1568, 5625 }, { 96000, LC_162M, 1024, 3375 }, { 128000, LC_162M, 4096, 10125 }, { 176400, LC_162M, 3136, 5625 }, { 192000, LC_162M, 2048, 3375 }, { 32000, LC_270M, 1024, 16875 }, { 44100, LC_270M, 784, 9375 }, { 48000, LC_270M, 512, 5625 }, { 64000, LC_270M, 2048, 16875 }, { 88200, LC_270M, 1568, 9375 }, { 96000, LC_270M, 1024, 5625 }, { 128000, LC_270M, 4096, 16875 }, { 176400, LC_270M, 3136, 9375 }, { 192000, LC_270M, 2048, 5625 }, { 32000, LC_540M, 1024, 33750 }, { 44100, LC_540M, 784, 18750 }, { 48000, LC_540M, 512, 11250 }, { 64000, LC_540M, 2048, 33750 }, { 88200, LC_540M, 1568, 18750 }, { 96000, LC_540M, 1024, 11250 }, { 128000, LC_540M, 4096, 33750 }, { 176400, LC_540M, 3136, 18750 }, { 192000, LC_540M, 2048, 11250 }, { 32000, LC_810M, 1024, 50625 }, { 44100, LC_810M, 784, 28125 }, { 48000, LC_810M, 512, 16875 }, { 64000, LC_810M, 2048, 50625 }, { 88200, LC_810M, 1568, 28125 }, { 96000, LC_810M, 1024, 16875 }, { 128000, LC_810M, 4096, 50625 }, { 176400, LC_810M, 3136, 28125 }, { 192000, LC_810M, 2048, 16875 }, }; static const struct dp_aud_n_m * audio_config_dp_get_n_m(const struct intel_crtc_state *crtc_state, int rate) { int i; for (i = 0; i < ARRAY_SIZE(dp_aud_n_m); i++) { if (rate == dp_aud_n_m[i].sample_rate && crtc_state->port_clock == dp_aud_n_m[i].clock) return &dp_aud_n_m[i]; } return NULL; } static const struct { int clock; u32 config; } hdmi_audio_clock[] = { { 25175, AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 }, { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */ { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 }, { 27027, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 }, { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 }, { 54054, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 }, { 74176, AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 }, { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 }, { 148352, AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 }, { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 }, { 296703, AUD_CONFIG_PIXEL_CLOCK_HDMI_296703 }, { 297000, AUD_CONFIG_PIXEL_CLOCK_HDMI_297000 }, { 593407, AUD_CONFIG_PIXEL_CLOCK_HDMI_593407 }, { 594000, AUD_CONFIG_PIXEL_CLOCK_HDMI_594000 }, }; /* HDMI N/CTS table */ #define TMDS_297M 297000 #define TMDS_296M 296703 #define TMDS_594M 594000 #define TMDS_593M 593407 static const struct hdmi_aud_ncts hdmi_aud_ncts_24bpp[] = { { 32000, TMDS_296M, 5824, 421875 }, { 32000, TMDS_297M, 3072, 222750 }, { 32000, TMDS_593M, 5824, 843750 }, { 32000, TMDS_594M, 3072, 445500 }, { 44100, TMDS_296M, 4459, 234375 }, { 44100, TMDS_297M, 4704, 247500 }, { 44100, TMDS_593M, 8918, 937500 }, { 44100, TMDS_594M, 9408, 990000 }, { 88200, TMDS_296M, 8918, 234375 }, { 88200, TMDS_297M, 9408, 247500 }, { 88200, TMDS_593M, 17836, 937500 }, { 88200, TMDS_594M, 18816, 990000 }, { 176400, TMDS_296M, 17836, 234375 }, { 176400, TMDS_297M, 18816, 247500 }, { 176400, TMDS_593M, 35672, 937500 }, { 176400, TMDS_594M, 37632, 990000 }, { 48000, TMDS_296M, 5824, 281250 }, { 48000, TMDS_297M, 5120, 247500 }, { 48000, TMDS_593M, 5824, 562500 }, { 48000, TMDS_594M, 6144, 594000 }, { 96000, TMDS_296M, 11648, 281250 }, { 96000, TMDS_297M, 10240, 247500 }, { 96000, TMDS_593M, 11648, 562500 }, { 96000, TMDS_594M, 12288, 594000 }, { 192000, TMDS_296M, 23296, 281250 }, { 192000, TMDS_297M, 20480, 247500 }, { 192000, TMDS_593M, 23296, 562500 }, { 192000, TMDS_594M, 24576, 594000 }, }; /* Appendix C - N & CTS values for deep color from HDMI 2.0 spec*/ /* HDMI N/CTS table for 10 bit deep color(30 bpp)*/ #define TMDS_371M 371250 #define TMDS_370M 370878 static const struct hdmi_aud_ncts hdmi_aud_ncts_30bpp[] = { { 32000, TMDS_370M, 5824, 527344 }, { 32000, TMDS_371M, 6144, 556875 }, { 44100, TMDS_370M, 8918, 585938 }, { 44100, TMDS_371M, 4704, 309375 }, { 88200, TMDS_370M, 17836, 585938 }, { 88200, TMDS_371M, 9408, 309375 }, { 176400, TMDS_370M, 35672, 585938 }, { 176400, TMDS_371M, 18816, 309375 }, { 48000, TMDS_370M, 11648, 703125 }, { 48000, TMDS_371M, 5120, 309375 }, { 96000, TMDS_370M, 23296, 703125 }, { 96000, TMDS_371M, 10240, 309375 }, { 192000, TMDS_370M, 46592, 703125 }, { 192000, TMDS_371M, 20480, 309375 }, }; /* HDMI N/CTS table for 12 bit deep color(36 bpp)*/ #define TMDS_445_5M 445500 #define TMDS_445M 445054 static const struct hdmi_aud_ncts hdmi_aud_ncts_36bpp[] = { { 32000, TMDS_445M, 5824, 632813 }, { 32000, TMDS_445_5M, 4096, 445500 }, { 44100, TMDS_445M, 8918, 703125 }, { 44100, TMDS_445_5M, 4704, 371250 }, { 88200, TMDS_445M, 17836, 703125 }, { 88200, TMDS_445_5M, 9408, 371250 }, { 176400, TMDS_445M, 35672, 703125 }, { 176400, TMDS_445_5M, 18816, 371250 }, { 48000, TMDS_445M, 5824, 421875 }, { 48000, TMDS_445_5M, 5120, 371250 }, { 96000, TMDS_445M, 11648, 421875 }, { 96000, TMDS_445_5M, 10240, 371250 }, { 192000, TMDS_445M, 23296, 421875 }, { 192000, TMDS_445_5M, 20480, 371250 }, }; /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */ static u32 audio_config_hdmi_pixel_clock(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; int i; for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) { if (adjusted_mode->crtc_clock == hdmi_audio_clock[i].clock) break; } if (INTEL_GEN(dev_priv) < 12 && adjusted_mode->crtc_clock > 148500) i = ARRAY_SIZE(hdmi_audio_clock); if (i == ARRAY_SIZE(hdmi_audio_clock)) { drm_dbg_kms(&dev_priv->drm, "HDMI audio pixel clock setting for %d not found, falling back to defaults\n", adjusted_mode->crtc_clock); i = 1; } drm_dbg_kms(&dev_priv->drm, "Configuring HDMI audio for pixel clock %d (0x%08x)\n", hdmi_audio_clock[i].clock, hdmi_audio_clock[i].config); return hdmi_audio_clock[i].config; } static int audio_config_hdmi_get_n(const struct intel_crtc_state *crtc_state, int rate) { const struct hdmi_aud_ncts *hdmi_ncts_table; int i, size; if (crtc_state->pipe_bpp == 36) { hdmi_ncts_table = hdmi_aud_ncts_36bpp; size = ARRAY_SIZE(hdmi_aud_ncts_36bpp); } else if (crtc_state->pipe_bpp == 30) { hdmi_ncts_table = hdmi_aud_ncts_30bpp; size = ARRAY_SIZE(hdmi_aud_ncts_30bpp); } else { hdmi_ncts_table = hdmi_aud_ncts_24bpp; size = ARRAY_SIZE(hdmi_aud_ncts_24bpp); } for (i = 0; i < size; i++) { if (rate == hdmi_ncts_table[i].sample_rate && crtc_state->port_clock == hdmi_ncts_table[i].clock) { return hdmi_ncts_table[i].n; } } return 0; } static bool intel_eld_uptodate(struct drm_connector *connector, i915_reg_t reg_eldv, u32 bits_eldv, i915_reg_t reg_elda, u32 bits_elda, i915_reg_t reg_edid) { struct drm_i915_private *dev_priv = to_i915(connector->dev); const u8 *eld = connector->eld; u32 tmp; int i; tmp = intel_de_read(dev_priv, reg_eldv); tmp &= bits_eldv; if (!tmp) return false; tmp = intel_de_read(dev_priv, reg_elda); tmp &= ~bits_elda; intel_de_write(dev_priv, reg_elda, tmp); for (i = 0; i < drm_eld_size(eld) / 4; i++) if (intel_de_read(dev_priv, reg_edid) != *((const u32 *)eld + i)) return false; return true; } static void g4x_audio_codec_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 eldv, tmp; drm_dbg_kms(&dev_priv->drm, "Disable audio codec\n"); tmp = intel_de_read(dev_priv, G4X_AUD_VID_DID); if (tmp == INTEL_AUDIO_DEVBLC || tmp == INTEL_AUDIO_DEVCL) eldv = G4X_ELDV_DEVCL_DEVBLC; else eldv = G4X_ELDV_DEVCTG; /* Invalidate ELD */ tmp = intel_de_read(dev_priv, G4X_AUD_CNTL_ST); tmp &= ~eldv; intel_de_write(dev_priv, G4X_AUD_CNTL_ST, tmp); } static void g4x_audio_codec_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_connector *connector = conn_state->connector; const u8 *eld = connector->eld; u32 eldv; u32 tmp; int len, i; drm_dbg_kms(&dev_priv->drm, "Enable audio codec, %u bytes ELD\n", drm_eld_size(eld)); tmp = intel_de_read(dev_priv, G4X_AUD_VID_DID); if (tmp == INTEL_AUDIO_DEVBLC || tmp == INTEL_AUDIO_DEVCL) eldv = G4X_ELDV_DEVCL_DEVBLC; else eldv = G4X_ELDV_DEVCTG; if (intel_eld_uptodate(connector, G4X_AUD_CNTL_ST, eldv, G4X_AUD_CNTL_ST, G4X_ELD_ADDR_MASK, G4X_HDMIW_HDMIEDID)) return; tmp = intel_de_read(dev_priv, G4X_AUD_CNTL_ST); tmp &= ~(eldv | G4X_ELD_ADDR_MASK); len = (tmp >> 9) & 0x1f; /* ELD buffer size */ intel_de_write(dev_priv, G4X_AUD_CNTL_ST, tmp); len = min(drm_eld_size(eld) / 4, len); drm_dbg(&dev_priv->drm, "ELD size %d\n", len); for (i = 0; i < len; i++) intel_de_write(dev_priv, G4X_HDMIW_HDMIEDID, *((const u32 *)eld + i)); tmp = intel_de_read(dev_priv, G4X_AUD_CNTL_ST); tmp |= eldv; intel_de_write(dev_priv, G4X_AUD_CNTL_ST, tmp); } static void hsw_dp_audio_config_update(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct i915_audio_component *acomp = dev_priv->audio_component; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; enum port port = encoder->port; const struct dp_aud_n_m *nm; int rate; u32 tmp; rate = acomp ? acomp->aud_sample_rate[port] : 0; nm = audio_config_dp_get_n_m(crtc_state, rate); if (nm) drm_dbg_kms(&dev_priv->drm, "using Maud %u, Naud %u\n", nm->m, nm->n); else drm_dbg_kms(&dev_priv->drm, "using automatic Maud, Naud\n"); tmp = intel_de_read(dev_priv, HSW_AUD_CFG(cpu_transcoder)); tmp &= ~AUD_CONFIG_N_VALUE_INDEX; tmp &= ~AUD_CONFIG_PIXEL_CLOCK_HDMI_MASK; tmp &= ~AUD_CONFIG_N_PROG_ENABLE; tmp |= AUD_CONFIG_N_VALUE_INDEX; if (nm) { tmp &= ~AUD_CONFIG_N_MASK; tmp |= AUD_CONFIG_N(nm->n); tmp |= AUD_CONFIG_N_PROG_ENABLE; } intel_de_write(dev_priv, HSW_AUD_CFG(cpu_transcoder), tmp); tmp = intel_de_read(dev_priv, HSW_AUD_M_CTS_ENABLE(cpu_transcoder)); tmp &= ~AUD_CONFIG_M_MASK; tmp &= ~AUD_M_CTS_M_VALUE_INDEX; tmp &= ~AUD_M_CTS_M_PROG_ENABLE; if (nm) { tmp |= nm->m; tmp |= AUD_M_CTS_M_VALUE_INDEX; tmp |= AUD_M_CTS_M_PROG_ENABLE; } intel_de_write(dev_priv, HSW_AUD_M_CTS_ENABLE(cpu_transcoder), tmp); } static void hsw_hdmi_audio_config_update(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct i915_audio_component *acomp = dev_priv->audio_component; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; enum port port = encoder->port; int n, rate; u32 tmp; rate = acomp ? acomp->aud_sample_rate[port] : 0; tmp = intel_de_read(dev_priv, HSW_AUD_CFG(cpu_transcoder)); tmp &= ~AUD_CONFIG_N_VALUE_INDEX; tmp &= ~AUD_CONFIG_PIXEL_CLOCK_HDMI_MASK; tmp &= ~AUD_CONFIG_N_PROG_ENABLE; tmp |= audio_config_hdmi_pixel_clock(crtc_state); n = audio_config_hdmi_get_n(crtc_state, rate); if (n != 0) { drm_dbg_kms(&dev_priv->drm, "using N %d\n", n); tmp &= ~AUD_CONFIG_N_MASK; tmp |= AUD_CONFIG_N(n); tmp |= AUD_CONFIG_N_PROG_ENABLE; } else { drm_dbg_kms(&dev_priv->drm, "using automatic N\n"); } intel_de_write(dev_priv, HSW_AUD_CFG(cpu_transcoder), tmp); /* * Let's disable "Enable CTS or M Prog bit" * and let HW calculate the value */ tmp = intel_de_read(dev_priv, HSW_AUD_M_CTS_ENABLE(cpu_transcoder)); tmp &= ~AUD_M_CTS_M_PROG_ENABLE; tmp &= ~AUD_M_CTS_M_VALUE_INDEX; intel_de_write(dev_priv, HSW_AUD_M_CTS_ENABLE(cpu_transcoder), tmp); } static void hsw_audio_config_update(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { if (intel_crtc_has_dp_encoder(crtc_state)) hsw_dp_audio_config_update(encoder, crtc_state); else hsw_hdmi_audio_config_update(encoder, crtc_state); } static void hsw_audio_codec_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; u32 tmp; drm_dbg_kms(&dev_priv->drm, "Disable audio codec on transcoder %s\n", transcoder_name(cpu_transcoder)); mutex_lock(&dev_priv->av_mutex); /* Disable timestamps */ tmp = intel_de_read(dev_priv, HSW_AUD_CFG(cpu_transcoder)); tmp &= ~AUD_CONFIG_N_VALUE_INDEX; tmp |= AUD_CONFIG_N_PROG_ENABLE; tmp &= ~AUD_CONFIG_UPPER_N_MASK; tmp &= ~AUD_CONFIG_LOWER_N_MASK; if (intel_crtc_has_dp_encoder(old_crtc_state)) tmp |= AUD_CONFIG_N_VALUE_INDEX; intel_de_write(dev_priv, HSW_AUD_CFG(cpu_transcoder), tmp); /* Invalidate ELD */ tmp = intel_de_read(dev_priv, HSW_AUD_PIN_ELD_CP_VLD); tmp &= ~AUDIO_ELD_VALID(cpu_transcoder); tmp &= ~AUDIO_OUTPUT_ENABLE(cpu_transcoder); intel_de_write(dev_priv, HSW_AUD_PIN_ELD_CP_VLD, tmp); mutex_unlock(&dev_priv->av_mutex); } /* Add a factor to take care of rounding and truncations */ #define ROUNDING_FACTOR 10000 static unsigned int get_hblank_early_enable_config(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); unsigned int link_clks_available, link_clks_required; unsigned int tu_data, tu_line, link_clks_active; unsigned int hblank_rise, hblank_early_prog; unsigned int h_active, h_total, hblank_delta, pixel_clk, v_total; unsigned int fec_coeff, refresh_rate, cdclk, vdsc_bpp; h_active = crtc_state->hw.adjusted_mode.crtc_hdisplay; h_total = crtc_state->hw.adjusted_mode.crtc_htotal; v_total = crtc_state->hw.adjusted_mode.crtc_vtotal; pixel_clk = crtc_state->hw.adjusted_mode.crtc_clock; refresh_rate = crtc_state->hw.adjusted_mode.vrefresh; vdsc_bpp = crtc_state->dsc.compressed_bpp; cdclk = i915->cdclk.hw.cdclk; /* fec= 0.972261, using rounding multiplier of 1000000 */ fec_coeff = 972261; drm_dbg_kms(&i915->drm, "h_active = %u link_clk = %u :" "lanes = %u vdsc_bpp = %u cdclk = %u\n", h_active, crtc_state->port_clock, crtc_state->lane_count, vdsc_bpp, cdclk); link_clks_available = ((((h_total - h_active) * ((crtc_state->port_clock * ROUNDING_FACTOR) / pixel_clk)) / ROUNDING_FACTOR) - 28); link_clks_required = DIV_ROUND_UP(192000, (refresh_rate * v_total)) * ((48 / crtc_state->lane_count) + 2); if (link_clks_available > link_clks_required) hblank_delta = 32; else hblank_delta = DIV_ROUND_UP(((((5 * ROUNDING_FACTOR) / crtc_state->port_clock) + ((5 * ROUNDING_FACTOR) / cdclk)) * pixel_clk), ROUNDING_FACTOR); tu_data = (pixel_clk * vdsc_bpp * 8) / ((crtc_state->port_clock * crtc_state->lane_count * fec_coeff) / 1000000); tu_line = (((h_active * crtc_state->port_clock * fec_coeff) / 1000000) / (64 * pixel_clk)); link_clks_active = (tu_line - 1) * 64 + tu_data; hblank_rise = ((link_clks_active + 6 * DIV_ROUND_UP(link_clks_active, 250) + 4) * ((pixel_clk * ROUNDING_FACTOR) / crtc_state->port_clock)) / ROUNDING_FACTOR; hblank_early_prog = h_active - hblank_rise + hblank_delta; return hblank_early_prog; } static unsigned int get_sample_room_req_config(const struct intel_crtc_state *crtc_state) { unsigned int h_active, h_total, pixel_clk; unsigned int samples_room; h_active = crtc_state->hw.adjusted_mode.hdisplay; h_total = crtc_state->hw.adjusted_mode.htotal; pixel_clk = crtc_state->hw.adjusted_mode.clock; samples_room = ((((h_total - h_active) * ((crtc_state->port_clock * ROUNDING_FACTOR) / pixel_clk)) / ROUNDING_FACTOR) - 12) / ((48 / crtc_state->lane_count) + 2); return samples_room; } static void enable_audio_dsc_wa(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; unsigned int hblank_early_prog, samples_room, h_active; unsigned int val; if (INTEL_GEN(i915) < 11) return; h_active = crtc_state->hw.adjusted_mode.hdisplay; if (!(h_active && crtc_state->port_clock && crtc_state->lane_count && crtc_state->dsc.compressed_bpp && i915->cdclk.hw.cdclk)) { drm_err(&i915->drm, "Null Params rcvd for hblank early enabling\n"); WARN_ON(1); return; } val = intel_de_read(i915, AUD_CONFIG_BE); if (INTEL_GEN(i915) == 11) val |= HBLANK_EARLY_ENABLE_ICL(pipe); else if (INTEL_GEN(i915) >= 12) val |= HBLANK_EARLY_ENABLE_TGL(pipe); if (crtc_state->dsc.compression_enable && (crtc_state->hw.adjusted_mode.hdisplay >= 3840 && crtc_state->hw.adjusted_mode.vdisplay >= 2160)) { /* Get hblank early enable value required */ hblank_early_prog = get_hblank_early_enable_config(encoder, crtc_state); if (hblank_early_prog < 32) { val &= ~HBLANK_START_COUNT_MASK(pipe); val |= HBLANK_START_COUNT(pipe, HBLANK_START_COUNT_32); } else if (hblank_early_prog < 64) { val &= ~HBLANK_START_COUNT_MASK(pipe); val |= HBLANK_START_COUNT(pipe, HBLANK_START_COUNT_64); } else if (hblank_early_prog < 96) { val &= ~HBLANK_START_COUNT_MASK(pipe); val |= HBLANK_START_COUNT(pipe, HBLANK_START_COUNT_96); } else { val &= ~HBLANK_START_COUNT_MASK(pipe); val |= HBLANK_START_COUNT(pipe, HBLANK_START_COUNT_128); } /* Get samples room value required */ samples_room = get_sample_room_req_config(crtc_state); if (samples_room < 3) { val &= ~NUMBER_SAMPLES_PER_LINE_MASK(pipe); val |= NUMBER_SAMPLES_PER_LINE(pipe, samples_room); } else { /* Program 0 i.e "All Samples available in buffer" */ val &= ~NUMBER_SAMPLES_PER_LINE_MASK(pipe); val |= NUMBER_SAMPLES_PER_LINE(pipe, 0x0); } } intel_de_write(i915, AUD_CONFIG_BE, val); } #undef ROUNDING_FACTOR static void hsw_audio_codec_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_connector *connector = conn_state->connector; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; const u8 *eld = connector->eld; u32 tmp; int len, i; drm_dbg_kms(&dev_priv->drm, "Enable audio codec on transcoder %s, %u bytes ELD\n", transcoder_name(cpu_transcoder), drm_eld_size(eld)); mutex_lock(&dev_priv->av_mutex); /* Enable Audio WA for 4k DSC usecases */ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP)) enable_audio_dsc_wa(encoder, crtc_state); /* Enable audio presence detect, invalidate ELD */ tmp = intel_de_read(dev_priv, HSW_AUD_PIN_ELD_CP_VLD); tmp |= AUDIO_OUTPUT_ENABLE(cpu_transcoder); tmp &= ~AUDIO_ELD_VALID(cpu_transcoder); intel_de_write(dev_priv, HSW_AUD_PIN_ELD_CP_VLD, tmp); /* * FIXME: We're supposed to wait for vblank here, but we have vblanks * disabled during the mode set. The proper fix would be to push the * rest of the setup into a vblank work item, queued here, but the * infrastructure is not there yet. */ /* Reset ELD write address */ tmp = intel_de_read(dev_priv, HSW_AUD_DIP_ELD_CTRL(cpu_transcoder)); tmp &= ~IBX_ELD_ADDRESS_MASK; intel_de_write(dev_priv, HSW_AUD_DIP_ELD_CTRL(cpu_transcoder), tmp); /* Up to 84 bytes of hw ELD buffer */ len = min(drm_eld_size(eld), 84); for (i = 0; i < len / 4; i++) intel_de_write(dev_priv, HSW_AUD_EDID_DATA(cpu_transcoder), *((const u32 *)eld + i)); /* ELD valid */ tmp = intel_de_read(dev_priv, HSW_AUD_PIN_ELD_CP_VLD); tmp |= AUDIO_ELD_VALID(cpu_transcoder); intel_de_write(dev_priv, HSW_AUD_PIN_ELD_CP_VLD, tmp); /* Enable timestamps */ hsw_audio_config_update(encoder, crtc_state); mutex_unlock(&dev_priv->av_mutex); } static void ilk_audio_codec_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; enum port port = encoder->port; u32 tmp, eldv; i915_reg_t aud_config, aud_cntrl_st2; drm_dbg_kms(&dev_priv->drm, "Disable audio codec on [ENCODER:%d:%s], pipe %c\n", encoder->base.base.id, encoder->base.name, pipe_name(pipe)); if (drm_WARN_ON(&dev_priv->drm, port == PORT_A)) return; if (HAS_PCH_IBX(dev_priv)) { aud_config = IBX_AUD_CFG(pipe); aud_cntrl_st2 = IBX_AUD_CNTL_ST2; } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { aud_config = VLV_AUD_CFG(pipe); aud_cntrl_st2 = VLV_AUD_CNTL_ST2; } else { aud_config = CPT_AUD_CFG(pipe); aud_cntrl_st2 = CPT_AUD_CNTRL_ST2; } /* Disable timestamps */ tmp = intel_de_read(dev_priv, aud_config); tmp &= ~AUD_CONFIG_N_VALUE_INDEX; tmp |= AUD_CONFIG_N_PROG_ENABLE; tmp &= ~AUD_CONFIG_UPPER_N_MASK; tmp &= ~AUD_CONFIG_LOWER_N_MASK; if (intel_crtc_has_dp_encoder(old_crtc_state)) tmp |= AUD_CONFIG_N_VALUE_INDEX; intel_de_write(dev_priv, aud_config, tmp); eldv = IBX_ELD_VALID(port); /* Invalidate ELD */ tmp = intel_de_read(dev_priv, aud_cntrl_st2); tmp &= ~eldv; intel_de_write(dev_priv, aud_cntrl_st2, tmp); } static void ilk_audio_codec_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_connector *connector = conn_state->connector; enum pipe pipe = crtc->pipe; enum port port = encoder->port; const u8 *eld = connector->eld; u32 tmp, eldv; int len, i; i915_reg_t hdmiw_hdmiedid, aud_config, aud_cntl_st, aud_cntrl_st2; drm_dbg_kms(&dev_priv->drm, "Enable audio codec on [ENCODER:%d:%s], pipe %c, %u bytes ELD\n", encoder->base.base.id, encoder->base.name, pipe_name(pipe), drm_eld_size(eld)); if (drm_WARN_ON(&dev_priv->drm, port == PORT_A)) return; /* * FIXME: We're supposed to wait for vblank here, but we have vblanks * disabled during the mode set. The proper fix would be to push the * rest of the setup into a vblank work item, queued here, but the * infrastructure is not there yet. */ if (HAS_PCH_IBX(dev_priv)) { hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe); aud_config = IBX_AUD_CFG(pipe); aud_cntl_st = IBX_AUD_CNTL_ST(pipe); aud_cntrl_st2 = IBX_AUD_CNTL_ST2; } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe); aud_config = VLV_AUD_CFG(pipe); aud_cntl_st = VLV_AUD_CNTL_ST(pipe); aud_cntrl_st2 = VLV_AUD_CNTL_ST2; } else { hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe); aud_config = CPT_AUD_CFG(pipe); aud_cntl_st = CPT_AUD_CNTL_ST(pipe); aud_cntrl_st2 = CPT_AUD_CNTRL_ST2; } eldv = IBX_ELD_VALID(port); /* Invalidate ELD */ tmp = intel_de_read(dev_priv, aud_cntrl_st2); tmp &= ~eldv; intel_de_write(dev_priv, aud_cntrl_st2, tmp); /* Reset ELD write address */ tmp = intel_de_read(dev_priv, aud_cntl_st); tmp &= ~IBX_ELD_ADDRESS_MASK; intel_de_write(dev_priv, aud_cntl_st, tmp); /* Up to 84 bytes of hw ELD buffer */ len = min(drm_eld_size(eld), 84); for (i = 0; i < len / 4; i++) intel_de_write(dev_priv, hdmiw_hdmiedid, *((const u32 *)eld + i)); /* ELD valid */ tmp = intel_de_read(dev_priv, aud_cntrl_st2); tmp |= eldv; intel_de_write(dev_priv, aud_cntrl_st2, tmp); /* Enable timestamps */ tmp = intel_de_read(dev_priv, aud_config); tmp &= ~AUD_CONFIG_N_VALUE_INDEX; tmp &= ~AUD_CONFIG_N_PROG_ENABLE; tmp &= ~AUD_CONFIG_PIXEL_CLOCK_HDMI_MASK; if (intel_crtc_has_dp_encoder(crtc_state)) tmp |= AUD_CONFIG_N_VALUE_INDEX; else tmp |= audio_config_hdmi_pixel_clock(crtc_state); intel_de_write(dev_priv, aud_config, tmp); } /** * intel_audio_codec_enable - Enable the audio codec for HD audio * @encoder: encoder on which to enable audio * @crtc_state: pointer to the current crtc state. * @conn_state: pointer to the current connector state. * * The enable sequences may only be performed after enabling the transcoder and * port, and after completed link training. */ void intel_audio_codec_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct i915_audio_component *acomp = dev_priv->audio_component; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_connector *connector = conn_state->connector; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; enum port port = encoder->port; enum pipe pipe = crtc->pipe; /* FIXME precompute the ELD in .compute_config() */ if (!connector->eld[0]) drm_dbg_kms(&dev_priv->drm, "Bogus ELD on [CONNECTOR:%d:%s]\n", connector->base.id, connector->name); drm_dbg(&dev_priv->drm, "ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.base.id, encoder->base.name); connector->eld[6] = drm_av_sync_delay(connector, adjusted_mode) / 2; if (dev_priv->display.audio_codec_enable) dev_priv->display.audio_codec_enable(encoder, crtc_state, conn_state); mutex_lock(&dev_priv->av_mutex); encoder->audio_connector = connector; /* referred in audio callbacks */ dev_priv->av_enc_map[pipe] = encoder; mutex_unlock(&dev_priv->av_mutex); if (acomp && acomp->base.audio_ops && acomp->base.audio_ops->pin_eld_notify) { /* audio drivers expect pipe = -1 to indicate Non-MST cases */ if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) pipe = -1; acomp->base.audio_ops->pin_eld_notify(acomp->base.audio_ops->audio_ptr, (int) port, (int) pipe); } intel_lpe_audio_notify(dev_priv, pipe, port, connector->eld, crtc_state->port_clock, intel_crtc_has_dp_encoder(crtc_state)); } /** * intel_audio_codec_disable - Disable the audio codec for HD audio * @encoder: encoder on which to disable audio * @old_crtc_state: pointer to the old crtc state. * @old_conn_state: pointer to the old connector state. * * The disable sequences must be performed before disabling the transcoder or * port. */ void intel_audio_codec_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct i915_audio_component *acomp = dev_priv->audio_component; struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); enum port port = encoder->port; enum pipe pipe = crtc->pipe; if (dev_priv->display.audio_codec_disable) dev_priv->display.audio_codec_disable(encoder, old_crtc_state, old_conn_state); mutex_lock(&dev_priv->av_mutex); encoder->audio_connector = NULL; dev_priv->av_enc_map[pipe] = NULL; mutex_unlock(&dev_priv->av_mutex); if (acomp && acomp->base.audio_ops && acomp->base.audio_ops->pin_eld_notify) { /* audio drivers expect pipe = -1 to indicate Non-MST cases */ if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST)) pipe = -1; acomp->base.audio_ops->pin_eld_notify(acomp->base.audio_ops->audio_ptr, (int) port, (int) pipe); } intel_lpe_audio_notify(dev_priv, pipe, port, NULL, 0, false); } /** * intel_init_audio_hooks - Set up chip specific audio hooks * @dev_priv: device private */ void intel_init_audio_hooks(struct drm_i915_private *dev_priv) { if (IS_G4X(dev_priv)) { dev_priv->display.audio_codec_enable = g4x_audio_codec_enable; dev_priv->display.audio_codec_disable = g4x_audio_codec_disable; } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { dev_priv->display.audio_codec_enable = ilk_audio_codec_enable; dev_priv->display.audio_codec_disable = ilk_audio_codec_disable; } else if (IS_HASWELL(dev_priv) || INTEL_GEN(dev_priv) >= 8) { dev_priv->display.audio_codec_enable = hsw_audio_codec_enable; dev_priv->display.audio_codec_disable = hsw_audio_codec_disable; } else if (HAS_PCH_SPLIT(dev_priv)) { dev_priv->display.audio_codec_enable = ilk_audio_codec_enable; dev_priv->display.audio_codec_disable = ilk_audio_codec_disable; } } static int glk_force_audio_cdclk_commit(struct intel_atomic_state *state, struct intel_crtc *crtc, bool enable) { struct intel_cdclk_state *cdclk_state; int ret; /* need to hold at least one crtc lock for the global state */ ret = drm_modeset_lock(&crtc->base.mutex, state->base.acquire_ctx); if (ret) return ret; cdclk_state = intel_atomic_get_cdclk_state(state); if (IS_ERR(cdclk_state)) return PTR_ERR(cdclk_state); cdclk_state->force_min_cdclk_changed = true; cdclk_state->force_min_cdclk = enable ? 2 * 96000 : 0; ret = intel_atomic_lock_global_state(&cdclk_state->base); if (ret) return ret; return drm_atomic_commit(&state->base); } static void glk_force_audio_cdclk(struct drm_i915_private *dev_priv, bool enable) { struct drm_modeset_acquire_ctx ctx; struct drm_atomic_state *state; struct intel_crtc *crtc; int ret; crtc = intel_get_first_crtc(dev_priv); if (!crtc) return; drm_modeset_acquire_init(&ctx, 0); state = drm_atomic_state_alloc(&dev_priv->drm); if (drm_WARN_ON(&dev_priv->drm, !state)) return; state->acquire_ctx = &ctx; retry: ret = glk_force_audio_cdclk_commit(to_intel_atomic_state(state), crtc, enable); if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } drm_WARN_ON(&dev_priv->drm, ret); drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); } static unsigned long i915_audio_component_get_power(struct device *kdev) { struct drm_i915_private *dev_priv = kdev_to_i915(kdev); intel_wakeref_t ret; /* Catch potential impedance mismatches before they occur! */ BUILD_BUG_ON(sizeof(intel_wakeref_t) > sizeof(unsigned long)); ret = intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO); if (dev_priv->audio_power_refcount++ == 0) { if (INTEL_GEN(dev_priv) >= 9) { intel_de_write(dev_priv, AUD_FREQ_CNTRL, dev_priv->audio_freq_cntrl); drm_dbg_kms(&dev_priv->drm, "restored AUD_FREQ_CNTRL to 0x%x\n", dev_priv->audio_freq_cntrl); } /* Force CDCLK to 2*BCLK as long as we need audio powered. */ if (IS_GEMINILAKE(dev_priv)) glk_force_audio_cdclk(dev_priv, true); if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) intel_de_write(dev_priv, AUD_PIN_BUF_CTL, (intel_de_read(dev_priv, AUD_PIN_BUF_CTL) | AUD_PIN_BUF_ENABLE)); } return ret; } static void i915_audio_component_put_power(struct device *kdev, unsigned long cookie) { struct drm_i915_private *dev_priv = kdev_to_i915(kdev); /* Stop forcing CDCLK to 2*BCLK if no need for audio to be powered. */ if (--dev_priv->audio_power_refcount == 0) if (IS_GEMINILAKE(dev_priv)) glk_force_audio_cdclk(dev_priv, false); intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO, cookie); } static void i915_audio_component_codec_wake_override(struct device *kdev, bool enable) { struct drm_i915_private *dev_priv = kdev_to_i915(kdev); unsigned long cookie; u32 tmp; if (INTEL_GEN(dev_priv) < 9) return; cookie = i915_audio_component_get_power(kdev); /* * Enable/disable generating the codec wake signal, overriding the * internal logic to generate the codec wake to controller. */ tmp = intel_de_read(dev_priv, HSW_AUD_CHICKENBIT); tmp &= ~SKL_AUD_CODEC_WAKE_SIGNAL; intel_de_write(dev_priv, HSW_AUD_CHICKENBIT, tmp); usleep_range(1000, 1500); if (enable) { tmp = intel_de_read(dev_priv, HSW_AUD_CHICKENBIT); tmp |= SKL_AUD_CODEC_WAKE_SIGNAL; intel_de_write(dev_priv, HSW_AUD_CHICKENBIT, tmp); usleep_range(1000, 1500); } i915_audio_component_put_power(kdev, cookie); } /* Get CDCLK in kHz */ static int i915_audio_component_get_cdclk_freq(struct device *kdev) { struct drm_i915_private *dev_priv = kdev_to_i915(kdev); if (drm_WARN_ON_ONCE(&dev_priv->drm, !HAS_DDI(dev_priv))) return -ENODEV; return dev_priv->cdclk.hw.cdclk; } /* * get the intel_encoder according to the parameter port and pipe * intel_encoder is saved by the index of pipe * MST & (pipe >= 0): return the av_enc_map[pipe], * when port is matched * MST & (pipe < 0): this is invalid * Non-MST & (pipe >= 0): only pipe = 0 (the first device entry) * will get the right intel_encoder with port matched * Non-MST & (pipe < 0): get the right intel_encoder with port matched */ static struct intel_encoder *get_saved_enc(struct drm_i915_private *dev_priv, int port, int pipe) { struct intel_encoder *encoder; /* MST */ if (pipe >= 0) { if (drm_WARN_ON(&dev_priv->drm, pipe >= ARRAY_SIZE(dev_priv->av_enc_map))) return NULL; encoder = dev_priv->av_enc_map[pipe]; /* * when bootup, audio driver may not know it is * MST or not. So it will poll all the port & pipe * combinations */ if (encoder != NULL && encoder->port == port && encoder->type == INTEL_OUTPUT_DP_MST) return encoder; } /* Non-MST */ if (pipe > 0) return NULL; for_each_pipe(dev_priv, pipe) { encoder = dev_priv->av_enc_map[pipe]; if (encoder == NULL) continue; if (encoder->type == INTEL_OUTPUT_DP_MST) continue; if (port == encoder->port) return encoder; } return NULL; } static int i915_audio_component_sync_audio_rate(struct device *kdev, int port, int pipe, int rate) { struct drm_i915_private *dev_priv = kdev_to_i915(kdev); struct i915_audio_component *acomp = dev_priv->audio_component; struct intel_encoder *encoder; struct intel_crtc *crtc; unsigned long cookie; int err = 0; if (!HAS_DDI(dev_priv)) return 0; cookie = i915_audio_component_get_power(kdev); mutex_lock(&dev_priv->av_mutex); /* 1. get the pipe */ encoder = get_saved_enc(dev_priv, port, pipe); if (!encoder || !encoder->base.crtc) { drm_dbg_kms(&dev_priv->drm, "Not valid for port %c\n", port_name(port)); err = -ENODEV; goto unlock; } crtc = to_intel_crtc(encoder->base.crtc); /* port must be valid now, otherwise the pipe will be invalid */ acomp->aud_sample_rate[port] = rate; hsw_audio_config_update(encoder, crtc->config); unlock: mutex_unlock(&dev_priv->av_mutex); i915_audio_component_put_power(kdev, cookie); return err; } static int i915_audio_component_get_eld(struct device *kdev, int port, int pipe, bool *enabled, unsigned char *buf, int max_bytes) { struct drm_i915_private *dev_priv = kdev_to_i915(kdev); struct intel_encoder *intel_encoder; const u8 *eld; int ret = -EINVAL; mutex_lock(&dev_priv->av_mutex); intel_encoder = get_saved_enc(dev_priv, port, pipe); if (!intel_encoder) { drm_dbg_kms(&dev_priv->drm, "Not valid for port %c\n", port_name(port)); mutex_unlock(&dev_priv->av_mutex); return ret; } ret = 0; *enabled = intel_encoder->audio_connector != NULL; if (*enabled) { eld = intel_encoder->audio_connector->eld; ret = drm_eld_size(eld); memcpy(buf, eld, min(max_bytes, ret)); } mutex_unlock(&dev_priv->av_mutex); return ret; } static const struct drm_audio_component_ops i915_audio_component_ops = { .owner = THIS_MODULE, .get_power = i915_audio_component_get_power, .put_power = i915_audio_component_put_power, .codec_wake_override = i915_audio_component_codec_wake_override, .get_cdclk_freq = i915_audio_component_get_cdclk_freq, .sync_audio_rate = i915_audio_component_sync_audio_rate, .get_eld = i915_audio_component_get_eld, }; static int i915_audio_component_bind(struct device *i915_kdev, struct device *hda_kdev, void *data) { struct i915_audio_component *acomp = data; struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev); int i; if (drm_WARN_ON(&dev_priv->drm, acomp->base.ops || acomp->base.dev)) return -EEXIST; if (drm_WARN_ON(&dev_priv->drm, !device_link_add(hda_kdev, i915_kdev, DL_FLAG_STATELESS))) return -ENOMEM; drm_modeset_lock_all(&dev_priv->drm); acomp->base.ops = &i915_audio_component_ops; acomp->base.dev = i915_kdev; BUILD_BUG_ON(MAX_PORTS != I915_MAX_PORTS); for (i = 0; i < ARRAY_SIZE(acomp->aud_sample_rate); i++) acomp->aud_sample_rate[i] = 0; dev_priv->audio_component = acomp; drm_modeset_unlock_all(&dev_priv->drm); return 0; } static void i915_audio_component_unbind(struct device *i915_kdev, struct device *hda_kdev, void *data) { struct i915_audio_component *acomp = data; struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev); drm_modeset_lock_all(&dev_priv->drm); acomp->base.ops = NULL; acomp->base.dev = NULL; dev_priv->audio_component = NULL; drm_modeset_unlock_all(&dev_priv->drm); device_link_remove(hda_kdev, i915_kdev); } static const struct component_ops i915_audio_component_bind_ops = { .bind = i915_audio_component_bind, .unbind = i915_audio_component_unbind, }; /** * i915_audio_component_init - initialize and register the audio component * @dev_priv: i915 device instance * * This will register with the component framework a child component which * will bind dynamically to the snd_hda_intel driver's corresponding master * component when the latter is registered. During binding the child * initializes an instance of struct i915_audio_component which it receives * from the master. The master can then start to use the interface defined by * this struct. Each side can break the binding at any point by deregistering * its own component after which each side's component unbind callback is * called. * * We ignore any error during registration and continue with reduced * functionality (i.e. without HDMI audio). */ static void i915_audio_component_init(struct drm_i915_private *dev_priv) { int ret; ret = component_add_typed(dev_priv->drm.dev, &i915_audio_component_bind_ops, I915_COMPONENT_AUDIO); if (ret < 0) { drm_err(&dev_priv->drm, "failed to add audio component (%d)\n", ret); /* continue with reduced functionality */ return; } if (INTEL_GEN(dev_priv) >= 9) { dev_priv->audio_freq_cntrl = intel_de_read(dev_priv, AUD_FREQ_CNTRL); drm_dbg_kms(&dev_priv->drm, "init value of AUD_FREQ_CNTRL of 0x%x\n", dev_priv->audio_freq_cntrl); } dev_priv->audio_component_registered = true; } /** * i915_audio_component_cleanup - deregister the audio component * @dev_priv: i915 device instance * * Deregisters the audio component, breaking any existing binding to the * corresponding snd_hda_intel driver's master component. */ static void i915_audio_component_cleanup(struct drm_i915_private *dev_priv) { if (!dev_priv->audio_component_registered) return; component_del(dev_priv->drm.dev, &i915_audio_component_bind_ops); dev_priv->audio_component_registered = false; } /** * intel_audio_init() - Initialize the audio driver either using * component framework or using lpe audio bridge * @dev_priv: the i915 drm device private data * */ void intel_audio_init(struct drm_i915_private *dev_priv) { if (intel_lpe_audio_init(dev_priv) < 0) i915_audio_component_init(dev_priv); } /** * intel_audio_deinit() - deinitialize the audio driver * @dev_priv: the i915 drm device private data * */ void intel_audio_deinit(struct drm_i915_private *dev_priv) { if ((dev_priv)->lpe_audio.platdev != NULL) intel_lpe_audio_teardown(dev_priv); else i915_audio_component_cleanup(dev_priv); }