/* * Isochronous I/O functionality: * - Isochronous DMA context management * - Isochronous bus resource management (channels, bandwidth), client side * * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/firewire.h> #include <linux/firewire-constants.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/export.h> #include <asm/byteorder.h> #include "core.h" /* * Isochronous DMA context management */ int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count) { int i; buffer->page_count = 0; buffer->page_count_mapped = 0; buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]), GFP_KERNEL); if (buffer->pages == NULL) return -ENOMEM; for (i = 0; i < page_count; i++) { buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); if (buffer->pages[i] == NULL) break; } buffer->page_count = i; if (i < page_count) { fw_iso_buffer_destroy(buffer, NULL); return -ENOMEM; } return 0; } int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card, enum dma_data_direction direction) { dma_addr_t address; int i; buffer->direction = direction; for (i = 0; i < buffer->page_count; i++) { address = dma_map_page(card->device, buffer->pages[i], 0, PAGE_SIZE, direction); if (dma_mapping_error(card->device, address)) break; set_page_private(buffer->pages[i], address); } buffer->page_count_mapped = i; if (i < buffer->page_count) return -ENOMEM; return 0; } int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, int page_count, enum dma_data_direction direction) { int ret; ret = fw_iso_buffer_alloc(buffer, page_count); if (ret < 0) return ret; ret = fw_iso_buffer_map_dma(buffer, card, direction); if (ret < 0) fw_iso_buffer_destroy(buffer, card); return ret; } EXPORT_SYMBOL(fw_iso_buffer_init); int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer, struct vm_area_struct *vma) { unsigned long uaddr; int i, err; uaddr = vma->vm_start; for (i = 0; i < buffer->page_count; i++) { err = vm_insert_page(vma, uaddr, buffer->pages[i]); if (err) return err; uaddr += PAGE_SIZE; } return 0; } void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card) { int i; dma_addr_t address; for (i = 0; i < buffer->page_count_mapped; i++) { address = page_private(buffer->pages[i]); dma_unmap_page(card->device, address, PAGE_SIZE, buffer->direction); } for (i = 0; i < buffer->page_count; i++) __free_page(buffer->pages[i]); kfree(buffer->pages); buffer->pages = NULL; buffer->page_count = 0; buffer->page_count_mapped = 0; } EXPORT_SYMBOL(fw_iso_buffer_destroy); /* Convert DMA address to offset into virtually contiguous buffer. */ size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed) { size_t i; dma_addr_t address; ssize_t offset; for (i = 0; i < buffer->page_count; i++) { address = page_private(buffer->pages[i]); offset = (ssize_t)completed - (ssize_t)address; if (offset > 0 && offset <= PAGE_SIZE) return (i << PAGE_SHIFT) + offset; } return 0; } struct fw_iso_context *fw_iso_context_create(struct fw_card *card, int type, int channel, int speed, size_t header_size, fw_iso_callback_t callback, void *callback_data) { struct fw_iso_context *ctx; ctx = card->driver->allocate_iso_context(card, type, channel, header_size); if (IS_ERR(ctx)) return ctx; ctx->card = card; ctx->type = type; ctx->channel = channel; ctx->speed = speed; ctx->header_size = header_size; ctx->callback.sc = callback; ctx->callback_data = callback_data; return ctx; } EXPORT_SYMBOL(fw_iso_context_create); void fw_iso_context_destroy(struct fw_iso_context *ctx) { ctx->card->driver->free_iso_context(ctx); } EXPORT_SYMBOL(fw_iso_context_destroy); int fw_iso_context_start(struct fw_iso_context *ctx, int cycle, int sync, int tags) { return ctx->card->driver->start_iso(ctx, cycle, sync, tags); } EXPORT_SYMBOL(fw_iso_context_start); int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels) { return ctx->card->driver->set_iso_channels(ctx, channels); } int fw_iso_context_queue(struct fw_iso_context *ctx, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { return ctx->card->driver->queue_iso(ctx, packet, buffer, payload); } EXPORT_SYMBOL(fw_iso_context_queue); void fw_iso_context_queue_flush(struct fw_iso_context *ctx) { ctx->card->driver->flush_queue_iso(ctx); } EXPORT_SYMBOL(fw_iso_context_queue_flush); int fw_iso_context_flush_completions(struct fw_iso_context *ctx) { return ctx->card->driver->flush_iso_completions(ctx); } EXPORT_SYMBOL(fw_iso_context_flush_completions); int fw_iso_context_stop(struct fw_iso_context *ctx) { return ctx->card->driver->stop_iso(ctx); } EXPORT_SYMBOL(fw_iso_context_stop); /* * Isochronous bus resource management (channels, bandwidth), client side */ static int manage_bandwidth(struct fw_card *card, int irm_id, int generation, int bandwidth, bool allocate) { int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0; __be32 data[2]; /* * On a 1394a IRM with low contention, try < 1 is enough. * On a 1394-1995 IRM, we need at least try < 2. * Let's just do try < 5. */ for (try = 0; try < 5; try++) { new = allocate ? old - bandwidth : old + bandwidth; if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL) return -EBUSY; data[0] = cpu_to_be32(old); data[1] = cpu_to_be32(new); switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, irm_id, generation, SCODE_100, CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE, data, 8)) { case RCODE_GENERATION: /* A generation change frees all bandwidth. */ return allocate ? -EAGAIN : bandwidth; case RCODE_COMPLETE: if (be32_to_cpup(data) == old) return bandwidth; old = be32_to_cpup(data); /* Fall through. */ } } return -EIO; } static int manage_channel(struct fw_card *card, int irm_id, int generation, u32 channels_mask, u64 offset, bool allocate) { __be32 bit, all, old; __be32 data[2]; int channel, ret = -EIO, retry = 5; old = all = allocate ? cpu_to_be32(~0) : 0; for (channel = 0; channel < 32; channel++) { if (!(channels_mask & 1 << channel)) continue; ret = -EBUSY; bit = cpu_to_be32(1 << (31 - channel)); if ((old & bit) != (all & bit)) continue; data[0] = old; data[1] = old ^ bit; switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, irm_id, generation, SCODE_100, offset, data, 8)) { case RCODE_GENERATION: /* A generation change frees all channels. */ return allocate ? -EAGAIN : channel; case RCODE_COMPLETE: if (data[0] == old) return channel; old = data[0]; /* Is the IRM 1394a-2000 compliant? */ if ((data[0] & bit) == (data[1] & bit)) continue; /* 1394-1995 IRM, fall through to retry. */ default: if (retry) { retry--; channel--; } else { ret = -EIO; } } } return ret; } static void deallocate_channel(struct fw_card *card, int irm_id, int generation, int channel) { u32 mask; u64 offset; mask = channel < 32 ? 1 << channel : 1 << (channel - 32); offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI : CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO; manage_channel(card, irm_id, generation, mask, offset, false); } /** * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth * * In parameters: card, generation, channels_mask, bandwidth, allocate * Out parameters: channel, bandwidth * This function blocks (sleeps) during communication with the IRM. * * Allocates or deallocates at most one channel out of channels_mask. * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0. * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for * channel 0 and LSB for channel 63.) * Allocates or deallocates as many bandwidth allocation units as specified. * * Returns channel < 0 if no channel was allocated or deallocated. * Returns bandwidth = 0 if no bandwidth was allocated or deallocated. * * If generation is stale, deallocations succeed but allocations fail with * channel = -EAGAIN. * * If channel allocation fails, no bandwidth will be allocated either. * If bandwidth allocation fails, no channel will be allocated either. * But deallocations of channel and bandwidth are tried independently * of each other's success. */ void fw_iso_resource_manage(struct fw_card *card, int generation, u64 channels_mask, int *channel, int *bandwidth, bool allocate) { u32 channels_hi = channels_mask; /* channels 31...0 */ u32 channels_lo = channels_mask >> 32; /* channels 63...32 */ int irm_id, ret, c = -EINVAL; spin_lock_irq(&card->lock); irm_id = card->irm_node->node_id; spin_unlock_irq(&card->lock); if (channels_hi) c = manage_channel(card, irm_id, generation, channels_hi, CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, allocate); if (channels_lo && c < 0) { c = manage_channel(card, irm_id, generation, channels_lo, CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, allocate); if (c >= 0) c += 32; } *channel = c; if (allocate && channels_mask != 0 && c < 0) *bandwidth = 0; if (*bandwidth == 0) return; ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate); if (ret < 0) *bandwidth = 0; if (allocate && ret < 0) { if (c >= 0) deallocate_channel(card, irm_id, generation, c); *channel = ret; } } EXPORT_SYMBOL(fw_iso_resource_manage);