/* * Copyright 2008 Jerome Glisse. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Jerome Glisse */ #include #include #include #include "amdgpu.h" #include "amdgpu_trace.h" #define AMDGPU_CS_MAX_PRIORITY 32u #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1) /* This is based on the bucket sort with O(n) time complexity. * An item with priority "i" is added to bucket[i]. The lists are then * concatenated in descending order. */ struct amdgpu_cs_buckets { struct list_head bucket[AMDGPU_CS_NUM_BUCKETS]; }; static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b) { unsigned i; for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) INIT_LIST_HEAD(&b->bucket[i]); } static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b, struct list_head *item, unsigned priority) { /* Since buffers which appear sooner in the relocation list are * likely to be used more often than buffers which appear later * in the list, the sort mustn't change the ordering of buffers * with the same priority, i.e. it must be stable. */ list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]); } static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b, struct list_head *out_list) { unsigned i; /* Connect the sorted buckets in the output list. */ for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) { list_splice(&b->bucket[i], out_list); } } int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type, u32 ip_instance, u32 ring, struct amdgpu_ring **out_ring) { /* Right now all IPs have only one instance - multiple rings. */ if (ip_instance != 0) { DRM_ERROR("invalid ip instance: %d\n", ip_instance); return -EINVAL; } switch (ip_type) { default: DRM_ERROR("unknown ip type: %d\n", ip_type); return -EINVAL; case AMDGPU_HW_IP_GFX: if (ring < adev->gfx.num_gfx_rings) { *out_ring = &adev->gfx.gfx_ring[ring]; } else { DRM_ERROR("only %d gfx rings are supported now\n", adev->gfx.num_gfx_rings); return -EINVAL; } break; case AMDGPU_HW_IP_COMPUTE: if (ring < adev->gfx.num_compute_rings) { *out_ring = &adev->gfx.compute_ring[ring]; } else { DRM_ERROR("only %d compute rings are supported now\n", adev->gfx.num_compute_rings); return -EINVAL; } break; case AMDGPU_HW_IP_DMA: if (ring < 2) { *out_ring = &adev->sdma[ring].ring; } else { DRM_ERROR("only two SDMA rings are supported\n"); return -EINVAL; } break; case AMDGPU_HW_IP_UVD: *out_ring = &adev->uvd.ring; break; case AMDGPU_HW_IP_VCE: if (ring < 2){ *out_ring = &adev->vce.ring[ring]; } else { DRM_ERROR("only two VCE rings are supported\n"); return -EINVAL; } break; } return 0; } int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data) { union drm_amdgpu_cs *cs = data; uint64_t *chunk_array_user; uint64_t *chunk_array = NULL; struct amdgpu_fpriv *fpriv = p->filp->driver_priv; unsigned size, i; int r = 0; if (!cs->in.num_chunks) goto out; p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); if (!p->ctx) { r = -EINVAL; goto out; } p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle); /* get chunks */ INIT_LIST_HEAD(&p->validated); chunk_array = kcalloc(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL); if (chunk_array == NULL) { r = -ENOMEM; goto out; } chunk_array_user = (uint64_t *)(unsigned long)(cs->in.chunks); if (copy_from_user(chunk_array, chunk_array_user, sizeof(uint64_t)*cs->in.num_chunks)) { r = -EFAULT; goto out; } p->nchunks = cs->in.num_chunks; p->chunks = kcalloc(p->nchunks, sizeof(struct amdgpu_cs_chunk), GFP_KERNEL); if (p->chunks == NULL) { r = -ENOMEM; goto out; } for (i = 0; i < p->nchunks; i++) { struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; struct drm_amdgpu_cs_chunk user_chunk; uint32_t __user *cdata; chunk_ptr = (void __user *)(unsigned long)chunk_array[i]; if (copy_from_user(&user_chunk, chunk_ptr, sizeof(struct drm_amdgpu_cs_chunk))) { r = -EFAULT; goto out; } p->chunks[i].chunk_id = user_chunk.chunk_id; p->chunks[i].length_dw = user_chunk.length_dw; if (p->chunks[i].chunk_id == AMDGPU_CHUNK_ID_IB) p->num_ibs++; size = p->chunks[i].length_dw; cdata = (void __user *)(unsigned long)user_chunk.chunk_data; p->chunks[i].user_ptr = cdata; p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t)); if (p->chunks[i].kdata == NULL) { r = -ENOMEM; goto out; } size *= sizeof(uint32_t); if (copy_from_user(p->chunks[i].kdata, cdata, size)) { r = -EFAULT; goto out; } if (p->chunks[i].chunk_id == AMDGPU_CHUNK_ID_FENCE) { size = sizeof(struct drm_amdgpu_cs_chunk_fence); if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) { uint32_t handle; struct drm_gem_object *gobj; struct drm_amdgpu_cs_chunk_fence *fence_data; fence_data = (void *)p->chunks[i].kdata; handle = fence_data->handle; gobj = drm_gem_object_lookup(p->adev->ddev, p->filp, handle); if (gobj == NULL) { r = -EINVAL; goto out; } p->uf.bo = gem_to_amdgpu_bo(gobj); p->uf.offset = fence_data->offset; } else { r = -EINVAL; goto out; } } } p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL); if (!p->ibs) { r = -ENOMEM; goto out; } p->ib_bos = kcalloc(p->num_ibs, sizeof(struct amdgpu_bo_list_entry), GFP_KERNEL); if (!p->ib_bos) r = -ENOMEM; out: kfree(chunk_array); return r; } /* Returns how many bytes TTM can move per IB. */ static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev) { u64 real_vram_size = adev->mc.real_vram_size; u64 vram_usage = atomic64_read(&adev->vram_usage); /* This function is based on the current VRAM usage. * * - If all of VRAM is free, allow relocating the number of bytes that * is equal to 1/4 of the size of VRAM for this IB. * - If more than one half of VRAM is occupied, only allow relocating * 1 MB of data for this IB. * * - From 0 to one half of used VRAM, the threshold decreases * linearly. * __________________ * 1/4 of -|\ | * VRAM | \ | * | \ | * | \ | * | \ | * | \ | * | \ | * | \________|1 MB * |----------------| * VRAM 0 % 100 % * used used * * Note: It's a threshold, not a limit. The threshold must be crossed * for buffer relocations to stop, so any buffer of an arbitrary size * can be moved as long as the threshold isn't crossed before * the relocation takes place. We don't want to disable buffer * relocations completely. * * The idea is that buffers should be placed in VRAM at creation time * and TTM should only do a minimum number of relocations during * command submission. In practice, you need to submit at least * a dozen IBs to move all buffers to VRAM if they are in GTT. * * Also, things can get pretty crazy under memory pressure and actual * VRAM usage can change a lot, so playing safe even at 50% does * consistently increase performance. */ u64 half_vram = real_vram_size >> 1; u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage; u64 bytes_moved_threshold = half_free_vram >> 1; return max(bytes_moved_threshold, 1024*1024ull); } int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; struct amdgpu_device *adev = p->adev; struct amdgpu_bo_list_entry *lobj; struct list_head duplicates; struct amdgpu_bo *bo; u64 bytes_moved = 0, initial_bytes_moved; u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev); int r; INIT_LIST_HEAD(&duplicates); r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates); if (unlikely(r != 0)) { return r; } list_for_each_entry(lobj, &p->validated, tv.head) { bo = lobj->robj; if (!bo->pin_count) { u32 domain = lobj->prefered_domains; u32 current_domain = amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type); /* Check if this buffer will be moved and don't move it * if we have moved too many buffers for this IB already. * * Note that this allows moving at least one buffer of * any size, because it doesn't take the current "bo" * into account. We don't want to disallow buffer moves * completely. */ if (current_domain != AMDGPU_GEM_DOMAIN_CPU && (domain & current_domain) == 0 && /* will be moved */ bytes_moved > bytes_moved_threshold) { /* don't move it */ domain = current_domain; } retry: amdgpu_ttm_placement_from_domain(bo, domain); initial_bytes_moved = atomic64_read(&adev->num_bytes_moved); r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); bytes_moved += atomic64_read(&adev->num_bytes_moved) - initial_bytes_moved; if (unlikely(r)) { if (r != -ERESTARTSYS && domain != lobj->allowed_domains) { domain = lobj->allowed_domains; goto retry; } ttm_eu_backoff_reservation(&p->ticket, &p->validated); return r; } } lobj->bo_va = amdgpu_vm_bo_find(vm, bo); } return 0; } static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_cs_buckets buckets; bool need_mmap_lock = false; int i, r; if (p->bo_list) { need_mmap_lock = p->bo_list->has_userptr; amdgpu_cs_buckets_init(&buckets); for (i = 0; i < p->bo_list->num_entries; i++) amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head, p->bo_list->array[i].priority); amdgpu_cs_buckets_get_list(&buckets, &p->validated); } p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm, &p->validated); for (i = 0; i < p->num_ibs; i++) { if (!p->ib_bos[i].robj) continue; list_add(&p->ib_bos[i].tv.head, &p->validated); } if (need_mmap_lock) down_read(¤t->mm->mmap_sem); r = amdgpu_cs_list_validate(p); if (need_mmap_lock) up_read(¤t->mm->mmap_sem); return r; } static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) { struct amdgpu_bo_list_entry *e; int r; list_for_each_entry(e, &p->validated, tv.head) { struct reservation_object *resv = e->robj->tbo.resv; r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp); if (r) return r; } return 0; } static int cmp_size_smaller_first(void *priv, struct list_head *a, struct list_head *b) { struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head); struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head); /* Sort A before B if A is smaller. */ return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages; } /** * cs_parser_fini() - clean parser states * @parser: parser structure holding parsing context. * @error: error number * * If error is set than unvalidate buffer, otherwise just free memory * used by parsing context. **/ static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff) { unsigned i; if (!error) { /* Sort the buffer list from the smallest to largest buffer, * which affects the order of buffers in the LRU list. * This assures that the smallest buffers are added first * to the LRU list, so they are likely to be later evicted * first, instead of large buffers whose eviction is more * expensive. * * This slightly lowers the number of bytes moved by TTM * per frame under memory pressure. */ list_sort(NULL, &parser->validated, cmp_size_smaller_first); ttm_eu_fence_buffer_objects(&parser->ticket, &parser->validated, &parser->ibs[parser->num_ibs-1].fence->base); } else if (backoff) { ttm_eu_backoff_reservation(&parser->ticket, &parser->validated); } if (parser->ctx) amdgpu_ctx_put(parser->ctx); if (parser->bo_list) amdgpu_bo_list_put(parser->bo_list); drm_free_large(parser->vm_bos); for (i = 0; i < parser->nchunks; i++) drm_free_large(parser->chunks[i].kdata); kfree(parser->chunks); for (i = 0; i < parser->num_ibs; i++) { struct amdgpu_bo *bo = parser->ib_bos[i].robj; amdgpu_ib_free(parser->adev, &parser->ibs[i]); if (bo) drm_gem_object_unreference_unlocked(&bo->gem_base); } kfree(parser->ibs); kfree(parser->ib_bos); if (parser->uf.bo) drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base); } static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p, struct amdgpu_vm *vm) { struct amdgpu_device *adev = p->adev; struct amdgpu_bo_va *bo_va; struct amdgpu_bo *bo; int i, r; r = amdgpu_vm_update_page_directory(adev, vm); if (r) return r; r = amdgpu_vm_clear_freed(adev, vm); if (r) return r; if (p->bo_list) { for (i = 0; i < p->bo_list->num_entries; i++) { /* ignore duplicates */ bo = p->bo_list->array[i].robj; if (!bo) continue; bo_va = p->bo_list->array[i].bo_va; if (bo_va == NULL) continue; r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem); if (r) return r; amdgpu_sync_fence(&p->ibs[0].sync, bo_va->last_pt_update); } } for (i = 0; i < p->num_ibs; i++) { bo = p->ib_bos[i].robj; if (!bo) continue; bo_va = p->ib_bos[i].bo_va; if (!bo_va) continue; r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem); if (r) return r; amdgpu_sync_fence(&p->ibs[0].sync, bo_va->last_pt_update); } return amdgpu_vm_clear_invalids(adev, vm); } static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev, struct amdgpu_cs_parser *parser) { struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; struct amdgpu_ring *ring; int i, r; if (parser->num_ibs == 0) return 0; /* Only for UVD/VCE VM emulation */ for (i = 0; i < parser->num_ibs; i++) { ring = parser->ibs[i].ring; if (ring->funcs->parse_cs) { r = amdgpu_ring_parse_cs(ring, parser, i); if (r) return r; } } mutex_lock(&vm->mutex); r = amdgpu_bo_vm_update_pte(parser, vm); if (r) { goto out; } amdgpu_cs_sync_rings(parser); r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs, parser->filp); out: mutex_unlock(&vm->mutex); return r; } static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r) { if (r == -EDEADLK) { r = amdgpu_gpu_reset(adev); if (!r) r = -EAGAIN; } return r; } static int amdgpu_cs_ib_fill(struct amdgpu_device *adev, struct amdgpu_cs_parser *parser) { struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; int i, j; int r; for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) { struct amdgpu_cs_chunk *chunk; struct amdgpu_ib *ib; struct drm_amdgpu_cs_chunk_ib *chunk_ib; struct amdgpu_bo_list_entry *ib_bo; struct amdgpu_ring *ring; struct drm_gem_object *gobj; struct amdgpu_bo *aobj; void *kptr; chunk = &parser->chunks[i]; ib = &parser->ibs[j]; chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata; if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB) continue; gobj = drm_gem_object_lookup(adev->ddev, parser->filp, chunk_ib->handle); if (gobj == NULL) return -ENOENT; aobj = gem_to_amdgpu_bo(gobj); r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type, chunk_ib->ip_instance, chunk_ib->ring, &ring); if (r) { drm_gem_object_unreference_unlocked(gobj); return r; } if (ring->funcs->parse_cs) { r = amdgpu_bo_reserve(aobj, false); if (r) { drm_gem_object_unreference_unlocked(gobj); return r; } r = amdgpu_bo_kmap(aobj, &kptr); if (r) { amdgpu_bo_unreserve(aobj); drm_gem_object_unreference_unlocked(gobj); return r; } r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib); if (r) { DRM_ERROR("Failed to get ib !\n"); amdgpu_bo_unreserve(aobj); drm_gem_object_unreference_unlocked(gobj); return r; } memcpy(ib->ptr, kptr, chunk_ib->ib_bytes); amdgpu_bo_kunmap(aobj); amdgpu_bo_unreserve(aobj); } else { r = amdgpu_ib_get(ring, vm, 0, ib); if (r) { DRM_ERROR("Failed to get ib !\n"); drm_gem_object_unreference_unlocked(gobj); return r; } ib->gpu_addr = chunk_ib->va_start; } ib->length_dw = chunk_ib->ib_bytes / 4; ib->flags = chunk_ib->flags; ib->ctx = parser->ctx; ib_bo = &parser->ib_bos[j]; ib_bo->robj = aobj; ib_bo->prefered_domains = aobj->initial_domain; ib_bo->allowed_domains = aobj->initial_domain; ib_bo->priority = 0; ib_bo->tv.bo = &aobj->tbo; ib_bo->tv.shared = true; j++; } if (!parser->num_ibs) return 0; /* add GDS resources to first IB */ if (parser->bo_list) { struct amdgpu_bo *gds = parser->bo_list->gds_obj; struct amdgpu_bo *gws = parser->bo_list->gws_obj; struct amdgpu_bo *oa = parser->bo_list->oa_obj; struct amdgpu_ib *ib = &parser->ibs[0]; if (gds) { ib->gds_base = amdgpu_bo_gpu_offset(gds); ib->gds_size = amdgpu_bo_size(gds); } if (gws) { ib->gws_base = amdgpu_bo_gpu_offset(gws); ib->gws_size = amdgpu_bo_size(gws); } if (oa) { ib->oa_base = amdgpu_bo_gpu_offset(oa); ib->oa_size = amdgpu_bo_size(oa); } } /* wrap the last IB with user fence */ if (parser->uf.bo) { struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1]; /* UVD & VCE fw doesn't support user fences */ if (ib->ring->type == AMDGPU_RING_TYPE_UVD || ib->ring->type == AMDGPU_RING_TYPE_VCE) return -EINVAL; ib->user = &parser->uf; } return 0; } int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { struct amdgpu_device *adev = dev->dev_private; union drm_amdgpu_cs *cs = data; struct amdgpu_cs_parser parser; int r, i; down_read(&adev->exclusive_lock); if (!adev->accel_working) { up_read(&adev->exclusive_lock); return -EBUSY; } /* initialize parser */ memset(&parser, 0, sizeof(struct amdgpu_cs_parser)); parser.filp = filp; parser.adev = adev; r = amdgpu_cs_parser_init(&parser, data); if (r) { DRM_ERROR("Failed to initialize parser !\n"); amdgpu_cs_parser_fini(&parser, r, false); up_read(&adev->exclusive_lock); r = amdgpu_cs_handle_lockup(adev, r); return r; } r = amdgpu_cs_ib_fill(adev, &parser); if (!r) { r = amdgpu_cs_parser_relocs(&parser); if (r && r != -ERESTARTSYS) DRM_ERROR("Failed to parse relocation %d!\n", r); } if (r) { amdgpu_cs_parser_fini(&parser, r, false); up_read(&adev->exclusive_lock); r = amdgpu_cs_handle_lockup(adev, r); return r; } for (i = 0; i < parser.num_ibs; i++) trace_amdgpu_cs(&parser, i); r = amdgpu_cs_ib_vm_chunk(adev, &parser); if (r) { goto out; } cs->out.handle = parser.ibs[parser.num_ibs - 1].fence->seq; out: amdgpu_cs_parser_fini(&parser, r, true); up_read(&adev->exclusive_lock); r = amdgpu_cs_handle_lockup(adev, r); return r; } /** * amdgpu_cs_wait_ioctl - wait for a command submission to finish * * @dev: drm device * @data: data from userspace * @filp: file private * * Wait for the command submission identified by handle to finish. */ int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { union drm_amdgpu_wait_cs *wait = data; struct amdgpu_device *adev = dev->dev_private; uint64_t seq[AMDGPU_MAX_RINGS] = {0}; struct amdgpu_ring *ring = NULL; unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); struct amdgpu_ctx *ctx; long r; ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); if (ctx == NULL) return -EINVAL; r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance, wait->in.ring, &ring); if (r) return r; seq[ring->idx] = wait->in.handle; r = amdgpu_fence_wait_seq_timeout(adev, seq, true, timeout); amdgpu_ctx_put(ctx); if (r < 0) return r; memset(wait, 0, sizeof(*wait)); wait->out.status = (r == 0); return 0; } /** * amdgpu_cs_find_bo_va - find bo_va for VM address * * @parser: command submission parser context * @addr: VM address * @bo: resulting BO of the mapping found * * Search the buffer objects in the command submission context for a certain * virtual memory address. Returns allocation structure when found, NULL * otherwise. */ struct amdgpu_bo_va_mapping * amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, uint64_t addr, struct amdgpu_bo **bo) { struct amdgpu_bo_list_entry *reloc; struct amdgpu_bo_va_mapping *mapping; addr /= AMDGPU_GPU_PAGE_SIZE; list_for_each_entry(reloc, &parser->validated, tv.head) { if (!reloc->bo_va) continue; list_for_each_entry(mapping, &reloc->bo_va->mappings, list) { if (mapping->it.start > addr || addr > mapping->it.last) continue; *bo = reloc->bo_va->bo; return mapping; } } return NULL; }