/* * Coda multi-standard codec IP * * Copyright (C) 2012 Vista Silicon S.L. * Javier Martin, * Xavier Duret * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "coda.h" #define CODA_NAME "coda" #define CODADX6_MAX_INSTANCES 4 #define CODA_FMO_BUF_SIZE 32 #define CODADX6_WORK_BUF_SIZE (288 * 1024 + CODA_FMO_BUF_SIZE * 8 * 1024) #define CODA7_WORK_BUF_SIZE (128 * 1024) #define CODA9_WORK_BUF_SIZE (80 * 1024) #define CODA7_TEMP_BUF_SIZE (304 * 1024) #define CODA9_TEMP_BUF_SIZE (204 * 1024) #define CODA_PARA_BUF_SIZE (10 * 1024) #define CODA_ISRAM_SIZE (2048 * 2) #define CODADX6_IRAM_SIZE 0xb000 #define CODA7_IRAM_SIZE 0x14000 #define CODA9_IRAM_SIZE 0x21000 #define CODA7_PS_BUF_SIZE 0x28000 #define CODA9_PS_SAVE_SIZE (512 * 1024) #define CODA_MAX_FRAMEBUFFERS 8 #define CODA_MAX_FRAME_SIZE 0x100000 #define FMO_SLICE_SAVE_BUF_SIZE (32) #define CODA_DEFAULT_GAMMA 4096 #define CODA9_DEFAULT_GAMMA 24576 /* 0.75 * 32768 */ #define MIN_W 176 #define MIN_H 144 #define S_ALIGN 1 /* multiple of 2 */ #define W_ALIGN 1 /* multiple of 2 */ #define H_ALIGN 1 /* multiple of 2 */ #define fh_to_ctx(__fh) container_of(__fh, struct coda_ctx, fh) static int coda_debug; module_param(coda_debug, int, 0644); MODULE_PARM_DESC(coda_debug, "Debug level (0-1)"); enum { V4L2_M2M_SRC = 0, V4L2_M2M_DST = 1, }; enum coda_inst_type { CODA_INST_ENCODER, CODA_INST_DECODER, }; enum coda_product { CODA_DX6 = 0xf001, CODA_7541 = 0xf012, CODA_960 = 0xf020, }; struct coda_fmt { char *name; u32 fourcc; }; struct coda_codec { u32 mode; u32 src_fourcc; u32 dst_fourcc; u32 max_w; u32 max_h; }; struct coda_devtype { char *firmware; enum coda_product product; struct coda_codec *codecs; unsigned int num_codecs; size_t workbuf_size; }; /* Per-queue, driver-specific private data */ struct coda_q_data { unsigned int width; unsigned int height; unsigned int sizeimage; unsigned int fourcc; struct v4l2_rect rect; }; struct coda_aux_buf { void *vaddr; dma_addr_t paddr; u32 size; }; struct coda_dev { struct v4l2_device v4l2_dev; struct video_device vfd; struct platform_device *plat_dev; const struct coda_devtype *devtype; void __iomem *regs_base; struct clk *clk_per; struct clk *clk_ahb; struct coda_aux_buf codebuf; struct coda_aux_buf tempbuf; struct coda_aux_buf workbuf; struct gen_pool *iram_pool; struct coda_aux_buf iram; spinlock_t irqlock; struct mutex dev_mutex; struct mutex coda_mutex; struct workqueue_struct *workqueue; struct v4l2_m2m_dev *m2m_dev; struct vb2_alloc_ctx *alloc_ctx; struct list_head instances; unsigned long instance_mask; }; struct coda_params { u8 rot_mode; u8 h264_intra_qp; u8 h264_inter_qp; u8 mpeg4_intra_qp; u8 mpeg4_inter_qp; u8 gop_size; int codec_mode; int codec_mode_aux; enum v4l2_mpeg_video_multi_slice_mode slice_mode; u32 framerate; u16 bitrate; u32 slice_max_bits; u32 slice_max_mb; }; struct coda_iram_info { u32 axi_sram_use; phys_addr_t buf_bit_use; phys_addr_t buf_ip_ac_dc_use; phys_addr_t buf_dbk_y_use; phys_addr_t buf_dbk_c_use; phys_addr_t buf_ovl_use; phys_addr_t buf_btp_use; phys_addr_t search_ram_paddr; int search_ram_size; int remaining; phys_addr_t next_paddr; }; struct gdi_tiled_map { int xy2ca_map[16]; int xy2ba_map[16]; int xy2ra_map[16]; int rbc2axi_map[32]; int xy2rbc_config; int map_type; #define GDI_LINEAR_FRAME_MAP 0 }; struct coda_ctx { struct coda_dev *dev; struct mutex buffer_mutex; struct list_head list; struct work_struct pic_run_work; struct work_struct seq_end_work; struct completion completion; int aborting; int initialized; int streamon_out; int streamon_cap; u32 isequence; u32 qsequence; u32 osequence; struct coda_q_data q_data[2]; enum coda_inst_type inst_type; struct coda_codec *codec; enum v4l2_colorspace colorspace; struct coda_params params; struct v4l2_m2m_ctx *m2m_ctx; struct v4l2_ctrl_handler ctrls; struct v4l2_fh fh; int gopcounter; int runcounter; char vpu_header[3][64]; int vpu_header_size[3]; struct kfifo bitstream_fifo; struct mutex bitstream_mutex; struct coda_aux_buf bitstream; bool prescan_failed; struct coda_aux_buf parabuf; struct coda_aux_buf psbuf; struct coda_aux_buf slicebuf; struct coda_aux_buf internal_frames[CODA_MAX_FRAMEBUFFERS]; u32 frame_types[CODA_MAX_FRAMEBUFFERS]; struct coda_aux_buf workbuf; int num_internal_frames; int idx; int reg_idx; struct coda_iram_info iram_info; struct gdi_tiled_map tiled_map; u32 bit_stream_param; u32 frm_dis_flg; u32 frame_mem_ctrl; int display_idx; }; static const u8 coda_filler_nal[14] = { 0x00, 0x00, 0x00, 0x01, 0x0c, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x80 }; static const u8 coda_filler_size[8] = { 0, 7, 14, 13, 12, 11, 10, 9 }; static inline void coda_write(struct coda_dev *dev, u32 data, u32 reg) { v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "%s: data=0x%x, reg=0x%x\n", __func__, data, reg); writel(data, dev->regs_base + reg); } static inline unsigned int coda_read(struct coda_dev *dev, u32 reg) { u32 data; data = readl(dev->regs_base + reg); v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "%s: data=0x%x, reg=0x%x\n", __func__, data, reg); return data; } static inline unsigned long coda_isbusy(struct coda_dev *dev) { return coda_read(dev, CODA_REG_BIT_BUSY); } static inline int coda_is_initialized(struct coda_dev *dev) { return (coda_read(dev, CODA_REG_BIT_CUR_PC) != 0); } static int coda_wait_timeout(struct coda_dev *dev) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); while (coda_isbusy(dev)) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; } return 0; } static void coda_command_async(struct coda_ctx *ctx, int cmd) { struct coda_dev *dev = ctx->dev; if (dev->devtype->product == CODA_960 || dev->devtype->product == CODA_7541) { /* Restore context related registers to CODA */ coda_write(dev, ctx->bit_stream_param, CODA_REG_BIT_BIT_STREAM_PARAM); coda_write(dev, ctx->frm_dis_flg, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx)); coda_write(dev, ctx->frame_mem_ctrl, CODA_REG_BIT_FRAME_MEM_CTRL); coda_write(dev, ctx->workbuf.paddr, CODA_REG_BIT_WORK_BUF_ADDR); } if (dev->devtype->product == CODA_960) { coda_write(dev, 1, CODA9_GDI_WPROT_ERR_CLR); coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN); } coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY); coda_write(dev, ctx->idx, CODA_REG_BIT_RUN_INDEX); coda_write(dev, ctx->params.codec_mode, CODA_REG_BIT_RUN_COD_STD); coda_write(dev, ctx->params.codec_mode_aux, CODA7_REG_BIT_RUN_AUX_STD); coda_write(dev, cmd, CODA_REG_BIT_RUN_COMMAND); } static int coda_command_sync(struct coda_ctx *ctx, int cmd) { struct coda_dev *dev = ctx->dev; coda_command_async(ctx, cmd); return coda_wait_timeout(dev); } static struct coda_q_data *get_q_data(struct coda_ctx *ctx, enum v4l2_buf_type type) { switch (type) { case V4L2_BUF_TYPE_VIDEO_OUTPUT: return &(ctx->q_data[V4L2_M2M_SRC]); case V4L2_BUF_TYPE_VIDEO_CAPTURE: return &(ctx->q_data[V4L2_M2M_DST]); default: return NULL; } } /* * Array of all formats supported by any version of Coda: */ static struct coda_fmt coda_formats[] = { { .name = "YUV 4:2:0 Planar, YCbCr", .fourcc = V4L2_PIX_FMT_YUV420, }, { .name = "YUV 4:2:0 Planar, YCrCb", .fourcc = V4L2_PIX_FMT_YVU420, }, { .name = "H264 Encoded Stream", .fourcc = V4L2_PIX_FMT_H264, }, { .name = "MPEG4 Encoded Stream", .fourcc = V4L2_PIX_FMT_MPEG4, }, }; #define CODA_CODEC(mode, src_fourcc, dst_fourcc, max_w, max_h) \ { mode, src_fourcc, dst_fourcc, max_w, max_h } /* * Arrays of codecs supported by each given version of Coda: * i.MX27 -> codadx6 * i.MX5x -> coda7 * i.MX6 -> coda960 * Use V4L2_PIX_FMT_YUV420 as placeholder for all supported YUV 4:2:0 variants */ static struct coda_codec codadx6_codecs[] = { CODA_CODEC(CODADX6_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 720, 576), CODA_CODEC(CODADX6_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 720, 576), }; static struct coda_codec coda7_codecs[] = { CODA_CODEC(CODA7_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 1280, 720), CODA_CODEC(CODA7_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 1280, 720), CODA_CODEC(CODA7_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1080), CODA_CODEC(CODA7_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1920, 1080), }; static struct coda_codec coda9_codecs[] = { CODA_CODEC(CODA9_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 1920, 1080), CODA_CODEC(CODA9_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 1920, 1080), CODA_CODEC(CODA9_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1080), CODA_CODEC(CODA9_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1920, 1080), }; static bool coda_format_is_yuv(u32 fourcc) { switch (fourcc) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: return true; default: return false; } } /* * Normalize all supported YUV 4:2:0 formats to the value used in the codec * tables. */ static u32 coda_format_normalize_yuv(u32 fourcc) { return coda_format_is_yuv(fourcc) ? V4L2_PIX_FMT_YUV420 : fourcc; } static struct coda_codec *coda_find_codec(struct coda_dev *dev, int src_fourcc, int dst_fourcc) { struct coda_codec *codecs = dev->devtype->codecs; int num_codecs = dev->devtype->num_codecs; int k; src_fourcc = coda_format_normalize_yuv(src_fourcc); dst_fourcc = coda_format_normalize_yuv(dst_fourcc); if (src_fourcc == dst_fourcc) return NULL; for (k = 0; k < num_codecs; k++) { if (codecs[k].src_fourcc == src_fourcc && codecs[k].dst_fourcc == dst_fourcc) break; } if (k == num_codecs) return NULL; return &codecs[k]; } static void coda_get_max_dimensions(struct coda_dev *dev, struct coda_codec *codec, int *max_w, int *max_h) { struct coda_codec *codecs = dev->devtype->codecs; int num_codecs = dev->devtype->num_codecs; unsigned int w, h; int k; if (codec) { w = codec->max_w; h = codec->max_h; } else { for (k = 0, w = 0, h = 0; k < num_codecs; k++) { w = max(w, codecs[k].max_w); h = max(h, codecs[k].max_h); } } if (max_w) *max_w = w; if (max_h) *max_h = h; } static char *coda_product_name(int product) { static char buf[9]; switch (product) { case CODA_DX6: return "CodaDx6"; case CODA_7541: return "CODA7541"; case CODA_960: return "CODA960"; default: snprintf(buf, sizeof(buf), "(0x%04x)", product); return buf; } } /* * V4L2 ioctl() operations. */ static int coda_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { struct coda_ctx *ctx = fh_to_ctx(priv); strlcpy(cap->driver, CODA_NAME, sizeof(cap->driver)); strlcpy(cap->card, coda_product_name(ctx->dev->devtype->product), sizeof(cap->card)); strlcpy(cap->bus_info, "platform:" CODA_NAME, sizeof(cap->bus_info)); /* * This is only a mem-to-mem video device. The capture and output * device capability flags are left only for backward compatibility * and are scheduled for removal. */ cap->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_VIDEO_OUTPUT | V4L2_CAP_VIDEO_M2M | V4L2_CAP_STREAMING; cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS; return 0; } static int enum_fmt(void *priv, struct v4l2_fmtdesc *f, enum v4l2_buf_type type, int src_fourcc) { struct coda_ctx *ctx = fh_to_ctx(priv); struct coda_codec *codecs = ctx->dev->devtype->codecs; struct coda_fmt *formats = coda_formats; struct coda_fmt *fmt; int num_codecs = ctx->dev->devtype->num_codecs; int num_formats = ARRAY_SIZE(coda_formats); int i, k, num = 0; for (i = 0; i < num_formats; i++) { /* Both uncompressed formats are always supported */ if (coda_format_is_yuv(formats[i].fourcc) && !coda_format_is_yuv(src_fourcc)) { if (num == f->index) break; ++num; continue; } /* Compressed formats may be supported, check the codec list */ for (k = 0; k < num_codecs; k++) { /* if src_fourcc is set, only consider matching codecs */ if (type == V4L2_BUF_TYPE_VIDEO_CAPTURE && formats[i].fourcc == codecs[k].dst_fourcc && (!src_fourcc || src_fourcc == codecs[k].src_fourcc)) break; if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT && formats[i].fourcc == codecs[k].src_fourcc) break; } if (k < num_codecs) { if (num == f->index) break; ++num; } } if (i < num_formats) { fmt = &formats[i]; strlcpy(f->description, fmt->name, sizeof(f->description)); f->pixelformat = fmt->fourcc; if (!coda_format_is_yuv(fmt->fourcc)) f->flags |= V4L2_FMT_FLAG_COMPRESSED; return 0; } /* Format not found */ return -EINVAL; } static int coda_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct coda_ctx *ctx = fh_to_ctx(priv); struct vb2_queue *src_vq; struct coda_q_data *q_data_src; /* If the source format is already fixed, only list matching formats */ src_vq = v4l2_m2m_get_vq(ctx->m2m_ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); if (vb2_is_streaming(src_vq)) { q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); return enum_fmt(priv, f, V4L2_BUF_TYPE_VIDEO_CAPTURE, q_data_src->fourcc); } return enum_fmt(priv, f, V4L2_BUF_TYPE_VIDEO_CAPTURE, 0); } static int coda_enum_fmt_vid_out(struct file *file, void *priv, struct v4l2_fmtdesc *f) { return enum_fmt(priv, f, V4L2_BUF_TYPE_VIDEO_OUTPUT, 0); } static int coda_g_fmt(struct file *file, void *priv, struct v4l2_format *f) { struct coda_q_data *q_data; struct coda_ctx *ctx = fh_to_ctx(priv); q_data = get_q_data(ctx, f->type); if (!q_data) return -EINVAL; f->fmt.pix.field = V4L2_FIELD_NONE; f->fmt.pix.pixelformat = q_data->fourcc; f->fmt.pix.width = q_data->width; f->fmt.pix.height = q_data->height; if (coda_format_is_yuv(f->fmt.pix.pixelformat)) f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 2); else /* encoded formats h.264/mpeg4 */ f->fmt.pix.bytesperline = 0; f->fmt.pix.sizeimage = q_data->sizeimage; f->fmt.pix.colorspace = ctx->colorspace; return 0; } static int coda_try_fmt(struct coda_ctx *ctx, struct coda_codec *codec, struct v4l2_format *f) { struct coda_dev *dev = ctx->dev; struct coda_q_data *q_data; unsigned int max_w, max_h; enum v4l2_field field; field = f->fmt.pix.field; if (field == V4L2_FIELD_ANY) field = V4L2_FIELD_NONE; else if (V4L2_FIELD_NONE != field) return -EINVAL; /* V4L2 specification suggests the driver corrects the format struct * if any of the dimensions is unsupported */ f->fmt.pix.field = field; coda_get_max_dimensions(dev, codec, &max_w, &max_h); v4l_bound_align_image(&f->fmt.pix.width, MIN_W, max_w, W_ALIGN, &f->fmt.pix.height, MIN_H, max_h, H_ALIGN, S_ALIGN); switch (f->fmt.pix.pixelformat) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: case V4L2_PIX_FMT_H264: case V4L2_PIX_FMT_MPEG4: case V4L2_PIX_FMT_JPEG: break; default: q_data = get_q_data(ctx, f->type); if (!q_data) return -EINVAL; f->fmt.pix.pixelformat = q_data->fourcc; } switch (f->fmt.pix.pixelformat) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: /* Frame stride must be multiple of 8 */ f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 8); f->fmt.pix.sizeimage = f->fmt.pix.bytesperline * f->fmt.pix.height * 3 / 2; break; case V4L2_PIX_FMT_H264: case V4L2_PIX_FMT_MPEG4: case V4L2_PIX_FMT_JPEG: f->fmt.pix.bytesperline = 0; f->fmt.pix.sizeimage = CODA_MAX_FRAME_SIZE; break; default: BUG(); } return 0; } static int coda_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct coda_ctx *ctx = fh_to_ctx(priv); struct coda_codec *codec; struct vb2_queue *src_vq; int ret; /* * If the source format is already fixed, try to find a codec that * converts to the given destination format */ src_vq = v4l2_m2m_get_vq(ctx->m2m_ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); if (vb2_is_streaming(src_vq)) { struct coda_q_data *q_data_src; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); codec = coda_find_codec(ctx->dev, q_data_src->fourcc, f->fmt.pix.pixelformat); if (!codec) return -EINVAL; } else { /* Otherwise determine codec by encoded format, if possible */ codec = coda_find_codec(ctx->dev, V4L2_PIX_FMT_YUV420, f->fmt.pix.pixelformat); } f->fmt.pix.colorspace = ctx->colorspace; ret = coda_try_fmt(ctx, codec, f); if (ret < 0) return ret; /* The h.264 decoder only returns complete 16x16 macroblocks */ if (codec && codec->src_fourcc == V4L2_PIX_FMT_H264) { f->fmt.pix.width = round_up(f->fmt.pix.width, 16); f->fmt.pix.height = round_up(f->fmt.pix.height, 16); f->fmt.pix.bytesperline = f->fmt.pix.width; f->fmt.pix.sizeimage = f->fmt.pix.bytesperline * f->fmt.pix.height * 3 / 2; } return 0; } static int coda_try_fmt_vid_out(struct file *file, void *priv, struct v4l2_format *f) { struct coda_ctx *ctx = fh_to_ctx(priv); struct coda_codec *codec; /* Determine codec by encoded format, returns NULL if raw or invalid */ codec = coda_find_codec(ctx->dev, f->fmt.pix.pixelformat, V4L2_PIX_FMT_YUV420); if (!f->fmt.pix.colorspace) f->fmt.pix.colorspace = V4L2_COLORSPACE_REC709; return coda_try_fmt(ctx, codec, f); } static int coda_s_fmt(struct coda_ctx *ctx, struct v4l2_format *f) { struct coda_q_data *q_data; struct vb2_queue *vq; vq = v4l2_m2m_get_vq(ctx->m2m_ctx, f->type); if (!vq) return -EINVAL; q_data = get_q_data(ctx, f->type); if (!q_data) return -EINVAL; if (vb2_is_busy(vq)) { v4l2_err(&ctx->dev->v4l2_dev, "%s queue busy\n", __func__); return -EBUSY; } q_data->fourcc = f->fmt.pix.pixelformat; q_data->width = f->fmt.pix.width; q_data->height = f->fmt.pix.height; q_data->sizeimage = f->fmt.pix.sizeimage; q_data->rect.left = 0; q_data->rect.top = 0; q_data->rect.width = f->fmt.pix.width; q_data->rect.height = f->fmt.pix.height; v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "Setting format for type %d, wxh: %dx%d, fmt: %d\n", f->type, q_data->width, q_data->height, q_data->fourcc); return 0; } static int coda_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct coda_ctx *ctx = fh_to_ctx(priv); int ret; ret = coda_try_fmt_vid_cap(file, priv, f); if (ret) return ret; return coda_s_fmt(ctx, f); } static int coda_s_fmt_vid_out(struct file *file, void *priv, struct v4l2_format *f) { struct coda_ctx *ctx = fh_to_ctx(priv); int ret; ret = coda_try_fmt_vid_out(file, priv, f); if (ret) return ret; ret = coda_s_fmt(ctx, f); if (ret) ctx->colorspace = f->fmt.pix.colorspace; return ret; } static int coda_qbuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct coda_ctx *ctx = fh_to_ctx(priv); return v4l2_m2m_qbuf(file, ctx->m2m_ctx, buf); } static bool coda_buf_is_end_of_stream(struct coda_ctx *ctx, struct v4l2_buffer *buf) { struct vb2_queue *src_vq; src_vq = v4l2_m2m_get_vq(ctx->m2m_ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); return ((ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG) && (buf->sequence == (ctx->qsequence - 1))); } static int coda_dqbuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct coda_ctx *ctx = fh_to_ctx(priv); int ret; ret = v4l2_m2m_dqbuf(file, ctx->m2m_ctx, buf); /* If this is the last capture buffer, emit an end-of-stream event */ if (buf->type == V4L2_BUF_TYPE_VIDEO_CAPTURE && coda_buf_is_end_of_stream(ctx, buf)) { const struct v4l2_event eos_event = { .type = V4L2_EVENT_EOS }; v4l2_event_queue_fh(&ctx->fh, &eos_event); } return ret; } static int coda_g_selection(struct file *file, void *fh, struct v4l2_selection *s) { struct coda_ctx *ctx = fh_to_ctx(fh); struct coda_q_data *q_data; struct v4l2_rect r, *rsel; q_data = get_q_data(ctx, s->type); if (!q_data) return -EINVAL; r.left = 0; r.top = 0; r.width = q_data->width; r.height = q_data->height; rsel = &q_data->rect; switch (s->target) { case V4L2_SEL_TGT_CROP_DEFAULT: case V4L2_SEL_TGT_CROP_BOUNDS: rsel = &r; /* fallthrough */ case V4L2_SEL_TGT_CROP: if (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) return -EINVAL; break; case V4L2_SEL_TGT_COMPOSE_BOUNDS: case V4L2_SEL_TGT_COMPOSE_PADDED: rsel = &r; /* fallthrough */ case V4L2_SEL_TGT_COMPOSE: case V4L2_SEL_TGT_COMPOSE_DEFAULT: if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; break; default: return -EINVAL; } s->r = *rsel; return 0; } static int coda_try_decoder_cmd(struct file *file, void *fh, struct v4l2_decoder_cmd *dc) { if (dc->cmd != V4L2_DEC_CMD_STOP) return -EINVAL; if (dc->flags & V4L2_DEC_CMD_STOP_TO_BLACK) return -EINVAL; if (!(dc->flags & V4L2_DEC_CMD_STOP_IMMEDIATELY) && (dc->stop.pts != 0)) return -EINVAL; return 0; } static int coda_decoder_cmd(struct file *file, void *fh, struct v4l2_decoder_cmd *dc) { struct coda_ctx *ctx = fh_to_ctx(fh); struct coda_dev *dev = ctx->dev; int ret; ret = coda_try_decoder_cmd(file, fh, dc); if (ret < 0) return ret; /* Ignore decoder stop command silently in encoder context */ if (ctx->inst_type != CODA_INST_DECODER) return 0; /* Set the strem-end flag on this context */ ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG; if ((dev->devtype->product == CODA_960) && coda_isbusy(dev) && (ctx->idx == coda_read(dev, CODA_REG_BIT_RUN_INDEX))) { /* If this context is currently running, update the hardware flag */ coda_write(dev, ctx->bit_stream_param, CODA_REG_BIT_BIT_STREAM_PARAM); } return 0; } static int coda_subscribe_event(struct v4l2_fh *fh, const struct v4l2_event_subscription *sub) { switch (sub->type) { case V4L2_EVENT_EOS: return v4l2_event_subscribe(fh, sub, 0, NULL); default: return v4l2_ctrl_subscribe_event(fh, sub); } } static const struct v4l2_ioctl_ops coda_ioctl_ops = { .vidioc_querycap = coda_querycap, .vidioc_enum_fmt_vid_cap = coda_enum_fmt_vid_cap, .vidioc_g_fmt_vid_cap = coda_g_fmt, .vidioc_try_fmt_vid_cap = coda_try_fmt_vid_cap, .vidioc_s_fmt_vid_cap = coda_s_fmt_vid_cap, .vidioc_enum_fmt_vid_out = coda_enum_fmt_vid_out, .vidioc_g_fmt_vid_out = coda_g_fmt, .vidioc_try_fmt_vid_out = coda_try_fmt_vid_out, .vidioc_s_fmt_vid_out = coda_s_fmt_vid_out, .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs, .vidioc_querybuf = v4l2_m2m_ioctl_querybuf, .vidioc_qbuf = coda_qbuf, .vidioc_expbuf = v4l2_m2m_ioctl_expbuf, .vidioc_dqbuf = coda_dqbuf, .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs, .vidioc_streamon = v4l2_m2m_ioctl_streamon, .vidioc_streamoff = v4l2_m2m_ioctl_streamoff, .vidioc_g_selection = coda_g_selection, .vidioc_try_decoder_cmd = coda_try_decoder_cmd, .vidioc_decoder_cmd = coda_decoder_cmd, .vidioc_subscribe_event = coda_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; static int coda_start_decoding(struct coda_ctx *ctx); static inline int coda_get_bitstream_payload(struct coda_ctx *ctx) { return kfifo_len(&ctx->bitstream_fifo); } static void coda_kfifo_sync_from_device(struct coda_ctx *ctx) { struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo; struct coda_dev *dev = ctx->dev; u32 rd_ptr; rd_ptr = coda_read(dev, CODA_REG_BIT_RD_PTR(ctx->reg_idx)); kfifo->out = (kfifo->in & ~kfifo->mask) | (rd_ptr - ctx->bitstream.paddr); if (kfifo->out > kfifo->in) kfifo->out -= kfifo->mask + 1; } static void coda_kfifo_sync_to_device_full(struct coda_ctx *ctx) { struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo; struct coda_dev *dev = ctx->dev; u32 rd_ptr, wr_ptr; rd_ptr = ctx->bitstream.paddr + (kfifo->out & kfifo->mask); coda_write(dev, rd_ptr, CODA_REG_BIT_RD_PTR(ctx->reg_idx)); wr_ptr = ctx->bitstream.paddr + (kfifo->in & kfifo->mask); coda_write(dev, wr_ptr, CODA_REG_BIT_WR_PTR(ctx->reg_idx)); } static void coda_kfifo_sync_to_device_write(struct coda_ctx *ctx) { struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo; struct coda_dev *dev = ctx->dev; u32 wr_ptr; wr_ptr = ctx->bitstream.paddr + (kfifo->in & kfifo->mask); coda_write(dev, wr_ptr, CODA_REG_BIT_WR_PTR(ctx->reg_idx)); } static int coda_bitstream_queue(struct coda_ctx *ctx, struct vb2_buffer *src_buf) { u32 src_size = vb2_get_plane_payload(src_buf, 0); u32 n; n = kfifo_in(&ctx->bitstream_fifo, vb2_plane_vaddr(src_buf, 0), src_size); if (n < src_size) return -ENOSPC; dma_sync_single_for_device(&ctx->dev->plat_dev->dev, ctx->bitstream.paddr, ctx->bitstream.size, DMA_TO_DEVICE); ctx->qsequence++; return 0; } static bool coda_bitstream_try_queue(struct coda_ctx *ctx, struct vb2_buffer *src_buf) { int ret; if (coda_get_bitstream_payload(ctx) + vb2_get_plane_payload(src_buf, 0) + 512 >= ctx->bitstream.size) return false; if (vb2_plane_vaddr(src_buf, 0) == NULL) { v4l2_err(&ctx->dev->v4l2_dev, "trying to queue empty buffer\n"); return true; } ret = coda_bitstream_queue(ctx, src_buf); if (ret < 0) { v4l2_err(&ctx->dev->v4l2_dev, "bitstream buffer overflow\n"); return false; } /* Sync read pointer to device */ if (ctx == v4l2_m2m_get_curr_priv(ctx->dev->m2m_dev)) coda_kfifo_sync_to_device_write(ctx); ctx->prescan_failed = false; return true; } static void coda_fill_bitstream(struct coda_ctx *ctx) { struct vb2_buffer *src_buf; while (v4l2_m2m_num_src_bufs_ready(ctx->m2m_ctx) > 0) { src_buf = v4l2_m2m_next_src_buf(ctx->m2m_ctx); if (coda_bitstream_try_queue(ctx, src_buf)) { src_buf = v4l2_m2m_src_buf_remove(ctx->m2m_ctx); v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE); } else { break; } } } static void coda_set_gdi_regs(struct coda_ctx *ctx) { struct gdi_tiled_map *tiled_map = &ctx->tiled_map; struct coda_dev *dev = ctx->dev; int i; for (i = 0; i < 16; i++) coda_write(dev, tiled_map->xy2ca_map[i], CODA9_GDI_XY2_CAS_0 + 4 * i); for (i = 0; i < 4; i++) coda_write(dev, tiled_map->xy2ba_map[i], CODA9_GDI_XY2_BA_0 + 4 * i); for (i = 0; i < 16; i++) coda_write(dev, tiled_map->xy2ra_map[i], CODA9_GDI_XY2_RAS_0 + 4 * i); coda_write(dev, tiled_map->xy2rbc_config, CODA9_GDI_XY2_RBC_CONFIG); for (i = 0; i < 32; i++) coda_write(dev, tiled_map->rbc2axi_map[i], CODA9_GDI_RBC2_AXI_0 + 4 * i); } /* * Mem-to-mem operations. */ static int coda_prepare_decode(struct coda_ctx *ctx) { struct vb2_buffer *dst_buf; struct coda_dev *dev = ctx->dev; struct coda_q_data *q_data_dst; u32 stridey, height; u32 picture_y, picture_cb, picture_cr; dst_buf = v4l2_m2m_next_dst_buf(ctx->m2m_ctx); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); if (ctx->params.rot_mode & CODA_ROT_90) { stridey = q_data_dst->height; height = q_data_dst->width; } else { stridey = q_data_dst->width; height = q_data_dst->height; } /* Try to copy source buffer contents into the bitstream ringbuffer */ mutex_lock(&ctx->bitstream_mutex); coda_fill_bitstream(ctx); mutex_unlock(&ctx->bitstream_mutex); if (coda_get_bitstream_payload(ctx) < 512 && (!(ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG))) { v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "bitstream payload: %d, skipping\n", coda_get_bitstream_payload(ctx)); v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->m2m_ctx); return -EAGAIN; } /* Run coda_start_decoding (again) if not yet initialized */ if (!ctx->initialized) { int ret = coda_start_decoding(ctx); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to start decoding\n"); v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->m2m_ctx); return -EAGAIN; } else { ctx->initialized = 1; } } if (dev->devtype->product == CODA_960) coda_set_gdi_regs(ctx); /* Set rotator output */ picture_y = vb2_dma_contig_plane_dma_addr(dst_buf, 0); if (q_data_dst->fourcc == V4L2_PIX_FMT_YVU420) { /* Switch Cr and Cb for YVU420 format */ picture_cr = picture_y + stridey * height; picture_cb = picture_cr + stridey / 2 * height / 2; } else { picture_cb = picture_y + stridey * height; picture_cr = picture_cb + stridey / 2 * height / 2; } if (dev->devtype->product == CODA_960) { /* * The CODA960 seems to have an internal list of buffers with * 64 entries that includes the registered frame buffers as * well as the rotator buffer output. * ROT_INDEX needs to be < 0x40, but > ctx->num_internal_frames. */ coda_write(dev, CODA_MAX_FRAMEBUFFERS + dst_buf->v4l2_buf.index, CODA9_CMD_DEC_PIC_ROT_INDEX); coda_write(dev, picture_y, CODA9_CMD_DEC_PIC_ROT_ADDR_Y); coda_write(dev, picture_cb, CODA9_CMD_DEC_PIC_ROT_ADDR_CB); coda_write(dev, picture_cr, CODA9_CMD_DEC_PIC_ROT_ADDR_CR); coda_write(dev, stridey, CODA9_CMD_DEC_PIC_ROT_STRIDE); } else { coda_write(dev, picture_y, CODA_CMD_DEC_PIC_ROT_ADDR_Y); coda_write(dev, picture_cb, CODA_CMD_DEC_PIC_ROT_ADDR_CB); coda_write(dev, picture_cr, CODA_CMD_DEC_PIC_ROT_ADDR_CR); coda_write(dev, stridey, CODA_CMD_DEC_PIC_ROT_STRIDE); } coda_write(dev, CODA_ROT_MIR_ENABLE | ctx->params.rot_mode, CODA_CMD_DEC_PIC_ROT_MODE); switch (dev->devtype->product) { case CODA_DX6: /* TBD */ case CODA_7541: coda_write(dev, CODA_PRE_SCAN_EN, CODA_CMD_DEC_PIC_OPTION); break; case CODA_960: coda_write(dev, (1 << 10), CODA_CMD_DEC_PIC_OPTION); /* 'hardcode to use interrupt disable mode'? */ break; } coda_write(dev, 0, CODA_CMD_DEC_PIC_SKIP_NUM); coda_write(dev, 0, CODA_CMD_DEC_PIC_BB_START); coda_write(dev, 0, CODA_CMD_DEC_PIC_START_BYTE); return 0; } static void coda_prepare_encode(struct coda_ctx *ctx) { struct coda_q_data *q_data_src, *q_data_dst; struct vb2_buffer *src_buf, *dst_buf; struct coda_dev *dev = ctx->dev; int force_ipicture; int quant_param = 0; u32 picture_y, picture_cb, picture_cr; u32 pic_stream_buffer_addr, pic_stream_buffer_size; u32 dst_fourcc; src_buf = v4l2_m2m_next_src_buf(ctx->m2m_ctx); dst_buf = v4l2_m2m_next_dst_buf(ctx->m2m_ctx); q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); dst_fourcc = q_data_dst->fourcc; src_buf->v4l2_buf.sequence = ctx->osequence; dst_buf->v4l2_buf.sequence = ctx->osequence; ctx->osequence++; /* * Workaround coda firmware BUG that only marks the first * frame as IDR. This is a problem for some decoders that can't * recover when a frame is lost. */ if (src_buf->v4l2_buf.sequence % ctx->params.gop_size) { src_buf->v4l2_buf.flags |= V4L2_BUF_FLAG_PFRAME; src_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_KEYFRAME; } else { src_buf->v4l2_buf.flags |= V4L2_BUF_FLAG_KEYFRAME; src_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_PFRAME; } if (dev->devtype->product == CODA_960) coda_set_gdi_regs(ctx); /* * Copy headers at the beginning of the first frame for H.264 only. * In MPEG4 they are already copied by the coda. */ if (src_buf->v4l2_buf.sequence == 0) { pic_stream_buffer_addr = vb2_dma_contig_plane_dma_addr(dst_buf, 0) + ctx->vpu_header_size[0] + ctx->vpu_header_size[1] + ctx->vpu_header_size[2]; pic_stream_buffer_size = CODA_MAX_FRAME_SIZE - ctx->vpu_header_size[0] - ctx->vpu_header_size[1] - ctx->vpu_header_size[2]; memcpy(vb2_plane_vaddr(dst_buf, 0), &ctx->vpu_header[0][0], ctx->vpu_header_size[0]); memcpy(vb2_plane_vaddr(dst_buf, 0) + ctx->vpu_header_size[0], &ctx->vpu_header[1][0], ctx->vpu_header_size[1]); memcpy(vb2_plane_vaddr(dst_buf, 0) + ctx->vpu_header_size[0] + ctx->vpu_header_size[1], &ctx->vpu_header[2][0], ctx->vpu_header_size[2]); } else { pic_stream_buffer_addr = vb2_dma_contig_plane_dma_addr(dst_buf, 0); pic_stream_buffer_size = CODA_MAX_FRAME_SIZE; } if (src_buf->v4l2_buf.flags & V4L2_BUF_FLAG_KEYFRAME) { force_ipicture = 1; switch (dst_fourcc) { case V4L2_PIX_FMT_H264: quant_param = ctx->params.h264_intra_qp; break; case V4L2_PIX_FMT_MPEG4: quant_param = ctx->params.mpeg4_intra_qp; break; default: v4l2_warn(&ctx->dev->v4l2_dev, "cannot set intra qp, fmt not supported\n"); break; } } else { force_ipicture = 0; switch (dst_fourcc) { case V4L2_PIX_FMT_H264: quant_param = ctx->params.h264_inter_qp; break; case V4L2_PIX_FMT_MPEG4: quant_param = ctx->params.mpeg4_inter_qp; break; default: v4l2_warn(&ctx->dev->v4l2_dev, "cannot set inter qp, fmt not supported\n"); break; } } /* submit */ coda_write(dev, CODA_ROT_MIR_ENABLE | ctx->params.rot_mode, CODA_CMD_ENC_PIC_ROT_MODE); coda_write(dev, quant_param, CODA_CMD_ENC_PIC_QS); picture_y = vb2_dma_contig_plane_dma_addr(src_buf, 0); switch (q_data_src->fourcc) { case V4L2_PIX_FMT_YVU420: /* Switch Cb and Cr for YVU420 format */ picture_cr = picture_y + q_data_src->width * q_data_src->height; picture_cb = picture_cr + q_data_src->width / 2 * q_data_src->height / 2; break; case V4L2_PIX_FMT_YUV420: default: picture_cb = picture_y + q_data_src->width * q_data_src->height; picture_cr = picture_cb + q_data_src->width / 2 * q_data_src->height / 2; break; } if (dev->devtype->product == CODA_960) { coda_write(dev, 4/*FIXME: 0*/, CODA9_CMD_ENC_PIC_SRC_INDEX); coda_write(dev, q_data_src->width, CODA9_CMD_ENC_PIC_SRC_STRIDE); coda_write(dev, 0, CODA9_CMD_ENC_PIC_SUB_FRAME_SYNC); coda_write(dev, picture_y, CODA9_CMD_ENC_PIC_SRC_ADDR_Y); coda_write(dev, picture_cb, CODA9_CMD_ENC_PIC_SRC_ADDR_CB); coda_write(dev, picture_cr, CODA9_CMD_ENC_PIC_SRC_ADDR_CR); } else { coda_write(dev, picture_y, CODA_CMD_ENC_PIC_SRC_ADDR_Y); coda_write(dev, picture_cb, CODA_CMD_ENC_PIC_SRC_ADDR_CB); coda_write(dev, picture_cr, CODA_CMD_ENC_PIC_SRC_ADDR_CR); } coda_write(dev, force_ipicture << 1 & 0x2, CODA_CMD_ENC_PIC_OPTION); coda_write(dev, pic_stream_buffer_addr, CODA_CMD_ENC_PIC_BB_START); coda_write(dev, pic_stream_buffer_size / 1024, CODA_CMD_ENC_PIC_BB_SIZE); if (!ctx->streamon_out) { /* After streamoff on the output side, set the stream end flag */ ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG; coda_write(dev, ctx->bit_stream_param, CODA_REG_BIT_BIT_STREAM_PARAM); } } static void coda_device_run(void *m2m_priv) { struct coda_ctx *ctx = m2m_priv; struct coda_dev *dev = ctx->dev; queue_work(dev->workqueue, &ctx->pic_run_work); } static void coda_free_framebuffers(struct coda_ctx *ctx); static void coda_free_context_buffers(struct coda_ctx *ctx); static void coda_seq_end_work(struct work_struct *work) { struct coda_ctx *ctx = container_of(work, struct coda_ctx, seq_end_work); struct coda_dev *dev = ctx->dev; mutex_lock(&ctx->buffer_mutex); mutex_lock(&dev->coda_mutex); v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "%d: %s: sent command 'SEQ_END' to coda\n", ctx->idx, __func__); if (coda_command_sync(ctx, CODA_COMMAND_SEQ_END)) { v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_SEQ_END failed\n"); } kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); coda_free_framebuffers(ctx); coda_free_context_buffers(ctx); mutex_unlock(&dev->coda_mutex); mutex_unlock(&ctx->buffer_mutex); } static void coda_finish_decode(struct coda_ctx *ctx); static void coda_finish_encode(struct coda_ctx *ctx); static void coda_pic_run_work(struct work_struct *work) { struct coda_ctx *ctx = container_of(work, struct coda_ctx, pic_run_work); struct coda_dev *dev = ctx->dev; int ret; mutex_lock(&ctx->buffer_mutex); mutex_lock(&dev->coda_mutex); if (ctx->inst_type == CODA_INST_DECODER) { ret = coda_prepare_decode(ctx); if (ret < 0) { mutex_unlock(&dev->coda_mutex); mutex_unlock(&ctx->buffer_mutex); /* job_finish scheduled by prepare_decode */ return; } } else { coda_prepare_encode(ctx); } if (dev->devtype->product != CODA_DX6) coda_write(dev, ctx->iram_info.axi_sram_use, CODA7_REG_BIT_AXI_SRAM_USE); if (ctx->inst_type == CODA_INST_DECODER) coda_kfifo_sync_to_device_full(ctx); coda_command_async(ctx, CODA_COMMAND_PIC_RUN); if (!wait_for_completion_timeout(&ctx->completion, msecs_to_jiffies(1000))) { dev_err(&dev->plat_dev->dev, "CODA PIC_RUN timeout\n"); } else if (!ctx->aborting) { if (ctx->inst_type == CODA_INST_DECODER) coda_finish_decode(ctx); else coda_finish_encode(ctx); } if (ctx->aborting || (!ctx->streamon_cap && !ctx->streamon_out)) queue_work(dev->workqueue, &ctx->seq_end_work); mutex_unlock(&dev->coda_mutex); mutex_unlock(&ctx->buffer_mutex); v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->m2m_ctx); } static int coda_job_ready(void *m2m_priv) { struct coda_ctx *ctx = m2m_priv; /* * For both 'P' and 'key' frame cases 1 picture * and 1 frame are needed. In the decoder case, * the compressed frame can be in the bitstream. */ if (!v4l2_m2m_num_src_bufs_ready(ctx->m2m_ctx) && ctx->inst_type != CODA_INST_DECODER) { v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "not ready: not enough video buffers.\n"); return 0; } if (!v4l2_m2m_num_dst_bufs_ready(ctx->m2m_ctx)) { v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "not ready: not enough video capture buffers.\n"); return 0; } if (ctx->prescan_failed || ((ctx->inst_type == CODA_INST_DECODER) && (coda_get_bitstream_payload(ctx) < 512) && !(ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG))) { v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "%d: not ready: not enough bitstream data.\n", ctx->idx); return 0; } if (ctx->aborting) { v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "not ready: aborting\n"); return 0; } v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "job ready\n"); return 1; } static void coda_job_abort(void *priv) { struct coda_ctx *ctx = priv; ctx->aborting = 1; v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "Aborting task\n"); } static void coda_lock(void *m2m_priv) { struct coda_ctx *ctx = m2m_priv; struct coda_dev *pcdev = ctx->dev; mutex_lock(&pcdev->dev_mutex); } static void coda_unlock(void *m2m_priv) { struct coda_ctx *ctx = m2m_priv; struct coda_dev *pcdev = ctx->dev; mutex_unlock(&pcdev->dev_mutex); } static struct v4l2_m2m_ops coda_m2m_ops = { .device_run = coda_device_run, .job_ready = coda_job_ready, .job_abort = coda_job_abort, .lock = coda_lock, .unlock = coda_unlock, }; static void coda_set_tiled_map_type(struct coda_ctx *ctx, int tiled_map_type) { struct gdi_tiled_map *tiled_map = &ctx->tiled_map; int luma_map, chro_map, i; memset(tiled_map, 0, sizeof(*tiled_map)); luma_map = 64; chro_map = 64; tiled_map->map_type = tiled_map_type; for (i = 0; i < 16; i++) tiled_map->xy2ca_map[i] = luma_map << 8 | chro_map; for (i = 0; i < 4; i++) tiled_map->xy2ba_map[i] = luma_map << 8 | chro_map; for (i = 0; i < 16; i++) tiled_map->xy2ra_map[i] = luma_map << 8 | chro_map; if (tiled_map_type == GDI_LINEAR_FRAME_MAP) { tiled_map->xy2rbc_config = 0; } else { dev_err(&ctx->dev->plat_dev->dev, "invalid map type: %d\n", tiled_map_type); return; } } static void set_default_params(struct coda_ctx *ctx) { int max_w; int max_h; ctx->codec = &ctx->dev->devtype->codecs[0]; max_w = ctx->codec->max_w; max_h = ctx->codec->max_h; ctx->params.codec_mode = CODA_MODE_INVALID; ctx->colorspace = V4L2_COLORSPACE_REC709; ctx->params.framerate = 30; ctx->aborting = 0; /* Default formats for output and input queues */ ctx->q_data[V4L2_M2M_SRC].fourcc = ctx->codec->src_fourcc; ctx->q_data[V4L2_M2M_DST].fourcc = ctx->codec->dst_fourcc; ctx->q_data[V4L2_M2M_SRC].width = max_w; ctx->q_data[V4L2_M2M_SRC].height = max_h; ctx->q_data[V4L2_M2M_SRC].sizeimage = (max_w * max_h * 3) / 2; ctx->q_data[V4L2_M2M_DST].width = max_w; ctx->q_data[V4L2_M2M_DST].height = max_h; ctx->q_data[V4L2_M2M_DST].sizeimage = CODA_MAX_FRAME_SIZE; ctx->q_data[V4L2_M2M_SRC].rect.width = max_w; ctx->q_data[V4L2_M2M_SRC].rect.height = max_h; ctx->q_data[V4L2_M2M_DST].rect.width = max_w; ctx->q_data[V4L2_M2M_DST].rect.height = max_h; if (ctx->dev->devtype->product == CODA_960) coda_set_tiled_map_type(ctx, GDI_LINEAR_FRAME_MAP); } /* * Queue operations */ static int coda_queue_setup(struct vb2_queue *vq, const struct v4l2_format *fmt, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], void *alloc_ctxs[]) { struct coda_ctx *ctx = vb2_get_drv_priv(vq); struct coda_q_data *q_data; unsigned int size; q_data = get_q_data(ctx, vq->type); size = q_data->sizeimage; *nplanes = 1; sizes[0] = size; alloc_ctxs[0] = ctx->dev->alloc_ctx; v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "get %d buffer(s) of size %d each.\n", *nbuffers, size); return 0; } static int coda_buf_prepare(struct vb2_buffer *vb) { struct coda_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); struct coda_q_data *q_data; q_data = get_q_data(ctx, vb->vb2_queue->type); if (vb2_plane_size(vb, 0) < q_data->sizeimage) { v4l2_warn(&ctx->dev->v4l2_dev, "%s data will not fit into plane (%lu < %lu)\n", __func__, vb2_plane_size(vb, 0), (long)q_data->sizeimage); return -EINVAL; } return 0; } static void coda_buf_queue(struct vb2_buffer *vb) { struct coda_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); struct coda_dev *dev = ctx->dev; struct coda_q_data *q_data; q_data = get_q_data(ctx, vb->vb2_queue->type); /* * In the decoder case, immediately try to copy the buffer into the * bitstream ringbuffer and mark it as ready to be dequeued. */ if (q_data->fourcc == V4L2_PIX_FMT_H264 && vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { /* * For backwards compatibility, queuing an empty buffer marks * the stream end */ if (vb2_get_plane_payload(vb, 0) == 0) { ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG; if ((dev->devtype->product == CODA_960) && coda_isbusy(dev) && (ctx->idx == coda_read(dev, CODA_REG_BIT_RUN_INDEX))) { /* if this decoder instance is running, set the stream end flag */ coda_write(dev, ctx->bit_stream_param, CODA_REG_BIT_BIT_STREAM_PARAM); } } mutex_lock(&ctx->bitstream_mutex); v4l2_m2m_buf_queue(ctx->m2m_ctx, vb); coda_fill_bitstream(ctx); mutex_unlock(&ctx->bitstream_mutex); } else { v4l2_m2m_buf_queue(ctx->m2m_ctx, vb); } } static void coda_parabuf_write(struct coda_ctx *ctx, int index, u32 value) { struct coda_dev *dev = ctx->dev; u32 *p = ctx->parabuf.vaddr; if (dev->devtype->product == CODA_DX6) p[index] = value; else p[index ^ 1] = value; } static int coda_alloc_aux_buf(struct coda_dev *dev, struct coda_aux_buf *buf, size_t size) { buf->vaddr = dma_alloc_coherent(&dev->plat_dev->dev, size, &buf->paddr, GFP_KERNEL); if (!buf->vaddr) return -ENOMEM; buf->size = size; return 0; } static inline int coda_alloc_context_buf(struct coda_ctx *ctx, struct coda_aux_buf *buf, size_t size) { return coda_alloc_aux_buf(ctx->dev, buf, size); } static void coda_free_aux_buf(struct coda_dev *dev, struct coda_aux_buf *buf) { if (buf->vaddr) { dma_free_coherent(&dev->plat_dev->dev, buf->size, buf->vaddr, buf->paddr); buf->vaddr = NULL; buf->size = 0; } } static void coda_free_framebuffers(struct coda_ctx *ctx) { int i; for (i = 0; i < CODA_MAX_FRAMEBUFFERS; i++) coda_free_aux_buf(ctx->dev, &ctx->internal_frames[i]); } static int coda_alloc_framebuffers(struct coda_ctx *ctx, struct coda_q_data *q_data, u32 fourcc) { struct coda_dev *dev = ctx->dev; int height = q_data->height; dma_addr_t paddr; int ysize; int ret; int i; if (ctx->codec && ctx->codec->src_fourcc == V4L2_PIX_FMT_H264) height = round_up(height, 16); ysize = round_up(q_data->width, 8) * height; /* Allocate frame buffers */ for (i = 0; i < ctx->num_internal_frames; i++) { size_t size; size = ysize + ysize / 2; if (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 && dev->devtype->product != CODA_DX6) size += ysize / 4; ret = coda_alloc_context_buf(ctx, &ctx->internal_frames[i], size); if (ret < 0) { coda_free_framebuffers(ctx); return ret; } } /* Register frame buffers in the parameter buffer */ for (i = 0; i < ctx->num_internal_frames; i++) { paddr = ctx->internal_frames[i].paddr; coda_parabuf_write(ctx, i * 3 + 0, paddr); /* Y */ coda_parabuf_write(ctx, i * 3 + 1, paddr + ysize); /* Cb */ coda_parabuf_write(ctx, i * 3 + 2, paddr + ysize + ysize/4); /* Cr */ /* mvcol buffer for h.264 */ if (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 && dev->devtype->product != CODA_DX6) coda_parabuf_write(ctx, 96 + i, ctx->internal_frames[i].paddr + ysize + ysize/4 + ysize/4); } /* mvcol buffer for mpeg4 */ if ((dev->devtype->product != CODA_DX6) && (ctx->codec->src_fourcc == V4L2_PIX_FMT_MPEG4)) coda_parabuf_write(ctx, 97, ctx->internal_frames[i].paddr + ysize + ysize/4 + ysize/4); return 0; } static int coda_h264_padding(int size, char *p) { int nal_size; int diff; diff = size - (size & ~0x7); if (diff == 0) return 0; nal_size = coda_filler_size[diff]; memcpy(p, coda_filler_nal, nal_size); /* Add rbsp stop bit and trailing at the end */ *(p + nal_size - 1) = 0x80; return nal_size; } static phys_addr_t coda_iram_alloc(struct coda_iram_info *iram, size_t size) { phys_addr_t ret; size = round_up(size, 1024); if (size > iram->remaining) return 0; iram->remaining -= size; ret = iram->next_paddr; iram->next_paddr += size; return ret; } static void coda_setup_iram(struct coda_ctx *ctx) { struct coda_iram_info *iram_info = &ctx->iram_info; struct coda_dev *dev = ctx->dev; int mb_width; int dbk_bits; int bit_bits; int ip_bits; memset(iram_info, 0, sizeof(*iram_info)); iram_info->next_paddr = dev->iram.paddr; iram_info->remaining = dev->iram.size; switch (dev->devtype->product) { case CODA_7541: dbk_bits = CODA7_USE_HOST_DBK_ENABLE | CODA7_USE_DBK_ENABLE; bit_bits = CODA7_USE_HOST_BIT_ENABLE | CODA7_USE_BIT_ENABLE; ip_bits = CODA7_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE; break; case CODA_960: dbk_bits = CODA9_USE_HOST_DBK_ENABLE | CODA9_USE_DBK_ENABLE; bit_bits = CODA9_USE_HOST_BIT_ENABLE | CODA7_USE_BIT_ENABLE; ip_bits = CODA9_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE; break; default: /* CODA_DX6 */ return; } if (ctx->inst_type == CODA_INST_ENCODER) { struct coda_q_data *q_data_src; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); mb_width = DIV_ROUND_UP(q_data_src->width, 16); /* Prioritize in case IRAM is too small for everything */ if (dev->devtype->product == CODA_7541) { iram_info->search_ram_size = round_up(mb_width * 16 * 36 + 2048, 1024); iram_info->search_ram_paddr = coda_iram_alloc(iram_info, iram_info->search_ram_size); if (!iram_info->search_ram_paddr) { pr_err("IRAM is smaller than the search ram size\n"); goto out; } iram_info->axi_sram_use |= CODA7_USE_HOST_ME_ENABLE | CODA7_USE_ME_ENABLE; } /* Only H.264BP and H.263P3 are considered */ iram_info->buf_dbk_y_use = coda_iram_alloc(iram_info, 64 * mb_width); iram_info->buf_dbk_c_use = coda_iram_alloc(iram_info, 64 * mb_width); if (!iram_info->buf_dbk_c_use) goto out; iram_info->axi_sram_use |= dbk_bits; iram_info->buf_bit_use = coda_iram_alloc(iram_info, 128 * mb_width); if (!iram_info->buf_bit_use) goto out; iram_info->axi_sram_use |= bit_bits; iram_info->buf_ip_ac_dc_use = coda_iram_alloc(iram_info, 128 * mb_width); if (!iram_info->buf_ip_ac_dc_use) goto out; iram_info->axi_sram_use |= ip_bits; /* OVL and BTP disabled for encoder */ } else if (ctx->inst_type == CODA_INST_DECODER) { struct coda_q_data *q_data_dst; q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); mb_width = DIV_ROUND_UP(q_data_dst->width, 16); iram_info->buf_dbk_y_use = coda_iram_alloc(iram_info, 128 * mb_width); iram_info->buf_dbk_c_use = coda_iram_alloc(iram_info, 128 * mb_width); if (!iram_info->buf_dbk_c_use) goto out; iram_info->axi_sram_use |= dbk_bits; iram_info->buf_bit_use = coda_iram_alloc(iram_info, 128 * mb_width); if (!iram_info->buf_bit_use) goto out; iram_info->axi_sram_use |= bit_bits; iram_info->buf_ip_ac_dc_use = coda_iram_alloc(iram_info, 128 * mb_width); if (!iram_info->buf_ip_ac_dc_use) goto out; iram_info->axi_sram_use |= ip_bits; /* OVL and BTP unused as there is no VC1 support yet */ } out: if (!(iram_info->axi_sram_use & CODA7_USE_HOST_IP_ENABLE)) v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "IRAM smaller than needed\n"); if (dev->devtype->product == CODA_7541) { /* TODO - Enabling these causes picture errors on CODA7541 */ if (ctx->inst_type == CODA_INST_DECODER) { /* fw 1.4.50 */ iram_info->axi_sram_use &= ~(CODA7_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE); } else { /* fw 13.4.29 */ iram_info->axi_sram_use &= ~(CODA7_USE_HOST_IP_ENABLE | CODA7_USE_HOST_DBK_ENABLE | CODA7_USE_IP_ENABLE | CODA7_USE_DBK_ENABLE); } } } static void coda_free_context_buffers(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; coda_free_aux_buf(dev, &ctx->slicebuf); coda_free_aux_buf(dev, &ctx->psbuf); if (dev->devtype->product != CODA_DX6) coda_free_aux_buf(dev, &ctx->workbuf); } static int coda_alloc_context_buffers(struct coda_ctx *ctx, struct coda_q_data *q_data) { struct coda_dev *dev = ctx->dev; size_t size; int ret; switch (dev->devtype->product) { case CODA_7541: size = CODA7_WORK_BUF_SIZE; break; case CODA_960: size = CODA9_WORK_BUF_SIZE; if (q_data->fourcc == V4L2_PIX_FMT_H264) size += CODA9_PS_SAVE_SIZE; break; default: return 0; } if (ctx->psbuf.vaddr) { v4l2_err(&dev->v4l2_dev, "psmembuf still allocated\n"); return -EBUSY; } if (ctx->slicebuf.vaddr) { v4l2_err(&dev->v4l2_dev, "slicebuf still allocated\n"); return -EBUSY; } if (ctx->workbuf.vaddr) { v4l2_err(&dev->v4l2_dev, "context buffer still allocated\n"); ret = -EBUSY; return -ENOMEM; } if (q_data->fourcc == V4L2_PIX_FMT_H264) { /* worst case slice size */ size = (DIV_ROUND_UP(q_data->width, 16) * DIV_ROUND_UP(q_data->height, 16)) * 3200 / 8 + 512; ret = coda_alloc_context_buf(ctx, &ctx->slicebuf, size); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to allocate %d byte slice buffer", ctx->slicebuf.size); return ret; } } if (dev->devtype->product == CODA_7541) { ret = coda_alloc_context_buf(ctx, &ctx->psbuf, CODA7_PS_BUF_SIZE); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to allocate psmem buffer"); goto err; } } ret = coda_alloc_context_buf(ctx, &ctx->workbuf, size); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to allocate %d byte context buffer", ctx->workbuf.size); goto err; } return 0; err: coda_free_context_buffers(ctx); return ret; } static int coda_start_decoding(struct coda_ctx *ctx) { struct coda_q_data *q_data_src, *q_data_dst; u32 bitstream_buf, bitstream_size; struct coda_dev *dev = ctx->dev; int width, height; u32 src_fourcc; u32 val; int ret; /* Start decoding */ q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); bitstream_buf = ctx->bitstream.paddr; bitstream_size = ctx->bitstream.size; src_fourcc = q_data_src->fourcc; coda_write(dev, ctx->parabuf.paddr, CODA_REG_BIT_PARA_BUF_ADDR); /* Update coda bitstream read and write pointers from kfifo */ coda_kfifo_sync_to_device_full(ctx); ctx->display_idx = -1; ctx->frm_dis_flg = 0; coda_write(dev, 0, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx)); coda_write(dev, CODA_BIT_DEC_SEQ_INIT_ESCAPE, CODA_REG_BIT_BIT_STREAM_PARAM); coda_write(dev, bitstream_buf, CODA_CMD_DEC_SEQ_BB_START); coda_write(dev, bitstream_size / 1024, CODA_CMD_DEC_SEQ_BB_SIZE); val = 0; if ((dev->devtype->product == CODA_7541) || (dev->devtype->product == CODA_960)) val |= CODA_REORDER_ENABLE; coda_write(dev, val, CODA_CMD_DEC_SEQ_OPTION); ctx->params.codec_mode = ctx->codec->mode; if (dev->devtype->product == CODA_960 && src_fourcc == V4L2_PIX_FMT_MPEG4) ctx->params.codec_mode_aux = CODA_MP4_AUX_MPEG4; else ctx->params.codec_mode_aux = 0; if (src_fourcc == V4L2_PIX_FMT_H264) { if (dev->devtype->product == CODA_7541) { coda_write(dev, ctx->psbuf.paddr, CODA_CMD_DEC_SEQ_PS_BB_START); coda_write(dev, (CODA7_PS_BUF_SIZE / 1024), CODA_CMD_DEC_SEQ_PS_BB_SIZE); } if (dev->devtype->product == CODA_960) { coda_write(dev, 0, CODA_CMD_DEC_SEQ_X264_MV_EN); coda_write(dev, 512, CODA_CMD_DEC_SEQ_SPP_CHUNK_SIZE); } } if (dev->devtype->product != CODA_960) { coda_write(dev, 0, CODA_CMD_DEC_SEQ_SRC_SIZE); } if (coda_command_sync(ctx, CODA_COMMAND_SEQ_INIT)) { v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_SEQ_INIT timeout\n"); coda_write(dev, 0, CODA_REG_BIT_BIT_STREAM_PARAM); return -ETIMEDOUT; } /* Update kfifo out pointer from coda bitstream read pointer */ coda_kfifo_sync_from_device(ctx); coda_write(dev, 0, CODA_REG_BIT_BIT_STREAM_PARAM); if (coda_read(dev, CODA_RET_DEC_SEQ_SUCCESS) == 0) { v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_SEQ_INIT failed, error code = %d\n", coda_read(dev, CODA_RET_DEC_SEQ_ERR_REASON)); return -EAGAIN; } val = coda_read(dev, CODA_RET_DEC_SEQ_SRC_SIZE); if (dev->devtype->product == CODA_DX6) { width = (val >> CODADX6_PICWIDTH_OFFSET) & CODADX6_PICWIDTH_MASK; height = val & CODADX6_PICHEIGHT_MASK; } else { width = (val >> CODA7_PICWIDTH_OFFSET) & CODA7_PICWIDTH_MASK; height = val & CODA7_PICHEIGHT_MASK; } if (width > q_data_dst->width || height > q_data_dst->height) { v4l2_err(&dev->v4l2_dev, "stream is %dx%d, not %dx%d\n", width, height, q_data_dst->width, q_data_dst->height); return -EINVAL; } width = round_up(width, 16); height = round_up(height, 16); v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "%s instance %d now: %dx%d\n", __func__, ctx->idx, width, height); ctx->num_internal_frames = coda_read(dev, CODA_RET_DEC_SEQ_FRAME_NEED); if (ctx->num_internal_frames > CODA_MAX_FRAMEBUFFERS) { v4l2_err(&dev->v4l2_dev, "not enough framebuffers to decode (%d < %d)\n", CODA_MAX_FRAMEBUFFERS, ctx->num_internal_frames); return -EINVAL; } if (src_fourcc == V4L2_PIX_FMT_H264) { u32 left_right; u32 top_bottom; left_right = coda_read(dev, CODA_RET_DEC_SEQ_CROP_LEFT_RIGHT); top_bottom = coda_read(dev, CODA_RET_DEC_SEQ_CROP_TOP_BOTTOM); q_data_dst->rect.left = (left_right >> 10) & 0x3ff; q_data_dst->rect.top = (top_bottom >> 10) & 0x3ff; q_data_dst->rect.width = width - q_data_dst->rect.left - (left_right & 0x3ff); q_data_dst->rect.height = height - q_data_dst->rect.top - (top_bottom & 0x3ff); } ret = coda_alloc_framebuffers(ctx, q_data_dst, src_fourcc); if (ret < 0) return ret; /* Tell the decoder how many frame buffers we allocated. */ coda_write(dev, ctx->num_internal_frames, CODA_CMD_SET_FRAME_BUF_NUM); coda_write(dev, width, CODA_CMD_SET_FRAME_BUF_STRIDE); if (dev->devtype->product != CODA_DX6) { /* Set secondary AXI IRAM */ coda_setup_iram(ctx); coda_write(dev, ctx->iram_info.buf_bit_use, CODA7_CMD_SET_FRAME_AXI_BIT_ADDR); coda_write(dev, ctx->iram_info.buf_ip_ac_dc_use, CODA7_CMD_SET_FRAME_AXI_IPACDC_ADDR); coda_write(dev, ctx->iram_info.buf_dbk_y_use, CODA7_CMD_SET_FRAME_AXI_DBKY_ADDR); coda_write(dev, ctx->iram_info.buf_dbk_c_use, CODA7_CMD_SET_FRAME_AXI_DBKC_ADDR); coda_write(dev, ctx->iram_info.buf_ovl_use, CODA7_CMD_SET_FRAME_AXI_OVL_ADDR); if (dev->devtype->product == CODA_960) coda_write(dev, ctx->iram_info.buf_btp_use, CODA9_CMD_SET_FRAME_AXI_BTP_ADDR); } if (dev->devtype->product == CODA_960) { coda_write(dev, -1, CODA9_CMD_SET_FRAME_DELAY); coda_write(dev, 0x20262024, CODA9_CMD_SET_FRAME_CACHE_SIZE); coda_write(dev, 2 << CODA9_CACHE_PAGEMERGE_OFFSET | 32 << CODA9_CACHE_LUMA_BUFFER_SIZE_OFFSET | 8 << CODA9_CACHE_CB_BUFFER_SIZE_OFFSET | 8 << CODA9_CACHE_CR_BUFFER_SIZE_OFFSET, CODA9_CMD_SET_FRAME_CACHE_CONFIG); } if (src_fourcc == V4L2_PIX_FMT_H264) { coda_write(dev, ctx->slicebuf.paddr, CODA_CMD_SET_FRAME_SLICE_BB_START); coda_write(dev, ctx->slicebuf.size / 1024, CODA_CMD_SET_FRAME_SLICE_BB_SIZE); } if (dev->devtype->product == CODA_7541) { int max_mb_x = 1920 / 16; int max_mb_y = 1088 / 16; int max_mb_num = max_mb_x * max_mb_y; coda_write(dev, max_mb_num << 16 | max_mb_x << 8 | max_mb_y, CODA7_CMD_SET_FRAME_MAX_DEC_SIZE); } else if (dev->devtype->product == CODA_960) { int max_mb_x = 1920 / 16; int max_mb_y = 1088 / 16; int max_mb_num = max_mb_x * max_mb_y; coda_write(dev, max_mb_num << 16 | max_mb_x << 8 | max_mb_y, CODA9_CMD_SET_FRAME_MAX_DEC_SIZE); } if (coda_command_sync(ctx, CODA_COMMAND_SET_FRAME_BUF)) { v4l2_err(&ctx->dev->v4l2_dev, "CODA_COMMAND_SET_FRAME_BUF timeout\n"); return -ETIMEDOUT; } return 0; } static int coda_encode_header(struct coda_ctx *ctx, struct vb2_buffer *buf, int header_code, u8 *header, int *size) { struct coda_dev *dev = ctx->dev; size_t bufsize; int ret; int i; if (dev->devtype->product == CODA_960) memset(vb2_plane_vaddr(buf, 0), 0, 64); coda_write(dev, vb2_dma_contig_plane_dma_addr(buf, 0), CODA_CMD_ENC_HEADER_BB_START); bufsize = vb2_plane_size(buf, 0); if (dev->devtype->product == CODA_960) bufsize /= 1024; coda_write(dev, bufsize, CODA_CMD_ENC_HEADER_BB_SIZE); coda_write(dev, header_code, CODA_CMD_ENC_HEADER_CODE); ret = coda_command_sync(ctx, CODA_COMMAND_ENCODE_HEADER); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_ENCODE_HEADER timeout\n"); return ret; } if (dev->devtype->product == CODA_960) { for (i = 63; i > 0; i--) if (((char *)vb2_plane_vaddr(buf, 0))[i] != 0) break; *size = i + 1; } else { *size = coda_read(dev, CODA_REG_BIT_WR_PTR(ctx->reg_idx)) - coda_read(dev, CODA_CMD_ENC_HEADER_BB_START); } memcpy(header, vb2_plane_vaddr(buf, 0), *size); return 0; } static int coda_start_encoding(struct coda_ctx *ctx); static int coda_start_streaming(struct vb2_queue *q, unsigned int count) { struct coda_ctx *ctx = vb2_get_drv_priv(q); struct v4l2_device *v4l2_dev = &ctx->dev->v4l2_dev; struct coda_dev *dev = ctx->dev; struct coda_q_data *q_data_src, *q_data_dst; u32 dst_fourcc; int ret = 0; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { if (q_data_src->fourcc == V4L2_PIX_FMT_H264) { if (coda_get_bitstream_payload(ctx) < 512) return -EINVAL; } else { if (count < 1) return -EINVAL; } ctx->streamon_out = 1; if (coda_format_is_yuv(q_data_src->fourcc)) ctx->inst_type = CODA_INST_ENCODER; else ctx->inst_type = CODA_INST_DECODER; } else { if (count < 1) return -EINVAL; ctx->streamon_cap = 1; } /* Don't start the coda unless both queues are on */ if (!(ctx->streamon_out & ctx->streamon_cap)) return 0; /* Allow decoder device_run with no new buffers queued */ if (ctx->inst_type == CODA_INST_DECODER) v4l2_m2m_set_src_buffered(ctx->m2m_ctx, true); ctx->gopcounter = ctx->params.gop_size - 1; q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); dst_fourcc = q_data_dst->fourcc; ctx->codec = coda_find_codec(ctx->dev, q_data_src->fourcc, q_data_dst->fourcc); if (!ctx->codec) { v4l2_err(v4l2_dev, "couldn't tell instance type.\n"); return -EINVAL; } /* Allocate per-instance buffers */ ret = coda_alloc_context_buffers(ctx, q_data_src); if (ret < 0) return ret; if (ctx->inst_type == CODA_INST_DECODER) { mutex_lock(&dev->coda_mutex); ret = coda_start_decoding(ctx); mutex_unlock(&dev->coda_mutex); if (ret == -EAGAIN) return 0; else if (ret < 0) return ret; } else { ret = coda_start_encoding(ctx); } ctx->initialized = 1; return ret; } static int coda_start_encoding(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; struct v4l2_device *v4l2_dev = &dev->v4l2_dev; struct coda_q_data *q_data_src, *q_data_dst; u32 bitstream_buf, bitstream_size; struct vb2_buffer *buf; int gamma, ret, value; u32 dst_fourcc; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); dst_fourcc = q_data_dst->fourcc; buf = v4l2_m2m_next_dst_buf(ctx->m2m_ctx); bitstream_buf = vb2_dma_contig_plane_dma_addr(buf, 0); bitstream_size = q_data_dst->sizeimage; if (!coda_is_initialized(dev)) { v4l2_err(v4l2_dev, "coda is not initialized.\n"); return -EFAULT; } mutex_lock(&dev->coda_mutex); coda_write(dev, ctx->parabuf.paddr, CODA_REG_BIT_PARA_BUF_ADDR); coda_write(dev, bitstream_buf, CODA_REG_BIT_RD_PTR(ctx->reg_idx)); coda_write(dev, bitstream_buf, CODA_REG_BIT_WR_PTR(ctx->reg_idx)); switch (dev->devtype->product) { case CODA_DX6: coda_write(dev, CODADX6_STREAM_BUF_DYNALLOC_EN | CODADX6_STREAM_BUF_PIC_RESET, CODA_REG_BIT_STREAM_CTRL); break; case CODA_960: coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN); /* fallthrough */ case CODA_7541: coda_write(dev, CODA7_STREAM_BUF_DYNALLOC_EN | CODA7_STREAM_BUF_PIC_RESET, CODA_REG_BIT_STREAM_CTRL); break; } value = coda_read(dev, CODA_REG_BIT_FRAME_MEM_CTRL); value &= ~(1 << 2 | 0x7 << 9); ctx->frame_mem_ctrl = value; coda_write(dev, value, CODA_REG_BIT_FRAME_MEM_CTRL); if (dev->devtype->product == CODA_DX6) { /* Configure the coda */ coda_write(dev, dev->iram.paddr, CODADX6_REG_BIT_SEARCH_RAM_BASE_ADDR); } /* Could set rotation here if needed */ switch (dev->devtype->product) { case CODA_DX6: value = (q_data_src->width & CODADX6_PICWIDTH_MASK) << CODADX6_PICWIDTH_OFFSET; value |= (q_data_src->height & CODADX6_PICHEIGHT_MASK) << CODA_PICHEIGHT_OFFSET; break; default: value = (q_data_src->width & CODA7_PICWIDTH_MASK) << CODA7_PICWIDTH_OFFSET; value |= (q_data_src->height & CODA7_PICHEIGHT_MASK) << CODA_PICHEIGHT_OFFSET; } coda_write(dev, value, CODA_CMD_ENC_SEQ_SRC_SIZE); coda_write(dev, ctx->params.framerate, CODA_CMD_ENC_SEQ_SRC_F_RATE); ctx->params.codec_mode = ctx->codec->mode; switch (dst_fourcc) { case V4L2_PIX_FMT_MPEG4: if (dev->devtype->product == CODA_960) coda_write(dev, CODA9_STD_MPEG4, CODA_CMD_ENC_SEQ_COD_STD); else coda_write(dev, CODA_STD_MPEG4, CODA_CMD_ENC_SEQ_COD_STD); coda_write(dev, 0, CODA_CMD_ENC_SEQ_MP4_PARA); break; case V4L2_PIX_FMT_H264: if (dev->devtype->product == CODA_960) coda_write(dev, CODA9_STD_H264, CODA_CMD_ENC_SEQ_COD_STD); else coda_write(dev, CODA_STD_H264, CODA_CMD_ENC_SEQ_COD_STD); coda_write(dev, 0, CODA_CMD_ENC_SEQ_264_PARA); break; default: v4l2_err(v4l2_dev, "dst format (0x%08x) invalid.\n", dst_fourcc); ret = -EINVAL; goto out; } switch (ctx->params.slice_mode) { case V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE: value = 0; break; case V4L2_MPEG_VIDEO_MULTI_SICE_MODE_MAX_MB: value = (ctx->params.slice_max_mb & CODA_SLICING_SIZE_MASK) << CODA_SLICING_SIZE_OFFSET; value |= (1 & CODA_SLICING_UNIT_MASK) << CODA_SLICING_UNIT_OFFSET; value |= 1 & CODA_SLICING_MODE_MASK; break; case V4L2_MPEG_VIDEO_MULTI_SICE_MODE_MAX_BYTES: value = (ctx->params.slice_max_bits & CODA_SLICING_SIZE_MASK) << CODA_SLICING_SIZE_OFFSET; value |= (0 & CODA_SLICING_UNIT_MASK) << CODA_SLICING_UNIT_OFFSET; value |= 1 & CODA_SLICING_MODE_MASK; break; } coda_write(dev, value, CODA_CMD_ENC_SEQ_SLICE_MODE); value = ctx->params.gop_size & CODA_GOP_SIZE_MASK; coda_write(dev, value, CODA_CMD_ENC_SEQ_GOP_SIZE); if (ctx->params.bitrate) { /* Rate control enabled */ value = (ctx->params.bitrate & CODA_RATECONTROL_BITRATE_MASK) << CODA_RATECONTROL_BITRATE_OFFSET; value |= 1 & CODA_RATECONTROL_ENABLE_MASK; if (dev->devtype->product == CODA_960) value |= BIT(31); /* disable autoskip */ } else { value = 0; } coda_write(dev, value, CODA_CMD_ENC_SEQ_RC_PARA); coda_write(dev, 0, CODA_CMD_ENC_SEQ_RC_BUF_SIZE); coda_write(dev, 0, CODA_CMD_ENC_SEQ_INTRA_REFRESH); coda_write(dev, bitstream_buf, CODA_CMD_ENC_SEQ_BB_START); coda_write(dev, bitstream_size / 1024, CODA_CMD_ENC_SEQ_BB_SIZE); value = 0; if (dev->devtype->product == CODA_960) gamma = CODA9_DEFAULT_GAMMA; else gamma = CODA_DEFAULT_GAMMA; if (gamma > 0) { coda_write(dev, (gamma & CODA_GAMMA_MASK) << CODA_GAMMA_OFFSET, CODA_CMD_ENC_SEQ_RC_GAMMA); } if (dev->devtype->product == CODA_960) { if (CODA_DEFAULT_GAMMA > 0) value |= 1 << CODA9_OPTION_GAMMA_OFFSET; } else { if (CODA_DEFAULT_GAMMA > 0) { if (dev->devtype->product == CODA_DX6) value |= 1 << CODADX6_OPTION_GAMMA_OFFSET; else value |= 1 << CODA7_OPTION_GAMMA_OFFSET; } } coda_write(dev, value, CODA_CMD_ENC_SEQ_OPTION); coda_write(dev, 0, CODA_CMD_ENC_SEQ_RC_INTERVAL_MODE); coda_setup_iram(ctx); if (dst_fourcc == V4L2_PIX_FMT_H264) { switch (dev->devtype->product) { case CODA_DX6: value = FMO_SLICE_SAVE_BUF_SIZE << 7; coda_write(dev, value, CODADX6_CMD_ENC_SEQ_FMO); break; case CODA_7541: coda_write(dev, ctx->iram_info.search_ram_paddr, CODA7_CMD_ENC_SEQ_SEARCH_BASE); coda_write(dev, ctx->iram_info.search_ram_size, CODA7_CMD_ENC_SEQ_SEARCH_SIZE); break; case CODA_960: coda_write(dev, 0, CODA9_CMD_ENC_SEQ_ME_OPTION); coda_write(dev, 0, CODA9_CMD_ENC_SEQ_INTRA_WEIGHT); } } ret = coda_command_sync(ctx, CODA_COMMAND_SEQ_INIT); if (ret < 0) { v4l2_err(v4l2_dev, "CODA_COMMAND_SEQ_INIT timeout\n"); goto out; } if (coda_read(dev, CODA_RET_ENC_SEQ_SUCCESS) == 0) { v4l2_err(v4l2_dev, "CODA_COMMAND_SEQ_INIT failed\n"); ret = -EFAULT; goto out; } if (dev->devtype->product == CODA_960) ctx->num_internal_frames = 4; else ctx->num_internal_frames = 2; ret = coda_alloc_framebuffers(ctx, q_data_src, dst_fourcc); if (ret < 0) { v4l2_err(v4l2_dev, "failed to allocate framebuffers\n"); goto out; } coda_write(dev, ctx->num_internal_frames, CODA_CMD_SET_FRAME_BUF_NUM); coda_write(dev, round_up(q_data_src->width, 8), CODA_CMD_SET_FRAME_BUF_STRIDE); if (dev->devtype->product == CODA_7541) coda_write(dev, round_up(q_data_src->width, 8), CODA7_CMD_SET_FRAME_SOURCE_BUF_STRIDE); if (dev->devtype->product != CODA_DX6) { coda_write(dev, ctx->iram_info.buf_bit_use, CODA7_CMD_SET_FRAME_AXI_BIT_ADDR); coda_write(dev, ctx->iram_info.buf_ip_ac_dc_use, CODA7_CMD_SET_FRAME_AXI_IPACDC_ADDR); coda_write(dev, ctx->iram_info.buf_dbk_y_use, CODA7_CMD_SET_FRAME_AXI_DBKY_ADDR); coda_write(dev, ctx->iram_info.buf_dbk_c_use, CODA7_CMD_SET_FRAME_AXI_DBKC_ADDR); coda_write(dev, ctx->iram_info.buf_ovl_use, CODA7_CMD_SET_FRAME_AXI_OVL_ADDR); if (dev->devtype->product == CODA_960) { coda_write(dev, ctx->iram_info.buf_btp_use, CODA9_CMD_SET_FRAME_AXI_BTP_ADDR); /* FIXME */ coda_write(dev, ctx->internal_frames[2].paddr, CODA9_CMD_SET_FRAME_SUBSAMP_A); coda_write(dev, ctx->internal_frames[3].paddr, CODA9_CMD_SET_FRAME_SUBSAMP_B); } } ret = coda_command_sync(ctx, CODA_COMMAND_SET_FRAME_BUF); if (ret < 0) { v4l2_err(v4l2_dev, "CODA_COMMAND_SET_FRAME_BUF timeout\n"); goto out; } /* Save stream headers */ buf = v4l2_m2m_next_dst_buf(ctx->m2m_ctx); switch (dst_fourcc) { case V4L2_PIX_FMT_H264: /* * Get SPS in the first frame and copy it to an * intermediate buffer. */ ret = coda_encode_header(ctx, buf, CODA_HEADER_H264_SPS, &ctx->vpu_header[0][0], &ctx->vpu_header_size[0]); if (ret < 0) goto out; /* * Get PPS in the first frame and copy it to an * intermediate buffer. */ ret = coda_encode_header(ctx, buf, CODA_HEADER_H264_PPS, &ctx->vpu_header[1][0], &ctx->vpu_header_size[1]); if (ret < 0) goto out; /* * Length of H.264 headers is variable and thus it might not be * aligned for the coda to append the encoded frame. In that is * the case a filler NAL must be added to header 2. */ ctx->vpu_header_size[2] = coda_h264_padding( (ctx->vpu_header_size[0] + ctx->vpu_header_size[1]), ctx->vpu_header[2]); break; case V4L2_PIX_FMT_MPEG4: /* * Get VOS in the first frame and copy it to an * intermediate buffer */ ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VOS, &ctx->vpu_header[0][0], &ctx->vpu_header_size[0]); if (ret < 0) goto out; ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VIS, &ctx->vpu_header[1][0], &ctx->vpu_header_size[1]); if (ret < 0) goto out; ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VOL, &ctx->vpu_header[2][0], &ctx->vpu_header_size[2]); if (ret < 0) goto out; break; default: /* No more formats need to save headers at the moment */ break; } out: mutex_unlock(&dev->coda_mutex); return ret; } static void coda_stop_streaming(struct vb2_queue *q) { struct coda_ctx *ctx = vb2_get_drv_priv(q); struct coda_dev *dev = ctx->dev; if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "%s: output\n", __func__); ctx->streamon_out = 0; if (ctx->inst_type == CODA_INST_DECODER && coda_isbusy(dev) && ctx->idx == coda_read(dev, CODA_REG_BIT_RUN_INDEX)) { /* if this decoder instance is running, set the stream end flag */ if (dev->devtype->product == CODA_960) { u32 val = coda_read(dev, CODA_REG_BIT_BIT_STREAM_PARAM); val |= CODA_BIT_STREAM_END_FLAG; coda_write(dev, val, CODA_REG_BIT_BIT_STREAM_PARAM); ctx->bit_stream_param = val; } } ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG; ctx->isequence = 0; } else { v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "%s: capture\n", __func__); ctx->streamon_cap = 0; ctx->osequence = 0; } if (!ctx->streamon_out && !ctx->streamon_cap) { kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); ctx->runcounter = 0; } } static struct vb2_ops coda_qops = { .queue_setup = coda_queue_setup, .buf_prepare = coda_buf_prepare, .buf_queue = coda_buf_queue, .start_streaming = coda_start_streaming, .stop_streaming = coda_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static int coda_s_ctrl(struct v4l2_ctrl *ctrl) { struct coda_ctx *ctx = container_of(ctrl->handler, struct coda_ctx, ctrls); v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "s_ctrl: id = %d, val = %d\n", ctrl->id, ctrl->val); switch (ctrl->id) { case V4L2_CID_HFLIP: if (ctrl->val) ctx->params.rot_mode |= CODA_MIR_HOR; else ctx->params.rot_mode &= ~CODA_MIR_HOR; break; case V4L2_CID_VFLIP: if (ctrl->val) ctx->params.rot_mode |= CODA_MIR_VER; else ctx->params.rot_mode &= ~CODA_MIR_VER; break; case V4L2_CID_MPEG_VIDEO_BITRATE: ctx->params.bitrate = ctrl->val / 1000; break; case V4L2_CID_MPEG_VIDEO_GOP_SIZE: ctx->params.gop_size = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP: ctx->params.h264_intra_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP: ctx->params.h264_inter_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP: ctx->params.mpeg4_intra_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP: ctx->params.mpeg4_inter_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE: ctx->params.slice_mode = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB: ctx->params.slice_max_mb = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES: ctx->params.slice_max_bits = ctrl->val * 8; break; case V4L2_CID_MPEG_VIDEO_HEADER_MODE: break; default: v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "Invalid control, id=%d, val=%d\n", ctrl->id, ctrl->val); return -EINVAL; } return 0; } static struct v4l2_ctrl_ops coda_ctrl_ops = { .s_ctrl = coda_s_ctrl, }; static int coda_ctrls_setup(struct coda_ctx *ctx) { v4l2_ctrl_handler_init(&ctx->ctrls, 9); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_BITRATE, 0, 32767000, 1, 0); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_GOP_SIZE, 1, 60, 1, 16); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP, 0, 51, 1, 25); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP, 0, 51, 1, 25); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP, 1, 31, 1, 2); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP, 1, 31, 1, 2); v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE, V4L2_MPEG_VIDEO_MULTI_SICE_MODE_MAX_BYTES, 0x0, V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB, 1, 0x3fffffff, 1, 1); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES, 1, 0x3fffffff, 1, 500); v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_HEADER_MODE, V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME, (1 << V4L2_MPEG_VIDEO_HEADER_MODE_SEPARATE), V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME); if (ctx->ctrls.error) { v4l2_err(&ctx->dev->v4l2_dev, "control initialization error (%d)", ctx->ctrls.error); return -EINVAL; } return v4l2_ctrl_handler_setup(&ctx->ctrls); } static int coda_queue_init(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq) { struct coda_ctx *ctx = priv; int ret; src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT; src_vq->io_modes = VB2_DMABUF | VB2_MMAP | VB2_USERPTR; src_vq->drv_priv = ctx; src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); src_vq->ops = &coda_qops; src_vq->mem_ops = &vb2_dma_contig_memops; src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; src_vq->lock = &ctx->dev->dev_mutex; ret = vb2_queue_init(src_vq); if (ret) return ret; dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; dst_vq->io_modes = VB2_DMABUF | VB2_MMAP | VB2_USERPTR; dst_vq->drv_priv = ctx; dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); dst_vq->ops = &coda_qops; dst_vq->mem_ops = &vb2_dma_contig_memops; dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; dst_vq->lock = &ctx->dev->dev_mutex; return vb2_queue_init(dst_vq); } static int coda_next_free_instance(struct coda_dev *dev) { int idx = ffz(dev->instance_mask); if ((idx < 0) || (dev->devtype->product == CODA_DX6 && idx > CODADX6_MAX_INSTANCES)) return -EBUSY; return idx; } static int coda_open(struct file *file) { struct coda_dev *dev = video_drvdata(file); struct coda_ctx *ctx = NULL; int ret; int idx; ctx = kzalloc(sizeof *ctx, GFP_KERNEL); if (!ctx) return -ENOMEM; idx = coda_next_free_instance(dev); if (idx < 0) { ret = idx; goto err_coda_max; } set_bit(idx, &dev->instance_mask); init_completion(&ctx->completion); INIT_WORK(&ctx->pic_run_work, coda_pic_run_work); INIT_WORK(&ctx->seq_end_work, coda_seq_end_work); v4l2_fh_init(&ctx->fh, video_devdata(file)); file->private_data = &ctx->fh; v4l2_fh_add(&ctx->fh); ctx->dev = dev; ctx->idx = idx; switch (dev->devtype->product) { case CODA_7541: case CODA_960: ctx->reg_idx = 0; break; default: ctx->reg_idx = idx; } ret = clk_prepare_enable(dev->clk_per); if (ret) goto err_clk_per; ret = clk_prepare_enable(dev->clk_ahb); if (ret) goto err_clk_ahb; set_default_params(ctx); ctx->m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &coda_queue_init); if (IS_ERR(ctx->m2m_ctx)) { ret = PTR_ERR(ctx->m2m_ctx); v4l2_err(&dev->v4l2_dev, "%s return error (%d)\n", __func__, ret); goto err_ctx_init; } ctx->fh.m2m_ctx = ctx->m2m_ctx; ret = coda_ctrls_setup(ctx); if (ret) { v4l2_err(&dev->v4l2_dev, "failed to setup coda controls\n"); goto err_ctrls_setup; } ctx->fh.ctrl_handler = &ctx->ctrls; ret = coda_alloc_context_buf(ctx, &ctx->parabuf, CODA_PARA_BUF_SIZE); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to allocate parabuf"); goto err_dma_alloc; } ctx->bitstream.size = CODA_MAX_FRAME_SIZE; ctx->bitstream.vaddr = dma_alloc_writecombine(&dev->plat_dev->dev, ctx->bitstream.size, &ctx->bitstream.paddr, GFP_KERNEL); if (!ctx->bitstream.vaddr) { v4l2_err(&dev->v4l2_dev, "failed to allocate bitstream ringbuffer"); ret = -ENOMEM; goto err_dma_writecombine; } kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); mutex_init(&ctx->bitstream_mutex); mutex_init(&ctx->buffer_mutex); coda_lock(ctx); list_add(&ctx->list, &dev->instances); coda_unlock(ctx); v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "Created instance %d (%p)\n", ctx->idx, ctx); return 0; err_dma_writecombine: coda_free_context_buffers(ctx); if (ctx->dev->devtype->product == CODA_DX6) coda_free_aux_buf(dev, &ctx->workbuf); coda_free_aux_buf(dev, &ctx->parabuf); err_dma_alloc: v4l2_ctrl_handler_free(&ctx->ctrls); err_ctrls_setup: v4l2_m2m_ctx_release(ctx->m2m_ctx); err_ctx_init: clk_disable_unprepare(dev->clk_ahb); err_clk_ahb: clk_disable_unprepare(dev->clk_per); err_clk_per: v4l2_fh_del(&ctx->fh); v4l2_fh_exit(&ctx->fh); clear_bit(ctx->idx, &dev->instance_mask); err_coda_max: kfree(ctx); return ret; } static int coda_release(struct file *file) { struct coda_dev *dev = video_drvdata(file); struct coda_ctx *ctx = fh_to_ctx(file->private_data); v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "Releasing instance %p\n", ctx); /* If this instance is running, call .job_abort and wait for it to end */ v4l2_m2m_ctx_release(ctx->m2m_ctx); /* In case the instance was not running, we still need to call SEQ_END */ if (ctx->initialized) { queue_work(dev->workqueue, &ctx->seq_end_work); flush_work(&ctx->seq_end_work); } coda_free_framebuffers(ctx); coda_lock(ctx); list_del(&ctx->list); coda_unlock(ctx); dma_free_writecombine(&dev->plat_dev->dev, ctx->bitstream.size, ctx->bitstream.vaddr, ctx->bitstream.paddr); coda_free_context_buffers(ctx); if (ctx->dev->devtype->product == CODA_DX6) coda_free_aux_buf(dev, &ctx->workbuf); coda_free_aux_buf(dev, &ctx->parabuf); v4l2_ctrl_handler_free(&ctx->ctrls); clk_disable_unprepare(dev->clk_ahb); clk_disable_unprepare(dev->clk_per); v4l2_fh_del(&ctx->fh); v4l2_fh_exit(&ctx->fh); clear_bit(ctx->idx, &dev->instance_mask); kfree(ctx); return 0; } static const struct v4l2_file_operations coda_fops = { .owner = THIS_MODULE, .open = coda_open, .release = coda_release, .poll = v4l2_m2m_fop_poll, .unlocked_ioctl = video_ioctl2, .mmap = v4l2_m2m_fop_mmap, }; static void coda_finish_decode(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; struct coda_q_data *q_data_src; struct coda_q_data *q_data_dst; struct vb2_buffer *dst_buf; int width, height; int decoded_idx; int display_idx; u32 src_fourcc; int success; u32 val; dst_buf = v4l2_m2m_next_dst_buf(ctx->m2m_ctx); /* Update kfifo out pointer from coda bitstream read pointer */ coda_kfifo_sync_from_device(ctx); /* * in stream-end mode, the read pointer can overshoot the write pointer * by up to 512 bytes */ if (ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG) { if (coda_get_bitstream_payload(ctx) >= 0x100000 - 512) kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); } q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); src_fourcc = q_data_src->fourcc; val = coda_read(dev, CODA_RET_DEC_PIC_SUCCESS); if (val != 1) pr_err("DEC_PIC_SUCCESS = %d\n", val); success = val & 0x1; if (!success) v4l2_err(&dev->v4l2_dev, "decode failed\n"); if (src_fourcc == V4L2_PIX_FMT_H264) { if (val & (1 << 3)) v4l2_err(&dev->v4l2_dev, "insufficient PS buffer space (%d bytes)\n", ctx->psbuf.size); if (val & (1 << 2)) v4l2_err(&dev->v4l2_dev, "insufficient slice buffer space (%d bytes)\n", ctx->slicebuf.size); } val = coda_read(dev, CODA_RET_DEC_PIC_SIZE); width = (val >> 16) & 0xffff; height = val & 0xffff; q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); /* frame crop information */ if (src_fourcc == V4L2_PIX_FMT_H264) { u32 left_right; u32 top_bottom; left_right = coda_read(dev, CODA_RET_DEC_PIC_CROP_LEFT_RIGHT); top_bottom = coda_read(dev, CODA_RET_DEC_PIC_CROP_TOP_BOTTOM); if (left_right == 0xffffffff && top_bottom == 0xffffffff) { /* Keep current crop information */ } else { struct v4l2_rect *rect = &q_data_dst->rect; rect->left = left_right >> 16 & 0xffff; rect->top = top_bottom >> 16 & 0xffff; rect->width = width - rect->left - (left_right & 0xffff); rect->height = height - rect->top - (top_bottom & 0xffff); } } else { /* no cropping */ } val = coda_read(dev, CODA_RET_DEC_PIC_ERR_MB); if (val > 0) v4l2_err(&dev->v4l2_dev, "errors in %d macroblocks\n", val); if (dev->devtype->product == CODA_7541) { val = coda_read(dev, CODA_RET_DEC_PIC_OPTION); if (val == 0) { /* not enough bitstream data */ v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "prescan failed: %d\n", val); ctx->prescan_failed = true; return; } } ctx->frm_dis_flg = coda_read(dev, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx)); /* * The previous display frame was copied out by the rotator, * now it can be overwritten again */ if (ctx->display_idx >= 0 && ctx->display_idx < ctx->num_internal_frames) { ctx->frm_dis_flg &= ~(1 << ctx->display_idx); coda_write(dev, ctx->frm_dis_flg, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx)); } /* * The index of the last decoded frame, not necessarily in * display order, and the index of the next display frame. * The latter could have been decoded in a previous run. */ decoded_idx = coda_read(dev, CODA_RET_DEC_PIC_CUR_IDX); display_idx = coda_read(dev, CODA_RET_DEC_PIC_FRAME_IDX); if (decoded_idx == -1) { /* no frame was decoded, but we might have a display frame */ if (display_idx < 0 && ctx->display_idx < 0) ctx->prescan_failed = true; } else if (decoded_idx == -2) { /* no frame was decoded, we still return the remaining buffers */ } else if (decoded_idx < 0 || decoded_idx >= ctx->num_internal_frames) { v4l2_err(&dev->v4l2_dev, "decoded frame index out of range: %d\n", decoded_idx); } else { val = coda_read(dev, CODA_RET_DEC_PIC_TYPE) & 0x7; if (val == 0) ctx->frame_types[decoded_idx] = V4L2_BUF_FLAG_KEYFRAME; else if (val == 1) ctx->frame_types[decoded_idx] = V4L2_BUF_FLAG_PFRAME; else ctx->frame_types[decoded_idx] = V4L2_BUF_FLAG_BFRAME; } if (display_idx == -1) { /* * no more frames to be decoded, but there could still * be rotator output to dequeue */ ctx->prescan_failed = true; } else if (display_idx == -3) { /* possibly prescan failure */ } else if (display_idx < 0 || display_idx >= ctx->num_internal_frames) { v4l2_err(&dev->v4l2_dev, "presentation frame index out of range: %d\n", display_idx); } /* If a frame was copied out, return it */ if (ctx->display_idx >= 0 && ctx->display_idx < ctx->num_internal_frames) { dst_buf = v4l2_m2m_dst_buf_remove(ctx->m2m_ctx); dst_buf->v4l2_buf.sequence = ctx->osequence++; dst_buf->v4l2_buf.flags &= ~(V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_BFRAME); dst_buf->v4l2_buf.flags |= ctx->frame_types[ctx->display_idx]; vb2_set_plane_payload(dst_buf, 0, width * height * 3 / 2); v4l2_m2m_buf_done(dst_buf, success ? VB2_BUF_STATE_DONE : VB2_BUF_STATE_ERROR); v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "job finished: decoding frame (%d) (%s)\n", dst_buf->v4l2_buf.sequence, (dst_buf->v4l2_buf.flags & V4L2_BUF_FLAG_KEYFRAME) ? "KEYFRAME" : "PFRAME"); } else { v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "job finished: no frame decoded\n"); } /* The rotator will copy the current display frame next time */ ctx->display_idx = display_idx; } static void coda_finish_encode(struct coda_ctx *ctx) { struct vb2_buffer *src_buf, *dst_buf; struct coda_dev *dev = ctx->dev; u32 wr_ptr, start_ptr; src_buf = v4l2_m2m_src_buf_remove(ctx->m2m_ctx); dst_buf = v4l2_m2m_next_dst_buf(ctx->m2m_ctx); /* Get results from the coda */ start_ptr = coda_read(dev, CODA_CMD_ENC_PIC_BB_START); wr_ptr = coda_read(dev, CODA_REG_BIT_WR_PTR(ctx->reg_idx)); /* Calculate bytesused field */ if (dst_buf->v4l2_buf.sequence == 0) { vb2_set_plane_payload(dst_buf, 0, wr_ptr - start_ptr + ctx->vpu_header_size[0] + ctx->vpu_header_size[1] + ctx->vpu_header_size[2]); } else { vb2_set_plane_payload(dst_buf, 0, wr_ptr - start_ptr); } v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "frame size = %u\n", wr_ptr - start_ptr); coda_read(dev, CODA_RET_ENC_PIC_SLICE_NUM); coda_read(dev, CODA_RET_ENC_PIC_FLAG); if (coda_read(dev, CODA_RET_ENC_PIC_TYPE) == 0) { dst_buf->v4l2_buf.flags |= V4L2_BUF_FLAG_KEYFRAME; dst_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_PFRAME; } else { dst_buf->v4l2_buf.flags |= V4L2_BUF_FLAG_PFRAME; dst_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_KEYFRAME; } dst_buf->v4l2_buf.timestamp = src_buf->v4l2_buf.timestamp; dst_buf->v4l2_buf.flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK; dst_buf->v4l2_buf.flags |= src_buf->v4l2_buf.flags & V4L2_BUF_FLAG_TSTAMP_SRC_MASK; dst_buf->v4l2_buf.timecode = src_buf->v4l2_buf.timecode; v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE); dst_buf = v4l2_m2m_dst_buf_remove(ctx->m2m_ctx); v4l2_m2m_buf_done(dst_buf, VB2_BUF_STATE_DONE); ctx->gopcounter--; if (ctx->gopcounter < 0) ctx->gopcounter = ctx->params.gop_size - 1; v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "job finished: encoding frame (%d) (%s)\n", dst_buf->v4l2_buf.sequence, (dst_buf->v4l2_buf.flags & V4L2_BUF_FLAG_KEYFRAME) ? "KEYFRAME" : "PFRAME"); } static irqreturn_t coda_irq_handler(int irq, void *data) { struct coda_dev *dev = data; struct coda_ctx *ctx; /* read status register to attend the IRQ */ coda_read(dev, CODA_REG_BIT_INT_STATUS); coda_write(dev, CODA_REG_BIT_INT_CLEAR_SET, CODA_REG_BIT_INT_CLEAR); ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev); if (ctx == NULL) { v4l2_err(&dev->v4l2_dev, "Instance released before the end of transaction\n"); mutex_unlock(&dev->coda_mutex); return IRQ_HANDLED; } if (ctx->aborting) { v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "task has been aborted\n"); } if (coda_isbusy(ctx->dev)) { v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev, "coda is still busy!!!!\n"); return IRQ_NONE; } complete(&ctx->completion); return IRQ_HANDLED; } static u32 coda_supported_firmwares[] = { CODA_FIRMWARE_VERNUM(CODA_DX6, 2, 2, 5), CODA_FIRMWARE_VERNUM(CODA_7541, 1, 4, 50), CODA_FIRMWARE_VERNUM(CODA_960, 2, 1, 5), }; static bool coda_firmware_supported(u32 vernum) { int i; for (i = 0; i < ARRAY_SIZE(coda_supported_firmwares); i++) if (vernum == coda_supported_firmwares[i]) return true; return false; } static int coda_hw_init(struct coda_dev *dev) { u16 product, major, minor, release; u32 data; u16 *p; int i, ret; ret = clk_prepare_enable(dev->clk_per); if (ret) return ret; ret = clk_prepare_enable(dev->clk_ahb); if (ret) goto err_clk_ahb; /* * Copy the first CODA_ISRAM_SIZE in the internal SRAM. * The 16-bit chars in the code buffer are in memory access * order, re-sort them to CODA order for register download. * Data in this SRAM survives a reboot. */ p = (u16 *)dev->codebuf.vaddr; if (dev->devtype->product == CODA_DX6) { for (i = 0; i < (CODA_ISRAM_SIZE / 2); i++) { data = CODA_DOWN_ADDRESS_SET(i) | CODA_DOWN_DATA_SET(p[i ^ 1]); coda_write(dev, data, CODA_REG_BIT_CODE_DOWN); } } else { for (i = 0; i < (CODA_ISRAM_SIZE / 2); i++) { data = CODA_DOWN_ADDRESS_SET(i) | CODA_DOWN_DATA_SET(p[round_down(i, 4) + 3 - (i % 4)]); coda_write(dev, data, CODA_REG_BIT_CODE_DOWN); } } /* Clear registers */ for (i = 0; i < 64; i++) coda_write(dev, 0, CODA_REG_BIT_CODE_BUF_ADDR + i * 4); /* Tell the BIT where to find everything it needs */ if (dev->devtype->product == CODA_960 || dev->devtype->product == CODA_7541) { coda_write(dev, dev->tempbuf.paddr, CODA_REG_BIT_TEMP_BUF_ADDR); coda_write(dev, 0, CODA_REG_BIT_BIT_STREAM_PARAM); } else { coda_write(dev, dev->workbuf.paddr, CODA_REG_BIT_WORK_BUF_ADDR); } coda_write(dev, dev->codebuf.paddr, CODA_REG_BIT_CODE_BUF_ADDR); coda_write(dev, 0, CODA_REG_BIT_CODE_RUN); /* Set default values */ switch (dev->devtype->product) { case CODA_DX6: coda_write(dev, CODADX6_STREAM_BUF_PIC_FLUSH, CODA_REG_BIT_STREAM_CTRL); break; default: coda_write(dev, CODA7_STREAM_BUF_PIC_FLUSH, CODA_REG_BIT_STREAM_CTRL); } if (dev->devtype->product == CODA_960) coda_write(dev, 1 << 12, CODA_REG_BIT_FRAME_MEM_CTRL); else coda_write(dev, 0, CODA_REG_BIT_FRAME_MEM_CTRL); if (dev->devtype->product != CODA_DX6) coda_write(dev, 0, CODA7_REG_BIT_AXI_SRAM_USE); coda_write(dev, CODA_INT_INTERRUPT_ENABLE, CODA_REG_BIT_INT_ENABLE); /* Reset VPU and start processor */ data = coda_read(dev, CODA_REG_BIT_CODE_RESET); data |= CODA_REG_RESET_ENABLE; coda_write(dev, data, CODA_REG_BIT_CODE_RESET); udelay(10); data &= ~CODA_REG_RESET_ENABLE; coda_write(dev, data, CODA_REG_BIT_CODE_RESET); coda_write(dev, CODA_REG_RUN_ENABLE, CODA_REG_BIT_CODE_RUN); /* Load firmware */ coda_write(dev, 0, CODA_CMD_FIRMWARE_VERNUM); coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY); coda_write(dev, 0, CODA_REG_BIT_RUN_INDEX); coda_write(dev, 0, CODA_REG_BIT_RUN_COD_STD); coda_write(dev, CODA_COMMAND_FIRMWARE_GET, CODA_REG_BIT_RUN_COMMAND); if (coda_wait_timeout(dev)) { clk_disable_unprepare(dev->clk_per); clk_disable_unprepare(dev->clk_ahb); v4l2_err(&dev->v4l2_dev, "firmware get command error\n"); return -EIO; } if (dev->devtype->product == CODA_960) { data = coda_read(dev, CODA9_CMD_FIRMWARE_CODE_REV); v4l2_info(&dev->v4l2_dev, "Firmware code revision: %d\n", data); } /* Check we are compatible with the loaded firmware */ data = coda_read(dev, CODA_CMD_FIRMWARE_VERNUM); product = CODA_FIRMWARE_PRODUCT(data); major = CODA_FIRMWARE_MAJOR(data); minor = CODA_FIRMWARE_MINOR(data); release = CODA_FIRMWARE_RELEASE(data); clk_disable_unprepare(dev->clk_per); clk_disable_unprepare(dev->clk_ahb); if (product != dev->devtype->product) { v4l2_err(&dev->v4l2_dev, "Wrong firmware. Hw: %s, Fw: %s," " Version: %u.%u.%u\n", coda_product_name(dev->devtype->product), coda_product_name(product), major, minor, release); return -EINVAL; } v4l2_info(&dev->v4l2_dev, "Initialized %s.\n", coda_product_name(product)); if (coda_firmware_supported(data)) { v4l2_info(&dev->v4l2_dev, "Firmware version: %u.%u.%u\n", major, minor, release); } else { v4l2_warn(&dev->v4l2_dev, "Unsupported firmware version: " "%u.%u.%u\n", major, minor, release); } return 0; err_clk_ahb: clk_disable_unprepare(dev->clk_per); return ret; } static void coda_fw_callback(const struct firmware *fw, void *context) { struct coda_dev *dev = context; struct platform_device *pdev = dev->plat_dev; int ret; if (!fw) { v4l2_err(&dev->v4l2_dev, "firmware request failed\n"); return; } /* allocate auxiliary per-device code buffer for the BIT processor */ ret = coda_alloc_aux_buf(dev, &dev->codebuf, fw->size); if (ret < 0) { dev_err(&pdev->dev, "failed to allocate code buffer\n"); return; } /* Copy the whole firmware image to the code buffer */ memcpy(dev->codebuf.vaddr, fw->data, fw->size); release_firmware(fw); ret = coda_hw_init(dev); if (ret) { v4l2_err(&dev->v4l2_dev, "HW initialization failed\n"); return; } dev->vfd.fops = &coda_fops, dev->vfd.ioctl_ops = &coda_ioctl_ops; dev->vfd.release = video_device_release_empty, dev->vfd.lock = &dev->dev_mutex; dev->vfd.v4l2_dev = &dev->v4l2_dev; dev->vfd.vfl_dir = VFL_DIR_M2M; snprintf(dev->vfd.name, sizeof(dev->vfd.name), "%s", CODA_NAME); video_set_drvdata(&dev->vfd, dev); dev->alloc_ctx = vb2_dma_contig_init_ctx(&pdev->dev); if (IS_ERR(dev->alloc_ctx)) { v4l2_err(&dev->v4l2_dev, "Failed to alloc vb2 context\n"); return; } dev->m2m_dev = v4l2_m2m_init(&coda_m2m_ops); if (IS_ERR(dev->m2m_dev)) { v4l2_err(&dev->v4l2_dev, "Failed to init mem2mem device\n"); goto rel_ctx; } ret = video_register_device(&dev->vfd, VFL_TYPE_GRABBER, 0); if (ret) { v4l2_err(&dev->v4l2_dev, "Failed to register video device\n"); goto rel_m2m; } v4l2_info(&dev->v4l2_dev, "codec registered as /dev/video%d\n", dev->vfd.num); return; rel_m2m: v4l2_m2m_release(dev->m2m_dev); rel_ctx: vb2_dma_contig_cleanup_ctx(dev->alloc_ctx); } static int coda_firmware_request(struct coda_dev *dev) { char *fw = dev->devtype->firmware; dev_dbg(&dev->plat_dev->dev, "requesting firmware '%s' for %s\n", fw, coda_product_name(dev->devtype->product)); return request_firmware_nowait(THIS_MODULE, true, fw, &dev->plat_dev->dev, GFP_KERNEL, dev, coda_fw_callback); } enum coda_platform { CODA_IMX27, CODA_IMX53, CODA_IMX6Q, CODA_IMX6DL, }; static const struct coda_devtype coda_devdata[] = { [CODA_IMX27] = { .firmware = "v4l-codadx6-imx27.bin", .product = CODA_DX6, .codecs = codadx6_codecs, .num_codecs = ARRAY_SIZE(codadx6_codecs), }, [CODA_IMX53] = { .firmware = "v4l-coda7541-imx53.bin", .product = CODA_7541, .codecs = coda7_codecs, .num_codecs = ARRAY_SIZE(coda7_codecs), }, [CODA_IMX6Q] = { .firmware = "v4l-coda960-imx6q.bin", .product = CODA_960, .codecs = coda9_codecs, .num_codecs = ARRAY_SIZE(coda9_codecs), }, [CODA_IMX6DL] = { .firmware = "v4l-coda960-imx6dl.bin", .product = CODA_960, .codecs = coda9_codecs, .num_codecs = ARRAY_SIZE(coda9_codecs), }, }; static struct platform_device_id coda_platform_ids[] = { { .name = "coda-imx27", .driver_data = CODA_IMX27 }, { .name = "coda-imx53", .driver_data = CODA_IMX53 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, coda_platform_ids); #ifdef CONFIG_OF static const struct of_device_id coda_dt_ids[] = { { .compatible = "fsl,imx27-vpu", .data = &coda_devdata[CODA_IMX27] }, { .compatible = "fsl,imx53-vpu", .data = &coda_devdata[CODA_IMX53] }, { .compatible = "fsl,imx6q-vpu", .data = &coda_devdata[CODA_IMX6Q] }, { .compatible = "fsl,imx6dl-vpu", .data = &coda_devdata[CODA_IMX6DL] }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, coda_dt_ids); #endif static int coda_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(of_match_ptr(coda_dt_ids), &pdev->dev); const struct platform_device_id *pdev_id; struct coda_platform_data *pdata = pdev->dev.platform_data; struct device_node *np = pdev->dev.of_node; struct gen_pool *pool; struct coda_dev *dev; struct resource *res; int ret, irq; dev = devm_kzalloc(&pdev->dev, sizeof *dev, GFP_KERNEL); if (!dev) { dev_err(&pdev->dev, "Not enough memory for %s\n", CODA_NAME); return -ENOMEM; } spin_lock_init(&dev->irqlock); INIT_LIST_HEAD(&dev->instances); dev->plat_dev = pdev; dev->clk_per = devm_clk_get(&pdev->dev, "per"); if (IS_ERR(dev->clk_per)) { dev_err(&pdev->dev, "Could not get per clock\n"); return PTR_ERR(dev->clk_per); } dev->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); if (IS_ERR(dev->clk_ahb)) { dev_err(&pdev->dev, "Could not get ahb clock\n"); return PTR_ERR(dev->clk_ahb); } /* Get memory for physical registers */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dev->regs_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(dev->regs_base)) return PTR_ERR(dev->regs_base); /* IRQ */ irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "failed to get irq resource\n"); return -ENOENT; } if (devm_request_threaded_irq(&pdev->dev, irq, NULL, coda_irq_handler, IRQF_ONESHOT, dev_name(&pdev->dev), dev) < 0) { dev_err(&pdev->dev, "failed to request irq\n"); return -ENOENT; } /* Get IRAM pool from device tree or platform data */ pool = of_get_named_gen_pool(np, "iram", 0); if (!pool && pdata) pool = dev_get_gen_pool(pdata->iram_dev); if (!pool) { dev_err(&pdev->dev, "iram pool not available\n"); return -ENOMEM; } dev->iram_pool = pool; ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev); if (ret) return ret; mutex_init(&dev->dev_mutex); mutex_init(&dev->coda_mutex); pdev_id = of_id ? of_id->data : platform_get_device_id(pdev); if (of_id) { dev->devtype = of_id->data; } else if (pdev_id) { dev->devtype = &coda_devdata[pdev_id->driver_data]; } else { v4l2_device_unregister(&dev->v4l2_dev); return -EINVAL; } /* allocate auxiliary per-device buffers for the BIT processor */ switch (dev->devtype->product) { case CODA_DX6: ret = coda_alloc_aux_buf(dev, &dev->workbuf, CODADX6_WORK_BUF_SIZE); if (ret < 0) { dev_err(&pdev->dev, "failed to allocate work buffer\n"); v4l2_device_unregister(&dev->v4l2_dev); return ret; } break; case CODA_7541: dev->tempbuf.size = CODA7_TEMP_BUF_SIZE; break; case CODA_960: dev->tempbuf.size = CODA9_TEMP_BUF_SIZE; break; } if (dev->tempbuf.size) { ret = coda_alloc_aux_buf(dev, &dev->tempbuf, dev->tempbuf.size); if (ret < 0) { dev_err(&pdev->dev, "failed to allocate temp buffer\n"); v4l2_device_unregister(&dev->v4l2_dev); return ret; } } switch (dev->devtype->product) { case CODA_DX6: dev->iram.size = CODADX6_IRAM_SIZE; break; case CODA_7541: dev->iram.size = CODA7_IRAM_SIZE; break; case CODA_960: dev->iram.size = CODA9_IRAM_SIZE; } dev->iram.vaddr = gen_pool_dma_alloc(dev->iram_pool, dev->iram.size, &dev->iram.paddr); if (!dev->iram.vaddr) { dev_err(&pdev->dev, "unable to alloc iram\n"); return -ENOMEM; } dev->workqueue = alloc_workqueue("coda", WQ_UNBOUND | WQ_MEM_RECLAIM, 1); if (!dev->workqueue) { dev_err(&pdev->dev, "unable to alloc workqueue\n"); return -ENOMEM; } platform_set_drvdata(pdev, dev); return coda_firmware_request(dev); } static int coda_remove(struct platform_device *pdev) { struct coda_dev *dev = platform_get_drvdata(pdev); video_unregister_device(&dev->vfd); if (dev->m2m_dev) v4l2_m2m_release(dev->m2m_dev); if (dev->alloc_ctx) vb2_dma_contig_cleanup_ctx(dev->alloc_ctx); v4l2_device_unregister(&dev->v4l2_dev); destroy_workqueue(dev->workqueue); if (dev->iram.vaddr) gen_pool_free(dev->iram_pool, (unsigned long)dev->iram.vaddr, dev->iram.size); coda_free_aux_buf(dev, &dev->codebuf); coda_free_aux_buf(dev, &dev->tempbuf); coda_free_aux_buf(dev, &dev->workbuf); return 0; } static struct platform_driver coda_driver = { .probe = coda_probe, .remove = coda_remove, .driver = { .name = CODA_NAME, .owner = THIS_MODULE, .of_match_table = of_match_ptr(coda_dt_ids), }, .id_table = coda_platform_ids, }; module_platform_driver(coda_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Javier Martin "); MODULE_DESCRIPTION("Coda multi-standard codec V4L2 driver");