/* * amd5536.c -- AMD 5536 UDC high/full speed USB device controller * * Copyright (C) 2005-2007 AMD (http://www.amd.com) * Author: Thomas Dahlmann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ /* * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it * provides 4 IN and 4 OUT endpoints (bulk or interrupt type). * * Make sure that UDC is assigned to port 4 by BIOS settings (port can also * be used as host port) and UOC bits PAD_EN and APU are set (should be done * by BIOS init). * * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0") * can be used with gadget ether. */ /* debug control */ /* #define UDC_VERBOSE */ /* Driver strings */ #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller" #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $" /* system */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* gadget stack */ #include #include /* udc specific */ #include "amd5536udc.h" static void udc_tasklet_disconnect(unsigned long); static void empty_req_queue(struct udc_ep *); static int udc_probe(struct udc *dev); static void udc_basic_init(struct udc *dev); static void udc_setup_endpoints(struct udc *dev); static void udc_soft_reset(struct udc *dev); static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep); static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq); static int udc_free_dma_chain(struct udc *dev, struct udc_request *req); static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req, unsigned long buf_len, gfp_t gfp_flags); static int udc_remote_wakeup(struct udc *dev); static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id); static void udc_pci_remove(struct pci_dev *pdev); /* description */ static const char mod_desc[] = UDC_MOD_DESCRIPTION; static const char name[] = "amd5536udc"; /* structure to hold endpoint function pointers */ static const struct usb_ep_ops udc_ep_ops; /* received setup data */ static union udc_setup_data setup_data; /* pointer to device object */ static struct udc *udc; /* irq spin lock for soft reset */ static DEFINE_SPINLOCK(udc_irq_spinlock); /* stall spin lock */ static DEFINE_SPINLOCK(udc_stall_spinlock); /* * slave mode: pending bytes in rx fifo after nyet, * used if EPIN irq came but no req was available */ static unsigned int udc_rxfifo_pending; /* count soft resets after suspend to avoid loop */ static int soft_reset_occured; static int soft_reset_after_usbreset_occured; /* timer */ static struct timer_list udc_timer; static int stop_timer; /* set_rde -- Is used to control enabling of RX DMA. Problem is * that UDC has only one bit (RDE) to enable/disable RX DMA for * all OUT endpoints. So we have to handle race conditions like * when OUT data reaches the fifo but no request was queued yet. * This cannot be solved by letting the RX DMA disabled until a * request gets queued because there may be other OUT packets * in the FIFO (important for not blocking control traffic). * The value of set_rde controls the correspondig timer. * * set_rde -1 == not used, means it is alloed to be set to 0 or 1 * set_rde 0 == do not touch RDE, do no start the RDE timer * set_rde 1 == timer function will look whether FIFO has data * set_rde 2 == set by timer function to enable RX DMA on next call */ static int set_rde = -1; static DECLARE_COMPLETION(on_exit); static struct timer_list udc_pollstall_timer; static int stop_pollstall_timer; static DECLARE_COMPLETION(on_pollstall_exit); /* tasklet for usb disconnect */ static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect, (unsigned long) &udc); /* endpoint names used for print */ static const char ep0_string[] = "ep0in"; static const char *ep_string[] = { ep0_string, "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk", "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk", "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk", "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk", "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk", "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk", "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk" }; /* DMA usage flag */ static bool use_dma = 1; /* packet per buffer dma */ static bool use_dma_ppb = 1; /* with per descr. update */ static bool use_dma_ppb_du; /* buffer fill mode */ static int use_dma_bufferfill_mode; /* full speed only mode */ static bool use_fullspeed; /* tx buffer size for high speed */ static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE; /* module parameters */ module_param(use_dma, bool, S_IRUGO); MODULE_PARM_DESC(use_dma, "true for DMA"); module_param(use_dma_ppb, bool, S_IRUGO); MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode"); module_param(use_dma_ppb_du, bool, S_IRUGO); MODULE_PARM_DESC(use_dma_ppb_du, "true for DMA in packet per buffer mode with descriptor update"); module_param(use_fullspeed, bool, S_IRUGO); MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only"); /*---------------------------------------------------------------------------*/ /* Prints UDC device registers and endpoint irq registers */ static void print_regs(struct udc *dev) { DBG(dev, "------- Device registers -------\n"); DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg)); DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl)); DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts)); DBG(dev, "\n"); DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts)); DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk)); DBG(dev, "\n"); DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts)); DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk)); DBG(dev, "\n"); DBG(dev, "USE DMA = %d\n", use_dma); if (use_dma && use_dma_ppb && !use_dma_ppb_du) { DBG(dev, "DMA mode = PPBNDU (packet per buffer " "WITHOUT desc. update)\n"); dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU"); } else if (use_dma && use_dma_ppb && use_dma_ppb_du) { DBG(dev, "DMA mode = PPBDU (packet per buffer " "WITH desc. update)\n"); dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU"); } if (use_dma && use_dma_bufferfill_mode) { DBG(dev, "DMA mode = BF (buffer fill mode)\n"); dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF"); } if (!use_dma) dev_info(&dev->pdev->dev, "FIFO mode\n"); DBG(dev, "-------------------------------------------------------\n"); } /* Masks unused interrupts */ static int udc_mask_unused_interrupts(struct udc *dev) { u32 tmp; /* mask all dev interrupts */ tmp = AMD_BIT(UDC_DEVINT_SVC) | AMD_BIT(UDC_DEVINT_ENUM) | AMD_BIT(UDC_DEVINT_US) | AMD_BIT(UDC_DEVINT_UR) | AMD_BIT(UDC_DEVINT_ES) | AMD_BIT(UDC_DEVINT_SI) | AMD_BIT(UDC_DEVINT_SOF)| AMD_BIT(UDC_DEVINT_SC); writel(tmp, &dev->regs->irqmsk); /* mask all ep interrupts */ writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk); return 0; } /* Enables endpoint 0 interrupts */ static int udc_enable_ep0_interrupts(struct udc *dev) { u32 tmp; DBG(dev, "udc_enable_ep0_interrupts()\n"); /* read irq mask */ tmp = readl(&dev->regs->ep_irqmsk); /* enable ep0 irq's */ tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0) & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0); writel(tmp, &dev->regs->ep_irqmsk); return 0; } /* Enables device interrupts for SET_INTF and SET_CONFIG */ static int udc_enable_dev_setup_interrupts(struct udc *dev) { u32 tmp; DBG(dev, "enable device interrupts for setup data\n"); /* read irq mask */ tmp = readl(&dev->regs->irqmsk); /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */ tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI) & AMD_UNMASK_BIT(UDC_DEVINT_SC) & AMD_UNMASK_BIT(UDC_DEVINT_UR) & AMD_UNMASK_BIT(UDC_DEVINT_SVC) & AMD_UNMASK_BIT(UDC_DEVINT_ENUM); writel(tmp, &dev->regs->irqmsk); return 0; } /* Calculates fifo start of endpoint based on preceding endpoints */ static int udc_set_txfifo_addr(struct udc_ep *ep) { struct udc *dev; u32 tmp; int i; if (!ep || !(ep->in)) return -EINVAL; dev = ep->dev; ep->txfifo = dev->txfifo; /* traverse ep's */ for (i = 0; i < ep->num; i++) { if (dev->ep[i].regs) { /* read fifo size */ tmp = readl(&dev->ep[i].regs->bufin_framenum); tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE); ep->txfifo += tmp; } } return 0; } /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */ static u32 cnak_pending; static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num) { if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) { DBG(ep->dev, "NAK could not be cleared for ep%d\n", num); cnak_pending |= 1 << (num); ep->naking = 1; } else cnak_pending = cnak_pending & (~(1 << (num))); } /* Enables endpoint, is called by gadget driver */ static int udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc) { struct udc_ep *ep; struct udc *dev; u32 tmp; unsigned long iflags; u8 udc_csr_epix; unsigned maxpacket; if (!usbep || usbep->name == ep0_string || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) return -EINVAL; ep = container_of(usbep, struct udc_ep, ep); dev = ep->dev; DBG(dev, "udc_ep_enable() ep %d\n", ep->num); if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) return -ESHUTDOWN; spin_lock_irqsave(&dev->lock, iflags); ep->desc = desc; ep->halted = 0; /* set traffic type */ tmp = readl(&dev->ep[ep->num].regs->ctl); tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET); writel(tmp, &dev->ep[ep->num].regs->ctl); /* set max packet size */ maxpacket = usb_endpoint_maxp(desc); tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt); tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE); ep->ep.maxpacket = maxpacket; writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt); /* IN ep */ if (ep->in) { /* ep ix in UDC CSR register space */ udc_csr_epix = ep->num; /* set buffer size (tx fifo entries) */ tmp = readl(&dev->ep[ep->num].regs->bufin_framenum); /* double buffering: fifo size = 2 x max packet size */ tmp = AMD_ADDBITS( tmp, maxpacket * UDC_EPIN_BUFF_SIZE_MULT / UDC_DWORD_BYTES, UDC_EPIN_BUFF_SIZE); writel(tmp, &dev->ep[ep->num].regs->bufin_framenum); /* calc. tx fifo base addr */ udc_set_txfifo_addr(ep); /* flush fifo */ tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_F); writel(tmp, &ep->regs->ctl); /* OUT ep */ } else { /* ep ix in UDC CSR register space */ udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; /* set max packet size UDC CSR */ tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]); tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT); writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]); if (use_dma && !ep->in) { /* alloc and init BNA dummy request */ ep->bna_dummy_req = udc_alloc_bna_dummy(ep); ep->bna_occurred = 0; } if (ep->num != UDC_EP0OUT_IX) dev->data_ep_enabled = 1; } /* set ep values */ tmp = readl(&dev->csr->ne[udc_csr_epix]); /* max packet */ tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT); /* ep number */ tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM); /* ep direction */ tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR); /* ep type */ tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE); /* ep config */ tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG); /* ep interface */ tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF); /* ep alt */ tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT); /* write reg */ writel(tmp, &dev->csr->ne[udc_csr_epix]); /* enable ep irq */ tmp = readl(&dev->regs->ep_irqmsk); tmp &= AMD_UNMASK_BIT(ep->num); writel(tmp, &dev->regs->ep_irqmsk); /* * clear NAK by writing CNAK * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written */ if (!use_dma || ep->in) { tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &ep->regs->ctl); ep->naking = 0; UDC_QUEUE_CNAK(ep, ep->num); } tmp = desc->bEndpointAddress; DBG(dev, "%s enabled\n", usbep->name); spin_unlock_irqrestore(&dev->lock, iflags); return 0; } /* Resets endpoint */ static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep) { u32 tmp; VDBG(ep->dev, "ep-%d reset\n", ep->num); ep->desc = NULL; ep->ep.desc = NULL; ep->ep.ops = &udc_ep_ops; INIT_LIST_HEAD(&ep->queue); ep->ep.maxpacket = (u16) ~0; /* set NAK */ tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_SNAK); writel(tmp, &ep->regs->ctl); ep->naking = 1; /* disable interrupt */ tmp = readl(®s->ep_irqmsk); tmp |= AMD_BIT(ep->num); writel(tmp, ®s->ep_irqmsk); if (ep->in) { /* unset P and IN bit of potential former DMA */ tmp = readl(&ep->regs->ctl); tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P); writel(tmp, &ep->regs->ctl); tmp = readl(&ep->regs->sts); tmp |= AMD_BIT(UDC_EPSTS_IN); writel(tmp, &ep->regs->sts); /* flush the fifo */ tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_F); writel(tmp, &ep->regs->ctl); } /* reset desc pointer */ writel(0, &ep->regs->desptr); } /* Disables endpoint, is called by gadget driver */ static int udc_ep_disable(struct usb_ep *usbep) { struct udc_ep *ep = NULL; unsigned long iflags; if (!usbep) return -EINVAL; ep = container_of(usbep, struct udc_ep, ep); if (usbep->name == ep0_string || !ep->desc) return -EINVAL; DBG(ep->dev, "Disable ep-%d\n", ep->num); spin_lock_irqsave(&ep->dev->lock, iflags); udc_free_request(&ep->ep, &ep->bna_dummy_req->req); empty_req_queue(ep); ep_init(ep->dev->regs, ep); spin_unlock_irqrestore(&ep->dev->lock, iflags); return 0; } /* Allocates request packet, called by gadget driver */ static struct usb_request * udc_alloc_request(struct usb_ep *usbep, gfp_t gfp) { struct udc_request *req; struct udc_data_dma *dma_desc; struct udc_ep *ep; if (!usbep) return NULL; ep = container_of(usbep, struct udc_ep, ep); VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num); req = kzalloc(sizeof(struct udc_request), gfp); if (!req) return NULL; req->req.dma = DMA_DONT_USE; INIT_LIST_HEAD(&req->queue); if (ep->dma) { /* ep0 in requests are allocated from data pool here */ dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp, &req->td_phys); if (!dma_desc) { kfree(req); return NULL; } VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, " "td_phys = %lx\n", req, dma_desc, (unsigned long)req->td_phys); /* prevent from using desc. - set HOST BUSY */ dma_desc->status = AMD_ADDBITS(dma_desc->status, UDC_DMA_STP_STS_BS_HOST_BUSY, UDC_DMA_STP_STS_BS); dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE); req->td_data = dma_desc; req->td_data_last = NULL; req->chain_len = 1; } return &req->req; } /* Frees request packet, called by gadget driver */ static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq) { struct udc_ep *ep; struct udc_request *req; if (!usbep || !usbreq) return; ep = container_of(usbep, struct udc_ep, ep); req = container_of(usbreq, struct udc_request, req); VDBG(ep->dev, "free_req req=%p\n", req); BUG_ON(!list_empty(&req->queue)); if (req->td_data) { VDBG(ep->dev, "req->td_data=%p\n", req->td_data); /* free dma chain if created */ if (req->chain_len > 1) udc_free_dma_chain(ep->dev, req); pci_pool_free(ep->dev->data_requests, req->td_data, req->td_phys); } kfree(req); } /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */ static void udc_init_bna_dummy(struct udc_request *req) { if (req) { /* set last bit */ req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L); /* set next pointer to itself */ req->td_data->next = req->td_phys; /* set HOST BUSY */ req->td_data->status = AMD_ADDBITS(req->td_data->status, UDC_DMA_STP_STS_BS_DMA_DONE, UDC_DMA_STP_STS_BS); #ifdef UDC_VERBOSE pr_debug("bna desc = %p, sts = %08x\n", req->td_data, req->td_data->status); #endif } } /* Allocate BNA dummy descriptor */ static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep) { struct udc_request *req = NULL; struct usb_request *_req = NULL; /* alloc the dummy request */ _req = udc_alloc_request(&ep->ep, GFP_ATOMIC); if (_req) { req = container_of(_req, struct udc_request, req); ep->bna_dummy_req = req; udc_init_bna_dummy(req); } return req; } /* Write data to TX fifo for IN packets */ static void udc_txfifo_write(struct udc_ep *ep, struct usb_request *req) { u8 *req_buf; u32 *buf; int i, j; unsigned bytes = 0; unsigned remaining = 0; if (!req || !ep) return; req_buf = req->buf + req->actual; prefetch(req_buf); remaining = req->length - req->actual; buf = (u32 *) req_buf; bytes = ep->ep.maxpacket; if (bytes > remaining) bytes = remaining; /* dwords first */ for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) writel(*(buf + i), ep->txfifo); /* remaining bytes must be written by byte access */ for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) { writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)), ep->txfifo); } /* dummy write confirm */ writel(0, &ep->regs->confirm); } /* Read dwords from RX fifo for OUT transfers */ static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords) { int i; VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords); for (i = 0; i < dwords; i++) *(buf + i) = readl(dev->rxfifo); return 0; } /* Read bytes from RX fifo for OUT transfers */ static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes) { int i, j; u32 tmp; VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes); /* dwords first */ for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo); /* remaining bytes must be read by byte access */ if (bytes % UDC_DWORD_BYTES) { tmp = readl(dev->rxfifo); for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) { *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK); tmp = tmp >> UDC_BITS_PER_BYTE; } } return 0; } /* Read data from RX fifo for OUT transfers */ static int udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req) { u8 *buf; unsigned buf_space; unsigned bytes = 0; unsigned finished = 0; /* received number bytes */ bytes = readl(&ep->regs->sts); bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE); buf_space = req->req.length - req->req.actual; buf = req->req.buf + req->req.actual; if (bytes > buf_space) { if ((buf_space % ep->ep.maxpacket) != 0) { DBG(ep->dev, "%s: rx %d bytes, rx-buf space = %d bytesn\n", ep->ep.name, bytes, buf_space); req->req.status = -EOVERFLOW; } bytes = buf_space; } req->req.actual += bytes; /* last packet ? */ if (((bytes % ep->ep.maxpacket) != 0) || (!bytes) || ((req->req.actual == req->req.length) && !req->req.zero)) finished = 1; /* read rx fifo bytes */ VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes); udc_rxfifo_read_bytes(ep->dev, buf, bytes); return finished; } /* create/re-init a DMA descriptor or a DMA descriptor chain */ static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp) { int retval = 0; u32 tmp; VDBG(ep->dev, "prep_dma\n"); VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n", ep->num, req->td_data); /* set buffer pointer */ req->td_data->bufptr = req->req.dma; /* set last bit */ req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L); /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */ if (use_dma_ppb) { retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp); if (retval != 0) { if (retval == -ENOMEM) DBG(ep->dev, "Out of DMA memory\n"); return retval; } if (ep->in) { if (req->req.length == ep->ep.maxpacket) { /* write tx bytes */ req->td_data->status = AMD_ADDBITS(req->td_data->status, ep->ep.maxpacket, UDC_DMA_IN_STS_TXBYTES); } } } if (ep->in) { VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d " "maxpacket=%d ep%d\n", use_dma_ppb, req->req.length, ep->ep.maxpacket, ep->num); /* * if bytes < max packet then tx bytes must * be written in packet per buffer mode */ if (!use_dma_ppb || req->req.length < ep->ep.maxpacket || ep->num == UDC_EP0OUT_IX || ep->num == UDC_EP0IN_IX) { /* write tx bytes */ req->td_data->status = AMD_ADDBITS(req->td_data->status, req->req.length, UDC_DMA_IN_STS_TXBYTES); /* reset frame num */ req->td_data->status = AMD_ADDBITS(req->td_data->status, 0, UDC_DMA_IN_STS_FRAMENUM); } /* set HOST BUSY */ req->td_data->status = AMD_ADDBITS(req->td_data->status, UDC_DMA_STP_STS_BS_HOST_BUSY, UDC_DMA_STP_STS_BS); } else { VDBG(ep->dev, "OUT set host ready\n"); /* set HOST READY */ req->td_data->status = AMD_ADDBITS(req->td_data->status, UDC_DMA_STP_STS_BS_HOST_READY, UDC_DMA_STP_STS_BS); /* clear NAK by writing CNAK */ if (ep->naking) { tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &ep->regs->ctl); ep->naking = 0; UDC_QUEUE_CNAK(ep, ep->num); } } return retval; } /* Completes request packet ... caller MUST hold lock */ static void complete_req(struct udc_ep *ep, struct udc_request *req, int sts) __releases(ep->dev->lock) __acquires(ep->dev->lock) { struct udc *dev; unsigned halted; VDBG(ep->dev, "complete_req(): ep%d\n", ep->num); dev = ep->dev; /* unmap DMA */ if (req->dma_mapping) { if (ep->in) pci_unmap_single(dev->pdev, req->req.dma, req->req.length, PCI_DMA_TODEVICE); else pci_unmap_single(dev->pdev, req->req.dma, req->req.length, PCI_DMA_FROMDEVICE); req->dma_mapping = 0; req->req.dma = DMA_DONT_USE; } halted = ep->halted; ep->halted = 1; /* set new status if pending */ if (req->req.status == -EINPROGRESS) req->req.status = sts; /* remove from ep queue */ list_del_init(&req->queue); VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n", &req->req, req->req.length, ep->ep.name, sts); spin_unlock(&dev->lock); req->req.complete(&ep->ep, &req->req); spin_lock(&dev->lock); ep->halted = halted; } /* frees pci pool descriptors of a DMA chain */ static int udc_free_dma_chain(struct udc *dev, struct udc_request *req) { int ret_val = 0; struct udc_data_dma *td; struct udc_data_dma *td_last = NULL; unsigned int i; DBG(dev, "free chain req = %p\n", req); /* do not free first desc., will be done by free for request */ td_last = req->td_data; td = phys_to_virt(td_last->next); for (i = 1; i < req->chain_len; i++) { pci_pool_free(dev->data_requests, td, (dma_addr_t) td_last->next); td_last = td; td = phys_to_virt(td_last->next); } return ret_val; } /* Iterates to the end of a DMA chain and returns last descriptor */ static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req) { struct udc_data_dma *td; td = req->td_data; while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) td = phys_to_virt(td->next); return td; } /* Iterates to the end of a DMA chain and counts bytes received */ static u32 udc_get_ppbdu_rxbytes(struct udc_request *req) { struct udc_data_dma *td; u32 count; td = req->td_data; /* received number bytes */ count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES); while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) { td = phys_to_virt(td->next); /* received number bytes */ if (td) { count += AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES); } } return count; } /* Creates or re-inits a DMA chain */ static int udc_create_dma_chain( struct udc_ep *ep, struct udc_request *req, unsigned long buf_len, gfp_t gfp_flags ) { unsigned long bytes = req->req.length; unsigned int i; dma_addr_t dma_addr; struct udc_data_dma *td = NULL; struct udc_data_dma *last = NULL; unsigned long txbytes; unsigned create_new_chain = 0; unsigned len; VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n", bytes, buf_len); dma_addr = DMA_DONT_USE; /* unset L bit in first desc for OUT */ if (!ep->in) req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L); /* alloc only new desc's if not already available */ len = req->req.length / ep->ep.maxpacket; if (req->req.length % ep->ep.maxpacket) len++; if (len > req->chain_len) { /* shorter chain already allocated before */ if (req->chain_len > 1) udc_free_dma_chain(ep->dev, req); req->chain_len = len; create_new_chain = 1; } td = req->td_data; /* gen. required number of descriptors and buffers */ for (i = buf_len; i < bytes; i += buf_len) { /* create or determine next desc. */ if (create_new_chain) { td = pci_pool_alloc(ep->dev->data_requests, gfp_flags, &dma_addr); if (!td) return -ENOMEM; td->status = 0; } else if (i == buf_len) { /* first td */ td = (struct udc_data_dma *) phys_to_virt( req->td_data->next); td->status = 0; } else { td = (struct udc_data_dma *) phys_to_virt(last->next); td->status = 0; } if (td) td->bufptr = req->req.dma + i; /* assign buffer */ else break; /* short packet ? */ if ((bytes - i) >= buf_len) { txbytes = buf_len; } else { /* short packet */ txbytes = bytes - i; } /* link td and assign tx bytes */ if (i == buf_len) { if (create_new_chain) req->td_data->next = dma_addr; /* else req->td_data->next = virt_to_phys(td); */ /* write tx bytes */ if (ep->in) { /* first desc */ req->td_data->status = AMD_ADDBITS(req->td_data->status, ep->ep.maxpacket, UDC_DMA_IN_STS_TXBYTES); /* second desc */ td->status = AMD_ADDBITS(td->status, txbytes, UDC_DMA_IN_STS_TXBYTES); } } else { if (create_new_chain) last->next = dma_addr; /* else last->next = virt_to_phys(td); */ if (ep->in) { /* write tx bytes */ td->status = AMD_ADDBITS(td->status, txbytes, UDC_DMA_IN_STS_TXBYTES); } } last = td; } /* set last bit */ if (td) { td->status |= AMD_BIT(UDC_DMA_IN_STS_L); /* last desc. points to itself */ req->td_data_last = td; } return 0; } /* Enabling RX DMA */ static void udc_set_rde(struct udc *dev) { u32 tmp; VDBG(dev, "udc_set_rde()\n"); /* stop RDE timer */ if (timer_pending(&udc_timer)) { set_rde = 0; mod_timer(&udc_timer, jiffies - 1); } /* set RDE */ tmp = readl(&dev->regs->ctl); tmp |= AMD_BIT(UDC_DEVCTL_RDE); writel(tmp, &dev->regs->ctl); } /* Queues a request packet, called by gadget driver */ static int udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp) { int retval = 0; u8 open_rxfifo = 0; unsigned long iflags; struct udc_ep *ep; struct udc_request *req; struct udc *dev; u32 tmp; /* check the inputs */ req = container_of(usbreq, struct udc_request, req); if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf || !list_empty(&req->queue)) return -EINVAL; ep = container_of(usbep, struct udc_ep, ep); if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX)) return -EINVAL; VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in); dev = ep->dev; if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) return -ESHUTDOWN; /* map dma (usually done before) */ if (ep->dma && usbreq->length != 0 && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) { VDBG(dev, "DMA map req %p\n", req); if (ep->in) usbreq->dma = pci_map_single(dev->pdev, usbreq->buf, usbreq->length, PCI_DMA_TODEVICE); else usbreq->dma = pci_map_single(dev->pdev, usbreq->buf, usbreq->length, PCI_DMA_FROMDEVICE); req->dma_mapping = 1; } VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n", usbep->name, usbreq, usbreq->length, req->td_data, usbreq->buf); spin_lock_irqsave(&dev->lock, iflags); usbreq->actual = 0; usbreq->status = -EINPROGRESS; req->dma_done = 0; /* on empty queue just do first transfer */ if (list_empty(&ep->queue)) { /* zlp */ if (usbreq->length == 0) { /* IN zlp's are handled by hardware */ complete_req(ep, req, 0); VDBG(dev, "%s: zlp\n", ep->ep.name); /* * if set_config or set_intf is waiting for ack by zlp * then set CSR_DONE */ if (dev->set_cfg_not_acked) { tmp = readl(&dev->regs->ctl); tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE); writel(tmp, &dev->regs->ctl); dev->set_cfg_not_acked = 0; } /* setup command is ACK'ed now by zlp */ if (dev->waiting_zlp_ack_ep0in) { /* clear NAK by writing CNAK in EP0_IN */ tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); dev->ep[UDC_EP0IN_IX].naking = 0; UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX); dev->waiting_zlp_ack_ep0in = 0; } goto finished; } if (ep->dma) { retval = prep_dma(ep, req, gfp); if (retval != 0) goto finished; /* write desc pointer to enable DMA */ if (ep->in) { /* set HOST READY */ req->td_data->status = AMD_ADDBITS(req->td_data->status, UDC_DMA_IN_STS_BS_HOST_READY, UDC_DMA_IN_STS_BS); } /* disabled rx dma while descriptor update */ if (!ep->in) { /* stop RDE timer */ if (timer_pending(&udc_timer)) { set_rde = 0; mod_timer(&udc_timer, jiffies - 1); } /* clear RDE */ tmp = readl(&dev->regs->ctl); tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE); writel(tmp, &dev->regs->ctl); open_rxfifo = 1; /* * if BNA occurred then let BNA dummy desc. * point to current desc. */ if (ep->bna_occurred) { VDBG(dev, "copy to BNA dummy desc.\n"); memcpy(ep->bna_dummy_req->td_data, req->td_data, sizeof(struct udc_data_dma)); } } /* write desc pointer */ writel(req->td_phys, &ep->regs->desptr); /* clear NAK by writing CNAK */ if (ep->naking) { tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &ep->regs->ctl); ep->naking = 0; UDC_QUEUE_CNAK(ep, ep->num); } if (ep->in) { /* enable ep irq */ tmp = readl(&dev->regs->ep_irqmsk); tmp &= AMD_UNMASK_BIT(ep->num); writel(tmp, &dev->regs->ep_irqmsk); } } else if (ep->in) { /* enable ep irq */ tmp = readl(&dev->regs->ep_irqmsk); tmp &= AMD_UNMASK_BIT(ep->num); writel(tmp, &dev->regs->ep_irqmsk); } } else if (ep->dma) { /* * prep_dma not used for OUT ep's, this is not possible * for PPB modes, because of chain creation reasons */ if (ep->in) { retval = prep_dma(ep, req, gfp); if (retval != 0) goto finished; } } VDBG(dev, "list_add\n"); /* add request to ep queue */ if (req) { list_add_tail(&req->queue, &ep->queue); /* open rxfifo if out data queued */ if (open_rxfifo) { /* enable DMA */ req->dma_going = 1; udc_set_rde(dev); if (ep->num != UDC_EP0OUT_IX) dev->data_ep_queued = 1; } /* stop OUT naking */ if (!ep->in) { if (!use_dma && udc_rxfifo_pending) { DBG(dev, "udc_queue(): pending bytes in " "rxfifo after nyet\n"); /* * read pending bytes afer nyet: * referring to isr */ if (udc_rxfifo_read(ep, req)) { /* finish */ complete_req(ep, req, 0); } udc_rxfifo_pending = 0; } } } finished: spin_unlock_irqrestore(&dev->lock, iflags); return retval; } /* Empty request queue of an endpoint; caller holds spinlock */ static void empty_req_queue(struct udc_ep *ep) { struct udc_request *req; ep->halted = 1; while (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct udc_request, queue); complete_req(ep, req, -ESHUTDOWN); } } /* Dequeues a request packet, called by gadget driver */ static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq) { struct udc_ep *ep; struct udc_request *req; unsigned halted; unsigned long iflags; ep = container_of(usbep, struct udc_ep, ep); if (!usbep || !usbreq || (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))) return -EINVAL; req = container_of(usbreq, struct udc_request, req); spin_lock_irqsave(&ep->dev->lock, iflags); halted = ep->halted; ep->halted = 1; /* request in processing or next one */ if (ep->queue.next == &req->queue) { if (ep->dma && req->dma_going) { if (ep->in) ep->cancel_transfer = 1; else { u32 tmp; u32 dma_sts; /* stop potential receive DMA */ tmp = readl(&udc->regs->ctl); writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE), &udc->regs->ctl); /* * Cancel transfer later in ISR * if descriptor was touched. */ dma_sts = AMD_GETBITS(req->td_data->status, UDC_DMA_OUT_STS_BS); if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY) ep->cancel_transfer = 1; else { udc_init_bna_dummy(ep->req); writel(ep->bna_dummy_req->td_phys, &ep->regs->desptr); } writel(tmp, &udc->regs->ctl); } } } complete_req(ep, req, -ECONNRESET); ep->halted = halted; spin_unlock_irqrestore(&ep->dev->lock, iflags); return 0; } /* Halt or clear halt of endpoint */ static int udc_set_halt(struct usb_ep *usbep, int halt) { struct udc_ep *ep; u32 tmp; unsigned long iflags; int retval = 0; if (!usbep) return -EINVAL; pr_debug("set_halt %s: halt=%d\n", usbep->name, halt); ep = container_of(usbep, struct udc_ep, ep); if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX)) return -EINVAL; if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN) return -ESHUTDOWN; spin_lock_irqsave(&udc_stall_spinlock, iflags); /* halt or clear halt */ if (halt) { if (ep->num == 0) ep->dev->stall_ep0in = 1; else { /* * set STALL * rxfifo empty not taken into acount */ tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_S); writel(tmp, &ep->regs->ctl); ep->halted = 1; /* setup poll timer */ if (!timer_pending(&udc_pollstall_timer)) { udc_pollstall_timer.expires = jiffies + HZ * UDC_POLLSTALL_TIMER_USECONDS / (1000 * 1000); if (!stop_pollstall_timer) { DBG(ep->dev, "start polltimer\n"); add_timer(&udc_pollstall_timer); } } } } else { /* ep is halted by set_halt() before */ if (ep->halted) { tmp = readl(&ep->regs->ctl); /* clear stall bit */ tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); /* clear NAK by writing CNAK */ tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &ep->regs->ctl); ep->halted = 0; UDC_QUEUE_CNAK(ep, ep->num); } } spin_unlock_irqrestore(&udc_stall_spinlock, iflags); return retval; } /* gadget interface */ static const struct usb_ep_ops udc_ep_ops = { .enable = udc_ep_enable, .disable = udc_ep_disable, .alloc_request = udc_alloc_request, .free_request = udc_free_request, .queue = udc_queue, .dequeue = udc_dequeue, .set_halt = udc_set_halt, /* fifo ops not implemented */ }; /*-------------------------------------------------------------------------*/ /* Get frame counter (not implemented) */ static int udc_get_frame(struct usb_gadget *gadget) { return -EOPNOTSUPP; } /* Remote wakeup gadget interface */ static int udc_wakeup(struct usb_gadget *gadget) { struct udc *dev; if (!gadget) return -EINVAL; dev = container_of(gadget, struct udc, gadget); udc_remote_wakeup(dev); return 0; } static int amd5536_start(struct usb_gadget_driver *driver, int (*bind)(struct usb_gadget *)); static int amd5536_stop(struct usb_gadget_driver *driver); /* gadget operations */ static const struct usb_gadget_ops udc_ops = { .wakeup = udc_wakeup, .get_frame = udc_get_frame, .start = amd5536_start, .stop = amd5536_stop, }; /* Setups endpoint parameters, adds endpoints to linked list */ static void make_ep_lists(struct udc *dev) { /* make gadget ep lists */ INIT_LIST_HEAD(&dev->gadget.ep_list); list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list, &dev->gadget.ep_list); list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list, &dev->gadget.ep_list); list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list, &dev->gadget.ep_list); /* fifo config */ dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE; if (dev->gadget.speed == USB_SPEED_FULL) dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE; else if (dev->gadget.speed == USB_SPEED_HIGH) dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf; dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE; } /* init registers at driver load time */ static int startup_registers(struct udc *dev) { u32 tmp; /* init controller by soft reset */ udc_soft_reset(dev); /* mask not needed interrupts */ udc_mask_unused_interrupts(dev); /* put into initial config */ udc_basic_init(dev); /* link up all endpoints */ udc_setup_endpoints(dev); /* program speed */ tmp = readl(&dev->regs->cfg); if (use_fullspeed) tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD); else tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD); writel(tmp, &dev->regs->cfg); return 0; } /* Inits UDC context */ static void udc_basic_init(struct udc *dev) { u32 tmp; DBG(dev, "udc_basic_init()\n"); dev->gadget.speed = USB_SPEED_UNKNOWN; /* stop RDE timer */ if (timer_pending(&udc_timer)) { set_rde = 0; mod_timer(&udc_timer, jiffies - 1); } /* stop poll stall timer */ if (timer_pending(&udc_pollstall_timer)) mod_timer(&udc_pollstall_timer, jiffies - 1); /* disable DMA */ tmp = readl(&dev->regs->ctl); tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE); tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE); writel(tmp, &dev->regs->ctl); /* enable dynamic CSR programming */ tmp = readl(&dev->regs->cfg); tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG); /* set self powered */ tmp |= AMD_BIT(UDC_DEVCFG_SP); /* set remote wakeupable */ tmp |= AMD_BIT(UDC_DEVCFG_RWKP); writel(tmp, &dev->regs->cfg); make_ep_lists(dev); dev->data_ep_enabled = 0; dev->data_ep_queued = 0; } /* Sets initial endpoint parameters */ static void udc_setup_endpoints(struct udc *dev) { struct udc_ep *ep; u32 tmp; u32 reg; DBG(dev, "udc_setup_endpoints()\n"); /* read enum speed */ tmp = readl(&dev->regs->sts); tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED); if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) dev->gadget.speed = USB_SPEED_HIGH; else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) dev->gadget.speed = USB_SPEED_FULL; /* set basic ep parameters */ for (tmp = 0; tmp < UDC_EP_NUM; tmp++) { ep = &dev->ep[tmp]; ep->dev = dev; ep->ep.name = ep_string[tmp]; ep->num = tmp; /* txfifo size is calculated at enable time */ ep->txfifo = dev->txfifo; /* fifo size */ if (tmp < UDC_EPIN_NUM) { ep->fifo_depth = UDC_TXFIFO_SIZE; ep->in = 1; } else { ep->fifo_depth = UDC_RXFIFO_SIZE; ep->in = 0; } ep->regs = &dev->ep_regs[tmp]; /* * ep will be reset only if ep was not enabled before to avoid * disabling ep interrupts when ENUM interrupt occurs but ep is * not enabled by gadget driver */ if (!ep->desc) ep_init(dev->regs, ep); if (use_dma) { /* * ep->dma is not really used, just to indicate that * DMA is active: remove this * dma regs = dev control regs */ ep->dma = &dev->regs->ctl; /* nak OUT endpoints until enable - not for ep0 */ if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX && tmp > UDC_EPIN_NUM) { /* set NAK */ reg = readl(&dev->ep[tmp].regs->ctl); reg |= AMD_BIT(UDC_EPCTL_SNAK); writel(reg, &dev->ep[tmp].regs->ctl); dev->ep[tmp].naking = 1; } } } /* EP0 max packet */ if (dev->gadget.speed == USB_SPEED_FULL) { dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE; dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_FS_EP0OUT_MAX_PKT_SIZE; } else if (dev->gadget.speed == USB_SPEED_HIGH) { dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE; dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE; } /* * with suspend bug workaround, ep0 params for gadget driver * are set at gadget driver bind() call */ dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep; dev->ep[UDC_EP0IN_IX].halted = 0; INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); /* init cfg/alt/int */ dev->cur_config = 0; dev->cur_intf = 0; dev->cur_alt = 0; } /* Bringup after Connect event, initial bringup to be ready for ep0 events */ static void usb_connect(struct udc *dev) { dev_info(&dev->pdev->dev, "USB Connect\n"); dev->connected = 1; /* put into initial config */ udc_basic_init(dev); /* enable device setup interrupts */ udc_enable_dev_setup_interrupts(dev); } /* * Calls gadget with disconnect event and resets the UDC and makes * initial bringup to be ready for ep0 events */ static void usb_disconnect(struct udc *dev) { dev_info(&dev->pdev->dev, "USB Disconnect\n"); dev->connected = 0; /* mask interrupts */ udc_mask_unused_interrupts(dev); /* REVISIT there doesn't seem to be a point to having this * talk to a tasklet ... do it directly, we already hold * the spinlock needed to process the disconnect. */ tasklet_schedule(&disconnect_tasklet); } /* Tasklet for disconnect to be outside of interrupt context */ static void udc_tasklet_disconnect(unsigned long par) { struct udc *dev = (struct udc *)(*((struct udc **) par)); u32 tmp; DBG(dev, "Tasklet disconnect\n"); spin_lock_irq(&dev->lock); if (dev->driver) { spin_unlock(&dev->lock); dev->driver->disconnect(&dev->gadget); spin_lock(&dev->lock); /* empty queues */ for (tmp = 0; tmp < UDC_EP_NUM; tmp++) empty_req_queue(&dev->ep[tmp]); } /* disable ep0 */ ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]); if (!soft_reset_occured) { /* init controller by soft reset */ udc_soft_reset(dev); soft_reset_occured++; } /* re-enable dev interrupts */ udc_enable_dev_setup_interrupts(dev); /* back to full speed ? */ if (use_fullspeed) { tmp = readl(&dev->regs->cfg); tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD); writel(tmp, &dev->regs->cfg); } spin_unlock_irq(&dev->lock); } /* Reset the UDC core */ static void udc_soft_reset(struct udc *dev) { unsigned long flags; DBG(dev, "Soft reset\n"); /* * reset possible waiting interrupts, because int. * status is lost after soft reset, * ep int. status reset */ writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts); /* device int. status reset */ writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts); spin_lock_irqsave(&udc_irq_spinlock, flags); writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg); readl(&dev->regs->cfg); spin_unlock_irqrestore(&udc_irq_spinlock, flags); } /* RDE timer callback to set RDE bit */ static void udc_timer_function(unsigned long v) { u32 tmp; spin_lock_irq(&udc_irq_spinlock); if (set_rde > 0) { /* * open the fifo if fifo was filled on last timer call * conditionally */ if (set_rde > 1) { /* set RDE to receive setup data */ tmp = readl(&udc->regs->ctl); tmp |= AMD_BIT(UDC_DEVCTL_RDE); writel(tmp, &udc->regs->ctl); set_rde = -1; } else if (readl(&udc->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) { /* * if fifo empty setup polling, do not just * open the fifo */ udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV; if (!stop_timer) add_timer(&udc_timer); } else { /* * fifo contains data now, setup timer for opening * the fifo when timer expires to be able to receive * setup packets, when data packets gets queued by * gadget layer then timer will forced to expire with * set_rde=0 (RDE is set in udc_queue()) */ set_rde++; /* debug: lhadmot_timer_start = 221070 */ udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS; if (!stop_timer) add_timer(&udc_timer); } } else set_rde = -1; /* RDE was set by udc_queue() */ spin_unlock_irq(&udc_irq_spinlock); if (stop_timer) complete(&on_exit); } /* Handle halt state, used in stall poll timer */ static void udc_handle_halt_state(struct udc_ep *ep) { u32 tmp; /* set stall as long not halted */ if (ep->halted == 1) { tmp = readl(&ep->regs->ctl); /* STALL cleared ? */ if (!(tmp & AMD_BIT(UDC_EPCTL_S))) { /* * FIXME: MSC spec requires that stall remains * even on receivng of CLEAR_FEATURE HALT. So * we would set STALL again here to be compliant. * But with current mass storage drivers this does * not work (would produce endless host retries). * So we clear halt on CLEAR_FEATURE. * DBG(ep->dev, "ep %d: set STALL again\n", ep->num); tmp |= AMD_BIT(UDC_EPCTL_S); writel(tmp, &ep->regs->ctl);*/ /* clear NAK by writing CNAK */ tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &ep->regs->ctl); ep->halted = 0; UDC_QUEUE_CNAK(ep, ep->num); } } } /* Stall timer callback to poll S bit and set it again after */ static void udc_pollstall_timer_function(unsigned long v) { struct udc_ep *ep; int halted = 0; spin_lock_irq(&udc_stall_spinlock); /* * only one IN and OUT endpoints are handled * IN poll stall */ ep = &udc->ep[UDC_EPIN_IX]; udc_handle_halt_state(ep); if (ep->halted) halted = 1; /* OUT poll stall */ ep = &udc->ep[UDC_EPOUT_IX]; udc_handle_halt_state(ep); if (ep->halted) halted = 1; /* setup timer again when still halted */ if (!stop_pollstall_timer && halted) { udc_pollstall_timer.expires = jiffies + HZ * UDC_POLLSTALL_TIMER_USECONDS / (1000 * 1000); add_timer(&udc_pollstall_timer); } spin_unlock_irq(&udc_stall_spinlock); if (stop_pollstall_timer) complete(&on_pollstall_exit); } /* Inits endpoint 0 so that SETUP packets are processed */ static void activate_control_endpoints(struct udc *dev) { u32 tmp; DBG(dev, "activate_control_endpoints\n"); /* flush fifo */ tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_F); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); /* set ep0 directions */ dev->ep[UDC_EP0IN_IX].in = 1; dev->ep[UDC_EP0OUT_IX].in = 0; /* set buffer size (tx fifo entries) of EP0_IN */ tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum); if (dev->gadget.speed == USB_SPEED_FULL) tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE, UDC_EPIN_BUFF_SIZE); else if (dev->gadget.speed == USB_SPEED_HIGH) tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE, UDC_EPIN_BUFF_SIZE); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum); /* set max packet size of EP0_IN */ tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt); if (dev->gadget.speed == USB_SPEED_FULL) tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE, UDC_EP_MAX_PKT_SIZE); else if (dev->gadget.speed == USB_SPEED_HIGH) tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE, UDC_EP_MAX_PKT_SIZE); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt); /* set max packet size of EP0_OUT */ tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt); if (dev->gadget.speed == USB_SPEED_FULL) tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE, UDC_EP_MAX_PKT_SIZE); else if (dev->gadget.speed == USB_SPEED_HIGH) tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE, UDC_EP_MAX_PKT_SIZE); writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt); /* set max packet size of EP0 in UDC CSR */ tmp = readl(&dev->csr->ne[0]); if (dev->gadget.speed == USB_SPEED_FULL) tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE, UDC_CSR_NE_MAX_PKT); else if (dev->gadget.speed == USB_SPEED_HIGH) tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE, UDC_CSR_NE_MAX_PKT); writel(tmp, &dev->csr->ne[0]); if (use_dma) { dev->ep[UDC_EP0OUT_IX].td->status |= AMD_BIT(UDC_DMA_OUT_STS_L); /* write dma desc address */ writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma, &dev->ep[UDC_EP0OUT_IX].regs->subptr); writel(dev->ep[UDC_EP0OUT_IX].td_phys, &dev->ep[UDC_EP0OUT_IX].regs->desptr); /* stop RDE timer */ if (timer_pending(&udc_timer)) { set_rde = 0; mod_timer(&udc_timer, jiffies - 1); } /* stop pollstall timer */ if (timer_pending(&udc_pollstall_timer)) mod_timer(&udc_pollstall_timer, jiffies - 1); /* enable DMA */ tmp = readl(&dev->regs->ctl); tmp |= AMD_BIT(UDC_DEVCTL_MODE) | AMD_BIT(UDC_DEVCTL_RDE) | AMD_BIT(UDC_DEVCTL_TDE); if (use_dma_bufferfill_mode) tmp |= AMD_BIT(UDC_DEVCTL_BF); else if (use_dma_ppb_du) tmp |= AMD_BIT(UDC_DEVCTL_DU); writel(tmp, &dev->regs->ctl); } /* clear NAK by writing CNAK for EP0IN */ tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); dev->ep[UDC_EP0IN_IX].naking = 0; UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX); /* clear NAK by writing CNAK for EP0OUT */ tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl); dev->ep[UDC_EP0OUT_IX].naking = 0; UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX); } /* Make endpoint 0 ready for control traffic */ static int setup_ep0(struct udc *dev) { activate_control_endpoints(dev); /* enable ep0 interrupts */ udc_enable_ep0_interrupts(dev); /* enable device setup interrupts */ udc_enable_dev_setup_interrupts(dev); return 0; } /* Called by gadget driver to register itself */ static int amd5536_start(struct usb_gadget_driver *driver, int (*bind)(struct usb_gadget *)) { struct udc *dev = udc; int retval; u32 tmp; if (!driver || !bind || !driver->setup || driver->max_speed < USB_SPEED_HIGH) return -EINVAL; if (!dev) return -ENODEV; if (dev->driver) return -EBUSY; driver->driver.bus = NULL; dev->driver = driver; dev->gadget.dev.driver = &driver->driver; retval = bind(&dev->gadget); /* Some gadget drivers use both ep0 directions. * NOTE: to gadget driver, ep0 is just one endpoint... */ dev->ep[UDC_EP0OUT_IX].ep.driver_data = dev->ep[UDC_EP0IN_IX].ep.driver_data; if (retval) { DBG(dev, "binding to %s returning %d\n", driver->driver.name, retval); dev->driver = NULL; dev->gadget.dev.driver = NULL; return retval; } /* get ready for ep0 traffic */ setup_ep0(dev); /* clear SD */ tmp = readl(&dev->regs->ctl); tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD); writel(tmp, &dev->regs->ctl); usb_connect(dev); return 0; } /* shutdown requests and disconnect from gadget */ static void shutdown(struct udc *dev, struct usb_gadget_driver *driver) __releases(dev->lock) __acquires(dev->lock) { int tmp; if (dev->gadget.speed != USB_SPEED_UNKNOWN) { spin_unlock(&dev->lock); driver->disconnect(&dev->gadget); spin_lock(&dev->lock); } /* empty queues and init hardware */ udc_basic_init(dev); for (tmp = 0; tmp < UDC_EP_NUM; tmp++) empty_req_queue(&dev->ep[tmp]); udc_setup_endpoints(dev); } /* Called by gadget driver to unregister itself */ static int amd5536_stop(struct usb_gadget_driver *driver) { struct udc *dev = udc; unsigned long flags; u32 tmp; if (!dev) return -ENODEV; if (!driver || driver != dev->driver || !driver->unbind) return -EINVAL; spin_lock_irqsave(&dev->lock, flags); udc_mask_unused_interrupts(dev); shutdown(dev, driver); spin_unlock_irqrestore(&dev->lock, flags); driver->unbind(&dev->gadget); dev->gadget.dev.driver = NULL; dev->driver = NULL; /* set SD */ tmp = readl(&dev->regs->ctl); tmp |= AMD_BIT(UDC_DEVCTL_SD); writel(tmp, &dev->regs->ctl); DBG(dev, "%s: unregistered\n", driver->driver.name); return 0; } /* Clear pending NAK bits */ static void udc_process_cnak_queue(struct udc *dev) { u32 tmp; u32 reg; /* check epin's */ DBG(dev, "CNAK pending queue processing\n"); for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) { if (cnak_pending & (1 << tmp)) { DBG(dev, "CNAK pending for ep%d\n", tmp); /* clear NAK by writing CNAK */ reg = readl(&dev->ep[tmp].regs->ctl); reg |= AMD_BIT(UDC_EPCTL_CNAK); writel(reg, &dev->ep[tmp].regs->ctl); dev->ep[tmp].naking = 0; UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num); } } /* ... and ep0out */ if (cnak_pending & (1 << UDC_EP0OUT_IX)) { DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX); /* clear NAK by writing CNAK */ reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); reg |= AMD_BIT(UDC_EPCTL_CNAK); writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl); dev->ep[UDC_EP0OUT_IX].naking = 0; UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], dev->ep[UDC_EP0OUT_IX].num); } } /* Enabling RX DMA after setup packet */ static void udc_ep0_set_rde(struct udc *dev) { if (use_dma) { /* * only enable RXDMA when no data endpoint enabled * or data is queued */ if (!dev->data_ep_enabled || dev->data_ep_queued) { udc_set_rde(dev); } else { /* * setup timer for enabling RDE (to not enable * RXFIFO DMA for data endpoints to early) */ if (set_rde != 0 && !timer_pending(&udc_timer)) { udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV; set_rde = 1; if (!stop_timer) add_timer(&udc_timer); } } } } /* Interrupt handler for data OUT traffic */ static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix) { irqreturn_t ret_val = IRQ_NONE; u32 tmp; struct udc_ep *ep; struct udc_request *req; unsigned int count; struct udc_data_dma *td = NULL; unsigned dma_done; VDBG(dev, "ep%d irq\n", ep_ix); ep = &dev->ep[ep_ix]; tmp = readl(&ep->regs->sts); if (use_dma) { /* BNA event ? */ if (tmp & AMD_BIT(UDC_EPSTS_BNA)) { DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n", ep->num, readl(&ep->regs->desptr)); /* clear BNA */ writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts); if (!ep->cancel_transfer) ep->bna_occurred = 1; else ep->cancel_transfer = 0; ret_val = IRQ_HANDLED; goto finished; } } /* HE event ? */ if (tmp & AMD_BIT(UDC_EPSTS_HE)) { dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num); /* clear HE */ writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts); ret_val = IRQ_HANDLED; goto finished; } if (!list_empty(&ep->queue)) { /* next request */ req = list_entry(ep->queue.next, struct udc_request, queue); } else { req = NULL; udc_rxfifo_pending = 1; } VDBG(dev, "req = %p\n", req); /* fifo mode */ if (!use_dma) { /* read fifo */ if (req && udc_rxfifo_read(ep, req)) { ret_val = IRQ_HANDLED; /* finish */ complete_req(ep, req, 0); /* next request */ if (!list_empty(&ep->queue) && !ep->halted) { req = list_entry(ep->queue.next, struct udc_request, queue); } else req = NULL; } /* DMA */ } else if (!ep->cancel_transfer && req != NULL) { ret_val = IRQ_HANDLED; /* check for DMA done */ if (!use_dma_ppb) { dma_done = AMD_GETBITS(req->td_data->status, UDC_DMA_OUT_STS_BS); /* packet per buffer mode - rx bytes */ } else { /* * if BNA occurred then recover desc. from * BNA dummy desc. */ if (ep->bna_occurred) { VDBG(dev, "Recover desc. from BNA dummy\n"); memcpy(req->td_data, ep->bna_dummy_req->td_data, sizeof(struct udc_data_dma)); ep->bna_occurred = 0; udc_init_bna_dummy(ep->req); } td = udc_get_last_dma_desc(req); dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS); } if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) { /* buffer fill mode - rx bytes */ if (!use_dma_ppb) { /* received number bytes */ count = AMD_GETBITS(req->td_data->status, UDC_DMA_OUT_STS_RXBYTES); VDBG(dev, "rx bytes=%u\n", count); /* packet per buffer mode - rx bytes */ } else { VDBG(dev, "req->td_data=%p\n", req->td_data); VDBG(dev, "last desc = %p\n", td); /* received number bytes */ if (use_dma_ppb_du) { /* every desc. counts bytes */ count = udc_get_ppbdu_rxbytes(req); } else { /* last desc. counts bytes */ count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES); if (!count && req->req.length == UDC_DMA_MAXPACKET) { /* * on 64k packets the RXBYTES * field is zero */ count = UDC_DMA_MAXPACKET; } } VDBG(dev, "last desc rx bytes=%u\n", count); } tmp = req->req.length - req->req.actual; if (count > tmp) { if ((tmp % ep->ep.maxpacket) != 0) { DBG(dev, "%s: rx %db, space=%db\n", ep->ep.name, count, tmp); req->req.status = -EOVERFLOW; } count = tmp; } req->req.actual += count; req->dma_going = 0; /* complete request */ complete_req(ep, req, 0); /* next request */ if (!list_empty(&ep->queue) && !ep->halted) { req = list_entry(ep->queue.next, struct udc_request, queue); /* * DMA may be already started by udc_queue() * called by gadget drivers completion * routine. This happens when queue * holds one request only. */ if (req->dma_going == 0) { /* next dma */ if (prep_dma(ep, req, GFP_ATOMIC) != 0) goto finished; /* write desc pointer */ writel(req->td_phys, &ep->regs->desptr); req->dma_going = 1; /* enable DMA */ udc_set_rde(dev); } } else { /* * implant BNA dummy descriptor to allow * RXFIFO opening by RDE */ if (ep->bna_dummy_req) { /* write desc pointer */ writel(ep->bna_dummy_req->td_phys, &ep->regs->desptr); ep->bna_occurred = 0; } /* * schedule timer for setting RDE if queue * remains empty to allow ep0 packets pass * through */ if (set_rde != 0 && !timer_pending(&udc_timer)) { udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS; set_rde = 1; if (!stop_timer) add_timer(&udc_timer); } if (ep->num != UDC_EP0OUT_IX) dev->data_ep_queued = 0; } } else { /* * RX DMA must be reenabled for each desc in PPBDU mode * and must be enabled for PPBNDU mode in case of BNA */ udc_set_rde(dev); } } else if (ep->cancel_transfer) { ret_val = IRQ_HANDLED; ep->cancel_transfer = 0; } /* check pending CNAKS */ if (cnak_pending) { /* CNAk processing when rxfifo empty only */ if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) udc_process_cnak_queue(dev); } /* clear OUT bits in ep status */ writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts); finished: return ret_val; } /* Interrupt handler for data IN traffic */ static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix) { irqreturn_t ret_val = IRQ_NONE; u32 tmp; u32 epsts; struct udc_ep *ep; struct udc_request *req; struct udc_data_dma *td; unsigned dma_done; unsigned len; ep = &dev->ep[ep_ix]; epsts = readl(&ep->regs->sts); if (use_dma) { /* BNA ? */ if (epsts & AMD_BIT(UDC_EPSTS_BNA)) { dev_err(&dev->pdev->dev, "BNA ep%din occurred - DESPTR = %08lx\n", ep->num, (unsigned long) readl(&ep->regs->desptr)); /* clear BNA */ writel(epsts, &ep->regs->sts); ret_val = IRQ_HANDLED; goto finished; } } /* HE event ? */ if (epsts & AMD_BIT(UDC_EPSTS_HE)) { dev_err(&dev->pdev->dev, "HE ep%dn occurred - DESPTR = %08lx\n", ep->num, (unsigned long) readl(&ep->regs->desptr)); /* clear HE */ writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts); ret_val = IRQ_HANDLED; goto finished; } /* DMA completion */ if (epsts & AMD_BIT(UDC_EPSTS_TDC)) { VDBG(dev, "TDC set- completion\n"); ret_val = IRQ_HANDLED; if (!ep->cancel_transfer && !list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct udc_request, queue); /* * length bytes transferred * check dma done of last desc. in PPBDU mode */ if (use_dma_ppb_du) { td = udc_get_last_dma_desc(req); if (td) { dma_done = AMD_GETBITS(td->status, UDC_DMA_IN_STS_BS); /* don't care DMA done */ req->req.actual = req->req.length; } } else { /* assume all bytes transferred */ req->req.actual = req->req.length; } if (req->req.actual == req->req.length) { /* complete req */ complete_req(ep, req, 0); req->dma_going = 0; /* further request available ? */ if (list_empty(&ep->queue)) { /* disable interrupt */ tmp = readl(&dev->regs->ep_irqmsk); tmp |= AMD_BIT(ep->num); writel(tmp, &dev->regs->ep_irqmsk); } } } ep->cancel_transfer = 0; } /* * status reg has IN bit set and TDC not set (if TDC was handled, * IN must not be handled (UDC defect) ? */ if ((epsts & AMD_BIT(UDC_EPSTS_IN)) && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) { ret_val = IRQ_HANDLED; if (!list_empty(&ep->queue)) { /* next request */ req = list_entry(ep->queue.next, struct udc_request, queue); /* FIFO mode */ if (!use_dma) { /* write fifo */ udc_txfifo_write(ep, &req->req); len = req->req.length - req->req.actual; if (len > ep->ep.maxpacket) len = ep->ep.maxpacket; req->req.actual += len; if (req->req.actual == req->req.length || (len != ep->ep.maxpacket)) { /* complete req */ complete_req(ep, req, 0); } /* DMA */ } else if (req && !req->dma_going) { VDBG(dev, "IN DMA : req=%p req->td_data=%p\n", req, req->td_data); if (req->td_data) { req->dma_going = 1; /* * unset L bit of first desc. * for chain */ if (use_dma_ppb && req->req.length > ep->ep.maxpacket) { req->td_data->status &= AMD_CLEAR_BIT( UDC_DMA_IN_STS_L); } /* write desc pointer */ writel(req->td_phys, &ep->regs->desptr); /* set HOST READY */ req->td_data->status = AMD_ADDBITS( req->td_data->status, UDC_DMA_IN_STS_BS_HOST_READY, UDC_DMA_IN_STS_BS); /* set poll demand bit */ tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_P); writel(tmp, &ep->regs->ctl); } } } else if (!use_dma && ep->in) { /* disable interrupt */ tmp = readl( &dev->regs->ep_irqmsk); tmp |= AMD_BIT(ep->num); writel(tmp, &dev->regs->ep_irqmsk); } } /* clear status bits */ writel(epsts, &ep->regs->sts); finished: return ret_val; } /* Interrupt handler for Control OUT traffic */ static irqreturn_t udc_control_out_isr(struct udc *dev) __releases(dev->lock) __acquires(dev->lock) { irqreturn_t ret_val = IRQ_NONE; u32 tmp; int setup_supported; u32 count; int set = 0; struct udc_ep *ep; struct udc_ep *ep_tmp; ep = &dev->ep[UDC_EP0OUT_IX]; /* clear irq */ writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts); tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts); /* check BNA and clear if set */ if (tmp & AMD_BIT(UDC_EPSTS_BNA)) { VDBG(dev, "ep0: BNA set\n"); writel(AMD_BIT(UDC_EPSTS_BNA), &dev->ep[UDC_EP0OUT_IX].regs->sts); ep->bna_occurred = 1; ret_val = IRQ_HANDLED; goto finished; } /* type of data: SETUP or DATA 0 bytes */ tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT); VDBG(dev, "data_typ = %x\n", tmp); /* setup data */ if (tmp == UDC_EPSTS_OUT_SETUP) { ret_val = IRQ_HANDLED; ep->dev->stall_ep0in = 0; dev->waiting_zlp_ack_ep0in = 0; /* set NAK for EP0_IN */ tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_SNAK); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); dev->ep[UDC_EP0IN_IX].naking = 1; /* get setup data */ if (use_dma) { /* clear OUT bits in ep status */ writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts); setup_data.data[0] = dev->ep[UDC_EP0OUT_IX].td_stp->data12; setup_data.data[1] = dev->ep[UDC_EP0OUT_IX].td_stp->data34; /* set HOST READY */ dev->ep[UDC_EP0OUT_IX].td_stp->status = UDC_DMA_STP_STS_BS_HOST_READY; } else { /* read fifo */ udc_rxfifo_read_dwords(dev, setup_data.data, 2); } /* determine direction of control data */ if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) { dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep; /* enable RDE */ udc_ep0_set_rde(dev); set = 0; } else { dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep; /* * implant BNA dummy descriptor to allow RXFIFO opening * by RDE */ if (ep->bna_dummy_req) { /* write desc pointer */ writel(ep->bna_dummy_req->td_phys, &dev->ep[UDC_EP0OUT_IX].regs->desptr); ep->bna_occurred = 0; } set = 1; dev->ep[UDC_EP0OUT_IX].naking = 1; /* * setup timer for enabling RDE (to not enable * RXFIFO DMA for data to early) */ set_rde = 1; if (!timer_pending(&udc_timer)) { udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV; if (!stop_timer) add_timer(&udc_timer); } } /* * mass storage reset must be processed here because * next packet may be a CLEAR_FEATURE HALT which would not * clear the stall bit when no STALL handshake was received * before (autostall can cause this) */ if (setup_data.data[0] == UDC_MSCRES_DWORD0 && setup_data.data[1] == UDC_MSCRES_DWORD1) { DBG(dev, "MSC Reset\n"); /* * clear stall bits * only one IN and OUT endpoints are handled */ ep_tmp = &udc->ep[UDC_EPIN_IX]; udc_set_halt(&ep_tmp->ep, 0); ep_tmp = &udc->ep[UDC_EPOUT_IX]; udc_set_halt(&ep_tmp->ep, 0); } /* call gadget with setup data received */ spin_unlock(&dev->lock); setup_supported = dev->driver->setup(&dev->gadget, &setup_data.request); spin_lock(&dev->lock); tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); /* ep0 in returns data (not zlp) on IN phase */ if (setup_supported >= 0 && setup_supported < UDC_EP0IN_MAXPACKET) { /* clear NAK by writing CNAK in EP0_IN */ tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); dev->ep[UDC_EP0IN_IX].naking = 0; UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX); /* if unsupported request then stall */ } else if (setup_supported < 0) { tmp |= AMD_BIT(UDC_EPCTL_S); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); } else dev->waiting_zlp_ack_ep0in = 1; /* clear NAK by writing CNAK in EP0_OUT */ if (!set) { tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_CNAK); writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl); dev->ep[UDC_EP0OUT_IX].naking = 0; UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX); } if (!use_dma) { /* clear OUT bits in ep status */ writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts); } /* data packet 0 bytes */ } else if (tmp == UDC_EPSTS_OUT_DATA) { /* clear OUT bits in ep status */ writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts); /* get setup data: only 0 packet */ if (use_dma) { /* no req if 0 packet, just reactivate */ if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) { VDBG(dev, "ZLP\n"); /* set HOST READY */ dev->ep[UDC_EP0OUT_IX].td->status = AMD_ADDBITS( dev->ep[UDC_EP0OUT_IX].td->status, UDC_DMA_OUT_STS_BS_HOST_READY, UDC_DMA_OUT_STS_BS); /* enable RDE */ udc_ep0_set_rde(dev); ret_val = IRQ_HANDLED; } else { /* control write */ ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX); /* re-program desc. pointer for possible ZLPs */ writel(dev->ep[UDC_EP0OUT_IX].td_phys, &dev->ep[UDC_EP0OUT_IX].regs->desptr); /* enable RDE */ udc_ep0_set_rde(dev); } } else { /* received number bytes */ count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts); count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE); /* out data for fifo mode not working */ count = 0; /* 0 packet or real data ? */ if (count != 0) { ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX); } else { /* dummy read confirm */ readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm); ret_val = IRQ_HANDLED; } } } /* check pending CNAKS */ if (cnak_pending) { /* CNAk processing when rxfifo empty only */ if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) udc_process_cnak_queue(dev); } finished: return ret_val; } /* Interrupt handler for Control IN traffic */ static irqreturn_t udc_control_in_isr(struct udc *dev) { irqreturn_t ret_val = IRQ_NONE; u32 tmp; struct udc_ep *ep; struct udc_request *req; unsigned len; ep = &dev->ep[UDC_EP0IN_IX]; /* clear irq */ writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts); tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts); /* DMA completion */ if (tmp & AMD_BIT(UDC_EPSTS_TDC)) { VDBG(dev, "isr: TDC clear\n"); ret_val = IRQ_HANDLED; /* clear TDC bit */ writel(AMD_BIT(UDC_EPSTS_TDC), &dev->ep[UDC_EP0IN_IX].regs->sts); /* status reg has IN bit set ? */ } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) { ret_val = IRQ_HANDLED; if (ep->dma) { /* clear IN bit */ writel(AMD_BIT(UDC_EPSTS_IN), &dev->ep[UDC_EP0IN_IX].regs->sts); } if (dev->stall_ep0in) { DBG(dev, "stall ep0in\n"); /* halt ep0in */ tmp = readl(&ep->regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_S); writel(tmp, &ep->regs->ctl); } else { if (!list_empty(&ep->queue)) { /* next request */ req = list_entry(ep->queue.next, struct udc_request, queue); if (ep->dma) { /* write desc pointer */ writel(req->td_phys, &ep->regs->desptr); /* set HOST READY */ req->td_data->status = AMD_ADDBITS( req->td_data->status, UDC_DMA_STP_STS_BS_HOST_READY, UDC_DMA_STP_STS_BS); /* set poll demand bit */ tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); tmp |= AMD_BIT(UDC_EPCTL_P); writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); /* all bytes will be transferred */ req->req.actual = req->req.length; /* complete req */ complete_req(ep, req, 0); } else { /* write fifo */ udc_txfifo_write(ep, &req->req); /* lengh bytes transferred */ len = req->req.length - req->req.actual; if (len > ep->ep.maxpacket) len = ep->ep.maxpacket; req->req.actual += len; if (req->req.actual == req->req.length || (len != ep->ep.maxpacket)) { /* complete req */ complete_req(ep, req, 0); } } } } ep->halted = 0; dev->stall_ep0in = 0; if (!ep->dma) { /* clear IN bit */ writel(AMD_BIT(UDC_EPSTS_IN), &dev->ep[UDC_EP0IN_IX].regs->sts); } } return ret_val; } /* Interrupt handler for global device events */ static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq) __releases(dev->lock) __acquires(dev->lock) { irqreturn_t ret_val = IRQ_NONE; u32 tmp; u32 cfg; struct udc_ep *ep; u16 i; u8 udc_csr_epix; /* SET_CONFIG irq ? */ if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) { ret_val = IRQ_HANDLED; /* read config value */ tmp = readl(&dev->regs->sts); cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG); DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg); dev->cur_config = cfg; dev->set_cfg_not_acked = 1; /* make usb request for gadget driver */ memset(&setup_data, 0 , sizeof(union udc_setup_data)); setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION; setup_data.request.wValue = cpu_to_le16(dev->cur_config); /* programm the NE registers */ for (i = 0; i < UDC_EP_NUM; i++) { ep = &dev->ep[i]; if (ep->in) { /* ep ix in UDC CSR register space */ udc_csr_epix = ep->num; /* OUT ep */ } else { /* ep ix in UDC CSR register space */ udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; } tmp = readl(&dev->csr->ne[udc_csr_epix]); /* ep cfg */ tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG); /* write reg */ writel(tmp, &dev->csr->ne[udc_csr_epix]); /* clear stall bits */ ep->halted = 0; tmp = readl(&ep->regs->ctl); tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); writel(tmp, &ep->regs->ctl); } /* call gadget zero with setup data received */ spin_unlock(&dev->lock); tmp = dev->driver->setup(&dev->gadget, &setup_data.request); spin_lock(&dev->lock); } /* SET_INTERFACE ? */ if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) { ret_val = IRQ_HANDLED; dev->set_cfg_not_acked = 1; /* read interface and alt setting values */ tmp = readl(&dev->regs->sts); dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT); dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF); /* make usb request for gadget driver */ memset(&setup_data, 0 , sizeof(union udc_setup_data)); setup_data.request.bRequest = USB_REQ_SET_INTERFACE; setup_data.request.bRequestType = USB_RECIP_INTERFACE; setup_data.request.wValue = cpu_to_le16(dev->cur_alt); setup_data.request.wIndex = cpu_to_le16(dev->cur_intf); DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n", dev->cur_alt, dev->cur_intf); /* programm the NE registers */ for (i = 0; i < UDC_EP_NUM; i++) { ep = &dev->ep[i]; if (ep->in) { /* ep ix in UDC CSR register space */ udc_csr_epix = ep->num; /* OUT ep */ } else { /* ep ix in UDC CSR register space */ udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; } /* UDC CSR reg */ /* set ep values */ tmp = readl(&dev->csr->ne[udc_csr_epix]); /* ep interface */ tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF); /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */ /* ep alt */ tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT); /* write reg */ writel(tmp, &dev->csr->ne[udc_csr_epix]); /* clear stall bits */ ep->halted = 0; tmp = readl(&ep->regs->ctl); tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); writel(tmp, &ep->regs->ctl); } /* call gadget zero with setup data received */ spin_unlock(&dev->lock); tmp = dev->driver->setup(&dev->gadget, &setup_data.request); spin_lock(&dev->lock); } /* USB reset */ if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) { DBG(dev, "USB Reset interrupt\n"); ret_val = IRQ_HANDLED; /* allow soft reset when suspend occurs */ soft_reset_occured = 0; dev->waiting_zlp_ack_ep0in = 0; dev->set_cfg_not_acked = 0; /* mask not needed interrupts */ udc_mask_unused_interrupts(dev); /* call gadget to resume and reset configs etc. */ spin_unlock(&dev->lock); if (dev->sys_suspended && dev->driver->resume) { dev->driver->resume(&dev->gadget); dev->sys_suspended = 0; } dev->driver->disconnect(&dev->gadget); spin_lock(&dev->lock); /* disable ep0 to empty req queue */ empty_req_queue(&dev->ep[UDC_EP0IN_IX]); ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]); /* soft reset when rxfifo not empty */ tmp = readl(&dev->regs->sts); if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) && !soft_reset_after_usbreset_occured) { udc_soft_reset(dev); soft_reset_after_usbreset_occured++; } /* * DMA reset to kill potential old DMA hw hang, * POLL bit is already reset by ep_init() through * disconnect() */ DBG(dev, "DMA machine reset\n"); tmp = readl(&dev->regs->cfg); writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg); writel(tmp, &dev->regs->cfg); /* put into initial config */ udc_basic_init(dev); /* enable device setup interrupts */ udc_enable_dev_setup_interrupts(dev); /* enable suspend interrupt */ tmp = readl(&dev->regs->irqmsk); tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US); writel(tmp, &dev->regs->irqmsk); } /* USB suspend */ if (dev_irq & AMD_BIT(UDC_DEVINT_US)) { DBG(dev, "USB Suspend interrupt\n"); ret_val = IRQ_HANDLED; if (dev->driver->suspend) { spin_unlock(&dev->lock); dev->sys_suspended = 1; dev->driver->suspend(&dev->gadget); spin_lock(&dev->lock); } } /* new speed ? */ if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) { DBG(dev, "ENUM interrupt\n"); ret_val = IRQ_HANDLED; soft_reset_after_usbreset_occured = 0; /* disable ep0 to empty req queue */ empty_req_queue(&dev->ep[UDC_EP0IN_IX]); ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]); /* link up all endpoints */ udc_setup_endpoints(dev); dev_info(&dev->pdev->dev, "Connect: %s\n", usb_speed_string(dev->gadget.speed)); /* init ep 0 */ activate_control_endpoints(dev); /* enable ep0 interrupts */ udc_enable_ep0_interrupts(dev); } /* session valid change interrupt */ if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) { DBG(dev, "USB SVC interrupt\n"); ret_val = IRQ_HANDLED; /* check that session is not valid to detect disconnect */ tmp = readl(&dev->regs->sts); if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) { /* disable suspend interrupt */ tmp = readl(&dev->regs->irqmsk); tmp |= AMD_BIT(UDC_DEVINT_US); writel(tmp, &dev->regs->irqmsk); DBG(dev, "USB Disconnect (session valid low)\n"); /* cleanup on disconnect */ usb_disconnect(udc); } } return ret_val; } /* Interrupt Service Routine, see Linux Kernel Doc for parameters */ static irqreturn_t udc_irq(int irq, void *pdev) { struct udc *dev = pdev; u32 reg; u16 i; u32 ep_irq; irqreturn_t ret_val = IRQ_NONE; spin_lock(&dev->lock); /* check for ep irq */ reg = readl(&dev->regs->ep_irqsts); if (reg) { if (reg & AMD_BIT(UDC_EPINT_OUT_EP0)) ret_val |= udc_control_out_isr(dev); if (reg & AMD_BIT(UDC_EPINT_IN_EP0)) ret_val |= udc_control_in_isr(dev); /* * data endpoint * iterate ep's */ for (i = 1; i < UDC_EP_NUM; i++) { ep_irq = 1 << i; if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0) continue; /* clear irq status */ writel(ep_irq, &dev->regs->ep_irqsts); /* irq for out ep ? */ if (i > UDC_EPIN_NUM) ret_val |= udc_data_out_isr(dev, i); else ret_val |= udc_data_in_isr(dev, i); } } /* check for dev irq */ reg = readl(&dev->regs->irqsts); if (reg) { /* clear irq */ writel(reg, &dev->regs->irqsts); ret_val |= udc_dev_isr(dev, reg); } spin_unlock(&dev->lock); return ret_val; } /* Tears down device */ static void gadget_release(struct device *pdev) { struct amd5536udc *dev = dev_get_drvdata(pdev); kfree(dev); } /* Cleanup on device remove */ static void udc_remove(struct udc *dev) { /* remove timer */ stop_timer++; if (timer_pending(&udc_timer)) wait_for_completion(&on_exit); if (udc_timer.data) del_timer_sync(&udc_timer); /* remove pollstall timer */ stop_pollstall_timer++; if (timer_pending(&udc_pollstall_timer)) wait_for_completion(&on_pollstall_exit); if (udc_pollstall_timer.data) del_timer_sync(&udc_pollstall_timer); udc = NULL; } /* Reset all pci context */ static void udc_pci_remove(struct pci_dev *pdev) { struct udc *dev; dev = pci_get_drvdata(pdev); usb_del_gadget_udc(&udc->gadget); /* gadget driver must not be registered */ BUG_ON(dev->driver != NULL); /* dma pool cleanup */ if (dev->data_requests) pci_pool_destroy(dev->data_requests); if (dev->stp_requests) { /* cleanup DMA desc's for ep0in */ pci_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp, dev->ep[UDC_EP0OUT_IX].td_stp_dma); pci_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td, dev->ep[UDC_EP0OUT_IX].td_phys); pci_pool_destroy(dev->stp_requests); } /* reset controller */ writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg); if (dev->irq_registered) free_irq(pdev->irq, dev); if (dev->regs) iounmap(dev->regs); if (dev->mem_region) release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (dev->active) pci_disable_device(pdev); device_unregister(&dev->gadget.dev); pci_set_drvdata(pdev, NULL); udc_remove(dev); } /* create dma pools on init */ static int init_dma_pools(struct udc *dev) { struct udc_stp_dma *td_stp; struct udc_data_dma *td_data; int retval; /* consistent DMA mode setting ? */ if (use_dma_ppb) { use_dma_bufferfill_mode = 0; } else { use_dma_ppb_du = 0; use_dma_bufferfill_mode = 1; } /* DMA setup */ dev->data_requests = dma_pool_create("data_requests", NULL, sizeof(struct udc_data_dma), 0, 0); if (!dev->data_requests) { DBG(dev, "can't get request data pool\n"); retval = -ENOMEM; goto finished; } /* EP0 in dma regs = dev control regs */ dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl; /* dma desc for setup data */ dev->stp_requests = dma_pool_create("setup requests", NULL, sizeof(struct udc_stp_dma), 0, 0); if (!dev->stp_requests) { DBG(dev, "can't get stp request pool\n"); retval = -ENOMEM; goto finished; } /* setup */ td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL, &dev->ep[UDC_EP0OUT_IX].td_stp_dma); if (td_stp == NULL) { retval = -ENOMEM; goto finished; } dev->ep[UDC_EP0OUT_IX].td_stp = td_stp; /* data: 0 packets !? */ td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL, &dev->ep[UDC_EP0OUT_IX].td_phys); if (td_data == NULL) { retval = -ENOMEM; goto finished; } dev->ep[UDC_EP0OUT_IX].td = td_data; return 0; finished: return retval; } /* Called by pci bus driver to init pci context */ static int udc_pci_probe( struct pci_dev *pdev, const struct pci_device_id *id ) { struct udc *dev; unsigned long resource; unsigned long len; int retval = 0; /* one udc only */ if (udc) { dev_dbg(&pdev->dev, "already probed\n"); return -EBUSY; } /* init */ dev = kzalloc(sizeof(struct udc), GFP_KERNEL); if (!dev) { retval = -ENOMEM; goto finished; } /* pci setup */ if (pci_enable_device(pdev) < 0) { kfree(dev); dev = NULL; retval = -ENODEV; goto finished; } dev->active = 1; /* PCI resource allocation */ resource = pci_resource_start(pdev, 0); len = pci_resource_len(pdev, 0); if (!request_mem_region(resource, len, name)) { dev_dbg(&pdev->dev, "pci device used already\n"); kfree(dev); dev = NULL; retval = -EBUSY; goto finished; } dev->mem_region = 1; dev->virt_addr = ioremap_nocache(resource, len); if (dev->virt_addr == NULL) { dev_dbg(&pdev->dev, "start address cannot be mapped\n"); kfree(dev); dev = NULL; retval = -EFAULT; goto finished; } if (!pdev->irq) { dev_err(&dev->pdev->dev, "irq not set\n"); kfree(dev); dev = NULL; retval = -ENODEV; goto finished; } spin_lock_init(&dev->lock); /* udc csr registers base */ dev->csr = dev->virt_addr + UDC_CSR_ADDR; /* dev registers base */ dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR; /* ep registers base */ dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR; /* fifo's base */ dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR); dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR); if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) { dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq); kfree(dev); dev = NULL; retval = -EBUSY; goto finished; } dev->irq_registered = 1; pci_set_drvdata(pdev, dev); /* chip revision for Hs AMD5536 */ dev->chiprev = pdev->revision; pci_set_master(pdev); pci_try_set_mwi(pdev); /* init dma pools */ if (use_dma) { retval = init_dma_pools(dev); if (retval != 0) goto finished; } dev->phys_addr = resource; dev->irq = pdev->irq; dev->pdev = pdev; dev->gadget.dev.parent = &pdev->dev; dev->gadget.dev.dma_mask = pdev->dev.dma_mask; /* general probing */ if (udc_probe(dev) == 0) return 0; finished: if (dev) udc_pci_remove(pdev); return retval; } /* general probe */ static int udc_probe(struct udc *dev) { char tmp[128]; u32 reg; int retval; /* mark timer as not initialized */ udc_timer.data = 0; udc_pollstall_timer.data = 0; /* device struct setup */ dev->gadget.ops = &udc_ops; dev_set_name(&dev->gadget.dev, "gadget"); dev->gadget.dev.release = gadget_release; dev->gadget.name = name; dev->gadget.max_speed = USB_SPEED_HIGH; /* init registers, interrupts, ... */ startup_registers(dev); dev_info(&dev->pdev->dev, "%s\n", mod_desc); snprintf(tmp, sizeof tmp, "%d", dev->irq); dev_info(&dev->pdev->dev, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n", tmp, dev->phys_addr, dev->chiprev, (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1"); strcpy(tmp, UDC_DRIVER_VERSION_STRING); if (dev->chiprev == UDC_HSA0_REV) { dev_err(&dev->pdev->dev, "chip revision is A0; too old\n"); retval = -ENODEV; goto finished; } dev_info(&dev->pdev->dev, "driver version: %s(for Geode5536 B1)\n", tmp); udc = dev; retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget); if (retval) goto finished; retval = device_register(&dev->gadget.dev); if (retval) { usb_del_gadget_udc(&dev->gadget); put_device(&dev->gadget.dev); goto finished; } /* timer init */ init_timer(&udc_timer); udc_timer.function = udc_timer_function; udc_timer.data = 1; /* timer pollstall init */ init_timer(&udc_pollstall_timer); udc_pollstall_timer.function = udc_pollstall_timer_function; udc_pollstall_timer.data = 1; /* set SD */ reg = readl(&dev->regs->ctl); reg |= AMD_BIT(UDC_DEVCTL_SD); writel(reg, &dev->regs->ctl); /* print dev register info */ print_regs(dev); return 0; finished: return retval; } /* Initiates a remote wakeup */ static int udc_remote_wakeup(struct udc *dev) { unsigned long flags; u32 tmp; DBG(dev, "UDC initiates remote wakeup\n"); spin_lock_irqsave(&dev->lock, flags); tmp = readl(&dev->regs->ctl); tmp |= AMD_BIT(UDC_DEVCTL_RES); writel(tmp, &dev->regs->ctl); tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES); writel(tmp, &dev->regs->ctl); spin_unlock_irqrestore(&dev->lock, flags); return 0; } /* PCI device parameters */ static const struct pci_device_id pci_id[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096), .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe, .class_mask = 0xffffffff, }, {}, }; MODULE_DEVICE_TABLE(pci, pci_id); /* PCI functions */ static struct pci_driver udc_pci_driver = { .name = (char *) name, .id_table = pci_id, .probe = udc_pci_probe, .remove = udc_pci_remove, }; /* Inits driver */ static int __init init(void) { return pci_register_driver(&udc_pci_driver); } module_init(init); /* Cleans driver */ static void __exit cleanup(void) { pci_unregister_driver(&udc_pci_driver); } module_exit(cleanup); MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION); MODULE_AUTHOR("Thomas Dahlmann"); MODULE_LICENSE("GPL");