#ifndef __KVM_HOST_H #define __KVM_HOST_H /* * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used * in kvm, other bits are visible for userspace which are defined in * include/linux/kvm_h. */ #define KVM_MEMSLOT_INVALID (1UL << 16) #define KVM_MEMSLOT_INCOHERENT (1UL << 17) /* Two fragments for cross MMIO pages. */ #define KVM_MAX_MMIO_FRAGMENTS 2 /* * For the normal pfn, the highest 12 bits should be zero, * so we can mask bit 62 ~ bit 52 to indicate the error pfn, * mask bit 63 to indicate the noslot pfn. */ #define KVM_PFN_ERR_MASK (0x7ffULL << 52) #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) #define KVM_PFN_NOSLOT (0x1ULL << 63) #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) /* * error pfns indicate that the gfn is in slot but faild to * translate it to pfn on host. */ static inline bool is_error_pfn(pfn_t pfn) { return !!(pfn & KVM_PFN_ERR_MASK); } /* * error_noslot pfns indicate that the gfn can not be * translated to pfn - it is not in slot or failed to * translate it to pfn. */ static inline bool is_error_noslot_pfn(pfn_t pfn) { return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); } /* noslot pfn indicates that the gfn is not in slot. */ static inline bool is_noslot_pfn(pfn_t pfn) { return pfn == KVM_PFN_NOSLOT; } /* * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) * provide own defines and kvm_is_error_hva */ #ifndef KVM_HVA_ERR_BAD #define KVM_HVA_ERR_BAD (PAGE_OFFSET) #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) static inline bool kvm_is_error_hva(unsigned long addr) { return addr >= PAGE_OFFSET; } #endif #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) static inline bool is_error_page(struct page *page) { return IS_ERR(page); } /* * vcpu->requests bit members */ #define KVM_REQ_TLB_FLUSH 0 #define KVM_REQ_MIGRATE_TIMER 1 #define KVM_REQ_REPORT_TPR_ACCESS 2 #define KVM_REQ_MMU_RELOAD 3 #define KVM_REQ_TRIPLE_FAULT 4 #define KVM_REQ_PENDING_TIMER 5 #define KVM_REQ_UNHALT 6 #define KVM_REQ_MMU_SYNC 7 #define KVM_REQ_CLOCK_UPDATE 8 #define KVM_REQ_KICK 9 #define KVM_REQ_DEACTIVATE_FPU 10 #define KVM_REQ_EVENT 11 #define KVM_REQ_APF_HALT 12 #define KVM_REQ_STEAL_UPDATE 13 #define KVM_REQ_NMI 14 #define KVM_REQ_PMU 15 #define KVM_REQ_PMI 16 #define KVM_REQ_WATCHDOG 17 #define KVM_REQ_MASTERCLOCK_UPDATE 18 #define KVM_REQ_MCLOCK_INPROGRESS 19 #define KVM_REQ_EPR_EXIT 20 #define KVM_REQ_SCAN_IOAPIC 21 #define KVM_REQ_GLOBAL_CLOCK_UPDATE 22 #define KVM_REQ_ENABLE_IBS 23 #define KVM_REQ_DISABLE_IBS 24 #define KVM_REQ_APIC_PAGE_RELOAD 25 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 extern struct kmem_cache *kvm_vcpu_cache; extern spinlock_t kvm_lock; extern struct list_head vm_list; struct kvm_io_range { gpa_t addr; int len; struct kvm_io_device *dev; }; #define NR_IOBUS_DEVS 1000 struct kvm_io_bus { int dev_count; int ioeventfd_count; struct kvm_io_range range[]; }; enum kvm_bus { KVM_MMIO_BUS, KVM_PIO_BUS, KVM_VIRTIO_CCW_NOTIFY_BUS, KVM_FAST_MMIO_BUS, KVM_NR_BUSES }; int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, int len, const void *val); int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, int len, const void *val, long cookie); int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, int len, void *val); int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, int len, struct kvm_io_device *dev); int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, struct kvm_io_device *dev); #ifdef CONFIG_KVM_ASYNC_PF struct kvm_async_pf { struct work_struct work; struct list_head link; struct list_head queue; struct kvm_vcpu *vcpu; struct mm_struct *mm; gva_t gva; unsigned long addr; struct kvm_arch_async_pf arch; bool wakeup_all; }; void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, struct kvm_arch_async_pf *arch); int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); #endif enum { OUTSIDE_GUEST_MODE, IN_GUEST_MODE, EXITING_GUEST_MODE, READING_SHADOW_PAGE_TABLES, }; /* * Sometimes a large or cross-page mmio needs to be broken up into separate * exits for userspace servicing. */ struct kvm_mmio_fragment { gpa_t gpa; void *data; unsigned len; }; struct kvm_vcpu { struct kvm *kvm; #ifdef CONFIG_PREEMPT_NOTIFIERS struct preempt_notifier preempt_notifier; #endif int cpu; int vcpu_id; int srcu_idx; int mode; unsigned long requests; unsigned long guest_debug; struct mutex mutex; struct kvm_run *run; int fpu_active; int guest_fpu_loaded, guest_xcr0_loaded; wait_queue_head_t wq; struct pid *pid; int sigset_active; sigset_t sigset; struct kvm_vcpu_stat stat; #ifdef CONFIG_HAS_IOMEM int mmio_needed; int mmio_read_completed; int mmio_is_write; int mmio_cur_fragment; int mmio_nr_fragments; struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; #endif #ifdef CONFIG_KVM_ASYNC_PF struct { u32 queued; struct list_head queue; struct list_head done; spinlock_t lock; } async_pf; #endif #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT /* * Cpu relax intercept or pause loop exit optimization * in_spin_loop: set when a vcpu does a pause loop exit * or cpu relax intercepted. * dy_eligible: indicates whether vcpu is eligible for directed yield. */ struct { bool in_spin_loop; bool dy_eligible; } spin_loop; #endif bool preempted; struct kvm_vcpu_arch arch; }; static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) { return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); } /* * Some of the bitops functions do not support too long bitmaps. * This number must be determined not to exceed such limits. */ #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) struct kvm_memory_slot { gfn_t base_gfn; unsigned long npages; unsigned long *dirty_bitmap; struct kvm_arch_memory_slot arch; unsigned long userspace_addr; u32 flags; short id; }; static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) { return ALIGN(memslot->npages, BITS_PER_LONG) / 8; } struct kvm_s390_adapter_int { u64 ind_addr; u64 summary_addr; u64 ind_offset; u32 summary_offset; u32 adapter_id; }; struct kvm_kernel_irq_routing_entry { u32 gsi; u32 type; int (*set)(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status); union { struct { unsigned irqchip; unsigned pin; } irqchip; struct msi_msg msi; struct kvm_s390_adapter_int adapter; }; struct hlist_node link; }; #ifndef KVM_PRIVATE_MEM_SLOTS #define KVM_PRIVATE_MEM_SLOTS 0 #endif #ifndef KVM_MEM_SLOTS_NUM #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) #endif /* * Note: * memslots are not sorted by id anymore, please use id_to_memslot() * to get the memslot by its id. */ struct kvm_memslots { u64 generation; struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; /* The mapping table from slot id to the index in memslots[]. */ short id_to_index[KVM_MEM_SLOTS_NUM]; atomic_t lru_slot; int used_slots; }; struct kvm { spinlock_t mmu_lock; struct mutex slots_lock; struct mm_struct *mm; /* userspace tied to this vm */ struct kvm_memslots *memslots; struct srcu_struct srcu; struct srcu_struct irq_srcu; #ifdef CONFIG_KVM_APIC_ARCHITECTURE u32 bsp_vcpu_id; #endif struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; atomic_t online_vcpus; int last_boosted_vcpu; struct list_head vm_list; struct mutex lock; struct kvm_io_bus *buses[KVM_NR_BUSES]; #ifdef CONFIG_HAVE_KVM_EVENTFD struct { spinlock_t lock; struct list_head items; struct list_head resampler_list; struct mutex resampler_lock; } irqfds; struct list_head ioeventfds; #endif struct kvm_vm_stat stat; struct kvm_arch arch; atomic_t users_count; #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; spinlock_t ring_lock; struct list_head coalesced_zones; #endif struct mutex irq_lock; #ifdef CONFIG_HAVE_KVM_IRQCHIP /* * Update side is protected by irq_lock. */ struct kvm_irq_routing_table __rcu *irq_routing; #endif #ifdef CONFIG_HAVE_KVM_IRQFD struct hlist_head irq_ack_notifier_list; #endif #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) struct mmu_notifier mmu_notifier; unsigned long mmu_notifier_seq; long mmu_notifier_count; #endif long tlbs_dirty; struct list_head devices; }; #define kvm_err(fmt, ...) \ pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) #define kvm_info(fmt, ...) \ pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) #define kvm_debug(fmt, ...) \ pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) #define kvm_pr_unimpl(fmt, ...) \ pr_err_ratelimited("kvm [%i]: " fmt, \ task_tgid_nr(current), ## __VA_ARGS__) /* The guest did something we don't support. */ #define vcpu_unimpl(vcpu, fmt, ...) \ kvm_pr_unimpl("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) { smp_rmb(); return kvm->vcpus[i]; } #define kvm_for_each_vcpu(idx, vcpup, kvm) \ for (idx = 0; \ idx < atomic_read(&kvm->online_vcpus) && \ (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ idx++) #define kvm_for_each_memslot(memslot, slots) \ for (memslot = &slots->memslots[0]; \ memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ memslot++) int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); int __must_check vcpu_load(struct kvm_vcpu *vcpu); void vcpu_put(struct kvm_vcpu *vcpu); #ifdef __KVM_HAVE_IOAPIC void kvm_vcpu_request_scan_ioapic(struct kvm *kvm); #else static inline void kvm_vcpu_request_scan_ioapic(struct kvm *kvm) { } #endif #ifdef CONFIG_HAVE_KVM_IRQFD int kvm_irqfd_init(void); void kvm_irqfd_exit(void); #else static inline int kvm_irqfd_init(void) { return 0; } static inline void kvm_irqfd_exit(void) { } #endif int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, struct module *module); void kvm_exit(void); void kvm_get_kvm(struct kvm *kvm); void kvm_put_kvm(struct kvm *kvm); static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) { return rcu_dereference_check(kvm->memslots, srcu_read_lock_held(&kvm->srcu) || lockdep_is_held(&kvm->slots_lock)); } static inline struct kvm_memory_slot * id_to_memslot(struct kvm_memslots *slots, int id) { int index = slots->id_to_index[id]; struct kvm_memory_slot *slot; slot = &slots->memslots[index]; WARN_ON(slot->id != id); return slot; } /* * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: * - create a new memory slot * - delete an existing memory slot * - modify an existing memory slot * -- move it in the guest physical memory space * -- just change its flags * * Since flags can be changed by some of these operations, the following * differentiation is the best we can do for __kvm_set_memory_region(): */ enum kvm_mr_change { KVM_MR_CREATE, KVM_MR_DELETE, KVM_MR_MOVE, KVM_MR_FLAGS_ONLY, }; int kvm_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem); int __kvm_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem); void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, struct kvm_memory_slot *dont); int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, unsigned long npages); void kvm_arch_memslots_updated(struct kvm *kvm); int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_userspace_memory_region *mem, enum kvm_mr_change change); void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, enum kvm_mr_change change); bool kvm_largepages_enabled(void); void kvm_disable_largepages(void); /* flush all memory translations */ void kvm_arch_flush_shadow_all(struct kvm *kvm); /* flush memory translations pointing to 'slot' */ void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, int nr_pages); struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, bool *writable); void kvm_release_page_clean(struct page *page); void kvm_release_page_dirty(struct page *page); void kvm_set_page_accessed(struct page *page); pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, bool write_fault, bool *writable); pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, bool *writable); pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); void kvm_release_pfn_clean(pfn_t pfn); void kvm_set_pfn_dirty(pfn_t pfn); void kvm_set_pfn_accessed(pfn_t pfn); void kvm_get_pfn(pfn_t pfn); int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, int len); int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned long len); int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, int offset, int len); int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, unsigned long len); int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned long len); int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, gpa_t gpa, unsigned long len); int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); void mark_page_dirty(struct kvm *kvm, gfn_t gfn); void kvm_vcpu_block(struct kvm_vcpu *vcpu); void kvm_vcpu_kick(struct kvm_vcpu *vcpu); int kvm_vcpu_yield_to(struct kvm_vcpu *target); void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu); void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); void kvm_flush_remote_tlbs(struct kvm *kvm); void kvm_reload_remote_mmus(struct kvm *kvm); void kvm_make_mclock_inprogress_request(struct kvm *kvm); void kvm_make_scan_ioapic_request(struct kvm *kvm); bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, int *is_dirty); int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log, bool *is_dirty); void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask); int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, bool line_status); long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr); int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state); int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state); int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg); int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); int kvm_arch_init(void *opaque); void kvm_arch_exit(void); int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); int kvm_arch_hardware_enable(void); void kvm_arch_hardware_disable(void); int kvm_arch_hardware_setup(void); void kvm_arch_hardware_unsetup(void); void kvm_arch_check_processor_compat(void *rtn); int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); void *kvm_kvzalloc(unsigned long size); void kvm_kvfree(const void *addr); #ifndef __KVM_HAVE_ARCH_VM_ALLOC static inline struct kvm *kvm_arch_alloc_vm(void) { return kzalloc(sizeof(struct kvm), GFP_KERNEL); } static inline void kvm_arch_free_vm(struct kvm *kvm) { kfree(kvm); } #endif #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA void kvm_arch_register_noncoherent_dma(struct kvm *kvm); void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); #else static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) { } static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) { } static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) { return false; } #endif static inline wait_queue_head_t *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) { #ifdef __KVM_HAVE_ARCH_WQP return vcpu->arch.wqp; #else return &vcpu->wq; #endif } int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); void kvm_arch_destroy_vm(struct kvm *kvm); void kvm_arch_sync_events(struct kvm *kvm); int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); void kvm_vcpu_kick(struct kvm_vcpu *vcpu); bool kvm_is_reserved_pfn(pfn_t pfn); struct kvm_irq_ack_notifier { struct hlist_node link; unsigned gsi; void (*irq_acked)(struct kvm_irq_ack_notifier *kian); }; int kvm_irq_map_gsi(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *entries, int gsi); int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status); int kvm_set_irq_inatomic(struct kvm *kvm, int irq_source_id, u32 irq, int level); int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, int irq_source_id, int level, bool line_status); bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); void kvm_register_irq_ack_notifier(struct kvm *kvm, struct kvm_irq_ack_notifier *kian); void kvm_unregister_irq_ack_notifier(struct kvm *kvm, struct kvm_irq_ack_notifier *kian); int kvm_request_irq_source_id(struct kvm *kvm); void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot); void kvm_iommu_unmap_pages(struct kvm *kvm, struct kvm_memory_slot *slot); #else static inline int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot) { return 0; } static inline void kvm_iommu_unmap_pages(struct kvm *kvm, struct kvm_memory_slot *slot) { } #endif static inline void kvm_guest_enter(void) { unsigned long flags; BUG_ON(preemptible()); local_irq_save(flags); guest_enter(); local_irq_restore(flags); /* KVM does not hold any references to rcu protected data when it * switches CPU into a guest mode. In fact switching to a guest mode * is very similar to exiting to userspace from rcu point of view. In * addition CPU may stay in a guest mode for quite a long time (up to * one time slice). Lets treat guest mode as quiescent state, just like * we do with user-mode execution. */ if (!context_tracking_cpu_is_enabled()) rcu_virt_note_context_switch(smp_processor_id()); } static inline void kvm_guest_exit(void) { unsigned long flags; local_irq_save(flags); guest_exit(); local_irq_restore(flags); } /* * search_memslots() and __gfn_to_memslot() are here because they are * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. * gfn_to_memslot() itself isn't here as an inline because that would * bloat other code too much. */ static inline struct kvm_memory_slot * search_memslots(struct kvm_memslots *slots, gfn_t gfn) { int start = 0, end = slots->used_slots; int slot = atomic_read(&slots->lru_slot); struct kvm_memory_slot *memslots = slots->memslots; if (gfn >= memslots[slot].base_gfn && gfn < memslots[slot].base_gfn + memslots[slot].npages) return &memslots[slot]; while (start < end) { slot = start + (end - start) / 2; if (gfn >= memslots[slot].base_gfn) end = slot; else start = slot + 1; } if (gfn >= memslots[start].base_gfn && gfn < memslots[start].base_gfn + memslots[start].npages) { atomic_set(&slots->lru_slot, start); return &memslots[start]; } return NULL; } static inline struct kvm_memory_slot * __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) { return search_memslots(slots, gfn); } static inline unsigned long __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) { return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; } static inline int memslot_id(struct kvm *kvm, gfn_t gfn) { return gfn_to_memslot(kvm, gfn)->id; } static inline gfn_t hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) { gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; return slot->base_gfn + gfn_offset; } static inline gpa_t gfn_to_gpa(gfn_t gfn) { return (gpa_t)gfn << PAGE_SHIFT; } static inline gfn_t gpa_to_gfn(gpa_t gpa) { return (gfn_t)(gpa >> PAGE_SHIFT); } static inline hpa_t pfn_to_hpa(pfn_t pfn) { return (hpa_t)pfn << PAGE_SHIFT; } static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) { unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); return kvm_is_error_hva(hva); } static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu) { set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests); } enum kvm_stat_kind { KVM_STAT_VM, KVM_STAT_VCPU, }; struct kvm_stats_debugfs_item { const char *name; int offset; enum kvm_stat_kind kind; struct dentry *dentry; }; extern struct kvm_stats_debugfs_item debugfs_entries[]; extern struct dentry *kvm_debugfs_dir; #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) { if (unlikely(kvm->mmu_notifier_count)) return 1; /* * Ensure the read of mmu_notifier_count happens before the read * of mmu_notifier_seq. This interacts with the smp_wmb() in * mmu_notifier_invalidate_range_end to make sure that the caller * either sees the old (non-zero) value of mmu_notifier_count or * the new (incremented) value of mmu_notifier_seq. * PowerPC Book3s HV KVM calls this under a per-page lock * rather than under kvm->mmu_lock, for scalability, so * can't rely on kvm->mmu_lock to keep things ordered. */ smp_rmb(); if (kvm->mmu_notifier_seq != mmu_seq) return 1; return 0; } #endif #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING #ifdef CONFIG_S390 #define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that... #else #define KVM_MAX_IRQ_ROUTES 1024 #endif int kvm_setup_default_irq_routing(struct kvm *kvm); int kvm_set_irq_routing(struct kvm *kvm, const struct kvm_irq_routing_entry *entries, unsigned nr, unsigned flags); int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e, const struct kvm_irq_routing_entry *ue); void kvm_free_irq_routing(struct kvm *kvm); #else static inline void kvm_free_irq_routing(struct kvm *kvm) {} #endif int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); #ifdef CONFIG_HAVE_KVM_EVENTFD void kvm_eventfd_init(struct kvm *kvm); int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); #ifdef CONFIG_HAVE_KVM_IRQFD int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); void kvm_irqfd_release(struct kvm *kvm); void kvm_irq_routing_update(struct kvm *); #else static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) { return -EINVAL; } static inline void kvm_irqfd_release(struct kvm *kvm) {} #endif #else static inline void kvm_eventfd_init(struct kvm *kvm) {} static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) { return -EINVAL; } static inline void kvm_irqfd_release(struct kvm *kvm) {} #ifdef CONFIG_HAVE_KVM_IRQCHIP static inline void kvm_irq_routing_update(struct kvm *kvm) { } #endif static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) { return -ENOSYS; } #endif /* CONFIG_HAVE_KVM_EVENTFD */ #ifdef CONFIG_KVM_APIC_ARCHITECTURE static inline bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) { return vcpu->kvm->bsp_vcpu_id == vcpu->vcpu_id; } bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu); #else static inline bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) { return true; } #endif static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) { set_bit(req, &vcpu->requests); } static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) { if (test_bit(req, &vcpu->requests)) { clear_bit(req, &vcpu->requests); return true; } else { return false; } } extern bool kvm_rebooting; struct kvm_device { struct kvm_device_ops *ops; struct kvm *kvm; void *private; struct list_head vm_node; }; /* create, destroy, and name are mandatory */ struct kvm_device_ops { const char *name; int (*create)(struct kvm_device *dev, u32 type); /* * Destroy is responsible for freeing dev. * * Destroy may be called before or after destructors are called * on emulated I/O regions, depending on whether a reference is * held by a vcpu or other kvm component that gets destroyed * after the emulated I/O. */ void (*destroy)(struct kvm_device *dev); int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, unsigned long arg); }; void kvm_device_get(struct kvm_device *dev); void kvm_device_put(struct kvm_device *dev); struct kvm_device *kvm_device_from_filp(struct file *filp); int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); void kvm_unregister_device_ops(u32 type); extern struct kvm_device_ops kvm_mpic_ops; extern struct kvm_device_ops kvm_xics_ops; extern struct kvm_device_ops kvm_arm_vgic_v2_ops; extern struct kvm_device_ops kvm_arm_vgic_v3_ops; #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) { vcpu->spin_loop.in_spin_loop = val; } static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) { vcpu->spin_loop.dy_eligible = val; } #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) { } static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) { } #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ #endif