/* * Renesas SuperH DMA Engine support * * base is drivers/dma/flsdma.c * * Copyright (C) 2011-2012 Guennadi Liakhovetski <g.liakhovetski@gmx.de> * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com> * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * - DMA of SuperH does not have Hardware DMA chain mode. * - MAX DMA size is 16MB. * */ #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kdebug.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/rculist.h> #include <linux/sh_dma.h> #include <linux/slab.h> #include <linux/spinlock.h> #include "../dmaengine.h" #include "shdma.h" /* DMA registers */ #define SAR 0x00 /* Source Address Register */ #define DAR 0x04 /* Destination Address Register */ #define TCR 0x08 /* Transfer Count Register */ #define CHCR 0x0C /* Channel Control Register */ #define DMAOR 0x40 /* DMA Operation Register */ #define TEND 0x18 /* USB-DMAC */ #define SH_DMAE_DRV_NAME "sh-dma-engine" /* Default MEMCPY transfer size = 2^2 = 4 bytes */ #define LOG2_DEFAULT_XFER_SIZE 2 #define SH_DMA_SLAVE_NUMBER 256 #define SH_DMA_TCR_MAX (16 * 1024 * 1024 - 1) /* * Used for write-side mutual exclusion for the global device list, * read-side synchronization by way of RCU, and per-controller data. */ static DEFINE_SPINLOCK(sh_dmae_lock); static LIST_HEAD(sh_dmae_devices); /* * Different DMAC implementations provide different ways to clear DMA channels: * (1) none - no CHCLR registers are available * (2) one CHCLR register per channel - 0 has to be written to it to clear * channel buffers * (3) one CHCLR per several channels - 1 has to be written to the bit, * corresponding to the specific channel to reset it */ static void channel_clear(struct sh_dmae_chan *sh_dc) { struct sh_dmae_device *shdev = to_sh_dev(sh_dc); const struct sh_dmae_channel *chan_pdata = shdev->pdata->channel + sh_dc->shdma_chan.id; u32 val = shdev->pdata->chclr_bitwise ? 1 << chan_pdata->chclr_bit : 0; __raw_writel(val, shdev->chan_reg + chan_pdata->chclr_offset); } static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg) { __raw_writel(data, sh_dc->base + reg); } static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg) { return __raw_readl(sh_dc->base + reg); } static u16 dmaor_read(struct sh_dmae_device *shdev) { void __iomem *addr = shdev->chan_reg + DMAOR; if (shdev->pdata->dmaor_is_32bit) return __raw_readl(addr); else return __raw_readw(addr); } static void dmaor_write(struct sh_dmae_device *shdev, u16 data) { void __iomem *addr = shdev->chan_reg + DMAOR; if (shdev->pdata->dmaor_is_32bit) __raw_writel(data, addr); else __raw_writew(data, addr); } static void chcr_write(struct sh_dmae_chan *sh_dc, u32 data) { struct sh_dmae_device *shdev = to_sh_dev(sh_dc); __raw_writel(data, sh_dc->base + shdev->chcr_offset); } static u32 chcr_read(struct sh_dmae_chan *sh_dc) { struct sh_dmae_device *shdev = to_sh_dev(sh_dc); return __raw_readl(sh_dc->base + shdev->chcr_offset); } /* * Reset DMA controller * * SH7780 has two DMAOR register */ static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev) { unsigned short dmaor; unsigned long flags; spin_lock_irqsave(&sh_dmae_lock, flags); dmaor = dmaor_read(shdev); dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME)); spin_unlock_irqrestore(&sh_dmae_lock, flags); } static int sh_dmae_rst(struct sh_dmae_device *shdev) { unsigned short dmaor; unsigned long flags; spin_lock_irqsave(&sh_dmae_lock, flags); dmaor = dmaor_read(shdev) & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME); if (shdev->pdata->chclr_present) { int i; for (i = 0; i < shdev->pdata->channel_num; i++) { struct sh_dmae_chan *sh_chan = shdev->chan[i]; if (sh_chan) channel_clear(sh_chan); } } dmaor_write(shdev, dmaor | shdev->pdata->dmaor_init); dmaor = dmaor_read(shdev); spin_unlock_irqrestore(&sh_dmae_lock, flags); if (dmaor & (DMAOR_AE | DMAOR_NMIF)) { dev_warn(shdev->shdma_dev.dma_dev.dev, "Can't initialize DMAOR.\n"); return -EIO; } if (shdev->pdata->dmaor_init & ~dmaor) dev_warn(shdev->shdma_dev.dma_dev.dev, "DMAOR=0x%x hasn't latched the initial value 0x%x.\n", dmaor, shdev->pdata->dmaor_init); return 0; } static bool dmae_is_busy(struct sh_dmae_chan *sh_chan) { u32 chcr = chcr_read(sh_chan); if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE) return true; /* working */ return false; /* waiting */ } static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr) { struct sh_dmae_device *shdev = to_sh_dev(sh_chan); const struct sh_dmae_pdata *pdata = shdev->pdata; int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) | ((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift); if (cnt >= pdata->ts_shift_num) cnt = 0; return pdata->ts_shift[cnt]; } static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size) { struct sh_dmae_device *shdev = to_sh_dev(sh_chan); const struct sh_dmae_pdata *pdata = shdev->pdata; int i; for (i = 0; i < pdata->ts_shift_num; i++) if (pdata->ts_shift[i] == l2size) break; if (i == pdata->ts_shift_num) i = 0; return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) | ((i << pdata->ts_high_shift) & pdata->ts_high_mask); } static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw) { sh_dmae_writel(sh_chan, hw->sar, SAR); sh_dmae_writel(sh_chan, hw->dar, DAR); sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR); } static void dmae_start(struct sh_dmae_chan *sh_chan) { struct sh_dmae_device *shdev = to_sh_dev(sh_chan); u32 chcr = chcr_read(sh_chan); if (shdev->pdata->needs_tend_set) sh_dmae_writel(sh_chan, 0xFFFFFFFF, TEND); chcr |= CHCR_DE | shdev->chcr_ie_bit; chcr_write(sh_chan, chcr & ~CHCR_TE); } static void dmae_init(struct sh_dmae_chan *sh_chan) { /* * Default configuration for dual address memory-memory transfer. */ u32 chcr = DM_INC | SM_INC | RS_AUTO | log2size_to_chcr(sh_chan, LOG2_DEFAULT_XFER_SIZE); sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr); chcr_write(sh_chan, chcr); } static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val) { /* If DMA is active, cannot set CHCR. TODO: remove this superfluous check */ if (dmae_is_busy(sh_chan)) return -EBUSY; sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val); chcr_write(sh_chan, val); return 0; } static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val) { struct sh_dmae_device *shdev = to_sh_dev(sh_chan); const struct sh_dmae_pdata *pdata = shdev->pdata; const struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->shdma_chan.id]; void __iomem *addr = shdev->dmars; unsigned int shift = chan_pdata->dmars_bit; if (dmae_is_busy(sh_chan)) return -EBUSY; if (pdata->no_dmars) return 0; /* in the case of a missing DMARS resource use first memory window */ if (!addr) addr = shdev->chan_reg; addr += chan_pdata->dmars; __raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift), addr); return 0; } static void sh_dmae_start_xfer(struct shdma_chan *schan, struct shdma_desc *sdesc) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); struct sh_dmae_desc *sh_desc = container_of(sdesc, struct sh_dmae_desc, shdma_desc); dev_dbg(sh_chan->shdma_chan.dev, "Queue #%d to %d: %u@%x -> %x\n", sdesc->async_tx.cookie, sh_chan->shdma_chan.id, sh_desc->hw.tcr, sh_desc->hw.sar, sh_desc->hw.dar); /* Get the ld start address from ld_queue */ dmae_set_reg(sh_chan, &sh_desc->hw); dmae_start(sh_chan); } static bool sh_dmae_channel_busy(struct shdma_chan *schan) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); return dmae_is_busy(sh_chan); } static void sh_dmae_setup_xfer(struct shdma_chan *schan, int slave_id) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); if (slave_id >= 0) { const struct sh_dmae_slave_config *cfg = sh_chan->config; dmae_set_dmars(sh_chan, cfg->mid_rid); dmae_set_chcr(sh_chan, cfg->chcr); } else { dmae_init(sh_chan); } } /* * Find a slave channel configuration from the contoller list by either a slave * ID in the non-DT case, or by a MID/RID value in the DT case */ static const struct sh_dmae_slave_config *dmae_find_slave( struct sh_dmae_chan *sh_chan, int match) { struct sh_dmae_device *shdev = to_sh_dev(sh_chan); const struct sh_dmae_pdata *pdata = shdev->pdata; const struct sh_dmae_slave_config *cfg; int i; if (!sh_chan->shdma_chan.dev->of_node) { if (match >= SH_DMA_SLAVE_NUMBER) return NULL; for (i = 0, cfg = pdata->slave; i < pdata->slave_num; i++, cfg++) if (cfg->slave_id == match) return cfg; } else { for (i = 0, cfg = pdata->slave; i < pdata->slave_num; i++, cfg++) if (cfg->mid_rid == match) { sh_chan->shdma_chan.slave_id = i; return cfg; } } return NULL; } static int sh_dmae_set_slave(struct shdma_chan *schan, int slave_id, dma_addr_t slave_addr, bool try) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); const struct sh_dmae_slave_config *cfg = dmae_find_slave(sh_chan, slave_id); if (!cfg) return -ENXIO; if (!try) { sh_chan->config = cfg; sh_chan->slave_addr = slave_addr ? : cfg->addr; } return 0; } static void dmae_halt(struct sh_dmae_chan *sh_chan) { struct sh_dmae_device *shdev = to_sh_dev(sh_chan); u32 chcr = chcr_read(sh_chan); chcr &= ~(CHCR_DE | CHCR_TE | shdev->chcr_ie_bit); chcr_write(sh_chan, chcr); } static int sh_dmae_desc_setup(struct shdma_chan *schan, struct shdma_desc *sdesc, dma_addr_t src, dma_addr_t dst, size_t *len) { struct sh_dmae_desc *sh_desc = container_of(sdesc, struct sh_dmae_desc, shdma_desc); if (*len > schan->max_xfer_len) *len = schan->max_xfer_len; sh_desc->hw.sar = src; sh_desc->hw.dar = dst; sh_desc->hw.tcr = *len; return 0; } static void sh_dmae_halt(struct shdma_chan *schan) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); dmae_halt(sh_chan); } static bool sh_dmae_chan_irq(struct shdma_chan *schan, int irq) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); if (!(chcr_read(sh_chan) & CHCR_TE)) return false; /* DMA stop */ dmae_halt(sh_chan); return true; } static size_t sh_dmae_get_partial(struct shdma_chan *schan, struct shdma_desc *sdesc) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); struct sh_dmae_desc *sh_desc = container_of(sdesc, struct sh_dmae_desc, shdma_desc); return sh_desc->hw.tcr - (sh_dmae_readl(sh_chan, TCR) << sh_chan->xmit_shift); } /* Called from error IRQ or NMI */ static bool sh_dmae_reset(struct sh_dmae_device *shdev) { bool ret; /* halt the dma controller */ sh_dmae_ctl_stop(shdev); /* We cannot detect, which channel caused the error, have to reset all */ ret = shdma_reset(&shdev->shdma_dev); sh_dmae_rst(shdev); return ret; } #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARM) static irqreturn_t sh_dmae_err(int irq, void *data) { struct sh_dmae_device *shdev = data; if (!(dmaor_read(shdev) & DMAOR_AE)) return IRQ_NONE; sh_dmae_reset(shdev); return IRQ_HANDLED; } #endif static bool sh_dmae_desc_completed(struct shdma_chan *schan, struct shdma_desc *sdesc) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); struct sh_dmae_desc *sh_desc = container_of(sdesc, struct sh_dmae_desc, shdma_desc); u32 sar_buf = sh_dmae_readl(sh_chan, SAR); u32 dar_buf = sh_dmae_readl(sh_chan, DAR); return (sdesc->direction == DMA_DEV_TO_MEM && (sh_desc->hw.dar + sh_desc->hw.tcr) == dar_buf) || (sdesc->direction != DMA_DEV_TO_MEM && (sh_desc->hw.sar + sh_desc->hw.tcr) == sar_buf); } static bool sh_dmae_nmi_notify(struct sh_dmae_device *shdev) { /* Fast path out if NMIF is not asserted for this controller */ if ((dmaor_read(shdev) & DMAOR_NMIF) == 0) return false; return sh_dmae_reset(shdev); } static int sh_dmae_nmi_handler(struct notifier_block *self, unsigned long cmd, void *data) { struct sh_dmae_device *shdev; int ret = NOTIFY_DONE; bool triggered; /* * Only concern ourselves with NMI events. * * Normally we would check the die chain value, but as this needs * to be architecture independent, check for NMI context instead. */ if (!in_nmi()) return NOTIFY_DONE; rcu_read_lock(); list_for_each_entry_rcu(shdev, &sh_dmae_devices, node) { /* * Only stop if one of the controllers has NMIF asserted, * we do not want to interfere with regular address error * handling or NMI events that don't concern the DMACs. */ triggered = sh_dmae_nmi_notify(shdev); if (triggered == true) ret = NOTIFY_OK; } rcu_read_unlock(); return ret; } static struct notifier_block sh_dmae_nmi_notifier __read_mostly = { .notifier_call = sh_dmae_nmi_handler, /* Run before NMI debug handler and KGDB */ .priority = 1, }; static int sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id, int irq, unsigned long flags) { const struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id]; struct shdma_dev *sdev = &shdev->shdma_dev; struct platform_device *pdev = to_platform_device(sdev->dma_dev.dev); struct sh_dmae_chan *sh_chan; struct shdma_chan *schan; int err; sh_chan = devm_kzalloc(sdev->dma_dev.dev, sizeof(struct sh_dmae_chan), GFP_KERNEL); if (!sh_chan) { dev_err(sdev->dma_dev.dev, "No free memory for allocating dma channels!\n"); return -ENOMEM; } schan = &sh_chan->shdma_chan; schan->max_xfer_len = SH_DMA_TCR_MAX + 1; shdma_chan_probe(sdev, schan, id); sh_chan->base = shdev->chan_reg + chan_pdata->offset; /* set up channel irq */ if (pdev->id >= 0) snprintf(sh_chan->dev_id, sizeof(sh_chan->dev_id), "sh-dmae%d.%d", pdev->id, id); else snprintf(sh_chan->dev_id, sizeof(sh_chan->dev_id), "sh-dma%d", id); err = shdma_request_irq(schan, irq, flags, sh_chan->dev_id); if (err) { dev_err(sdev->dma_dev.dev, "DMA channel %d request_irq error %d\n", id, err); goto err_no_irq; } shdev->chan[id] = sh_chan; return 0; err_no_irq: /* remove from dmaengine device node */ shdma_chan_remove(schan); return err; } static void sh_dmae_chan_remove(struct sh_dmae_device *shdev) { struct dma_device *dma_dev = &shdev->shdma_dev.dma_dev; struct shdma_chan *schan; int i; shdma_for_each_chan(schan, &shdev->shdma_dev, i) { BUG_ON(!schan); shdma_chan_remove(schan); } dma_dev->chancnt = 0; } static void sh_dmae_shutdown(struct platform_device *pdev) { struct sh_dmae_device *shdev = platform_get_drvdata(pdev); sh_dmae_ctl_stop(shdev); } static int sh_dmae_runtime_suspend(struct device *dev) { return 0; } static int sh_dmae_runtime_resume(struct device *dev) { struct sh_dmae_device *shdev = dev_get_drvdata(dev); return sh_dmae_rst(shdev); } #ifdef CONFIG_PM static int sh_dmae_suspend(struct device *dev) { return 0; } static int sh_dmae_resume(struct device *dev) { struct sh_dmae_device *shdev = dev_get_drvdata(dev); int i, ret; ret = sh_dmae_rst(shdev); if (ret < 0) dev_err(dev, "Failed to reset!\n"); for (i = 0; i < shdev->pdata->channel_num; i++) { struct sh_dmae_chan *sh_chan = shdev->chan[i]; if (!sh_chan->shdma_chan.desc_num) continue; if (sh_chan->shdma_chan.slave_id >= 0) { const struct sh_dmae_slave_config *cfg = sh_chan->config; dmae_set_dmars(sh_chan, cfg->mid_rid); dmae_set_chcr(sh_chan, cfg->chcr); } else { dmae_init(sh_chan); } } return 0; } #else #define sh_dmae_suspend NULL #define sh_dmae_resume NULL #endif static const struct dev_pm_ops sh_dmae_pm = { .suspend = sh_dmae_suspend, .resume = sh_dmae_resume, .runtime_suspend = sh_dmae_runtime_suspend, .runtime_resume = sh_dmae_runtime_resume, }; static dma_addr_t sh_dmae_slave_addr(struct shdma_chan *schan) { struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan, shdma_chan); /* * Implicit BUG_ON(!sh_chan->config) * This is an exclusive slave DMA operation, may only be called after a * successful slave configuration. */ return sh_chan->slave_addr; } static struct shdma_desc *sh_dmae_embedded_desc(void *buf, int i) { return &((struct sh_dmae_desc *)buf)[i].shdma_desc; } static const struct shdma_ops sh_dmae_shdma_ops = { .desc_completed = sh_dmae_desc_completed, .halt_channel = sh_dmae_halt, .channel_busy = sh_dmae_channel_busy, .slave_addr = sh_dmae_slave_addr, .desc_setup = sh_dmae_desc_setup, .set_slave = sh_dmae_set_slave, .setup_xfer = sh_dmae_setup_xfer, .start_xfer = sh_dmae_start_xfer, .embedded_desc = sh_dmae_embedded_desc, .chan_irq = sh_dmae_chan_irq, .get_partial = sh_dmae_get_partial, }; static const struct of_device_id sh_dmae_of_match[] = { {.compatible = "renesas,shdma-r8a73a4", .data = r8a73a4_shdma_devid,}, {} }; MODULE_DEVICE_TABLE(of, sh_dmae_of_match); static int sh_dmae_probe(struct platform_device *pdev) { const struct sh_dmae_pdata *pdata; unsigned long chan_flag[SH_DMAE_MAX_CHANNELS] = {}; int chan_irq[SH_DMAE_MAX_CHANNELS]; #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARM) unsigned long irqflags = 0; int errirq; #endif int err, i, irq_cnt = 0, irqres = 0, irq_cap = 0; struct sh_dmae_device *shdev; struct dma_device *dma_dev; struct resource *chan, *dmars, *errirq_res, *chanirq_res; if (pdev->dev.of_node) pdata = of_match_device(sh_dmae_of_match, &pdev->dev)->data; else pdata = dev_get_platdata(&pdev->dev); /* get platform data */ if (!pdata || !pdata->channel_num) return -ENODEV; chan = platform_get_resource(pdev, IORESOURCE_MEM, 0); /* DMARS area is optional */ dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1); /* * IRQ resources: * 1. there always must be at least one IRQ IO-resource. On SH4 it is * the error IRQ, in which case it is the only IRQ in this resource: * start == end. If it is the only IRQ resource, all channels also * use the same IRQ. * 2. DMA channel IRQ resources can be specified one per resource or in * ranges (start != end) * 3. iff all events (channels and, optionally, error) on this * controller use the same IRQ, only one IRQ resource can be * specified, otherwise there must be one IRQ per channel, even if * some of them are equal * 4. if all IRQs on this controller are equal or if some specific IRQs * specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be * requested with the IRQF_SHARED flag */ errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!chan || !errirq_res) return -ENODEV; shdev = devm_kzalloc(&pdev->dev, sizeof(struct sh_dmae_device), GFP_KERNEL); if (!shdev) { dev_err(&pdev->dev, "Not enough memory\n"); return -ENOMEM; } dma_dev = &shdev->shdma_dev.dma_dev; shdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan); if (IS_ERR(shdev->chan_reg)) return PTR_ERR(shdev->chan_reg); if (dmars) { shdev->dmars = devm_ioremap_resource(&pdev->dev, dmars); if (IS_ERR(shdev->dmars)) return PTR_ERR(shdev->dmars); } if (!pdata->slave_only) dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); if (pdata->slave && pdata->slave_num) dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); /* Default transfer size of 32 bytes requires 32-byte alignment */ dma_dev->copy_align = LOG2_DEFAULT_XFER_SIZE; shdev->shdma_dev.ops = &sh_dmae_shdma_ops; shdev->shdma_dev.desc_size = sizeof(struct sh_dmae_desc); err = shdma_init(&pdev->dev, &shdev->shdma_dev, pdata->channel_num); if (err < 0) goto eshdma; /* platform data */ shdev->pdata = pdata; if (pdata->chcr_offset) shdev->chcr_offset = pdata->chcr_offset; else shdev->chcr_offset = CHCR; if (pdata->chcr_ie_bit) shdev->chcr_ie_bit = pdata->chcr_ie_bit; else shdev->chcr_ie_bit = CHCR_IE; platform_set_drvdata(pdev, shdev); pm_runtime_enable(&pdev->dev); err = pm_runtime_get_sync(&pdev->dev); if (err < 0) dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err); spin_lock_irq(&sh_dmae_lock); list_add_tail_rcu(&shdev->node, &sh_dmae_devices); spin_unlock_irq(&sh_dmae_lock); /* reset dma controller - only needed as a test */ err = sh_dmae_rst(shdev); if (err) goto rst_err; #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE) chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1); if (!chanirq_res) chanirq_res = errirq_res; else irqres++; if (chanirq_res == errirq_res || (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE) irqflags = IRQF_SHARED; errirq = errirq_res->start; err = devm_request_irq(&pdev->dev, errirq, sh_dmae_err, irqflags, "DMAC Address Error", shdev); if (err) { dev_err(&pdev->dev, "DMA failed requesting irq #%d, error %d\n", errirq, err); goto eirq_err; } #else chanirq_res = errirq_res; #endif /* CONFIG_CPU_SH4 || CONFIG_ARCH_SHMOBILE */ if (chanirq_res->start == chanirq_res->end && !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) { /* Special case - all multiplexed */ for (; irq_cnt < pdata->channel_num; irq_cnt++) { if (irq_cnt < SH_DMAE_MAX_CHANNELS) { chan_irq[irq_cnt] = chanirq_res->start; chan_flag[irq_cnt] = IRQF_SHARED; } else { irq_cap = 1; break; } } } else { do { for (i = chanirq_res->start; i <= chanirq_res->end; i++) { if (irq_cnt >= SH_DMAE_MAX_CHANNELS) { irq_cap = 1; break; } if ((errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE) chan_flag[irq_cnt] = IRQF_SHARED; else chan_flag[irq_cnt] = 0; dev_dbg(&pdev->dev, "Found IRQ %d for channel %d\n", i, irq_cnt); chan_irq[irq_cnt++] = i; } if (irq_cnt >= SH_DMAE_MAX_CHANNELS) break; chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, ++irqres); } while (irq_cnt < pdata->channel_num && chanirq_res); } /* Create DMA Channel */ for (i = 0; i < irq_cnt; i++) { err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]); if (err) goto chan_probe_err; } if (irq_cap) dev_notice(&pdev->dev, "Attempting to register %d DMA " "channels when a maximum of %d are supported.\n", pdata->channel_num, SH_DMAE_MAX_CHANNELS); pm_runtime_put(&pdev->dev); err = dma_async_device_register(&shdev->shdma_dev.dma_dev); if (err < 0) goto edmadevreg; return err; edmadevreg: pm_runtime_get(&pdev->dev); chan_probe_err: sh_dmae_chan_remove(shdev); #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE) eirq_err: #endif rst_err: spin_lock_irq(&sh_dmae_lock); list_del_rcu(&shdev->node); spin_unlock_irq(&sh_dmae_lock); pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); shdma_cleanup(&shdev->shdma_dev); eshdma: synchronize_rcu(); return err; } static int sh_dmae_remove(struct platform_device *pdev) { struct sh_dmae_device *shdev = platform_get_drvdata(pdev); struct dma_device *dma_dev = &shdev->shdma_dev.dma_dev; dma_async_device_unregister(dma_dev); spin_lock_irq(&sh_dmae_lock); list_del_rcu(&shdev->node); spin_unlock_irq(&sh_dmae_lock); pm_runtime_disable(&pdev->dev); sh_dmae_chan_remove(shdev); shdma_cleanup(&shdev->shdma_dev); synchronize_rcu(); return 0; } static struct platform_driver sh_dmae_driver = { .driver = { .owner = THIS_MODULE, .pm = &sh_dmae_pm, .name = SH_DMAE_DRV_NAME, .of_match_table = sh_dmae_of_match, }, .remove = sh_dmae_remove, .shutdown = sh_dmae_shutdown, }; static int __init sh_dmae_init(void) { /* Wire up NMI handling */ int err = register_die_notifier(&sh_dmae_nmi_notifier); if (err) return err; return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe); } module_init(sh_dmae_init); static void __exit sh_dmae_exit(void) { platform_driver_unregister(&sh_dmae_driver); unregister_die_notifier(&sh_dmae_nmi_notifier); } module_exit(sh_dmae_exit); MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>"); MODULE_DESCRIPTION("Renesas SH DMA Engine driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" SH_DMAE_DRV_NAME);