// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * AMD SVM support * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Yaniv Kamay * Avi Kivity */ #define pr_fmt(fmt) "SVM: " fmt #include #include "irq.h" #include "mmu.h" #include "kvm_cache_regs.h" #include "x86.h" #include "cpuid.h" #include "pmu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #define __ex(x) __kvm_handle_fault_on_reboot(x) MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); static const struct x86_cpu_id svm_cpu_id[] = { X86_FEATURE_MATCH(X86_FEATURE_SVM), {} }; MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); #define IOPM_ALLOC_ORDER 2 #define MSRPM_ALLOC_ORDER 1 #define SEG_TYPE_LDT 2 #define SEG_TYPE_BUSY_TSS16 3 #define SVM_FEATURE_LBRV (1 << 1) #define SVM_FEATURE_SVML (1 << 2) #define SVM_FEATURE_TSC_RATE (1 << 4) #define SVM_FEATURE_VMCB_CLEAN (1 << 5) #define SVM_FEATURE_FLUSH_ASID (1 << 6) #define SVM_FEATURE_DECODE_ASSIST (1 << 7) #define SVM_FEATURE_PAUSE_FILTER (1 << 10) #define SVM_AVIC_DOORBELL 0xc001011b #define NESTED_EXIT_HOST 0 /* Exit handled on host level */ #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */ #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */ #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) #define TSC_RATIO_RSVD 0xffffff0000000000ULL #define TSC_RATIO_MIN 0x0000000000000001ULL #define TSC_RATIO_MAX 0x000000ffffffffffULL #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF) /* * 0xff is broadcast, so the max index allowed for physical APIC ID * table is 0xfe. APIC IDs above 0xff are reserved. */ #define AVIC_MAX_PHYSICAL_ID_COUNT 255 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF /* AVIC GATAG is encoded using VM and VCPU IDs */ #define AVIC_VCPU_ID_BITS 8 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1) #define AVIC_VM_ID_BITS 24 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS) #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1) #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \ (y & AVIC_VCPU_ID_MASK)) #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK) #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK) static bool erratum_383_found __read_mostly; static const u32 host_save_user_msrs[] = { #ifdef CONFIG_X86_64 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, MSR_FS_BASE, #endif MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_TSC_AUX, }; #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) struct kvm_sev_info { bool active; /* SEV enabled guest */ unsigned int asid; /* ASID used for this guest */ unsigned int handle; /* SEV firmware handle */ int fd; /* SEV device fd */ unsigned long pages_locked; /* Number of pages locked */ struct list_head regions_list; /* List of registered regions */ }; struct kvm_svm { struct kvm kvm; /* Struct members for AVIC */ u32 avic_vm_id; struct page *avic_logical_id_table_page; struct page *avic_physical_id_table_page; struct hlist_node hnode; struct kvm_sev_info sev_info; }; struct kvm_vcpu; struct nested_state { struct vmcb *hsave; u64 hsave_msr; u64 vm_cr_msr; u64 vmcb; /* These are the merged vectors */ u32 *msrpm; /* gpa pointers to the real vectors */ u64 vmcb_msrpm; u64 vmcb_iopm; /* A VMEXIT is required but not yet emulated */ bool exit_required; /* cache for intercepts of the guest */ u32 intercept_cr; u32 intercept_dr; u32 intercept_exceptions; u64 intercept; /* Nested Paging related state */ u64 nested_cr3; }; #define MSRPM_OFFSETS 16 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; /* * Set osvw_len to higher value when updated Revision Guides * are published and we know what the new status bits are */ static uint64_t osvw_len = 4, osvw_status; struct vcpu_svm { struct kvm_vcpu vcpu; struct vmcb *vmcb; unsigned long vmcb_pa; struct svm_cpu_data *svm_data; uint64_t asid_generation; uint64_t sysenter_esp; uint64_t sysenter_eip; uint64_t tsc_aux; u64 msr_decfg; u64 next_rip; u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; struct { u16 fs; u16 gs; u16 ldt; u64 gs_base; } host; u64 spec_ctrl; /* * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be * translated into the appropriate L2_CFG bits on the host to * perform speculative control. */ u64 virt_spec_ctrl; u32 *msrpm; ulong nmi_iret_rip; struct nested_state nested; bool nmi_singlestep; u64 nmi_singlestep_guest_rflags; unsigned int3_injected; unsigned long int3_rip; /* cached guest cpuid flags for faster access */ bool nrips_enabled : 1; u32 ldr_reg; u32 dfr_reg; struct page *avic_backing_page; u64 *avic_physical_id_cache; bool avic_is_running; /* * Per-vcpu list of struct amd_svm_iommu_ir: * This is used mainly to store interrupt remapping information used * when update the vcpu affinity. This avoids the need to scan for * IRTE and try to match ga_tag in the IOMMU driver. */ struct list_head ir_list; spinlock_t ir_list_lock; /* which host CPU was used for running this vcpu */ unsigned int last_cpu; }; /* * This is a wrapper of struct amd_iommu_ir_data. */ struct amd_svm_iommu_ir { struct list_head node; /* Used by SVM for per-vcpu ir_list */ void *data; /* Storing pointer to struct amd_ir_data */ }; #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF) #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31) #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL) #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12) #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62) #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63) static DEFINE_PER_CPU(u64, current_tsc_ratio); #define TSC_RATIO_DEFAULT 0x0100000000ULL #define MSR_INVALID 0xffffffffU static const struct svm_direct_access_msrs { u32 index; /* Index of the MSR */ bool always; /* True if intercept is always on */ } direct_access_msrs[] = { { .index = MSR_STAR, .always = true }, { .index = MSR_IA32_SYSENTER_CS, .always = true }, #ifdef CONFIG_X86_64 { .index = MSR_GS_BASE, .always = true }, { .index = MSR_FS_BASE, .always = true }, { .index = MSR_KERNEL_GS_BASE, .always = true }, { .index = MSR_LSTAR, .always = true }, { .index = MSR_CSTAR, .always = true }, { .index = MSR_SYSCALL_MASK, .always = true }, #endif { .index = MSR_IA32_SPEC_CTRL, .always = false }, { .index = MSR_IA32_PRED_CMD, .always = false }, { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, { .index = MSR_IA32_LASTINTFROMIP, .always = false }, { .index = MSR_IA32_LASTINTTOIP, .always = false }, { .index = MSR_INVALID, .always = false }, }; /* enable NPT for AMD64 and X86 with PAE */ #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) static bool npt_enabled = true; #else static bool npt_enabled; #endif /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: * pause_filter_count: On processors that support Pause filtering(indicated * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter * count value. On VMRUN this value is loaded into an internal counter. * Each time a pause instruction is executed, this counter is decremented * until it reaches zero at which time a #VMEXIT is generated if pause * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause * Intercept Filtering for more details. * This also indicate if ple logic enabled. * * pause_filter_thresh: In addition, some processor families support advanced * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on * the amount of time a guest is allowed to execute in a pause loop. * In this mode, a 16-bit pause filter threshold field is added in the * VMCB. The threshold value is a cycle count that is used to reset the * pause counter. As with simple pause filtering, VMRUN loads the pause * count value from VMCB into an internal counter. Then, on each pause * instruction the hardware checks the elapsed number of cycles since * the most recent pause instruction against the pause filter threshold. * If the elapsed cycle count is greater than the pause filter threshold, * then the internal pause count is reloaded from the VMCB and execution * continues. If the elapsed cycle count is less than the pause filter * threshold, then the internal pause count is decremented. If the count * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is * triggered. If advanced pause filtering is supported and pause filter * threshold field is set to zero, the filter will operate in the simpler, * count only mode. */ static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; module_param(pause_filter_thresh, ushort, 0444); static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; module_param(pause_filter_count, ushort, 0444); /* Default doubles per-vcpu window every exit. */ static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; module_param(pause_filter_count_grow, ushort, 0444); /* Default resets per-vcpu window every exit to pause_filter_count. */ static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; module_param(pause_filter_count_shrink, ushort, 0444); /* Default is to compute the maximum so we can never overflow. */ static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; module_param(pause_filter_count_max, ushort, 0444); /* allow nested paging (virtualized MMU) for all guests */ static int npt = true; module_param(npt, int, S_IRUGO); /* allow nested virtualization in KVM/SVM */ static int nested = true; module_param(nested, int, S_IRUGO); /* enable / disable AVIC */ static int avic; #ifdef CONFIG_X86_LOCAL_APIC module_param(avic, int, S_IRUGO); #endif /* enable/disable Next RIP Save */ static int nrips = true; module_param(nrips, int, 0444); /* enable/disable Virtual VMLOAD VMSAVE */ static int vls = true; module_param(vls, int, 0444); /* enable/disable Virtual GIF */ static int vgif = true; module_param(vgif, int, 0444); /* enable/disable SEV support */ static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); module_param(sev, int, 0444); static bool __read_mostly dump_invalid_vmcb = 0; module_param(dump_invalid_vmcb, bool, 0644); static u8 rsm_ins_bytes[] = "\x0f\xaa"; static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa); static void svm_complete_interrupts(struct vcpu_svm *svm); static int nested_svm_exit_handled(struct vcpu_svm *svm); static int nested_svm_intercept(struct vcpu_svm *svm); static int nested_svm_vmexit(struct vcpu_svm *svm); static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, bool has_error_code, u32 error_code); enum { VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, pause filter count */ VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */ VMCB_ASID, /* ASID */ VMCB_INTR, /* int_ctl, int_vector */ VMCB_NPT, /* npt_en, nCR3, gPAT */ VMCB_CR, /* CR0, CR3, CR4, EFER */ VMCB_DR, /* DR6, DR7 */ VMCB_DT, /* GDT, IDT */ VMCB_SEG, /* CS, DS, SS, ES, CPL */ VMCB_CR2, /* CR2 only */ VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE, * AVIC PHYSICAL_TABLE pointer, * AVIC LOGICAL_TABLE pointer */ VMCB_DIRTY_MAX, }; /* TPR and CR2 are always written before VMRUN */ #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2)) #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL static DEFINE_MUTEX(sev_deactivate_lock); static DEFINE_MUTEX(sev_bitmap_lock); static unsigned int max_sev_asid; static unsigned int min_sev_asid; static unsigned long *sev_asid_bitmap; #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) struct enc_region { struct list_head list; unsigned long npages; struct page **pages; unsigned long uaddr; unsigned long size; }; static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm) { return container_of(kvm, struct kvm_svm, kvm); } static inline bool svm_sev_enabled(void) { return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0; } static inline bool sev_guest(struct kvm *kvm) { #ifdef CONFIG_KVM_AMD_SEV struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return sev->active; #else return false; #endif } static inline int sev_get_asid(struct kvm *kvm) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return sev->asid; } static inline void mark_all_dirty(struct vmcb *vmcb) { vmcb->control.clean = 0; } static inline void mark_all_clean(struct vmcb *vmcb) { vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1) & ~VMCB_ALWAYS_DIRTY_MASK; } static inline void mark_dirty(struct vmcb *vmcb, int bit) { vmcb->control.clean &= ~(1 << bit); } static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_svm, vcpu); } static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data) { svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK; mark_dirty(svm->vmcb, VMCB_AVIC); } static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u64 *entry = svm->avic_physical_id_cache; if (!entry) return false; return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); } static void recalc_intercepts(struct vcpu_svm *svm) { struct vmcb_control_area *c, *h; struct nested_state *g; mark_dirty(svm->vmcb, VMCB_INTERCEPTS); if (!is_guest_mode(&svm->vcpu)) return; c = &svm->vmcb->control; h = &svm->nested.hsave->control; g = &svm->nested; c->intercept_cr = h->intercept_cr | g->intercept_cr; c->intercept_dr = h->intercept_dr | g->intercept_dr; c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions; c->intercept = h->intercept | g->intercept; } static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm) { if (is_guest_mode(&svm->vcpu)) return svm->nested.hsave; else return svm->vmcb; } static inline void set_cr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_cr |= (1U << bit); recalc_intercepts(svm); } static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_cr &= ~(1U << bit); recalc_intercepts(svm); } static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); return vmcb->control.intercept_cr & (1U << bit); } static inline void set_dr_intercepts(struct vcpu_svm *svm) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ) | (1 << INTERCEPT_DR1_READ) | (1 << INTERCEPT_DR2_READ) | (1 << INTERCEPT_DR3_READ) | (1 << INTERCEPT_DR4_READ) | (1 << INTERCEPT_DR5_READ) | (1 << INTERCEPT_DR6_READ) | (1 << INTERCEPT_DR7_READ) | (1 << INTERCEPT_DR0_WRITE) | (1 << INTERCEPT_DR1_WRITE) | (1 << INTERCEPT_DR2_WRITE) | (1 << INTERCEPT_DR3_WRITE) | (1 << INTERCEPT_DR4_WRITE) | (1 << INTERCEPT_DR5_WRITE) | (1 << INTERCEPT_DR6_WRITE) | (1 << INTERCEPT_DR7_WRITE); recalc_intercepts(svm); } static inline void clr_dr_intercepts(struct vcpu_svm *svm) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_dr = 0; recalc_intercepts(svm); } static inline void set_exception_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_exceptions |= (1U << bit); recalc_intercepts(svm); } static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_exceptions &= ~(1U << bit); recalc_intercepts(svm); } static inline void set_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept |= (1ULL << bit); recalc_intercepts(svm); } static inline void clr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept &= ~(1ULL << bit); recalc_intercepts(svm); } static inline bool vgif_enabled(struct vcpu_svm *svm) { return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK); } static inline void enable_gif(struct vcpu_svm *svm) { if (vgif_enabled(svm)) svm->vmcb->control.int_ctl |= V_GIF_MASK; else svm->vcpu.arch.hflags |= HF_GIF_MASK; } static inline void disable_gif(struct vcpu_svm *svm) { if (vgif_enabled(svm)) svm->vmcb->control.int_ctl &= ~V_GIF_MASK; else svm->vcpu.arch.hflags &= ~HF_GIF_MASK; } static inline bool gif_set(struct vcpu_svm *svm) { if (vgif_enabled(svm)) return !!(svm->vmcb->control.int_ctl & V_GIF_MASK); else return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); } static unsigned long iopm_base; struct kvm_ldttss_desc { u16 limit0; u16 base0; unsigned base1:8, type:5, dpl:2, p:1; unsigned limit1:4, zero0:3, g:1, base2:8; u32 base3; u32 zero1; } __attribute__((packed)); struct svm_cpu_data { int cpu; u64 asid_generation; u32 max_asid; u32 next_asid; u32 min_asid; struct kvm_ldttss_desc *tss_desc; struct page *save_area; struct vmcb *current_vmcb; /* index = sev_asid, value = vmcb pointer */ struct vmcb **sev_vmcbs; }; static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) #define MSRS_RANGE_SIZE 2048 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) static u32 svm_msrpm_offset(u32 msr) { u32 offset; int i; for (i = 0; i < NUM_MSR_MAPS; i++) { if (msr < msrpm_ranges[i] || msr >= msrpm_ranges[i] + MSRS_IN_RANGE) continue; offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ offset += (i * MSRS_RANGE_SIZE); /* add range offset */ /* Now we have the u8 offset - but need the u32 offset */ return offset / 4; } /* MSR not in any range */ return MSR_INVALID; } #define MAX_INST_SIZE 15 static inline void clgi(void) { asm volatile (__ex("clgi")); } static inline void stgi(void) { asm volatile (__ex("stgi")); } static inline void invlpga(unsigned long addr, u32 asid) { asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); } static int get_npt_level(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 return PT64_ROOT_4LEVEL; #else return PT32E_ROOT_LEVEL; #endif } static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) { vcpu->arch.efer = efer; if (!npt_enabled && !(efer & EFER_LMA)) efer &= ~EFER_LME; to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); } static int is_external_interrupt(u32 info) { info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); } static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 ret = 0; if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; return ret; } static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { struct vcpu_svm *svm = to_svm(vcpu); if (mask == 0) svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; else svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; } static int skip_emulated_instruction(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (nrips && svm->vmcb->control.next_rip != 0) { WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); svm->next_rip = svm->vmcb->control.next_rip; } if (!svm->next_rip) { if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) return 0; } else { if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) pr_err("%s: ip 0x%lx next 0x%llx\n", __func__, kvm_rip_read(vcpu), svm->next_rip); kvm_rip_write(vcpu, svm->next_rip); } svm_set_interrupt_shadow(vcpu, 0); return 1; } static void svm_queue_exception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); unsigned nr = vcpu->arch.exception.nr; bool has_error_code = vcpu->arch.exception.has_error_code; bool reinject = vcpu->arch.exception.injected; u32 error_code = vcpu->arch.exception.error_code; /* * If we are within a nested VM we'd better #VMEXIT and let the guest * handle the exception */ if (!reinject && nested_svm_check_exception(svm, nr, has_error_code, error_code)) return; kvm_deliver_exception_payload(&svm->vcpu); if (nr == BP_VECTOR && !nrips) { unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); /* * For guest debugging where we have to reinject #BP if some * INT3 is guest-owned: * Emulate nRIP by moving RIP forward. Will fail if injection * raises a fault that is not intercepted. Still better than * failing in all cases. */ (void)skip_emulated_instruction(&svm->vcpu); rip = kvm_rip_read(&svm->vcpu); svm->int3_rip = rip + svm->vmcb->save.cs.base; svm->int3_injected = rip - old_rip; } svm->vmcb->control.event_inj = nr | SVM_EVTINJ_VALID | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | SVM_EVTINJ_TYPE_EXEPT; svm->vmcb->control.event_inj_err = error_code; } static void svm_init_erratum_383(void) { u32 low, high; int err; u64 val; if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) return; /* Use _safe variants to not break nested virtualization */ val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); if (err) return; val |= (1ULL << 47); low = lower_32_bits(val); high = upper_32_bits(val); native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); erratum_383_found = true; } static void svm_init_osvw(struct kvm_vcpu *vcpu) { /* * Guests should see errata 400 and 415 as fixed (assuming that * HLT and IO instructions are intercepted). */ vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; vcpu->arch.osvw.status = osvw_status & ~(6ULL); /* * By increasing VCPU's osvw.length to 3 we are telling the guest that * all osvw.status bits inside that length, including bit 0 (which is * reserved for erratum 298), are valid. However, if host processor's * osvw_len is 0 then osvw_status[0] carries no information. We need to * be conservative here and therefore we tell the guest that erratum 298 * is present (because we really don't know). */ if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) vcpu->arch.osvw.status |= 1; } static int has_svm(void) { const char *msg; if (!cpu_has_svm(&msg)) { printk(KERN_INFO "has_svm: %s\n", msg); return 0; } return 1; } static void svm_hardware_disable(void) { /* Make sure we clean up behind us */ if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); cpu_svm_disable(); amd_pmu_disable_virt(); } static int svm_hardware_enable(void) { struct svm_cpu_data *sd; uint64_t efer; struct desc_struct *gdt; int me = raw_smp_processor_id(); rdmsrl(MSR_EFER, efer); if (efer & EFER_SVME) return -EBUSY; if (!has_svm()) { pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); return -EINVAL; } sd = per_cpu(svm_data, me); if (!sd) { pr_err("%s: svm_data is NULL on %d\n", __func__, me); return -EINVAL; } sd->asid_generation = 1; sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; sd->next_asid = sd->max_asid + 1; sd->min_asid = max_sev_asid + 1; gdt = get_current_gdt_rw(); sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); wrmsrl(MSR_EFER, efer | EFER_SVME); wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); } /* * Get OSVW bits. * * Note that it is possible to have a system with mixed processor * revisions and therefore different OSVW bits. If bits are not the same * on different processors then choose the worst case (i.e. if erratum * is present on one processor and not on another then assume that the * erratum is present everywhere). */ if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { uint64_t len, status = 0; int err; len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); if (!err) status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &err); if (err) osvw_status = osvw_len = 0; else { if (len < osvw_len) osvw_len = len; osvw_status |= status; osvw_status &= (1ULL << osvw_len) - 1; } } else osvw_status = osvw_len = 0; svm_init_erratum_383(); amd_pmu_enable_virt(); return 0; } static void svm_cpu_uninit(int cpu) { struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); if (!sd) return; per_cpu(svm_data, raw_smp_processor_id()) = NULL; kfree(sd->sev_vmcbs); __free_page(sd->save_area); kfree(sd); } static int svm_cpu_init(int cpu) { struct svm_cpu_data *sd; int r; sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); if (!sd) return -ENOMEM; sd->cpu = cpu; r = -ENOMEM; sd->save_area = alloc_page(GFP_KERNEL); if (!sd->save_area) goto err_1; if (svm_sev_enabled()) { r = -ENOMEM; sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, sizeof(void *), GFP_KERNEL); if (!sd->sev_vmcbs) goto err_1; } per_cpu(svm_data, cpu) = sd; return 0; err_1: kfree(sd); return r; } static bool valid_msr_intercept(u32 index) { int i; for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) if (direct_access_msrs[i].index == index) return true; return false; } static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr) { u8 bit_write; unsigned long tmp; u32 offset; u32 *msrpm; msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: to_svm(vcpu)->msrpm; offset = svm_msrpm_offset(msr); bit_write = 2 * (msr & 0x0f) + 1; tmp = msrpm[offset]; BUG_ON(offset == MSR_INVALID); return !!test_bit(bit_write, &tmp); } static void set_msr_interception(u32 *msrpm, unsigned msr, int read, int write) { u8 bit_read, bit_write; unsigned long tmp; u32 offset; /* * If this warning triggers extend the direct_access_msrs list at the * beginning of the file */ WARN_ON(!valid_msr_intercept(msr)); offset = svm_msrpm_offset(msr); bit_read = 2 * (msr & 0x0f); bit_write = 2 * (msr & 0x0f) + 1; tmp = msrpm[offset]; BUG_ON(offset == MSR_INVALID); read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); msrpm[offset] = tmp; } static void svm_vcpu_init_msrpm(u32 *msrpm) { int i; memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { if (!direct_access_msrs[i].always) continue; set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); } } static void add_msr_offset(u32 offset) { int i; for (i = 0; i < MSRPM_OFFSETS; ++i) { /* Offset already in list? */ if (msrpm_offsets[i] == offset) return; /* Slot used by another offset? */ if (msrpm_offsets[i] != MSR_INVALID) continue; /* Add offset to list */ msrpm_offsets[i] = offset; return; } /* * If this BUG triggers the msrpm_offsets table has an overflow. Just * increase MSRPM_OFFSETS in this case. */ BUG(); } static void init_msrpm_offsets(void) { int i; memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { u32 offset; offset = svm_msrpm_offset(direct_access_msrs[i].index); BUG_ON(offset == MSR_INVALID); add_msr_offset(offset); } } static void svm_enable_lbrv(struct vcpu_svm *svm) { u32 *msrpm = svm->msrpm; svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); } static void svm_disable_lbrv(struct vcpu_svm *svm) { u32 *msrpm = svm->msrpm; svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); } static void disable_nmi_singlestep(struct vcpu_svm *svm) { svm->nmi_singlestep = false; if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { /* Clear our flags if they were not set by the guest */ if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; } } /* Note: * This hash table is used to map VM_ID to a struct kvm_svm, * when handling AMD IOMMU GALOG notification to schedule in * a particular vCPU. */ #define SVM_VM_DATA_HASH_BITS 8 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); static u32 next_vm_id = 0; static bool next_vm_id_wrapped = 0; static DEFINE_SPINLOCK(svm_vm_data_hash_lock); /* Note: * This function is called from IOMMU driver to notify * SVM to schedule in a particular vCPU of a particular VM. */ static int avic_ga_log_notifier(u32 ga_tag) { unsigned long flags; struct kvm_svm *kvm_svm; struct kvm_vcpu *vcpu = NULL; u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); spin_lock_irqsave(&svm_vm_data_hash_lock, flags); hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { if (kvm_svm->avic_vm_id != vm_id) continue; vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); break; } spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); /* Note: * At this point, the IOMMU should have already set the pending * bit in the vAPIC backing page. So, we just need to schedule * in the vcpu. */ if (vcpu) kvm_vcpu_wake_up(vcpu); return 0; } static __init int sev_hardware_setup(void) { struct sev_user_data_status *status; int rc; /* Maximum number of encrypted guests supported simultaneously */ max_sev_asid = cpuid_ecx(0x8000001F); if (!max_sev_asid) return 1; /* Minimum ASID value that should be used for SEV guest */ min_sev_asid = cpuid_edx(0x8000001F); /* Initialize SEV ASID bitmap */ sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); if (!sev_asid_bitmap) return 1; status = kmalloc(sizeof(*status), GFP_KERNEL); if (!status) return 1; /* * Check SEV platform status. * * PLATFORM_STATUS can be called in any state, if we failed to query * the PLATFORM status then either PSP firmware does not support SEV * feature or SEV firmware is dead. */ rc = sev_platform_status(status, NULL); if (rc) goto err; pr_info("SEV supported\n"); err: kfree(status); return rc; } static void grow_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; int old = control->pause_filter_count; control->pause_filter_count = __grow_ple_window(old, pause_filter_count, pause_filter_count_grow, pause_filter_count_max); if (control->pause_filter_count != old) { mark_dirty(svm->vmcb, VMCB_INTERCEPTS); trace_kvm_ple_window_update(vcpu->vcpu_id, control->pause_filter_count, old); } } static void shrink_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; int old = control->pause_filter_count; control->pause_filter_count = __shrink_ple_window(old, pause_filter_count, pause_filter_count_shrink, pause_filter_count); if (control->pause_filter_count != old) { mark_dirty(svm->vmcb, VMCB_INTERCEPTS); trace_kvm_ple_window_update(vcpu->vcpu_id, control->pause_filter_count, old); } } static __init int svm_hardware_setup(void) { int cpu; struct page *iopm_pages; void *iopm_va; int r; iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); if (!iopm_pages) return -ENOMEM; iopm_va = page_address(iopm_pages); memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; init_msrpm_offsets(); if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) kvm_enable_efer_bits(EFER_FFXSR); if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { kvm_has_tsc_control = true; kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; kvm_tsc_scaling_ratio_frac_bits = 32; } /* Check for pause filtering support */ if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { pause_filter_count = 0; pause_filter_thresh = 0; } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { pause_filter_thresh = 0; } if (nested) { printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); } if (sev) { if (boot_cpu_has(X86_FEATURE_SEV) && IS_ENABLED(CONFIG_KVM_AMD_SEV)) { r = sev_hardware_setup(); if (r) sev = false; } else { sev = false; } } for_each_possible_cpu(cpu) { r = svm_cpu_init(cpu); if (r) goto err; } if (!boot_cpu_has(X86_FEATURE_NPT)) npt_enabled = false; if (npt_enabled && !npt) { printk(KERN_INFO "kvm: Nested Paging disabled\n"); npt_enabled = false; } if (npt_enabled) { printk(KERN_INFO "kvm: Nested Paging enabled\n"); kvm_enable_tdp(); } else kvm_disable_tdp(); if (nrips) { if (!boot_cpu_has(X86_FEATURE_NRIPS)) nrips = false; } if (avic) { if (!npt_enabled || !boot_cpu_has(X86_FEATURE_AVIC) || !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { avic = false; } else { pr_info("AVIC enabled\n"); amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); } } if (vls) { if (!npt_enabled || !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || !IS_ENABLED(CONFIG_X86_64)) { vls = false; } else { pr_info("Virtual VMLOAD VMSAVE supported\n"); } } if (vgif) { if (!boot_cpu_has(X86_FEATURE_VGIF)) vgif = false; else pr_info("Virtual GIF supported\n"); } return 0; err: __free_pages(iopm_pages, IOPM_ALLOC_ORDER); iopm_base = 0; return r; } static __exit void svm_hardware_unsetup(void) { int cpu; if (svm_sev_enabled()) bitmap_free(sev_asid_bitmap); for_each_possible_cpu(cpu) svm_cpu_uninit(cpu); __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); iopm_base = 0; } static void init_seg(struct vmcb_seg *seg) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ seg->limit = 0xffff; seg->base = 0; } static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | type; seg->limit = 0xffff; seg->base = 0; } static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (is_guest_mode(vcpu)) return svm->nested.hsave->control.tsc_offset; return vcpu->arch.tsc_offset; } static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) { struct vcpu_svm *svm = to_svm(vcpu); u64 g_tsc_offset = 0; if (is_guest_mode(vcpu)) { /* Write L1's TSC offset. */ g_tsc_offset = svm->vmcb->control.tsc_offset - svm->nested.hsave->control.tsc_offset; svm->nested.hsave->control.tsc_offset = offset; } trace_kvm_write_tsc_offset(vcpu->vcpu_id, svm->vmcb->control.tsc_offset - g_tsc_offset, offset); svm->vmcb->control.tsc_offset = offset + g_tsc_offset; mark_dirty(svm->vmcb, VMCB_INTERCEPTS); return svm->vmcb->control.tsc_offset; } static void avic_init_vmcb(struct vcpu_svm *svm) { struct vmcb *vmcb = svm->vmcb; struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT; vmcb->control.int_ctl |= AVIC_ENABLE_MASK; } static void init_vmcb(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; svm->vcpu.arch.hflags = 0; set_cr_intercept(svm, INTERCEPT_CR0_READ); set_cr_intercept(svm, INTERCEPT_CR3_READ); set_cr_intercept(svm, INTERCEPT_CR4_READ); set_cr_intercept(svm, INTERCEPT_CR0_WRITE); set_cr_intercept(svm, INTERCEPT_CR3_WRITE); set_cr_intercept(svm, INTERCEPT_CR4_WRITE); if (!kvm_vcpu_apicv_active(&svm->vcpu)) set_cr_intercept(svm, INTERCEPT_CR8_WRITE); set_dr_intercepts(svm); set_exception_intercept(svm, PF_VECTOR); set_exception_intercept(svm, UD_VECTOR); set_exception_intercept(svm, MC_VECTOR); set_exception_intercept(svm, AC_VECTOR); set_exception_intercept(svm, DB_VECTOR); /* * Guest access to VMware backdoor ports could legitimately * trigger #GP because of TSS I/O permission bitmap. * We intercept those #GP and allow access to them anyway * as VMware does. */ if (enable_vmware_backdoor) set_exception_intercept(svm, GP_VECTOR); set_intercept(svm, INTERCEPT_INTR); set_intercept(svm, INTERCEPT_NMI); set_intercept(svm, INTERCEPT_SMI); set_intercept(svm, INTERCEPT_SELECTIVE_CR0); set_intercept(svm, INTERCEPT_RDPMC); set_intercept(svm, INTERCEPT_CPUID); set_intercept(svm, INTERCEPT_INVD); set_intercept(svm, INTERCEPT_INVLPG); set_intercept(svm, INTERCEPT_INVLPGA); set_intercept(svm, INTERCEPT_IOIO_PROT); set_intercept(svm, INTERCEPT_MSR_PROT); set_intercept(svm, INTERCEPT_TASK_SWITCH); set_intercept(svm, INTERCEPT_SHUTDOWN); set_intercept(svm, INTERCEPT_VMRUN); set_intercept(svm, INTERCEPT_VMMCALL); set_intercept(svm, INTERCEPT_VMLOAD); set_intercept(svm, INTERCEPT_VMSAVE); set_intercept(svm, INTERCEPT_STGI); set_intercept(svm, INTERCEPT_CLGI); set_intercept(svm, INTERCEPT_SKINIT); set_intercept(svm, INTERCEPT_WBINVD); set_intercept(svm, INTERCEPT_XSETBV); set_intercept(svm, INTERCEPT_RDPRU); set_intercept(svm, INTERCEPT_RSM); if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { set_intercept(svm, INTERCEPT_MONITOR); set_intercept(svm, INTERCEPT_MWAIT); } if (!kvm_hlt_in_guest(svm->vcpu.kvm)) set_intercept(svm, INTERCEPT_HLT); control->iopm_base_pa = __sme_set(iopm_base); control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); control->int_ctl = V_INTR_MASKING_MASK; init_seg(&save->es); init_seg(&save->ss); init_seg(&save->ds); init_seg(&save->fs); init_seg(&save->gs); save->cs.selector = 0xf000; save->cs.base = 0xffff0000; /* Executable/Readable Code Segment */ save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; save->cs.limit = 0xffff; save->gdtr.limit = 0xffff; save->idtr.limit = 0xffff; init_sys_seg(&save->ldtr, SEG_TYPE_LDT); init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); svm_set_efer(&svm->vcpu, 0); save->dr6 = 0xffff0ff0; kvm_set_rflags(&svm->vcpu, 2); save->rip = 0x0000fff0; svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; /* * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. * It also updates the guest-visible cr0 value. */ svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); kvm_mmu_reset_context(&svm->vcpu); save->cr4 = X86_CR4_PAE; /* rdx = ?? */ if (npt_enabled) { /* Setup VMCB for Nested Paging */ control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; clr_intercept(svm, INTERCEPT_INVLPG); clr_exception_intercept(svm, PF_VECTOR); clr_cr_intercept(svm, INTERCEPT_CR3_READ); clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); save->g_pat = svm->vcpu.arch.pat; save->cr3 = 0; save->cr4 = 0; } svm->asid_generation = 0; svm->nested.vmcb = 0; svm->vcpu.arch.hflags = 0; if (pause_filter_count) { control->pause_filter_count = pause_filter_count; if (pause_filter_thresh) control->pause_filter_thresh = pause_filter_thresh; set_intercept(svm, INTERCEPT_PAUSE); } else { clr_intercept(svm, INTERCEPT_PAUSE); } if (kvm_vcpu_apicv_active(&svm->vcpu)) avic_init_vmcb(svm); /* * If hardware supports Virtual VMLOAD VMSAVE then enable it * in VMCB and clear intercepts to avoid #VMEXIT. */ if (vls) { clr_intercept(svm, INTERCEPT_VMLOAD); clr_intercept(svm, INTERCEPT_VMSAVE); svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; } if (vgif) { clr_intercept(svm, INTERCEPT_STGI); clr_intercept(svm, INTERCEPT_CLGI); svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; } if (sev_guest(svm->vcpu.kvm)) { svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; clr_exception_intercept(svm, UD_VECTOR); } mark_all_dirty(svm->vmcb); enable_gif(svm); } static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, unsigned int index) { u64 *avic_physical_id_table; struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); if (index >= AVIC_MAX_PHYSICAL_ID_COUNT) return NULL; avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); return &avic_physical_id_table[index]; } /** * Note: * AVIC hardware walks the nested page table to check permissions, * but does not use the SPA address specified in the leaf page * table entry since it uses address in the AVIC_BACKING_PAGE pointer * field of the VMCB. Therefore, we set up the * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here. */ static int avic_init_access_page(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; int ret = 0; mutex_lock(&kvm->slots_lock); if (kvm->arch.apic_access_page_done) goto out; ret = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); if (ret) goto out; kvm->arch.apic_access_page_done = true; out: mutex_unlock(&kvm->slots_lock); return ret; } static int avic_init_backing_page(struct kvm_vcpu *vcpu) { int ret; u64 *entry, new_entry; int id = vcpu->vcpu_id; struct vcpu_svm *svm = to_svm(vcpu); ret = avic_init_access_page(vcpu); if (ret) return ret; if (id >= AVIC_MAX_PHYSICAL_ID_COUNT) return -EINVAL; if (!svm->vcpu.arch.apic->regs) return -EINVAL; svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs); /* Setting AVIC backing page address in the phy APIC ID table */ entry = avic_get_physical_id_entry(vcpu, id); if (!entry) return -EINVAL; new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); WRITE_ONCE(*entry, new_entry); svm->avic_physical_id_cache = entry; return 0; } static void sev_asid_free(int asid) { struct svm_cpu_data *sd; int cpu, pos; mutex_lock(&sev_bitmap_lock); pos = asid - 1; __clear_bit(pos, sev_asid_bitmap); for_each_possible_cpu(cpu) { sd = per_cpu(svm_data, cpu); sd->sev_vmcbs[pos] = NULL; } mutex_unlock(&sev_bitmap_lock); } static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) { struct sev_data_decommission *decommission; struct sev_data_deactivate *data; if (!handle) return; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return; /* deactivate handle */ data->handle = handle; /* * Guard against a parallel DEACTIVATE command before the DF_FLUSH * command has completed. */ mutex_lock(&sev_deactivate_lock); sev_guest_deactivate(data, NULL); wbinvd_on_all_cpus(); sev_guest_df_flush(NULL); mutex_unlock(&sev_deactivate_lock); kfree(data); decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); if (!decommission) return; /* decommission handle */ decommission->handle = handle; sev_guest_decommission(decommission, NULL); kfree(decommission); } static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, unsigned long ulen, unsigned long *n, int write) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; unsigned long npages, npinned, size; unsigned long locked, lock_limit; struct page **pages; unsigned long first, last; if (ulen == 0 || uaddr + ulen < uaddr) return NULL; /* Calculate number of pages. */ first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; npages = (last - first + 1); locked = sev->pages_locked + npages; lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); return NULL; } /* Avoid using vmalloc for smaller buffers. */ size = npages * sizeof(struct page *); if (size > PAGE_SIZE) pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO, PAGE_KERNEL); else pages = kmalloc(size, GFP_KERNEL_ACCOUNT); if (!pages) return NULL; /* Pin the user virtual address. */ npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages); if (npinned != npages) { pr_err("SEV: Failure locking %lu pages.\n", npages); goto err; } *n = npages; sev->pages_locked = locked; return pages; err: if (npinned > 0) release_pages(pages, npinned); kvfree(pages); return NULL; } static void sev_unpin_memory(struct kvm *kvm, struct page **pages, unsigned long npages) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; release_pages(pages, npages); kvfree(pages); sev->pages_locked -= npages; } static void sev_clflush_pages(struct page *pages[], unsigned long npages) { uint8_t *page_virtual; unsigned long i; if (npages == 0 || pages == NULL) return; for (i = 0; i < npages; i++) { page_virtual = kmap_atomic(pages[i]); clflush_cache_range(page_virtual, PAGE_SIZE); kunmap_atomic(page_virtual); } } static void __unregister_enc_region_locked(struct kvm *kvm, struct enc_region *region) { /* * The guest may change the memory encryption attribute from C=0 -> C=1 * or vice versa for this memory range. Lets make sure caches are * flushed to ensure that guest data gets written into memory with * correct C-bit. */ sev_clflush_pages(region->pages, region->npages); sev_unpin_memory(kvm, region->pages, region->npages); list_del(®ion->list); kfree(region); } static struct kvm *svm_vm_alloc(void) { struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm), GFP_KERNEL_ACCOUNT | __GFP_ZERO, PAGE_KERNEL); return &kvm_svm->kvm; } static void svm_vm_free(struct kvm *kvm) { vfree(to_kvm_svm(kvm)); } static void sev_vm_destroy(struct kvm *kvm) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct list_head *head = &sev->regions_list; struct list_head *pos, *q; if (!sev_guest(kvm)) return; mutex_lock(&kvm->lock); /* * if userspace was terminated before unregistering the memory regions * then lets unpin all the registered memory. */ if (!list_empty(head)) { list_for_each_safe(pos, q, head) { __unregister_enc_region_locked(kvm, list_entry(pos, struct enc_region, list)); } } mutex_unlock(&kvm->lock); sev_unbind_asid(kvm, sev->handle); sev_asid_free(sev->asid); } static void avic_vm_destroy(struct kvm *kvm) { unsigned long flags; struct kvm_svm *kvm_svm = to_kvm_svm(kvm); if (!avic) return; if (kvm_svm->avic_logical_id_table_page) __free_page(kvm_svm->avic_logical_id_table_page); if (kvm_svm->avic_physical_id_table_page) __free_page(kvm_svm->avic_physical_id_table_page); spin_lock_irqsave(&svm_vm_data_hash_lock, flags); hash_del(&kvm_svm->hnode); spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); } static void svm_vm_destroy(struct kvm *kvm) { avic_vm_destroy(kvm); sev_vm_destroy(kvm); } static int avic_vm_init(struct kvm *kvm) { unsigned long flags; int err = -ENOMEM; struct kvm_svm *kvm_svm = to_kvm_svm(kvm); struct kvm_svm *k2; struct page *p_page; struct page *l_page; u32 vm_id; if (!avic) return 0; /* Allocating physical APIC ID table (4KB) */ p_page = alloc_page(GFP_KERNEL_ACCOUNT); if (!p_page) goto free_avic; kvm_svm->avic_physical_id_table_page = p_page; clear_page(page_address(p_page)); /* Allocating logical APIC ID table (4KB) */ l_page = alloc_page(GFP_KERNEL_ACCOUNT); if (!l_page) goto free_avic; kvm_svm->avic_logical_id_table_page = l_page; clear_page(page_address(l_page)); spin_lock_irqsave(&svm_vm_data_hash_lock, flags); again: vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; if (vm_id == 0) { /* id is 1-based, zero is not okay */ next_vm_id_wrapped = 1; goto again; } /* Is it still in use? Only possible if wrapped at least once */ if (next_vm_id_wrapped) { hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { if (k2->avic_vm_id == vm_id) goto again; } } kvm_svm->avic_vm_id = vm_id; hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); return 0; free_avic: avic_vm_destroy(kvm); return err; } static inline int avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) { int ret = 0; unsigned long flags; struct amd_svm_iommu_ir *ir; struct vcpu_svm *svm = to_svm(vcpu); if (!kvm_arch_has_assigned_device(vcpu->kvm)) return 0; /* * Here, we go through the per-vcpu ir_list to update all existing * interrupt remapping table entry targeting this vcpu. */ spin_lock_irqsave(&svm->ir_list_lock, flags); if (list_empty(&svm->ir_list)) goto out; list_for_each_entry(ir, &svm->ir_list, node) { ret = amd_iommu_update_ga(cpu, r, ir->data); if (ret) break; } out: spin_unlock_irqrestore(&svm->ir_list_lock, flags); return ret; } static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { u64 entry; /* ID = 0xff (broadcast), ID > 0xff (reserved) */ int h_physical_id = kvm_cpu_get_apicid(cpu); struct vcpu_svm *svm = to_svm(vcpu); if (!kvm_vcpu_apicv_active(vcpu)) return; /* * Since the host physical APIC id is 8 bits, * we can support host APIC ID upto 255. */ if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) return; entry = READ_ONCE(*(svm->avic_physical_id_cache)); WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; if (svm->avic_is_running) entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; WRITE_ONCE(*(svm->avic_physical_id_cache), entry); avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, svm->avic_is_running); } static void avic_vcpu_put(struct kvm_vcpu *vcpu) { u64 entry; struct vcpu_svm *svm = to_svm(vcpu); if (!kvm_vcpu_apicv_active(vcpu)) return; entry = READ_ONCE(*(svm->avic_physical_id_cache)); if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) avic_update_iommu_vcpu_affinity(vcpu, -1, 0); entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; WRITE_ONCE(*(svm->avic_physical_id_cache), entry); } /** * This function is called during VCPU halt/unhalt. */ static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run) { struct vcpu_svm *svm = to_svm(vcpu); svm->avic_is_running = is_run; if (is_run) avic_vcpu_load(vcpu, vcpu->cpu); else avic_vcpu_put(vcpu); } static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_svm *svm = to_svm(vcpu); u32 dummy; u32 eax = 1; vcpu->arch.microcode_version = 0x01000065; svm->spec_ctrl = 0; svm->virt_spec_ctrl = 0; if (!init_event) { svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; } init_vmcb(svm); kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true); kvm_rdx_write(vcpu, eax); if (kvm_vcpu_apicv_active(vcpu) && !init_event) avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); } static int avic_init_vcpu(struct vcpu_svm *svm) { int ret; if (!kvm_vcpu_apicv_active(&svm->vcpu)) return 0; ret = avic_init_backing_page(&svm->vcpu); if (ret) return ret; INIT_LIST_HEAD(&svm->ir_list); spin_lock_init(&svm->ir_list_lock); svm->dfr_reg = APIC_DFR_FLAT; return ret; } static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) { struct vcpu_svm *svm; struct page *page; struct page *msrpm_pages; struct page *hsave_page; struct page *nested_msrpm_pages; int err; BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0, "struct kvm_vcpu must be at offset 0 for arch usercopy region"); svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); if (!svm) { err = -ENOMEM; goto out; } svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL_ACCOUNT); if (!svm->vcpu.arch.user_fpu) { printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n"); err = -ENOMEM; goto free_partial_svm; } svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL_ACCOUNT); if (!svm->vcpu.arch.guest_fpu) { printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); err = -ENOMEM; goto free_user_fpu; } err = kvm_vcpu_init(&svm->vcpu, kvm, id); if (err) goto free_svm; err = -ENOMEM; page = alloc_page(GFP_KERNEL_ACCOUNT); if (!page) goto uninit; msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); if (!msrpm_pages) goto free_page1; nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); if (!nested_msrpm_pages) goto free_page2; hsave_page = alloc_page(GFP_KERNEL_ACCOUNT); if (!hsave_page) goto free_page3; err = avic_init_vcpu(svm); if (err) goto free_page4; /* We initialize this flag to true to make sure that the is_running * bit would be set the first time the vcpu is loaded. */ svm->avic_is_running = true; svm->nested.hsave = page_address(hsave_page); svm->msrpm = page_address(msrpm_pages); svm_vcpu_init_msrpm(svm->msrpm); svm->nested.msrpm = page_address(nested_msrpm_pages); svm_vcpu_init_msrpm(svm->nested.msrpm); svm->vmcb = page_address(page); clear_page(svm->vmcb); svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT); svm->asid_generation = 0; init_vmcb(svm); svm_init_osvw(&svm->vcpu); return &svm->vcpu; free_page4: __free_page(hsave_page); free_page3: __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); free_page2: __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); free_page1: __free_page(page); uninit: kvm_vcpu_uninit(&svm->vcpu); free_svm: kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu); free_user_fpu: kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu); free_partial_svm: kmem_cache_free(kvm_vcpu_cache, svm); out: return ERR_PTR(err); } static void svm_clear_current_vmcb(struct vmcb *vmcb) { int i; for_each_online_cpu(i) cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); } static void svm_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * The vmcb page can be recycled, causing a false negative in * svm_vcpu_load(). So, ensure that no logical CPU has this * vmcb page recorded as its current vmcb. */ svm_clear_current_vmcb(svm->vmcb); __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); __free_page(virt_to_page(svm->nested.hsave)); __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); kvm_vcpu_uninit(vcpu); kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu); kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu); kmem_cache_free(kvm_vcpu_cache, svm); } static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_svm *svm = to_svm(vcpu); struct svm_cpu_data *sd = per_cpu(svm_data, cpu); int i; if (unlikely(cpu != vcpu->cpu)) { svm->asid_generation = 0; mark_all_dirty(svm->vmcb); } #ifdef CONFIG_X86_64 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); #endif savesegment(fs, svm->host.fs); savesegment(gs, svm->host.gs); svm->host.ldt = kvm_read_ldt(); for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { __this_cpu_write(current_tsc_ratio, tsc_ratio); wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); } } /* This assumes that the kernel never uses MSR_TSC_AUX */ if (static_cpu_has(X86_FEATURE_RDTSCP)) wrmsrl(MSR_TSC_AUX, svm->tsc_aux); if (sd->current_vmcb != svm->vmcb) { sd->current_vmcb = svm->vmcb; indirect_branch_prediction_barrier(); } avic_vcpu_load(vcpu, cpu); } static void svm_vcpu_put(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); int i; avic_vcpu_put(vcpu); ++vcpu->stat.host_state_reload; kvm_load_ldt(svm->host.ldt); #ifdef CONFIG_X86_64 loadsegment(fs, svm->host.fs); wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); load_gs_index(svm->host.gs); #else #ifdef CONFIG_X86_32_LAZY_GS loadsegment(gs, svm->host.gs); #endif #endif for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); } static void svm_vcpu_blocking(struct kvm_vcpu *vcpu) { avic_set_running(vcpu, false); } static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu) { avic_set_running(vcpu, true); } static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long rflags = svm->vmcb->save.rflags; if (svm->nmi_singlestep) { /* Hide our flags if they were not set by the guest */ if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) rflags &= ~X86_EFLAGS_TF; if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) rflags &= ~X86_EFLAGS_RF; } return rflags; } static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { if (to_svm(vcpu)->nmi_singlestep) rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); /* * Any change of EFLAGS.VM is accompanied by a reload of SS * (caused by either a task switch or an inter-privilege IRET), * so we do not need to update the CPL here. */ to_svm(vcpu)->vmcb->save.rflags = rflags; } static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { switch (reg) { case VCPU_EXREG_PDPTR: BUG_ON(!npt_enabled); load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); break; default: BUG(); } } static void svm_set_vintr(struct vcpu_svm *svm) { set_intercept(svm, INTERCEPT_VINTR); } static void svm_clear_vintr(struct vcpu_svm *svm) { clr_intercept(svm, INTERCEPT_VINTR); } static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; switch (seg) { case VCPU_SREG_CS: return &save->cs; case VCPU_SREG_DS: return &save->ds; case VCPU_SREG_ES: return &save->es; case VCPU_SREG_FS: return &save->fs; case VCPU_SREG_GS: return &save->gs; case VCPU_SREG_SS: return &save->ss; case VCPU_SREG_TR: return &save->tr; case VCPU_SREG_LDTR: return &save->ldtr; } BUG(); return NULL; } static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); return s->base; } static void svm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); var->base = s->base; var->limit = s->limit; var->selector = s->selector; var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; /* * AMD CPUs circa 2014 track the G bit for all segments except CS. * However, the SVM spec states that the G bit is not observed by the * CPU, and some VMware virtual CPUs drop the G bit for all segments. * So let's synthesize a legal G bit for all segments, this helps * running KVM nested. It also helps cross-vendor migration, because * Intel's vmentry has a check on the 'G' bit. */ var->g = s->limit > 0xfffff; /* * AMD's VMCB does not have an explicit unusable field, so emulate it * for cross vendor migration purposes by "not present" */ var->unusable = !var->present; switch (seg) { case VCPU_SREG_TR: /* * Work around a bug where the busy flag in the tr selector * isn't exposed */ var->type |= 0x2; break; case VCPU_SREG_DS: case VCPU_SREG_ES: case VCPU_SREG_FS: case VCPU_SREG_GS: /* * The accessed bit must always be set in the segment * descriptor cache, although it can be cleared in the * descriptor, the cached bit always remains at 1. Since * Intel has a check on this, set it here to support * cross-vendor migration. */ if (!var->unusable) var->type |= 0x1; break; case VCPU_SREG_SS: /* * On AMD CPUs sometimes the DB bit in the segment * descriptor is left as 1, although the whole segment has * been made unusable. Clear it here to pass an Intel VMX * entry check when cross vendor migrating. */ if (var->unusable) var->db = 0; /* This is symmetric with svm_set_segment() */ var->dpl = to_svm(vcpu)->vmcb->save.cpl; break; } } static int svm_get_cpl(struct kvm_vcpu *vcpu) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; return save->cpl; } static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->size = svm->vmcb->save.idtr.limit; dt->address = svm->vmcb->save.idtr.base; } static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.idtr.limit = dt->size; svm->vmcb->save.idtr.base = dt->address ; mark_dirty(svm->vmcb, VMCB_DT); } static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->size = svm->vmcb->save.gdtr.limit; dt->address = svm->vmcb->save.gdtr.base; } static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.gdtr.limit = dt->size; svm->vmcb->save.gdtr.base = dt->address ; mark_dirty(svm->vmcb, VMCB_DT); } static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) { } static void svm_decache_cr3(struct kvm_vcpu *vcpu) { } static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) { } static void update_cr0_intercept(struct vcpu_svm *svm) { ulong gcr0 = svm->vcpu.arch.cr0; u64 *hcr0 = &svm->vmcb->save.cr0; *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) | (gcr0 & SVM_CR0_SELECTIVE_MASK); mark_dirty(svm->vmcb, VMCB_CR); if (gcr0 == *hcr0) { clr_cr_intercept(svm, INTERCEPT_CR0_READ); clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); } else { set_cr_intercept(svm, INTERCEPT_CR0_READ); set_cr_intercept(svm, INTERCEPT_CR0_WRITE); } } static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_svm *svm = to_svm(vcpu); #ifdef CONFIG_X86_64 if (vcpu->arch.efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { vcpu->arch.efer |= EFER_LMA; svm->vmcb->save.efer |= EFER_LMA | EFER_LME; } if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { vcpu->arch.efer &= ~EFER_LMA; svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); } } #endif vcpu->arch.cr0 = cr0; if (!npt_enabled) cr0 |= X86_CR0_PG | X86_CR0_WP; /* * re-enable caching here because the QEMU bios * does not do it - this results in some delay at * reboot */ if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) cr0 &= ~(X86_CR0_CD | X86_CR0_NW); svm->vmcb->save.cr0 = cr0; mark_dirty(svm->vmcb, VMCB_CR); update_cr0_intercept(svm); } static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; if (cr4 & X86_CR4_VMXE) return 1; if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) svm_flush_tlb(vcpu, true); vcpu->arch.cr4 = cr4; if (!npt_enabled) cr4 |= X86_CR4_PAE; cr4 |= host_cr4_mce; to_svm(vcpu)->vmcb->save.cr4 = cr4; mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); return 0; } static void svm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_seg *s = svm_seg(vcpu, seg); s->base = var->base; s->limit = var->limit; s->selector = var->selector; s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; /* * This is always accurate, except if SYSRET returned to a segment * with SS.DPL != 3. Intel does not have this quirk, and always * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it * would entail passing the CPL to userspace and back. */ if (seg == VCPU_SREG_SS) /* This is symmetric with svm_get_segment() */ svm->vmcb->save.cpl = (var->dpl & 3); mark_dirty(svm->vmcb, VMCB_SEG); } static void update_bp_intercept(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); clr_exception_intercept(svm, BP_VECTOR); if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) set_exception_intercept(svm, BP_VECTOR); } else vcpu->guest_debug = 0; } static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) { if (sd->next_asid > sd->max_asid) { ++sd->asid_generation; sd->next_asid = sd->min_asid; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; } svm->asid_generation = sd->asid_generation; svm->vmcb->control.asid = sd->next_asid++; mark_dirty(svm->vmcb, VMCB_ASID); } static u64 svm_get_dr6(struct kvm_vcpu *vcpu) { return to_svm(vcpu)->vmcb->save.dr6; } static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.dr6 = value; mark_dirty(svm->vmcb, VMCB_DR); } static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); get_debugreg(vcpu->arch.db[0], 0); get_debugreg(vcpu->arch.db[1], 1); get_debugreg(vcpu->arch.db[2], 2); get_debugreg(vcpu->arch.db[3], 3); vcpu->arch.dr6 = svm_get_dr6(vcpu); vcpu->arch.dr7 = svm->vmcb->save.dr7; vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; set_dr_intercepts(svm); } static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.dr7 = value; mark_dirty(svm->vmcb, VMCB_DR); } static int pf_interception(struct vcpu_svm *svm) { u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); u64 error_code = svm->vmcb->control.exit_info_1; return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, static_cpu_has(X86_FEATURE_DECODEASSISTS) ? svm->vmcb->control.insn_bytes : NULL, svm->vmcb->control.insn_len); } static int npf_interception(struct vcpu_svm *svm) { u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); u64 error_code = svm->vmcb->control.exit_info_1; trace_kvm_page_fault(fault_address, error_code); return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, static_cpu_has(X86_FEATURE_DECODEASSISTS) ? svm->vmcb->control.insn_bytes : NULL, svm->vmcb->control.insn_len); } static int db_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; struct kvm_vcpu *vcpu = &svm->vcpu; if (!(svm->vcpu.guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && !svm->nmi_singlestep) { kvm_queue_exception(&svm->vcpu, DB_VECTOR); return 1; } if (svm->nmi_singlestep) { disable_nmi_singlestep(svm); /* Make sure we check for pending NMIs upon entry */ kvm_make_request(KVM_REQ_EVENT, vcpu); } if (svm->vcpu.guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; kvm_run->debug.arch.exception = DB_VECTOR; return 0; } return 1; } static int bp_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; kvm_run->debug.arch.exception = BP_VECTOR; return 0; } static int ud_interception(struct vcpu_svm *svm) { return handle_ud(&svm->vcpu); } static int ac_interception(struct vcpu_svm *svm) { kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); return 1; } static int gp_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; u32 error_code = svm->vmcb->control.exit_info_1; WARN_ON_ONCE(!enable_vmware_backdoor); /* * VMware backdoor emulation on #GP interception only handles IN{S}, * OUT{S}, and RDPMC, none of which generate a non-zero error code. */ if (error_code) { kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); return 1; } return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); } static bool is_erratum_383(void) { int err, i; u64 value; if (!erratum_383_found) return false; value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); if (err) return false; /* Bit 62 may or may not be set for this mce */ value &= ~(1ULL << 62); if (value != 0xb600000000010015ULL) return false; /* Clear MCi_STATUS registers */ for (i = 0; i < 6; ++i) native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); if (!err) { u32 low, high; value &= ~(1ULL << 2); low = lower_32_bits(value); high = upper_32_bits(value); native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); } /* Flush tlb to evict multi-match entries */ __flush_tlb_all(); return true; } static void svm_handle_mce(struct vcpu_svm *svm) { if (is_erratum_383()) { /* * Erratum 383 triggered. Guest state is corrupt so kill the * guest. */ pr_err("KVM: Guest triggered AMD Erratum 383\n"); kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); return; } /* * On an #MC intercept the MCE handler is not called automatically in * the host. So do it by hand here. */ asm volatile ( "int $0x12\n"); /* not sure if we ever come back to this point */ return; } static int mc_interception(struct vcpu_svm *svm) { return 1; } static int shutdown_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; /* * VMCB is undefined after a SHUTDOWN intercept * so reinitialize it. */ clear_page(svm->vmcb); init_vmcb(svm); kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int io_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ int size, in, string; unsigned port; ++svm->vcpu.stat.io_exits; string = (io_info & SVM_IOIO_STR_MASK) != 0; in = (io_info & SVM_IOIO_TYPE_MASK) != 0; if (string) return kvm_emulate_instruction(vcpu, 0); port = io_info >> 16; size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; svm->next_rip = svm->vmcb->control.exit_info_2; return kvm_fast_pio(&svm->vcpu, size, port, in); } static int nmi_interception(struct vcpu_svm *svm) { return 1; } static int intr_interception(struct vcpu_svm *svm) { ++svm->vcpu.stat.irq_exits; return 1; } static int nop_on_interception(struct vcpu_svm *svm) { return 1; } static int halt_interception(struct vcpu_svm *svm) { return kvm_emulate_halt(&svm->vcpu); } static int vmmcall_interception(struct vcpu_svm *svm) { return kvm_emulate_hypercall(&svm->vcpu); } static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return svm->nested.nested_cr3; } static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) { struct vcpu_svm *svm = to_svm(vcpu); u64 cr3 = svm->nested.nested_cr3; u64 pdpte; int ret; ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte, offset_in_page(cr3) + index * 8, 8); if (ret) return 0; return pdpte; } static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.nested_cr3 = __sme_set(root); mark_dirty(svm->vmcb, VMCB_NPT); } static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, struct x86_exception *fault) { struct vcpu_svm *svm = to_svm(vcpu); if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) { /* * TODO: track the cause of the nested page fault, and * correctly fill in the high bits of exit_info_1. */ svm->vmcb->control.exit_code = SVM_EXIT_NPF; svm->vmcb->control.exit_code_hi = 0; svm->vmcb->control.exit_info_1 = (1ULL << 32); svm->vmcb->control.exit_info_2 = fault->address; } svm->vmcb->control.exit_info_1 &= ~0xffffffffULL; svm->vmcb->control.exit_info_1 |= fault->error_code; /* * The present bit is always zero for page structure faults on real * hardware. */ if (svm->vmcb->control.exit_info_1 & (2ULL << 32)) svm->vmcb->control.exit_info_1 &= ~1; nested_svm_vmexit(svm); } static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) { WARN_ON(mmu_is_nested(vcpu)); vcpu->arch.mmu = &vcpu->arch.guest_mmu; kvm_init_shadow_mmu(vcpu); vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3; vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3; vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr; vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit; vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu); reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu); vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; } static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) { vcpu->arch.mmu = &vcpu->arch.root_mmu; vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; } static int nested_svm_check_permissions(struct vcpu_svm *svm) { if (!(svm->vcpu.arch.efer & EFER_SVME) || !is_paging(&svm->vcpu)) { kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } if (svm->vmcb->save.cpl) { kvm_inject_gp(&svm->vcpu, 0); return 1; } return 0; } static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, bool has_error_code, u32 error_code) { int vmexit; if (!is_guest_mode(&svm->vcpu)) return 0; vmexit = nested_svm_intercept(svm); if (vmexit != NESTED_EXIT_DONE) return 0; svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; svm->vmcb->control.exit_code_hi = 0; svm->vmcb->control.exit_info_1 = error_code; /* * EXITINFO2 is undefined for all exception intercepts other * than #PF. */ if (svm->vcpu.arch.exception.nested_apf) svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token; else if (svm->vcpu.arch.exception.has_payload) svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload; else svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; svm->nested.exit_required = true; return vmexit; } /* This function returns true if it is save to enable the irq window */ static inline bool nested_svm_intr(struct vcpu_svm *svm) { if (!is_guest_mode(&svm->vcpu)) return true; if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) return true; if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) return false; /* * if vmexit was already requested (by intercepted exception * for instance) do not overwrite it with "external interrupt" * vmexit. */ if (svm->nested.exit_required) return false; svm->vmcb->control.exit_code = SVM_EXIT_INTR; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; if (svm->nested.intercept & 1ULL) { /* * The #vmexit can't be emulated here directly because this * code path runs with irqs and preemption disabled. A * #vmexit emulation might sleep. Only signal request for * the #vmexit here. */ svm->nested.exit_required = true; trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); return false; } return true; } /* This function returns true if it is save to enable the nmi window */ static inline bool nested_svm_nmi(struct vcpu_svm *svm) { if (!is_guest_mode(&svm->vcpu)) return true; if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) return true; svm->vmcb->control.exit_code = SVM_EXIT_NMI; svm->nested.exit_required = true; return false; } static int nested_svm_intercept_ioio(struct vcpu_svm *svm) { unsigned port, size, iopm_len; u16 val, mask; u8 start_bit; u64 gpa; if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT))) return NESTED_EXIT_HOST; port = svm->vmcb->control.exit_info_1 >> 16; size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; gpa = svm->nested.vmcb_iopm + (port / 8); start_bit = port % 8; iopm_len = (start_bit + size > 8) ? 2 : 1; mask = (0xf >> (4 - size)) << start_bit; val = 0; if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) return NESTED_EXIT_DONE; return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; } static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) { u32 offset, msr, value; int write, mask; if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) return NESTED_EXIT_HOST; msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; offset = svm_msrpm_offset(msr); write = svm->vmcb->control.exit_info_1 & 1; mask = 1 << ((2 * (msr & 0xf)) + write); if (offset == MSR_INVALID) return NESTED_EXIT_DONE; /* Offset is in 32 bit units but need in 8 bit units */ offset *= 4; if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4)) return NESTED_EXIT_DONE; return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; } /* DB exceptions for our internal use must not cause vmexit */ static int nested_svm_intercept_db(struct vcpu_svm *svm) { unsigned long dr6; /* if we're not singlestepping, it's not ours */ if (!svm->nmi_singlestep) return NESTED_EXIT_DONE; /* if it's not a singlestep exception, it's not ours */ if (kvm_get_dr(&svm->vcpu, 6, &dr6)) return NESTED_EXIT_DONE; if (!(dr6 & DR6_BS)) return NESTED_EXIT_DONE; /* if the guest is singlestepping, it should get the vmexit */ if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) { disable_nmi_singlestep(svm); return NESTED_EXIT_DONE; } /* it's ours, the nested hypervisor must not see this one */ return NESTED_EXIT_HOST; } static int nested_svm_exit_special(struct vcpu_svm *svm) { u32 exit_code = svm->vmcb->control.exit_code; switch (exit_code) { case SVM_EXIT_INTR: case SVM_EXIT_NMI: case SVM_EXIT_EXCP_BASE + MC_VECTOR: return NESTED_EXIT_HOST; case SVM_EXIT_NPF: /* For now we are always handling NPFs when using them */ if (npt_enabled) return NESTED_EXIT_HOST; break; case SVM_EXIT_EXCP_BASE + PF_VECTOR: /* When we're shadowing, trap PFs, but not async PF */ if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0) return NESTED_EXIT_HOST; break; default: break; } return NESTED_EXIT_CONTINUE; } /* * If this function returns true, this #vmexit was already handled */ static int nested_svm_intercept(struct vcpu_svm *svm) { u32 exit_code = svm->vmcb->control.exit_code; int vmexit = NESTED_EXIT_HOST; switch (exit_code) { case SVM_EXIT_MSR: vmexit = nested_svm_exit_handled_msr(svm); break; case SVM_EXIT_IOIO: vmexit = nested_svm_intercept_ioio(svm); break; case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0); if (svm->nested.intercept_cr & bit) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0); if (svm->nested.intercept_dr & bit) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); if (svm->nested.intercept_exceptions & excp_bits) { if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR) vmexit = nested_svm_intercept_db(svm); else vmexit = NESTED_EXIT_DONE; } /* async page fault always cause vmexit */ else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) && svm->vcpu.arch.exception.nested_apf != 0) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_ERR: { vmexit = NESTED_EXIT_DONE; break; } default: { u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); if (svm->nested.intercept & exit_bits) vmexit = NESTED_EXIT_DONE; } } return vmexit; } static int nested_svm_exit_handled(struct vcpu_svm *svm) { int vmexit; vmexit = nested_svm_intercept(svm); if (vmexit == NESTED_EXIT_DONE) nested_svm_vmexit(svm); return vmexit; } static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) { struct vmcb_control_area *dst = &dst_vmcb->control; struct vmcb_control_area *from = &from_vmcb->control; dst->intercept_cr = from->intercept_cr; dst->intercept_dr = from->intercept_dr; dst->intercept_exceptions = from->intercept_exceptions; dst->intercept = from->intercept; dst->iopm_base_pa = from->iopm_base_pa; dst->msrpm_base_pa = from->msrpm_base_pa; dst->tsc_offset = from->tsc_offset; dst->asid = from->asid; dst->tlb_ctl = from->tlb_ctl; dst->int_ctl = from->int_ctl; dst->int_vector = from->int_vector; dst->int_state = from->int_state; dst->exit_code = from->exit_code; dst->exit_code_hi = from->exit_code_hi; dst->exit_info_1 = from->exit_info_1; dst->exit_info_2 = from->exit_info_2; dst->exit_int_info = from->exit_int_info; dst->exit_int_info_err = from->exit_int_info_err; dst->nested_ctl = from->nested_ctl; dst->event_inj = from->event_inj; dst->event_inj_err = from->event_inj_err; dst->nested_cr3 = from->nested_cr3; dst->virt_ext = from->virt_ext; dst->pause_filter_count = from->pause_filter_count; dst->pause_filter_thresh = from->pause_filter_thresh; } static int nested_svm_vmexit(struct vcpu_svm *svm) { int rc; struct vmcb *nested_vmcb; struct vmcb *hsave = svm->nested.hsave; struct vmcb *vmcb = svm->vmcb; struct kvm_host_map map; trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, vmcb->control.exit_info_1, vmcb->control.exit_info_2, vmcb->control.exit_int_info, vmcb->control.exit_int_info_err, KVM_ISA_SVM); rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map); if (rc) { if (rc == -EINVAL) kvm_inject_gp(&svm->vcpu, 0); return 1; } nested_vmcb = map.hva; /* Exit Guest-Mode */ leave_guest_mode(&svm->vcpu); svm->nested.vmcb = 0; /* Give the current vmcb to the guest */ disable_gif(svm); nested_vmcb->save.es = vmcb->save.es; nested_vmcb->save.cs = vmcb->save.cs; nested_vmcb->save.ss = vmcb->save.ss; nested_vmcb->save.ds = vmcb->save.ds; nested_vmcb->save.gdtr = vmcb->save.gdtr; nested_vmcb->save.idtr = vmcb->save.idtr; nested_vmcb->save.efer = svm->vcpu.arch.efer; nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu); nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu); nested_vmcb->save.cr2 = vmcb->save.cr2; nested_vmcb->save.cr4 = svm->vcpu.arch.cr4; nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu); nested_vmcb->save.rip = vmcb->save.rip; nested_vmcb->save.rsp = vmcb->save.rsp; nested_vmcb->save.rax = vmcb->save.rax; nested_vmcb->save.dr7 = vmcb->save.dr7; nested_vmcb->save.dr6 = vmcb->save.dr6; nested_vmcb->save.cpl = vmcb->save.cpl; nested_vmcb->control.int_ctl = vmcb->control.int_ctl; nested_vmcb->control.int_vector = vmcb->control.int_vector; nested_vmcb->control.int_state = vmcb->control.int_state; nested_vmcb->control.exit_code = vmcb->control.exit_code; nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi; nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1; nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2; nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info; nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; if (svm->nrips_enabled) nested_vmcb->control.next_rip = vmcb->control.next_rip; /* * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have * to make sure that we do not lose injected events. So check event_inj * here and copy it to exit_int_info if it is valid. * Exit_int_info and event_inj can't be both valid because the case * below only happens on a VMRUN instruction intercept which has * no valid exit_int_info set. */ if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { struct vmcb_control_area *nc = &nested_vmcb->control; nc->exit_int_info = vmcb->control.event_inj; nc->exit_int_info_err = vmcb->control.event_inj_err; } nested_vmcb->control.tlb_ctl = 0; nested_vmcb->control.event_inj = 0; nested_vmcb->control.event_inj_err = 0; nested_vmcb->control.pause_filter_count = svm->vmcb->control.pause_filter_count; nested_vmcb->control.pause_filter_thresh = svm->vmcb->control.pause_filter_thresh; /* We always set V_INTR_MASKING and remember the old value in hflags */ if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; /* Restore the original control entries */ copy_vmcb_control_area(vmcb, hsave); svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset; kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); svm->nested.nested_cr3 = 0; /* Restore selected save entries */ svm->vmcb->save.es = hsave->save.es; svm->vmcb->save.cs = hsave->save.cs; svm->vmcb->save.ss = hsave->save.ss; svm->vmcb->save.ds = hsave->save.ds; svm->vmcb->save.gdtr = hsave->save.gdtr; svm->vmcb->save.idtr = hsave->save.idtr; kvm_set_rflags(&svm->vcpu, hsave->save.rflags); svm_set_efer(&svm->vcpu, hsave->save.efer); svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); svm_set_cr4(&svm->vcpu, hsave->save.cr4); if (npt_enabled) { svm->vmcb->save.cr3 = hsave->save.cr3; svm->vcpu.arch.cr3 = hsave->save.cr3; } else { (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3); } kvm_rax_write(&svm->vcpu, hsave->save.rax); kvm_rsp_write(&svm->vcpu, hsave->save.rsp); kvm_rip_write(&svm->vcpu, hsave->save.rip); svm->vmcb->save.dr7 = 0; svm->vmcb->save.cpl = 0; svm->vmcb->control.exit_int_info = 0; mark_all_dirty(svm->vmcb); kvm_vcpu_unmap(&svm->vcpu, &map, true); nested_svm_uninit_mmu_context(&svm->vcpu); kvm_mmu_reset_context(&svm->vcpu); kvm_mmu_load(&svm->vcpu); /* * Drop what we picked up for L2 via svm_complete_interrupts() so it * doesn't end up in L1. */ svm->vcpu.arch.nmi_injected = false; kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); return 0; } static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) { /* * This function merges the msr permission bitmaps of kvm and the * nested vmcb. It is optimized in that it only merges the parts where * the kvm msr permission bitmap may contain zero bits */ int i; if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) return true; for (i = 0; i < MSRPM_OFFSETS; i++) { u32 value, p; u64 offset; if (msrpm_offsets[i] == 0xffffffff) break; p = msrpm_offsets[i]; offset = svm->nested.vmcb_msrpm + (p * 4); if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4)) return false; svm->nested.msrpm[p] = svm->msrpm[p] | value; } svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); return true; } static bool nested_vmcb_checks(struct vmcb *vmcb) { if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0) return false; if (vmcb->control.asid == 0) return false; if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled) return false; return true; } static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, struct vmcb *nested_vmcb, struct kvm_host_map *map) { if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF) svm->vcpu.arch.hflags |= HF_HIF_MASK; else svm->vcpu.arch.hflags &= ~HF_HIF_MASK; if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) { svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; nested_svm_init_mmu_context(&svm->vcpu); } /* Load the nested guest state */ svm->vmcb->save.es = nested_vmcb->save.es; svm->vmcb->save.cs = nested_vmcb->save.cs; svm->vmcb->save.ss = nested_vmcb->save.ss; svm->vmcb->save.ds = nested_vmcb->save.ds; svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; svm->vmcb->save.idtr = nested_vmcb->save.idtr; kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags); svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); if (npt_enabled) { svm->vmcb->save.cr3 = nested_vmcb->save.cr3; svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; } else (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); /* Guest paging mode is active - reset mmu */ kvm_mmu_reset_context(&svm->vcpu); svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax); kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp); kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip); /* In case we don't even reach vcpu_run, the fields are not updated */ svm->vmcb->save.rax = nested_vmcb->save.rax; svm->vmcb->save.rsp = nested_vmcb->save.rsp; svm->vmcb->save.rip = nested_vmcb->save.rip; svm->vmcb->save.dr7 = nested_vmcb->save.dr7; svm->vmcb->save.dr6 = nested_vmcb->save.dr6; svm->vmcb->save.cpl = nested_vmcb->save.cpl; svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL; svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL; /* cache intercepts */ svm->nested.intercept_cr = nested_vmcb->control.intercept_cr; svm->nested.intercept_dr = nested_vmcb->control.intercept_dr; svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; svm->nested.intercept = nested_vmcb->control.intercept; svm_flush_tlb(&svm->vcpu, true); svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) svm->vcpu.arch.hflags |= HF_VINTR_MASK; else svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; if (svm->vcpu.arch.hflags & HF_VINTR_MASK) { /* We only want the cr8 intercept bits of the guest */ clr_cr_intercept(svm, INTERCEPT_CR8_READ); clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); } /* We don't want to see VMMCALLs from a nested guest */ clr_intercept(svm, INTERCEPT_VMMCALL); svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset; svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset; svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext; svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; svm->vmcb->control.int_state = nested_vmcb->control.int_state; svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; svm->vmcb->control.pause_filter_count = nested_vmcb->control.pause_filter_count; svm->vmcb->control.pause_filter_thresh = nested_vmcb->control.pause_filter_thresh; kvm_vcpu_unmap(&svm->vcpu, map, true); /* Enter Guest-Mode */ enter_guest_mode(&svm->vcpu); /* * Merge guest and host intercepts - must be called with vcpu in * guest-mode to take affect here */ recalc_intercepts(svm); svm->nested.vmcb = vmcb_gpa; enable_gif(svm); mark_all_dirty(svm->vmcb); } static int nested_svm_vmrun(struct vcpu_svm *svm) { int ret; struct vmcb *nested_vmcb; struct vmcb *hsave = svm->nested.hsave; struct vmcb *vmcb = svm->vmcb; struct kvm_host_map map; u64 vmcb_gpa; vmcb_gpa = svm->vmcb->save.rax; ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map); if (ret == -EINVAL) { kvm_inject_gp(&svm->vcpu, 0); return 1; } else if (ret) { return kvm_skip_emulated_instruction(&svm->vcpu); } ret = kvm_skip_emulated_instruction(&svm->vcpu); nested_vmcb = map.hva; if (!nested_vmcb_checks(nested_vmcb)) { nested_vmcb->control.exit_code = SVM_EXIT_ERR; nested_vmcb->control.exit_code_hi = 0; nested_vmcb->control.exit_info_1 = 0; nested_vmcb->control.exit_info_2 = 0; kvm_vcpu_unmap(&svm->vcpu, &map, true); return ret; } trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa, nested_vmcb->save.rip, nested_vmcb->control.int_ctl, nested_vmcb->control.event_inj, nested_vmcb->control.nested_ctl); trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff, nested_vmcb->control.intercept_cr >> 16, nested_vmcb->control.intercept_exceptions, nested_vmcb->control.intercept); /* Clear internal status */ kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); /* * Save the old vmcb, so we don't need to pick what we save, but can * restore everything when a VMEXIT occurs */ hsave->save.es = vmcb->save.es; hsave->save.cs = vmcb->save.cs; hsave->save.ss = vmcb->save.ss; hsave->save.ds = vmcb->save.ds; hsave->save.gdtr = vmcb->save.gdtr; hsave->save.idtr = vmcb->save.idtr; hsave->save.efer = svm->vcpu.arch.efer; hsave->save.cr0 = kvm_read_cr0(&svm->vcpu); hsave->save.cr4 = svm->vcpu.arch.cr4; hsave->save.rflags = kvm_get_rflags(&svm->vcpu); hsave->save.rip = kvm_rip_read(&svm->vcpu); hsave->save.rsp = vmcb->save.rsp; hsave->save.rax = vmcb->save.rax; if (npt_enabled) hsave->save.cr3 = vmcb->save.cr3; else hsave->save.cr3 = kvm_read_cr3(&svm->vcpu); copy_vmcb_control_area(hsave, vmcb); enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map); if (!nested_svm_vmrun_msrpm(svm)) { svm->vmcb->control.exit_code = SVM_EXIT_ERR; svm->vmcb->control.exit_code_hi = 0; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; nested_svm_vmexit(svm); } return ret; } static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) { to_vmcb->save.fs = from_vmcb->save.fs; to_vmcb->save.gs = from_vmcb->save.gs; to_vmcb->save.tr = from_vmcb->save.tr; to_vmcb->save.ldtr = from_vmcb->save.ldtr; to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; to_vmcb->save.star = from_vmcb->save.star; to_vmcb->save.lstar = from_vmcb->save.lstar; to_vmcb->save.cstar = from_vmcb->save.cstar; to_vmcb->save.sfmask = from_vmcb->save.sfmask; to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; } static int vmload_interception(struct vcpu_svm *svm) { struct vmcb *nested_vmcb; struct kvm_host_map map; int ret; if (nested_svm_check_permissions(svm)) return 1; ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); if (ret) { if (ret == -EINVAL) kvm_inject_gp(&svm->vcpu, 0); return 1; } nested_vmcb = map.hva; ret = kvm_skip_emulated_instruction(&svm->vcpu); nested_svm_vmloadsave(nested_vmcb, svm->vmcb); kvm_vcpu_unmap(&svm->vcpu, &map, true); return ret; } static int vmsave_interception(struct vcpu_svm *svm) { struct vmcb *nested_vmcb; struct kvm_host_map map; int ret; if (nested_svm_check_permissions(svm)) return 1; ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); if (ret) { if (ret == -EINVAL) kvm_inject_gp(&svm->vcpu, 0); return 1; } nested_vmcb = map.hva; ret = kvm_skip_emulated_instruction(&svm->vcpu); nested_svm_vmloadsave(svm->vmcb, nested_vmcb); kvm_vcpu_unmap(&svm->vcpu, &map, true); return ret; } static int vmrun_interception(struct vcpu_svm *svm) { if (nested_svm_check_permissions(svm)) return 1; return nested_svm_vmrun(svm); } static int stgi_interception(struct vcpu_svm *svm) { int ret; if (nested_svm_check_permissions(svm)) return 1; /* * If VGIF is enabled, the STGI intercept is only added to * detect the opening of the SMI/NMI window; remove it now. */ if (vgif_enabled(svm)) clr_intercept(svm, INTERCEPT_STGI); ret = kvm_skip_emulated_instruction(&svm->vcpu); kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); enable_gif(svm); return ret; } static int clgi_interception(struct vcpu_svm *svm) { int ret; if (nested_svm_check_permissions(svm)) return 1; ret = kvm_skip_emulated_instruction(&svm->vcpu); disable_gif(svm); /* After a CLGI no interrupts should come */ if (!kvm_vcpu_apicv_active(&svm->vcpu)) { svm_clear_vintr(svm); svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; mark_dirty(svm->vmcb, VMCB_INTR); } return ret; } static int invlpga_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), kvm_rax_read(&svm->vcpu)); /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); return kvm_skip_emulated_instruction(&svm->vcpu); } static int skinit_interception(struct vcpu_svm *svm) { trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int wbinvd_interception(struct vcpu_svm *svm) { return kvm_emulate_wbinvd(&svm->vcpu); } static int xsetbv_interception(struct vcpu_svm *svm) { u64 new_bv = kvm_read_edx_eax(&svm->vcpu); u32 index = kvm_rcx_read(&svm->vcpu); if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { return kvm_skip_emulated_instruction(&svm->vcpu); } return 1; } static int rdpru_interception(struct vcpu_svm *svm) { kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int task_switch_interception(struct vcpu_svm *svm) { u16 tss_selector; int reason; int int_type = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; uint32_t type = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; uint32_t idt_v = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; bool has_error_code = false; u32 error_code = 0; tss_selector = (u16)svm->vmcb->control.exit_info_1; if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) reason = TASK_SWITCH_IRET; else if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) reason = TASK_SWITCH_JMP; else if (idt_v) reason = TASK_SWITCH_GATE; else reason = TASK_SWITCH_CALL; if (reason == TASK_SWITCH_GATE) { switch (type) { case SVM_EXITINTINFO_TYPE_NMI: svm->vcpu.arch.nmi_injected = false; break; case SVM_EXITINTINFO_TYPE_EXEPT: if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { has_error_code = true; error_code = (u32)svm->vmcb->control.exit_info_2; } kvm_clear_exception_queue(&svm->vcpu); break; case SVM_EXITINTINFO_TYPE_INTR: kvm_clear_interrupt_queue(&svm->vcpu); break; default: break; } } if (reason != TASK_SWITCH_GATE || int_type == SVM_EXITINTINFO_TYPE_SOFT || (int_type == SVM_EXITINTINFO_TYPE_EXEPT && (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { if (!skip_emulated_instruction(&svm->vcpu)) return 0; } if (int_type != SVM_EXITINTINFO_TYPE_SOFT) int_vec = -1; return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, has_error_code, error_code); } static int cpuid_interception(struct vcpu_svm *svm) { return kvm_emulate_cpuid(&svm->vcpu); } static int iret_interception(struct vcpu_svm *svm) { ++svm->vcpu.stat.nmi_window_exits; clr_intercept(svm, INTERCEPT_IRET); svm->vcpu.arch.hflags |= HF_IRET_MASK; svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); return 1; } static int invlpg_interception(struct vcpu_svm *svm) { if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) return kvm_emulate_instruction(&svm->vcpu, 0); kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); return kvm_skip_emulated_instruction(&svm->vcpu); } static int emulate_on_interception(struct vcpu_svm *svm) { return kvm_emulate_instruction(&svm->vcpu, 0); } static int rsm_interception(struct vcpu_svm *svm) { return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); } static int rdpmc_interception(struct vcpu_svm *svm) { int err; if (!nrips) return emulate_on_interception(svm); err = kvm_rdpmc(&svm->vcpu); return kvm_complete_insn_gp(&svm->vcpu, err); } static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val) { unsigned long cr0 = svm->vcpu.arch.cr0; bool ret = false; u64 intercept; intercept = svm->nested.intercept; if (!is_guest_mode(&svm->vcpu) || (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))) return false; cr0 &= ~SVM_CR0_SELECTIVE_MASK; val &= ~SVM_CR0_SELECTIVE_MASK; if (cr0 ^ val) { svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); } return ret; } #define CR_VALID (1ULL << 63) static int cr_interception(struct vcpu_svm *svm) { int reg, cr; unsigned long val; int err; if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) return emulate_on_interception(svm); if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) return emulate_on_interception(svm); reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; else cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; err = 0; if (cr >= 16) { /* mov to cr */ cr -= 16; val = kvm_register_read(&svm->vcpu, reg); switch (cr) { case 0: if (!check_selective_cr0_intercepted(svm, val)) err = kvm_set_cr0(&svm->vcpu, val); else return 1; break; case 3: err = kvm_set_cr3(&svm->vcpu, val); break; case 4: err = kvm_set_cr4(&svm->vcpu, val); break; case 8: err = kvm_set_cr8(&svm->vcpu, val); break; default: WARN(1, "unhandled write to CR%d", cr); kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } } else { /* mov from cr */ switch (cr) { case 0: val = kvm_read_cr0(&svm->vcpu); break; case 2: val = svm->vcpu.arch.cr2; break; case 3: val = kvm_read_cr3(&svm->vcpu); break; case 4: val = kvm_read_cr4(&svm->vcpu); break; case 8: val = kvm_get_cr8(&svm->vcpu); break; default: WARN(1, "unhandled read from CR%d", cr); kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } kvm_register_write(&svm->vcpu, reg, val); } return kvm_complete_insn_gp(&svm->vcpu, err); } static int dr_interception(struct vcpu_svm *svm) { int reg, dr; unsigned long val; if (svm->vcpu.guest_debug == 0) { /* * No more DR vmexits; force a reload of the debug registers * and reenter on this instruction. The next vmexit will * retrieve the full state of the debug registers. */ clr_dr_intercepts(svm); svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; return 1; } if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) return emulate_on_interception(svm); reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; if (dr >= 16) { /* mov to DRn */ if (!kvm_require_dr(&svm->vcpu, dr - 16)) return 1; val = kvm_register_read(&svm->vcpu, reg); kvm_set_dr(&svm->vcpu, dr - 16, val); } else { if (!kvm_require_dr(&svm->vcpu, dr)) return 1; kvm_get_dr(&svm->vcpu, dr, &val); kvm_register_write(&svm->vcpu, reg, val); } return kvm_skip_emulated_instruction(&svm->vcpu); } static int cr8_write_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; int r; u8 cr8_prev = kvm_get_cr8(&svm->vcpu); /* instruction emulation calls kvm_set_cr8() */ r = cr_interception(svm); if (lapic_in_kernel(&svm->vcpu)) return r; if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) return r; kvm_run->exit_reason = KVM_EXIT_SET_TPR; return 0; } static int svm_get_msr_feature(struct kvm_msr_entry *msr) { msr->data = 0; switch (msr->index) { case MSR_F10H_DECFG: if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; break; default: return 1; } return 0; } static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_svm *svm = to_svm(vcpu); switch (msr_info->index) { case MSR_STAR: msr_info->data = svm->vmcb->save.star; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: msr_info->data = svm->vmcb->save.lstar; break; case MSR_CSTAR: msr_info->data = svm->vmcb->save.cstar; break; case MSR_KERNEL_GS_BASE: msr_info->data = svm->vmcb->save.kernel_gs_base; break; case MSR_SYSCALL_MASK: msr_info->data = svm->vmcb->save.sfmask; break; #endif case MSR_IA32_SYSENTER_CS: msr_info->data = svm->vmcb->save.sysenter_cs; break; case MSR_IA32_SYSENTER_EIP: msr_info->data = svm->sysenter_eip; break; case MSR_IA32_SYSENTER_ESP: msr_info->data = svm->sysenter_esp; break; case MSR_TSC_AUX: if (!boot_cpu_has(X86_FEATURE_RDTSCP)) return 1; msr_info->data = svm->tsc_aux; break; /* * Nobody will change the following 5 values in the VMCB so we can * safely return them on rdmsr. They will always be 0 until LBRV is * implemented. */ case MSR_IA32_DEBUGCTLMSR: msr_info->data = svm->vmcb->save.dbgctl; break; case MSR_IA32_LASTBRANCHFROMIP: msr_info->data = svm->vmcb->save.br_from; break; case MSR_IA32_LASTBRANCHTOIP: msr_info->data = svm->vmcb->save.br_to; break; case MSR_IA32_LASTINTFROMIP: msr_info->data = svm->vmcb->save.last_excp_from; break; case MSR_IA32_LASTINTTOIP: msr_info->data = svm->vmcb->save.last_excp_to; break; case MSR_VM_HSAVE_PA: msr_info->data = svm->nested.hsave_msr; break; case MSR_VM_CR: msr_info->data = svm->nested.vm_cr_msr; break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) return 1; msr_info->data = svm->spec_ctrl; break; case MSR_AMD64_VIRT_SPEC_CTRL: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) return 1; msr_info->data = svm->virt_spec_ctrl; break; case MSR_F15H_IC_CFG: { int family, model; family = guest_cpuid_family(vcpu); model = guest_cpuid_model(vcpu); if (family < 0 || model < 0) return kvm_get_msr_common(vcpu, msr_info); msr_info->data = 0; if (family == 0x15 && (model >= 0x2 && model < 0x20)) msr_info->data = 0x1E; } break; case MSR_F10H_DECFG: msr_info->data = svm->msr_decfg; break; default: return kvm_get_msr_common(vcpu, msr_info); } return 0; } static int rdmsr_interception(struct vcpu_svm *svm) { return kvm_emulate_rdmsr(&svm->vcpu); } static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) { struct vcpu_svm *svm = to_svm(vcpu); int svm_dis, chg_mask; if (data & ~SVM_VM_CR_VALID_MASK) return 1; chg_mask = SVM_VM_CR_VALID_MASK; if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); svm->nested.vm_cr_msr &= ~chg_mask; svm->nested.vm_cr_msr |= (data & chg_mask); svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; /* check for svm_disable while efer.svme is set */ if (svm_dis && (vcpu->arch.efer & EFER_SVME)) return 1; return 0; } static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) { struct vcpu_svm *svm = to_svm(vcpu); u32 ecx = msr->index; u64 data = msr->data; switch (ecx) { case MSR_IA32_CR_PAT: if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) return 1; vcpu->arch.pat = data; svm->vmcb->save.g_pat = data; mark_dirty(svm->vmcb, VMCB_NPT); break; case MSR_IA32_SPEC_CTRL: if (!msr->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) return 1; /* The STIBP bit doesn't fault even if it's not advertised */ if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) return 1; svm->spec_ctrl = data; if (!data) break; /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_svm_vmrun_msrpm. * We update the L1 MSR bit as well since it will end up * touching the MSR anyway now. */ set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); break; case MSR_IA32_PRED_CMD: if (!msr->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) return 1; if (data & ~PRED_CMD_IBPB) return 1; if (!data) break; wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); if (is_guest_mode(vcpu)) break; set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); break; case MSR_AMD64_VIRT_SPEC_CTRL: if (!msr->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) return 1; if (data & ~SPEC_CTRL_SSBD) return 1; svm->virt_spec_ctrl = data; break; case MSR_STAR: svm->vmcb->save.star = data; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: svm->vmcb->save.lstar = data; break; case MSR_CSTAR: svm->vmcb->save.cstar = data; break; case MSR_KERNEL_GS_BASE: svm->vmcb->save.kernel_gs_base = data; break; case MSR_SYSCALL_MASK: svm->vmcb->save.sfmask = data; break; #endif case MSR_IA32_SYSENTER_CS: svm->vmcb->save.sysenter_cs = data; break; case MSR_IA32_SYSENTER_EIP: svm->sysenter_eip = data; svm->vmcb->save.sysenter_eip = data; break; case MSR_IA32_SYSENTER_ESP: svm->sysenter_esp = data; svm->vmcb->save.sysenter_esp = data; break; case MSR_TSC_AUX: if (!boot_cpu_has(X86_FEATURE_RDTSCP)) return 1; /* * This is rare, so we update the MSR here instead of using * direct_access_msrs. Doing that would require a rdmsr in * svm_vcpu_put. */ svm->tsc_aux = data; wrmsrl(MSR_TSC_AUX, svm->tsc_aux); break; case MSR_IA32_DEBUGCTLMSR: if (!boot_cpu_has(X86_FEATURE_LBRV)) { vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", __func__, data); break; } if (data & DEBUGCTL_RESERVED_BITS) return 1; svm->vmcb->save.dbgctl = data; mark_dirty(svm->vmcb, VMCB_LBR); if (data & (1ULL<<0)) svm_enable_lbrv(svm); else svm_disable_lbrv(svm); break; case MSR_VM_HSAVE_PA: svm->nested.hsave_msr = data; break; case MSR_VM_CR: return svm_set_vm_cr(vcpu, data); case MSR_VM_IGNNE: vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); break; case MSR_F10H_DECFG: { struct kvm_msr_entry msr_entry; msr_entry.index = msr->index; if (svm_get_msr_feature(&msr_entry)) return 1; /* Check the supported bits */ if (data & ~msr_entry.data) return 1; /* Don't allow the guest to change a bit, #GP */ if (!msr->host_initiated && (data ^ msr_entry.data)) return 1; svm->msr_decfg = data; break; } case MSR_IA32_APICBASE: if (kvm_vcpu_apicv_active(vcpu)) avic_update_vapic_bar(to_svm(vcpu), data); /* Fall through */ default: return kvm_set_msr_common(vcpu, msr); } return 0; } static int wrmsr_interception(struct vcpu_svm *svm) { return kvm_emulate_wrmsr(&svm->vcpu); } static int msr_interception(struct vcpu_svm *svm) { if (svm->vmcb->control.exit_info_1) return wrmsr_interception(svm); else return rdmsr_interception(svm); } static int interrupt_window_interception(struct vcpu_svm *svm) { kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); svm_clear_vintr(svm); svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; mark_dirty(svm->vmcb, VMCB_INTR); ++svm->vcpu.stat.irq_window_exits; return 1; } static int pause_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; bool in_kernel = (svm_get_cpl(vcpu) == 0); if (pause_filter_thresh) grow_ple_window(vcpu); kvm_vcpu_on_spin(vcpu, in_kernel); return 1; } static int nop_interception(struct vcpu_svm *svm) { return kvm_skip_emulated_instruction(&(svm->vcpu)); } static int monitor_interception(struct vcpu_svm *svm) { printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); return nop_interception(svm); } static int mwait_interception(struct vcpu_svm *svm) { printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); return nop_interception(svm); } enum avic_ipi_failure_cause { AVIC_IPI_FAILURE_INVALID_INT_TYPE, AVIC_IPI_FAILURE_TARGET_NOT_RUNNING, AVIC_IPI_FAILURE_INVALID_TARGET, AVIC_IPI_FAILURE_INVALID_BACKING_PAGE, }; static int avic_incomplete_ipi_interception(struct vcpu_svm *svm) { u32 icrh = svm->vmcb->control.exit_info_1 >> 32; u32 icrl = svm->vmcb->control.exit_info_1; u32 id = svm->vmcb->control.exit_info_2 >> 32; u32 index = svm->vmcb->control.exit_info_2 & 0xFF; struct kvm_lapic *apic = svm->vcpu.arch.apic; trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index); switch (id) { case AVIC_IPI_FAILURE_INVALID_INT_TYPE: /* * AVIC hardware handles the generation of * IPIs when the specified Message Type is Fixed * (also known as fixed delivery mode) and * the Trigger Mode is edge-triggered. The hardware * also supports self and broadcast delivery modes * specified via the Destination Shorthand(DSH) * field of the ICRL. Logical and physical APIC ID * formats are supported. All other IPI types cause * a #VMEXIT, which needs to emulated. */ kvm_lapic_reg_write(apic, APIC_ICR2, icrh); kvm_lapic_reg_write(apic, APIC_ICR, icrl); break; case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: { int i; struct kvm_vcpu *vcpu; struct kvm *kvm = svm->vcpu.kvm; struct kvm_lapic *apic = svm->vcpu.arch.apic; /* * At this point, we expect that the AVIC HW has already * set the appropriate IRR bits on the valid target * vcpus. So, we just need to kick the appropriate vcpu. */ kvm_for_each_vcpu(i, vcpu, kvm) { bool m = kvm_apic_match_dest(vcpu, apic, icrl & KVM_APIC_SHORT_MASK, GET_APIC_DEST_FIELD(icrh), icrl & KVM_APIC_DEST_MASK); if (m && !avic_vcpu_is_running(vcpu)) kvm_vcpu_wake_up(vcpu); } break; } case AVIC_IPI_FAILURE_INVALID_TARGET: WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n", index, svm->vcpu.vcpu_id, icrh, icrl); break; case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: WARN_ONCE(1, "Invalid backing page\n"); break; default: pr_err("Unknown IPI interception\n"); } return 1; } static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) { struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); int index; u32 *logical_apic_id_table; int dlid = GET_APIC_LOGICAL_ID(ldr); if (!dlid) return NULL; if (flat) { /* flat */ index = ffs(dlid) - 1; if (index > 7) return NULL; } else { /* cluster */ int cluster = (dlid & 0xf0) >> 4; int apic = ffs(dlid & 0x0f) - 1; if ((apic < 0) || (apic > 7) || (cluster >= 0xf)) return NULL; index = (cluster << 2) + apic; } logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); return &logical_apic_id_table[index]; } static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr) { bool flat; u32 *entry, new_entry; flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; entry = avic_get_logical_id_entry(vcpu, ldr, flat); if (!entry) return -EINVAL; new_entry = READ_ONCE(*entry); new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; WRITE_ONCE(*entry, new_entry); return 0; } static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); bool flat = svm->dfr_reg == APIC_DFR_FLAT; u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat); if (entry) clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry); } static int avic_handle_ldr_update(struct kvm_vcpu *vcpu) { int ret = 0; struct vcpu_svm *svm = to_svm(vcpu); u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); if (ldr == svm->ldr_reg) return 0; avic_invalidate_logical_id_entry(vcpu); if (ldr) ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr); if (!ret) svm->ldr_reg = ldr; return ret; } static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu) { u64 *old, *new; struct vcpu_svm *svm = to_svm(vcpu); u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID); u32 id = (apic_id_reg >> 24) & 0xff; if (vcpu->vcpu_id == id) return 0; old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id); new = avic_get_physical_id_entry(vcpu, id); if (!new || !old) return 1; /* We need to move physical_id_entry to new offset */ *new = *old; *old = 0ULL; to_svm(vcpu)->avic_physical_id_cache = new; /* * Also update the guest physical APIC ID in the logical * APIC ID table entry if already setup the LDR. */ if (svm->ldr_reg) avic_handle_ldr_update(vcpu); return 0; } static void avic_handle_dfr_update(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); if (svm->dfr_reg == dfr) return; avic_invalidate_logical_id_entry(vcpu); svm->dfr_reg = dfr; } static int avic_unaccel_trap_write(struct vcpu_svm *svm) { struct kvm_lapic *apic = svm->vcpu.arch.apic; u32 offset = svm->vmcb->control.exit_info_1 & AVIC_UNACCEL_ACCESS_OFFSET_MASK; switch (offset) { case APIC_ID: if (avic_handle_apic_id_update(&svm->vcpu)) return 0; break; case APIC_LDR: if (avic_handle_ldr_update(&svm->vcpu)) return 0; break; case APIC_DFR: avic_handle_dfr_update(&svm->vcpu); break; default: break; } kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); return 1; } static bool is_avic_unaccelerated_access_trap(u32 offset) { bool ret = false; switch (offset) { case APIC_ID: case APIC_EOI: case APIC_RRR: case APIC_LDR: case APIC_DFR: case APIC_SPIV: case APIC_ESR: case APIC_ICR: case APIC_LVTT: case APIC_LVTTHMR: case APIC_LVTPC: case APIC_LVT0: case APIC_LVT1: case APIC_LVTERR: case APIC_TMICT: case APIC_TDCR: ret = true; break; default: break; } return ret; } static int avic_unaccelerated_access_interception(struct vcpu_svm *svm) { int ret = 0; u32 offset = svm->vmcb->control.exit_info_1 & AVIC_UNACCEL_ACCESS_OFFSET_MASK; u32 vector = svm->vmcb->control.exit_info_2 & AVIC_UNACCEL_ACCESS_VECTOR_MASK; bool write = (svm->vmcb->control.exit_info_1 >> 32) & AVIC_UNACCEL_ACCESS_WRITE_MASK; bool trap = is_avic_unaccelerated_access_trap(offset); trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset, trap, write, vector); if (trap) { /* Handling Trap */ WARN_ONCE(!write, "svm: Handling trap read.\n"); ret = avic_unaccel_trap_write(svm); } else { /* Handling Fault */ ret = kvm_emulate_instruction(&svm->vcpu, 0); } return ret; } static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { [SVM_EXIT_READ_CR0] = cr_interception, [SVM_EXIT_READ_CR3] = cr_interception, [SVM_EXIT_READ_CR4] = cr_interception, [SVM_EXIT_READ_CR8] = cr_interception, [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, [SVM_EXIT_WRITE_CR0] = cr_interception, [SVM_EXIT_WRITE_CR3] = cr_interception, [SVM_EXIT_WRITE_CR4] = cr_interception, [SVM_EXIT_WRITE_CR8] = cr8_write_interception, [SVM_EXIT_READ_DR0] = dr_interception, [SVM_EXIT_READ_DR1] = dr_interception, [SVM_EXIT_READ_DR2] = dr_interception, [SVM_EXIT_READ_DR3] = dr_interception, [SVM_EXIT_READ_DR4] = dr_interception, [SVM_EXIT_READ_DR5] = dr_interception, [SVM_EXIT_READ_DR6] = dr_interception, [SVM_EXIT_READ_DR7] = dr_interception, [SVM_EXIT_WRITE_DR0] = dr_interception, [SVM_EXIT_WRITE_DR1] = dr_interception, [SVM_EXIT_WRITE_DR2] = dr_interception, [SVM_EXIT_WRITE_DR3] = dr_interception, [SVM_EXIT_WRITE_DR4] = dr_interception, [SVM_EXIT_WRITE_DR5] = dr_interception, [SVM_EXIT_WRITE_DR6] = dr_interception, [SVM_EXIT_WRITE_DR7] = dr_interception, [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, [SVM_EXIT_INTR] = intr_interception, [SVM_EXIT_NMI] = nmi_interception, [SVM_EXIT_SMI] = nop_on_interception, [SVM_EXIT_INIT] = nop_on_interception, [SVM_EXIT_VINTR] = interrupt_window_interception, [SVM_EXIT_RDPMC] = rdpmc_interception, [SVM_EXIT_CPUID] = cpuid_interception, [SVM_EXIT_IRET] = iret_interception, [SVM_EXIT_INVD] = emulate_on_interception, [SVM_EXIT_PAUSE] = pause_interception, [SVM_EXIT_HLT] = halt_interception, [SVM_EXIT_INVLPG] = invlpg_interception, [SVM_EXIT_INVLPGA] = invlpga_interception, [SVM_EXIT_IOIO] = io_interception, [SVM_EXIT_MSR] = msr_interception, [SVM_EXIT_TASK_SWITCH] = task_switch_interception, [SVM_EXIT_SHUTDOWN] = shutdown_interception, [SVM_EXIT_VMRUN] = vmrun_interception, [SVM_EXIT_VMMCALL] = vmmcall_interception, [SVM_EXIT_VMLOAD] = vmload_interception, [SVM_EXIT_VMSAVE] = vmsave_interception, [SVM_EXIT_STGI] = stgi_interception, [SVM_EXIT_CLGI] = clgi_interception, [SVM_EXIT_SKINIT] = skinit_interception, [SVM_EXIT_WBINVD] = wbinvd_interception, [SVM_EXIT_MONITOR] = monitor_interception, [SVM_EXIT_MWAIT] = mwait_interception, [SVM_EXIT_XSETBV] = xsetbv_interception, [SVM_EXIT_RDPRU] = rdpru_interception, [SVM_EXIT_NPF] = npf_interception, [SVM_EXIT_RSM] = rsm_interception, [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, }; static void dump_vmcb(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; if (!dump_invalid_vmcb) { pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); return; } pr_err("VMCB Control Area:\n"); pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff); pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16); pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff); pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16); pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions); pr_err("%-20s%016llx\n", "intercepts:", control->intercept); pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); pr_err("%-20s%d\n", "pause filter threshold:", control->pause_filter_thresh); pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); pr_err("%-20s%d\n", "asid:", control->asid); pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); pr_err("%-20s%08x\n", "int_vector:", control->int_vector); pr_err("%-20s%08x\n", "int_state:", control->int_state); pr_err("%-20s%08x\n", "exit_code:", control->exit_code); pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); pr_err("%-20s%08x\n", "event_inj:", control->event_inj); pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); pr_err("VMCB State Save Area:\n"); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "es:", save->es.selector, save->es.attrib, save->es.limit, save->es.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "cs:", save->cs.selector, save->cs.attrib, save->cs.limit, save->cs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ss:", save->ss.selector, save->ss.attrib, save->ss.limit, save->ss.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ds:", save->ds.selector, save->ds.attrib, save->ds.limit, save->ds.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "fs:", save->fs.selector, save->fs.attrib, save->fs.limit, save->fs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "gs:", save->gs.selector, save->gs.attrib, save->gs.limit, save->gs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "gdtr:", save->gdtr.selector, save->gdtr.attrib, save->gdtr.limit, save->gdtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ldtr:", save->ldtr.selector, save->ldtr.attrib, save->ldtr.limit, save->ldtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "idtr:", save->idtr.selector, save->idtr.attrib, save->idtr.limit, save->idtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "tr:", save->tr.selector, save->tr.attrib, save->tr.limit, save->tr.base); pr_err("cpl: %d efer: %016llx\n", save->cpl, save->efer); pr_err("%-15s %016llx %-13s %016llx\n", "cr0:", save->cr0, "cr2:", save->cr2); pr_err("%-15s %016llx %-13s %016llx\n", "cr3:", save->cr3, "cr4:", save->cr4); pr_err("%-15s %016llx %-13s %016llx\n", "dr6:", save->dr6, "dr7:", save->dr7); pr_err("%-15s %016llx %-13s %016llx\n", "rip:", save->rip, "rflags:", save->rflags); pr_err("%-15s %016llx %-13s %016llx\n", "rsp:", save->rsp, "rax:", save->rax); pr_err("%-15s %016llx %-13s %016llx\n", "star:", save->star, "lstar:", save->lstar); pr_err("%-15s %016llx %-13s %016llx\n", "cstar:", save->cstar, "sfmask:", save->sfmask); pr_err("%-15s %016llx %-13s %016llx\n", "kernel_gs_base:", save->kernel_gs_base, "sysenter_cs:", save->sysenter_cs); pr_err("%-15s %016llx %-13s %016llx\n", "sysenter_esp:", save->sysenter_esp, "sysenter_eip:", save->sysenter_eip); pr_err("%-15s %016llx %-13s %016llx\n", "gpat:", save->g_pat, "dbgctl:", save->dbgctl); pr_err("%-15s %016llx %-13s %016llx\n", "br_from:", save->br_from, "br_to:", save->br_to); pr_err("%-15s %016llx %-13s %016llx\n", "excp_from:", save->last_excp_from, "excp_to:", save->last_excp_to); } static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) { struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; *info1 = control->exit_info_1; *info2 = control->exit_info_2; } static int handle_exit(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 exit_code = svm->vmcb->control.exit_code; trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) vcpu->arch.cr0 = svm->vmcb->save.cr0; if (npt_enabled) vcpu->arch.cr3 = svm->vmcb->save.cr3; if (unlikely(svm->nested.exit_required)) { nested_svm_vmexit(svm); svm->nested.exit_required = false; return 1; } if (is_guest_mode(vcpu)) { int vmexit; trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, svm->vmcb->control.exit_info_1, svm->vmcb->control.exit_info_2, svm->vmcb->control.exit_int_info, svm->vmcb->control.exit_int_info_err, KVM_ISA_SVM); vmexit = nested_svm_exit_special(svm); if (vmexit == NESTED_EXIT_CONTINUE) vmexit = nested_svm_exit_handled(svm); if (vmexit == NESTED_EXIT_DONE) return 1; } svm_complete_interrupts(svm); if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; kvm_run->fail_entry.hardware_entry_failure_reason = svm->vmcb->control.exit_code; dump_vmcb(vcpu); return 0; } if (is_external_interrupt(svm->vmcb->control.exit_int_info) && exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " "exit_code 0x%x\n", __func__, svm->vmcb->control.exit_int_info, exit_code); if (exit_code >= ARRAY_SIZE(svm_exit_handlers) || !svm_exit_handlers[exit_code]) { vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code); dump_vmcb(vcpu); vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; vcpu->run->internal.ndata = 1; vcpu->run->internal.data[0] = exit_code; return 0; } return svm_exit_handlers[exit_code](svm); } static void reload_tss(struct kvm_vcpu *vcpu) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *sd = per_cpu(svm_data, cpu); sd->tss_desc->type = 9; /* available 32/64-bit TSS */ load_TR_desc(); } static void pre_sev_run(struct vcpu_svm *svm, int cpu) { struct svm_cpu_data *sd = per_cpu(svm_data, cpu); int asid = sev_get_asid(svm->vcpu.kvm); /* Assign the asid allocated with this SEV guest */ svm->vmcb->control.asid = asid; /* * Flush guest TLB: * * 1) when different VMCB for the same ASID is to be run on the same host CPU. * 2) or this VMCB was executed on different host CPU in previous VMRUNs. */ if (sd->sev_vmcbs[asid] == svm->vmcb && svm->last_cpu == cpu) return; svm->last_cpu = cpu; sd->sev_vmcbs[asid] = svm->vmcb; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; mark_dirty(svm->vmcb, VMCB_ASID); } static void pre_svm_run(struct vcpu_svm *svm) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *sd = per_cpu(svm_data, cpu); if (sev_guest(svm->vcpu.kvm)) return pre_sev_run(svm, cpu); /* FIXME: handle wraparound of asid_generation */ if (svm->asid_generation != sd->asid_generation) new_asid(svm, sd); } static void svm_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; vcpu->arch.hflags |= HF_NMI_MASK; set_intercept(svm, INTERCEPT_IRET); ++vcpu->stat.nmi_injections; } static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) { struct vmcb_control_area *control; /* The following fields are ignored when AVIC is enabled */ control = &svm->vmcb->control; control->int_vector = irq; control->int_ctl &= ~V_INTR_PRIO_MASK; control->int_ctl |= V_IRQ_MASK | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); mark_dirty(svm->vmcb, VMCB_INTR); } static void svm_set_irq(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); BUG_ON(!(gif_set(svm))); trace_kvm_inj_virq(vcpu->arch.interrupt.nr); ++vcpu->stat.irq_injections; svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; } static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu) { return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK); } static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vcpu_svm *svm = to_svm(vcpu); if (svm_nested_virtualize_tpr(vcpu) || kvm_vcpu_apicv_active(vcpu)) return; clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); if (irr == -1) return; if (tpr >= irr) set_cr_intercept(svm, INTERCEPT_CR8_WRITE); } static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu) { return; } static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu) { return avic && irqchip_split(vcpu->kvm); } static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) { } static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) { } /* Note: Currently only used by Hyper-V. */ static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; if (kvm_vcpu_apicv_active(vcpu)) vmcb->control.int_ctl |= AVIC_ENABLE_MASK; else vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; mark_dirty(vmcb, VMCB_AVIC); } static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) { return; } static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec) { kvm_lapic_set_irr(vec, vcpu->arch.apic); smp_mb__after_atomic(); if (avic_vcpu_is_running(vcpu)) { int cpuid = vcpu->cpu; if (cpuid != get_cpu()) wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid)); put_cpu(); } else kvm_vcpu_wake_up(vcpu); } static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu) { return false; } static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) { unsigned long flags; struct amd_svm_iommu_ir *cur; spin_lock_irqsave(&svm->ir_list_lock, flags); list_for_each_entry(cur, &svm->ir_list, node) { if (cur->data != pi->ir_data) continue; list_del(&cur->node); kfree(cur); break; } spin_unlock_irqrestore(&svm->ir_list_lock, flags); } static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) { int ret = 0; unsigned long flags; struct amd_svm_iommu_ir *ir; /** * In some cases, the existing irte is updaed and re-set, * so we need to check here if it's already been * added * to the ir_list. */ if (pi->ir_data && (pi->prev_ga_tag != 0)) { struct kvm *kvm = svm->vcpu.kvm; u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); struct vcpu_svm *prev_svm; if (!prev_vcpu) { ret = -EINVAL; goto out; } prev_svm = to_svm(prev_vcpu); svm_ir_list_del(prev_svm, pi); } /** * Allocating new amd_iommu_pi_data, which will get * add to the per-vcpu ir_list. */ ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT); if (!ir) { ret = -ENOMEM; goto out; } ir->data = pi->ir_data; spin_lock_irqsave(&svm->ir_list_lock, flags); list_add(&ir->node, &svm->ir_list); spin_unlock_irqrestore(&svm->ir_list_lock, flags); out: return ret; } /** * Note: * The HW cannot support posting multicast/broadcast * interrupts to a vCPU. So, we still use legacy interrupt * remapping for these kind of interrupts. * * For lowest-priority interrupts, we only support * those with single CPU as the destination, e.g. user * configures the interrupts via /proc/irq or uses * irqbalance to make the interrupts single-CPU. */ static int get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, struct vcpu_data *vcpu_info, struct vcpu_svm **svm) { struct kvm_lapic_irq irq; struct kvm_vcpu *vcpu = NULL; kvm_set_msi_irq(kvm, e, &irq); if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || !kvm_irq_is_postable(&irq)) { pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", __func__, irq.vector); return -1; } pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, irq.vector); *svm = to_svm(vcpu); vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); vcpu_info->vector = irq.vector; return 0; } /* * svm_update_pi_irte - set IRTE for Posted-Interrupts * * @kvm: kvm * @host_irq: host irq of the interrupt * @guest_irq: gsi of the interrupt * @set: set or unset PI * returns 0 on success, < 0 on failure */ static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set) { struct kvm_kernel_irq_routing_entry *e; struct kvm_irq_routing_table *irq_rt; int idx, ret = -EINVAL; if (!kvm_arch_has_assigned_device(kvm) || !irq_remapping_cap(IRQ_POSTING_CAP)) return 0; pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", __func__, host_irq, guest_irq, set); idx = srcu_read_lock(&kvm->irq_srcu); irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); WARN_ON(guest_irq >= irq_rt->nr_rt_entries); hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { struct vcpu_data vcpu_info; struct vcpu_svm *svm = NULL; if (e->type != KVM_IRQ_ROUTING_MSI) continue; /** * Here, we setup with legacy mode in the following cases: * 1. When cannot target interrupt to a specific vcpu. * 2. Unsetting posted interrupt. * 3. APIC virtialization is disabled for the vcpu. * 4. IRQ has incompatible delivery mode (SMI, INIT, etc) */ if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && kvm_vcpu_apicv_active(&svm->vcpu)) { struct amd_iommu_pi_data pi; /* Try to enable guest_mode in IRTE */ pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK); pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, svm->vcpu.vcpu_id); pi.is_guest_mode = true; pi.vcpu_data = &vcpu_info; ret = irq_set_vcpu_affinity(host_irq, &pi); /** * Here, we successfully setting up vcpu affinity in * IOMMU guest mode. Now, we need to store the posted * interrupt information in a per-vcpu ir_list so that * we can reference to them directly when we update vcpu * scheduling information in IOMMU irte. */ if (!ret && pi.is_guest_mode) svm_ir_list_add(svm, &pi); } else { /* Use legacy mode in IRTE */ struct amd_iommu_pi_data pi; /** * Here, pi is used to: * - Tell IOMMU to use legacy mode for this interrupt. * - Retrieve ga_tag of prior interrupt remapping data. */ pi.is_guest_mode = false; ret = irq_set_vcpu_affinity(host_irq, &pi); /** * Check if the posted interrupt was previously * setup with the guest_mode by checking if the ga_tag * was cached. If so, we need to clean up the per-vcpu * ir_list. */ if (!ret && pi.prev_ga_tag) { int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); struct kvm_vcpu *vcpu; vcpu = kvm_get_vcpu_by_id(kvm, id); if (vcpu) svm_ir_list_del(to_svm(vcpu), &pi); } } if (!ret && svm) { trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, e->gsi, vcpu_info.vector, vcpu_info.pi_desc_addr, set); } if (ret < 0) { pr_err("%s: failed to update PI IRTE\n", __func__); goto out; } } ret = 0; out: srcu_read_unlock(&kvm->irq_srcu, idx); return ret; } static int svm_nmi_allowed(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; int ret; ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && !(svm->vcpu.arch.hflags & HF_NMI_MASK); ret = ret && gif_set(svm) && nested_svm_nmi(svm); return ret; } static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); } static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_svm *svm = to_svm(vcpu); if (masked) { svm->vcpu.arch.hflags |= HF_NMI_MASK; set_intercept(svm, INTERCEPT_IRET); } else { svm->vcpu.arch.hflags &= ~HF_NMI_MASK; clr_intercept(svm, INTERCEPT_IRET); } } static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; int ret; if (!gif_set(svm) || (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) return 0; ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF); if (is_guest_mode(vcpu)) return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); return ret; } static void enable_irq_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (kvm_vcpu_apicv_active(vcpu)) return; /* * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes * 1, because that's a separate STGI/VMRUN intercept. The next time we * get that intercept, this function will be called again though and * we'll get the vintr intercept. However, if the vGIF feature is * enabled, the STGI interception will not occur. Enable the irq * window under the assumption that the hardware will set the GIF. */ if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) { svm_set_vintr(svm); svm_inject_irq(svm, 0x0); } } static void enable_nmi_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) return; /* IRET will cause a vm exit */ if (!gif_set(svm)) { if (vgif_enabled(svm)) set_intercept(svm, INTERCEPT_STGI); return; /* STGI will cause a vm exit */ } if (svm->nested.exit_required) return; /* we're not going to run the guest yet */ /* * Something prevents NMI from been injected. Single step over possible * problem (IRET or exception injection or interrupt shadow) */ svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); svm->nmi_singlestep = true; svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); } static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) { return 0; } static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { return 0; } static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) { struct vcpu_svm *svm = to_svm(vcpu); if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; else svm->asid_generation--; } static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) { struct vcpu_svm *svm = to_svm(vcpu); invlpga(gva, svm->vmcb->control.asid); } static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) { } static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (svm_nested_virtualize_tpr(vcpu)) return; if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; kvm_set_cr8(vcpu, cr8); } } static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u64 cr8; if (svm_nested_virtualize_tpr(vcpu) || kvm_vcpu_apicv_active(vcpu)) return; cr8 = kvm_get_cr8(vcpu); svm->vmcb->control.int_ctl &= ~V_TPR_MASK; svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; } static void svm_complete_interrupts(struct vcpu_svm *svm) { u8 vector; int type; u32 exitintinfo = svm->vmcb->control.exit_int_info; unsigned int3_injected = svm->int3_injected; svm->int3_injected = 0; /* * If we've made progress since setting HF_IRET_MASK, we've * executed an IRET and can allow NMI injection. */ if ((svm->vcpu.arch.hflags & HF_IRET_MASK) && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); } svm->vcpu.arch.nmi_injected = false; kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); if (!(exitintinfo & SVM_EXITINTINFO_VALID)) return; kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; switch (type) { case SVM_EXITINTINFO_TYPE_NMI: svm->vcpu.arch.nmi_injected = true; break; case SVM_EXITINTINFO_TYPE_EXEPT: /* * In case of software exceptions, do not reinject the vector, * but re-execute the instruction instead. Rewind RIP first * if we emulated INT3 before. */ if (kvm_exception_is_soft(vector)) { if (vector == BP_VECTOR && int3_injected && kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) - int3_injected); break; } if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { u32 err = svm->vmcb->control.exit_int_info_err; kvm_requeue_exception_e(&svm->vcpu, vector, err); } else kvm_requeue_exception(&svm->vcpu, vector); break; case SVM_EXITINTINFO_TYPE_INTR: kvm_queue_interrupt(&svm->vcpu, vector, false); break; default: break; } } static void svm_cancel_injection(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; control->exit_int_info = control->event_inj; control->exit_int_info_err = control->event_inj_err; control->event_inj = 0; svm_complete_interrupts(svm); } static void svm_vcpu_run(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; /* * A vmexit emulation is required before the vcpu can be executed * again. */ if (unlikely(svm->nested.exit_required)) return; /* * Disable singlestep if we're injecting an interrupt/exception. * We don't want our modified rflags to be pushed on the stack where * we might not be able to easily reset them if we disabled NMI * singlestep later. */ if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { /* * Event injection happens before external interrupts cause a * vmexit and interrupts are disabled here, so smp_send_reschedule * is enough to force an immediate vmexit. */ disable_nmi_singlestep(svm); smp_send_reschedule(vcpu->cpu); } pre_svm_run(svm); sync_lapic_to_cr8(vcpu); svm->vmcb->save.cr2 = vcpu->arch.cr2; clgi(); kvm_load_guest_xcr0(vcpu); if (lapic_in_kernel(vcpu) && vcpu->arch.apic->lapic_timer.timer_advance_ns) kvm_wait_lapic_expire(vcpu); /* * If this vCPU has touched SPEC_CTRL, restore the guest's value if * it's non-zero. Since vmentry is serialising on affected CPUs, there * is no need to worry about the conditional branch over the wrmsr * being speculatively taken. */ x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); local_irq_enable(); asm volatile ( "push %%" _ASM_BP "; \n\t" "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t" "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t" "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t" "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t" "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t" "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t" #ifdef CONFIG_X86_64 "mov %c[r8](%[svm]), %%r8 \n\t" "mov %c[r9](%[svm]), %%r9 \n\t" "mov %c[r10](%[svm]), %%r10 \n\t" "mov %c[r11](%[svm]), %%r11 \n\t" "mov %c[r12](%[svm]), %%r12 \n\t" "mov %c[r13](%[svm]), %%r13 \n\t" "mov %c[r14](%[svm]), %%r14 \n\t" "mov %c[r15](%[svm]), %%r15 \n\t" #endif /* Enter guest mode */ "push %%" _ASM_AX " \n\t" "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t" __ex("vmload %%" _ASM_AX) "\n\t" __ex("vmrun %%" _ASM_AX) "\n\t" __ex("vmsave %%" _ASM_AX) "\n\t" "pop %%" _ASM_AX " \n\t" /* Save guest registers, load host registers */ "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t" "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t" "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t" "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t" "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t" "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t" #ifdef CONFIG_X86_64 "mov %%r8, %c[r8](%[svm]) \n\t" "mov %%r9, %c[r9](%[svm]) \n\t" "mov %%r10, %c[r10](%[svm]) \n\t" "mov %%r11, %c[r11](%[svm]) \n\t" "mov %%r12, %c[r12](%[svm]) \n\t" "mov %%r13, %c[r13](%[svm]) \n\t" "mov %%r14, %c[r14](%[svm]) \n\t" "mov %%r15, %c[r15](%[svm]) \n\t" /* * Clear host registers marked as clobbered to prevent * speculative use. */ "xor %%r8d, %%r8d \n\t" "xor %%r9d, %%r9d \n\t" "xor %%r10d, %%r10d \n\t" "xor %%r11d, %%r11d \n\t" "xor %%r12d, %%r12d \n\t" "xor %%r13d, %%r13d \n\t" "xor %%r14d, %%r14d \n\t" "xor %%r15d, %%r15d \n\t" #endif "xor %%ebx, %%ebx \n\t" "xor %%ecx, %%ecx \n\t" "xor %%edx, %%edx \n\t" "xor %%esi, %%esi \n\t" "xor %%edi, %%edi \n\t" "pop %%" _ASM_BP : : [svm]"a"(svm), [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) #ifdef CONFIG_X86_64 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) #endif : "cc", "memory" #ifdef CONFIG_X86_64 , "rbx", "rcx", "rdx", "rsi", "rdi" , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" #else , "ebx", "ecx", "edx", "esi", "edi" #endif ); /* Eliminate branch target predictions from guest mode */ vmexit_fill_RSB(); #ifdef CONFIG_X86_64 wrmsrl(MSR_GS_BASE, svm->host.gs_base); #else loadsegment(fs, svm->host.fs); #ifndef CONFIG_X86_32_LAZY_GS loadsegment(gs, svm->host.gs); #endif #endif /* * We do not use IBRS in the kernel. If this vCPU has used the * SPEC_CTRL MSR it may have left it on; save the value and * turn it off. This is much more efficient than blindly adding * it to the atomic save/restore list. Especially as the former * (Saving guest MSRs on vmexit) doesn't even exist in KVM. * * For non-nested case: * If the L01 MSR bitmap does not intercept the MSR, then we need to * save it. * * For nested case: * If the L02 MSR bitmap does not intercept the MSR, then we need to * save it. */ if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); reload_tss(vcpu); local_irq_disable(); x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); vcpu->arch.cr2 = svm->vmcb->save.cr2; vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) kvm_before_interrupt(&svm->vcpu); kvm_put_guest_xcr0(vcpu); stgi(); /* Any pending NMI will happen here */ if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) kvm_after_interrupt(&svm->vcpu); sync_cr8_to_lapic(vcpu); svm->next_rip = 0; svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; /* if exit due to PF check for async PF */ if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); if (npt_enabled) { vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); } /* * We need to handle MC intercepts here before the vcpu has a chance to * change the physical cpu */ if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + MC_VECTOR)) svm_handle_mce(svm); mark_all_clean(svm->vmcb); } STACK_FRAME_NON_STANDARD(svm_vcpu_run); static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.cr3 = __sme_set(root); mark_dirty(svm->vmcb, VMCB_CR); } static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.nested_cr3 = __sme_set(root); mark_dirty(svm->vmcb, VMCB_NPT); /* Also sync guest cr3 here in case we live migrate */ svm->vmcb->save.cr3 = kvm_read_cr3(vcpu); mark_dirty(svm->vmcb, VMCB_CR); } static int is_disabled(void) { u64 vm_cr; rdmsrl(MSR_VM_CR, vm_cr); if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) return 1; return 0; } static void svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xd9; } static int __init svm_check_processor_compat(void) { return 0; } static bool svm_cpu_has_accelerated_tpr(void) { return false; } static bool svm_has_emulated_msr(int index) { switch (index) { case MSR_IA32_MCG_EXT_CTL: case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: return false; default: break; } return true; } static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { return 0; } static void svm_cpuid_update(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* Update nrips enabled cache */ svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); if (!kvm_vcpu_apicv_active(vcpu)) return; guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC); } #define F(x) bit(X86_FEATURE_##x) static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) { switch (func) { case 0x1: if (avic) entry->ecx &= ~bit(X86_FEATURE_X2APIC); break; case 0x80000001: if (nested) entry->ecx |= (1 << 2); /* Set SVM bit */ break; case 0x80000008: if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || boot_cpu_has(X86_FEATURE_AMD_SSBD)) entry->ebx |= F(VIRT_SSBD); break; case 0x8000000A: entry->eax = 1; /* SVM revision 1 */ entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper ASID emulation to nested SVM */ entry->ecx = 0; /* Reserved */ entry->edx = 0; /* Per default do not support any additional features */ /* Support next_rip if host supports it */ if (boot_cpu_has(X86_FEATURE_NRIPS)) entry->edx |= F(NRIPS); /* Support NPT for the guest if enabled */ if (npt_enabled) entry->edx |= F(NPT); break; case 0x8000001F: /* Support memory encryption cpuid if host supports it */ if (boot_cpu_has(X86_FEATURE_SEV)) cpuid(0x8000001f, &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); } } static int svm_get_lpage_level(void) { return PT_PDPE_LEVEL; } static bool svm_rdtscp_supported(void) { return boot_cpu_has(X86_FEATURE_RDTSCP); } static bool svm_invpcid_supported(void) { return false; } static bool svm_mpx_supported(void) { return false; } static bool svm_xsaves_supported(void) { return false; } static bool svm_umip_emulated(void) { return false; } static bool svm_pt_supported(void) { return false; } static bool svm_has_wbinvd_exit(void) { return true; } #define PRE_EX(exit) { .exit_code = (exit), \ .stage = X86_ICPT_PRE_EXCEPT, } #define POST_EX(exit) { .exit_code = (exit), \ .stage = X86_ICPT_POST_EXCEPT, } #define POST_MEM(exit) { .exit_code = (exit), \ .stage = X86_ICPT_POST_MEMACCESS, } static const struct __x86_intercept { u32 exit_code; enum x86_intercept_stage stage; } x86_intercept_map[] = { [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), }; #undef PRE_EX #undef POST_EX #undef POST_MEM static int svm_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage) { struct vcpu_svm *svm = to_svm(vcpu); int vmexit, ret = X86EMUL_CONTINUE; struct __x86_intercept icpt_info; struct vmcb *vmcb = svm->vmcb; if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) goto out; icpt_info = x86_intercept_map[info->intercept]; if (stage != icpt_info.stage) goto out; switch (icpt_info.exit_code) { case SVM_EXIT_READ_CR0: if (info->intercept == x86_intercept_cr_read) icpt_info.exit_code += info->modrm_reg; break; case SVM_EXIT_WRITE_CR0: { unsigned long cr0, val; u64 intercept; if (info->intercept == x86_intercept_cr_write) icpt_info.exit_code += info->modrm_reg; if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || info->intercept == x86_intercept_clts) break; intercept = svm->nested.intercept; if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))) break; cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; if (info->intercept == x86_intercept_lmsw) { cr0 &= 0xfUL; val &= 0xfUL; /* lmsw can't clear PE - catch this here */ if (cr0 & X86_CR0_PE) val |= X86_CR0_PE; } if (cr0 ^ val) icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; break; } case SVM_EXIT_READ_DR0: case SVM_EXIT_WRITE_DR0: icpt_info.exit_code += info->modrm_reg; break; case SVM_EXIT_MSR: if (info->intercept == x86_intercept_wrmsr) vmcb->control.exit_info_1 = 1; else vmcb->control.exit_info_1 = 0; break; case SVM_EXIT_PAUSE: /* * We get this for NOP only, but pause * is rep not, check this here */ if (info->rep_prefix != REPE_PREFIX) goto out; break; case SVM_EXIT_IOIO: { u64 exit_info; u32 bytes; if (info->intercept == x86_intercept_in || info->intercept == x86_intercept_ins) { exit_info = ((info->src_val & 0xffff) << 16) | SVM_IOIO_TYPE_MASK; bytes = info->dst_bytes; } else { exit_info = (info->dst_val & 0xffff) << 16; bytes = info->src_bytes; } if (info->intercept == x86_intercept_outs || info->intercept == x86_intercept_ins) exit_info |= SVM_IOIO_STR_MASK; if (info->rep_prefix) exit_info |= SVM_IOIO_REP_MASK; bytes = min(bytes, 4u); exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); vmcb->control.exit_info_1 = exit_info; vmcb->control.exit_info_2 = info->next_rip; break; } default: break; } /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ if (static_cpu_has(X86_FEATURE_NRIPS)) vmcb->control.next_rip = info->next_rip; vmcb->control.exit_code = icpt_info.exit_code; vmexit = nested_svm_exit_handled(svm); ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED : X86EMUL_CONTINUE; out: return ret; } static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) { } static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) { if (pause_filter_thresh) shrink_ple_window(vcpu); } static inline void avic_post_state_restore(struct kvm_vcpu *vcpu) { if (avic_handle_apic_id_update(vcpu) != 0) return; avic_handle_dfr_update(vcpu); avic_handle_ldr_update(vcpu); } static void svm_setup_mce(struct kvm_vcpu *vcpu) { /* [63:9] are reserved. */ vcpu->arch.mcg_cap &= 0x1ff; } static int svm_smi_allowed(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* Per APM Vol.2 15.22.2 "Response to SMI" */ if (!gif_set(svm)) return 0; if (is_guest_mode(&svm->vcpu) && svm->nested.intercept & (1ULL << INTERCEPT_SMI)) { /* TODO: Might need to set exit_info_1 and exit_info_2 here */ svm->vmcb->control.exit_code = SVM_EXIT_SMI; svm->nested.exit_required = true; return 0; } return 1; } static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) { struct vcpu_svm *svm = to_svm(vcpu); int ret; if (is_guest_mode(vcpu)) { /* FED8h - SVM Guest */ put_smstate(u64, smstate, 0x7ed8, 1); /* FEE0h - SVM Guest VMCB Physical Address */ put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb); svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; ret = nested_svm_vmexit(svm); if (ret) return ret; } return 0; } static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *nested_vmcb; struct kvm_host_map map; u64 guest; u64 vmcb; guest = GET_SMSTATE(u64, smstate, 0x7ed8); vmcb = GET_SMSTATE(u64, smstate, 0x7ee0); if (guest) { if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL) return 1; nested_vmcb = map.hva; enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map); } return 0; } static int enable_smi_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!gif_set(svm)) { if (vgif_enabled(svm)) set_intercept(svm, INTERCEPT_STGI); /* STGI will cause a vm exit */ return 1; } return 0; } static int sev_asid_new(void) { int pos; mutex_lock(&sev_bitmap_lock); /* * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. */ pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); if (pos >= max_sev_asid) { mutex_unlock(&sev_bitmap_lock); return -EBUSY; } __set_bit(pos, sev_asid_bitmap); mutex_unlock(&sev_bitmap_lock); return pos + 1; } static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; int asid, ret; ret = -EBUSY; if (unlikely(sev->active)) return ret; asid = sev_asid_new(); if (asid < 0) return ret; ret = sev_platform_init(&argp->error); if (ret) goto e_free; sev->active = true; sev->asid = asid; INIT_LIST_HEAD(&sev->regions_list); return 0; e_free: sev_asid_free(asid); return ret; } static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) { struct sev_data_activate *data; int asid = sev_get_asid(kvm); int ret; data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); if (!data) return -ENOMEM; /* activate ASID on the given handle */ data->handle = handle; data->asid = asid; ret = sev_guest_activate(data, error); kfree(data); return ret; } static int __sev_issue_cmd(int fd, int id, void *data, int *error) { struct fd f; int ret; f = fdget(fd); if (!f.file) return -EBADF; ret = sev_issue_cmd_external_user(f.file, id, data, error); fdput(f); return ret; } static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return __sev_issue_cmd(sev->fd, id, data, error); } static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_launch_start *start; struct kvm_sev_launch_start params; void *dh_blob, *session_blob; int *error = &argp->error; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) return -EFAULT; start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); if (!start) return -ENOMEM; dh_blob = NULL; if (params.dh_uaddr) { dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); if (IS_ERR(dh_blob)) { ret = PTR_ERR(dh_blob); goto e_free; } start->dh_cert_address = __sme_set(__pa(dh_blob)); start->dh_cert_len = params.dh_len; } session_blob = NULL; if (params.session_uaddr) { session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); if (IS_ERR(session_blob)) { ret = PTR_ERR(session_blob); goto e_free_dh; } start->session_address = __sme_set(__pa(session_blob)); start->session_len = params.session_len; } start->handle = params.handle; start->policy = params.policy; /* create memory encryption context */ ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); if (ret) goto e_free_session; /* Bind ASID to this guest */ ret = sev_bind_asid(kvm, start->handle, error); if (ret) goto e_free_session; /* return handle to userspace */ params.handle = start->handle; if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { sev_unbind_asid(kvm, start->handle); ret = -EFAULT; goto e_free_session; } sev->handle = start->handle; sev->fd = argp->sev_fd; e_free_session: kfree(session_blob); e_free_dh: kfree(dh_blob); e_free: kfree(start); return ret; } static unsigned long get_num_contig_pages(unsigned long idx, struct page **inpages, unsigned long npages) { unsigned long paddr, next_paddr; unsigned long i = idx + 1, pages = 1; /* find the number of contiguous pages starting from idx */ paddr = __sme_page_pa(inpages[idx]); while (i < npages) { next_paddr = __sme_page_pa(inpages[i++]); if ((paddr + PAGE_SIZE) == next_paddr) { pages++; paddr = next_paddr; continue; } break; } return pages; } static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) { unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct kvm_sev_launch_update_data params; struct sev_data_launch_update_data *data; struct page **inpages; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) return -EFAULT; data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); if (!data) return -ENOMEM; vaddr = params.uaddr; size = params.len; vaddr_end = vaddr + size; /* Lock the user memory. */ inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); if (!inpages) { ret = -ENOMEM; goto e_free; } /* * The LAUNCH_UPDATE command will perform in-place encryption of the * memory content (i.e it will write the same memory region with C=1). * It's possible that the cache may contain the data with C=0, i.e., * unencrypted so invalidate it first. */ sev_clflush_pages(inpages, npages); for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { int offset, len; /* * If the user buffer is not page-aligned, calculate the offset * within the page. */ offset = vaddr & (PAGE_SIZE - 1); /* Calculate the number of pages that can be encrypted in one go. */ pages = get_num_contig_pages(i, inpages, npages); len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); data->handle = sev->handle; data->len = len; data->address = __sme_page_pa(inpages[i]) + offset; ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); if (ret) goto e_unpin; size -= len; next_vaddr = vaddr + len; } e_unpin: /* content of memory is updated, mark pages dirty */ for (i = 0; i < npages; i++) { set_page_dirty_lock(inpages[i]); mark_page_accessed(inpages[i]); } /* unlock the user pages */ sev_unpin_memory(kvm, inpages, npages); e_free: kfree(data); return ret; } static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) { void __user *measure = (void __user *)(uintptr_t)argp->data; struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_launch_measure *data; struct kvm_sev_launch_measure params; void __user *p = NULL; void *blob = NULL; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, measure, sizeof(params))) return -EFAULT; data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); if (!data) return -ENOMEM; /* User wants to query the blob length */ if (!params.len) goto cmd; p = (void __user *)(uintptr_t)params.uaddr; if (p) { if (params.len > SEV_FW_BLOB_MAX_SIZE) { ret = -EINVAL; goto e_free; } ret = -ENOMEM; blob = kmalloc(params.len, GFP_KERNEL); if (!blob) goto e_free; data->address = __psp_pa(blob); data->len = params.len; } cmd: data->handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); /* * If we query the session length, FW responded with expected data. */ if (!params.len) goto done; if (ret) goto e_free_blob; if (blob) { if (copy_to_user(p, blob, params.len)) ret = -EFAULT; } done: params.len = data->len; if (copy_to_user(measure, ¶ms, sizeof(params))) ret = -EFAULT; e_free_blob: kfree(blob); e_free: kfree(data); return ret; } static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_launch_finish *data; int ret; if (!sev_guest(kvm)) return -ENOTTY; data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); if (!data) return -ENOMEM; data->handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); kfree(data); return ret; } static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct kvm_sev_guest_status params; struct sev_data_guest_status *data; int ret; if (!sev_guest(kvm)) return -ENOTTY; data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); if (!data) return -ENOMEM; data->handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); if (ret) goto e_free; params.policy = data->policy; params.state = data->state; params.handle = data->handle; if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) ret = -EFAULT; e_free: kfree(data); return ret; } static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, unsigned long dst, int size, int *error, bool enc) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_dbg *data; int ret; data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); if (!data) return -ENOMEM; data->handle = sev->handle; data->dst_addr = dst; data->src_addr = src; data->len = size; ret = sev_issue_cmd(kvm, enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, data, error); kfree(data); return ret; } static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, unsigned long dst_paddr, int sz, int *err) { int offset; /* * Its safe to read more than we are asked, caller should ensure that * destination has enough space. */ src_paddr = round_down(src_paddr, 16); offset = src_paddr & 15; sz = round_up(sz + offset, 16); return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); } static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, unsigned long __user dst_uaddr, unsigned long dst_paddr, int size, int *err) { struct page *tpage = NULL; int ret, offset; /* if inputs are not 16-byte then use intermediate buffer */ if (!IS_ALIGNED(dst_paddr, 16) || !IS_ALIGNED(paddr, 16) || !IS_ALIGNED(size, 16)) { tpage = (void *)alloc_page(GFP_KERNEL); if (!tpage) return -ENOMEM; dst_paddr = __sme_page_pa(tpage); } ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); if (ret) goto e_free; if (tpage) { offset = paddr & 15; if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, page_address(tpage) + offset, size)) ret = -EFAULT; } e_free: if (tpage) __free_page(tpage); return ret; } static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, unsigned long __user vaddr, unsigned long dst_paddr, unsigned long __user dst_vaddr, int size, int *error) { struct page *src_tpage = NULL; struct page *dst_tpage = NULL; int ret, len = size; /* If source buffer is not aligned then use an intermediate buffer */ if (!IS_ALIGNED(vaddr, 16)) { src_tpage = alloc_page(GFP_KERNEL); if (!src_tpage) return -ENOMEM; if (copy_from_user(page_address(src_tpage), (void __user *)(uintptr_t)vaddr, size)) { __free_page(src_tpage); return -EFAULT; } paddr = __sme_page_pa(src_tpage); } /* * If destination buffer or length is not aligned then do read-modify-write: * - decrypt destination in an intermediate buffer * - copy the source buffer in an intermediate buffer * - use the intermediate buffer as source buffer */ if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { int dst_offset; dst_tpage = alloc_page(GFP_KERNEL); if (!dst_tpage) { ret = -ENOMEM; goto e_free; } ret = __sev_dbg_decrypt(kvm, dst_paddr, __sme_page_pa(dst_tpage), size, error); if (ret) goto e_free; /* * If source is kernel buffer then use memcpy() otherwise * copy_from_user(). */ dst_offset = dst_paddr & 15; if (src_tpage) memcpy(page_address(dst_tpage) + dst_offset, page_address(src_tpage), size); else { if (copy_from_user(page_address(dst_tpage) + dst_offset, (void __user *)(uintptr_t)vaddr, size)) { ret = -EFAULT; goto e_free; } } paddr = __sme_page_pa(dst_tpage); dst_paddr = round_down(dst_paddr, 16); len = round_up(size, 16); } ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); e_free: if (src_tpage) __free_page(src_tpage); if (dst_tpage) __free_page(dst_tpage); return ret; } static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) { unsigned long vaddr, vaddr_end, next_vaddr; unsigned long dst_vaddr; struct page **src_p, **dst_p; struct kvm_sev_dbg debug; unsigned long n; unsigned int size; int ret; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) return -EFAULT; if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) return -EINVAL; if (!debug.dst_uaddr) return -EINVAL; vaddr = debug.src_uaddr; size = debug.len; vaddr_end = vaddr + size; dst_vaddr = debug.dst_uaddr; for (; vaddr < vaddr_end; vaddr = next_vaddr) { int len, s_off, d_off; /* lock userspace source and destination page */ src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); if (!src_p) return -EFAULT; dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); if (!dst_p) { sev_unpin_memory(kvm, src_p, n); return -EFAULT; } /* * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the * memory content (i.e it will write the same memory region with C=1). * It's possible that the cache may contain the data with C=0, i.e., * unencrypted so invalidate it first. */ sev_clflush_pages(src_p, 1); sev_clflush_pages(dst_p, 1); /* * Since user buffer may not be page aligned, calculate the * offset within the page. */ s_off = vaddr & ~PAGE_MASK; d_off = dst_vaddr & ~PAGE_MASK; len = min_t(size_t, (PAGE_SIZE - s_off), size); if (dec) ret = __sev_dbg_decrypt_user(kvm, __sme_page_pa(src_p[0]) + s_off, dst_vaddr, __sme_page_pa(dst_p[0]) + d_off, len, &argp->error); else ret = __sev_dbg_encrypt_user(kvm, __sme_page_pa(src_p[0]) + s_off, vaddr, __sme_page_pa(dst_p[0]) + d_off, dst_vaddr, len, &argp->error); sev_unpin_memory(kvm, src_p, n); sev_unpin_memory(kvm, dst_p, n); if (ret) goto err; next_vaddr = vaddr + len; dst_vaddr = dst_vaddr + len; size -= len; } err: return ret; } static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct sev_data_launch_secret *data; struct kvm_sev_launch_secret params; struct page **pages; void *blob, *hdr; unsigned long n; int ret, offset; if (!sev_guest(kvm)) return -ENOTTY; if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) return -EFAULT; pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); if (!pages) return -ENOMEM; /* * The secret must be copied into contiguous memory region, lets verify * that userspace memory pages are contiguous before we issue command. */ if (get_num_contig_pages(0, pages, n) != n) { ret = -EINVAL; goto e_unpin_memory; } ret = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); if (!data) goto e_unpin_memory; offset = params.guest_uaddr & (PAGE_SIZE - 1); data->guest_address = __sme_page_pa(pages[0]) + offset; data->guest_len = params.guest_len; blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); if (IS_ERR(blob)) { ret = PTR_ERR(blob); goto e_free; } data->trans_address = __psp_pa(blob); data->trans_len = params.trans_len; hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); if (IS_ERR(hdr)) { ret = PTR_ERR(hdr); goto e_free_blob; } data->hdr_address = __psp_pa(hdr); data->hdr_len = params.hdr_len; data->handle = sev->handle; ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); kfree(hdr); e_free_blob: kfree(blob); e_free: kfree(data); e_unpin_memory: sev_unpin_memory(kvm, pages, n); return ret; } static int svm_mem_enc_op(struct kvm *kvm, void __user *argp) { struct kvm_sev_cmd sev_cmd; int r; if (!svm_sev_enabled()) return -ENOTTY; if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) return -EFAULT; mutex_lock(&kvm->lock); switch (sev_cmd.id) { case KVM_SEV_INIT: r = sev_guest_init(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_START: r = sev_launch_start(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_UPDATE_DATA: r = sev_launch_update_data(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_MEASURE: r = sev_launch_measure(kvm, &sev_cmd); break; case KVM_SEV_LAUNCH_FINISH: r = sev_launch_finish(kvm, &sev_cmd); break; case KVM_SEV_GUEST_STATUS: r = sev_guest_status(kvm, &sev_cmd); break; case KVM_SEV_DBG_DECRYPT: r = sev_dbg_crypt(kvm, &sev_cmd, true); break; case KVM_SEV_DBG_ENCRYPT: r = sev_dbg_crypt(kvm, &sev_cmd, false); break; case KVM_SEV_LAUNCH_SECRET: r = sev_launch_secret(kvm, &sev_cmd); break; default: r = -EINVAL; goto out; } if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) r = -EFAULT; out: mutex_unlock(&kvm->lock); return r; } static int svm_register_enc_region(struct kvm *kvm, struct kvm_enc_region *range) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct enc_region *region; int ret = 0; if (!sev_guest(kvm)) return -ENOTTY; if (range->addr > ULONG_MAX || range->size > ULONG_MAX) return -EINVAL; region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); if (!region) return -ENOMEM; region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); if (!region->pages) { ret = -ENOMEM; goto e_free; } /* * The guest may change the memory encryption attribute from C=0 -> C=1 * or vice versa for this memory range. Lets make sure caches are * flushed to ensure that guest data gets written into memory with * correct C-bit. */ sev_clflush_pages(region->pages, region->npages); region->uaddr = range->addr; region->size = range->size; mutex_lock(&kvm->lock); list_add_tail(®ion->list, &sev->regions_list); mutex_unlock(&kvm->lock); return ret; e_free: kfree(region); return ret; } static struct enc_region * find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) { struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; struct list_head *head = &sev->regions_list; struct enc_region *i; list_for_each_entry(i, head, list) { if (i->uaddr == range->addr && i->size == range->size) return i; } return NULL; } static int svm_unregister_enc_region(struct kvm *kvm, struct kvm_enc_region *range) { struct enc_region *region; int ret; mutex_lock(&kvm->lock); if (!sev_guest(kvm)) { ret = -ENOTTY; goto failed; } region = find_enc_region(kvm, range); if (!region) { ret = -EINVAL; goto failed; } __unregister_enc_region_locked(kvm, region); mutex_unlock(&kvm->lock); return 0; failed: mutex_unlock(&kvm->lock); return ret; } static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) { unsigned long cr4 = kvm_read_cr4(vcpu); bool smep = cr4 & X86_CR4_SMEP; bool smap = cr4 & X86_CR4_SMAP; bool is_user = svm_get_cpl(vcpu) == 3; /* * Detect and workaround Errata 1096 Fam_17h_00_0Fh. * * Errata: * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is * possible that CPU microcode implementing DecodeAssist will fail * to read bytes of instruction which caused #NPF. In this case, * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly * return 0 instead of the correct guest instruction bytes. * * This happens because CPU microcode reading instruction bytes * uses a special opcode which attempts to read data using CPL=0 * priviledges. The microcode reads CS:RIP and if it hits a SMAP * fault, it gives up and returns no instruction bytes. * * Detection: * We reach here in case CPU supports DecodeAssist, raised #NPF and * returned 0 in GuestIntrBytes field of the VMCB. * First, errata can only be triggered in case vCPU CR4.SMAP=1. * Second, if vCPU CR4.SMEP=1, errata could only be triggered * in case vCPU CPL==3 (Because otherwise guest would have triggered * a SMEP fault instead of #NPF). * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. * As most guests enable SMAP if they have also enabled SMEP, use above * logic in order to attempt minimize false-positive of detecting errata * while still preserving all cases semantic correctness. * * Workaround: * To determine what instruction the guest was executing, the hypervisor * will have to decode the instruction at the instruction pointer. * * In non SEV guest, hypervisor will be able to read the guest * memory to decode the instruction pointer when insn_len is zero * so we return true to indicate that decoding is possible. * * But in the SEV guest, the guest memory is encrypted with the * guest specific key and hypervisor will not be able to decode the * instruction pointer so we will not able to workaround it. Lets * print the error and request to kill the guest. */ if (smap && (!smep || is_user)) { if (!sev_guest(vcpu->kvm)) return true; pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); } return false; } static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * TODO: Last condition latch INIT signals on vCPU when * vCPU is in guest-mode and vmcb12 defines intercept on INIT. * To properly emulate the INIT intercept, SVM should implement * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit() * there if an INIT signal is pending. */ return !gif_set(svm) || (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT)); } static struct kvm_x86_ops svm_x86_ops __ro_after_init = { .cpu_has_kvm_support = has_svm, .disabled_by_bios = is_disabled, .hardware_setup = svm_hardware_setup, .hardware_unsetup = svm_hardware_unsetup, .check_processor_compatibility = svm_check_processor_compat, .hardware_enable = svm_hardware_enable, .hardware_disable = svm_hardware_disable, .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, .has_emulated_msr = svm_has_emulated_msr, .vcpu_create = svm_create_vcpu, .vcpu_free = svm_free_vcpu, .vcpu_reset = svm_vcpu_reset, .vm_alloc = svm_vm_alloc, .vm_free = svm_vm_free, .vm_init = avic_vm_init, .vm_destroy = svm_vm_destroy, .prepare_guest_switch = svm_prepare_guest_switch, .vcpu_load = svm_vcpu_load, .vcpu_put = svm_vcpu_put, .vcpu_blocking = svm_vcpu_blocking, .vcpu_unblocking = svm_vcpu_unblocking, .update_bp_intercept = update_bp_intercept, .get_msr_feature = svm_get_msr_feature, .get_msr = svm_get_msr, .set_msr = svm_set_msr, .get_segment_base = svm_get_segment_base, .get_segment = svm_get_segment, .set_segment = svm_set_segment, .get_cpl = svm_get_cpl, .get_cs_db_l_bits = kvm_get_cs_db_l_bits, .decache_cr0_guest_bits = svm_decache_cr0_guest_bits, .decache_cr3 = svm_decache_cr3, .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, .set_cr0 = svm_set_cr0, .set_cr3 = svm_set_cr3, .set_cr4 = svm_set_cr4, .set_efer = svm_set_efer, .get_idt = svm_get_idt, .set_idt = svm_set_idt, .get_gdt = svm_get_gdt, .set_gdt = svm_set_gdt, .get_dr6 = svm_get_dr6, .set_dr6 = svm_set_dr6, .set_dr7 = svm_set_dr7, .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, .cache_reg = svm_cache_reg, .get_rflags = svm_get_rflags, .set_rflags = svm_set_rflags, .tlb_flush = svm_flush_tlb, .tlb_flush_gva = svm_flush_tlb_gva, .run = svm_vcpu_run, .handle_exit = handle_exit, .skip_emulated_instruction = skip_emulated_instruction, .set_interrupt_shadow = svm_set_interrupt_shadow, .get_interrupt_shadow = svm_get_interrupt_shadow, .patch_hypercall = svm_patch_hypercall, .set_irq = svm_set_irq, .set_nmi = svm_inject_nmi, .queue_exception = svm_queue_exception, .cancel_injection = svm_cancel_injection, .interrupt_allowed = svm_interrupt_allowed, .nmi_allowed = svm_nmi_allowed, .get_nmi_mask = svm_get_nmi_mask, .set_nmi_mask = svm_set_nmi_mask, .enable_nmi_window = enable_nmi_window, .enable_irq_window = enable_irq_window, .update_cr8_intercept = update_cr8_intercept, .set_virtual_apic_mode = svm_set_virtual_apic_mode, .get_enable_apicv = svm_get_enable_apicv, .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, .load_eoi_exitmap = svm_load_eoi_exitmap, .hwapic_irr_update = svm_hwapic_irr_update, .hwapic_isr_update = svm_hwapic_isr_update, .sync_pir_to_irr = kvm_lapic_find_highest_irr, .apicv_post_state_restore = avic_post_state_restore, .set_tss_addr = svm_set_tss_addr, .set_identity_map_addr = svm_set_identity_map_addr, .get_tdp_level = get_npt_level, .get_mt_mask = svm_get_mt_mask, .get_exit_info = svm_get_exit_info, .get_lpage_level = svm_get_lpage_level, .cpuid_update = svm_cpuid_update, .rdtscp_supported = svm_rdtscp_supported, .invpcid_supported = svm_invpcid_supported, .mpx_supported = svm_mpx_supported, .xsaves_supported = svm_xsaves_supported, .umip_emulated = svm_umip_emulated, .pt_supported = svm_pt_supported, .set_supported_cpuid = svm_set_supported_cpuid, .has_wbinvd_exit = svm_has_wbinvd_exit, .read_l1_tsc_offset = svm_read_l1_tsc_offset, .write_l1_tsc_offset = svm_write_l1_tsc_offset, .set_tdp_cr3 = set_tdp_cr3, .check_intercept = svm_check_intercept, .handle_exit_irqoff = svm_handle_exit_irqoff, .request_immediate_exit = __kvm_request_immediate_exit, .sched_in = svm_sched_in, .pmu_ops = &amd_pmu_ops, .deliver_posted_interrupt = svm_deliver_avic_intr, .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, .update_pi_irte = svm_update_pi_irte, .setup_mce = svm_setup_mce, .smi_allowed = svm_smi_allowed, .pre_enter_smm = svm_pre_enter_smm, .pre_leave_smm = svm_pre_leave_smm, .enable_smi_window = enable_smi_window, .mem_enc_op = svm_mem_enc_op, .mem_enc_reg_region = svm_register_enc_region, .mem_enc_unreg_region = svm_unregister_enc_region, .nested_enable_evmcs = NULL, .nested_get_evmcs_version = NULL, .need_emulation_on_page_fault = svm_need_emulation_on_page_fault, .apic_init_signal_blocked = svm_apic_init_signal_blocked, }; static int __init svm_init(void) { return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), THIS_MODULE); } static void __exit svm_exit(void) { kvm_exit(); } module_init(svm_init) module_exit(svm_exit)