// SPDX-License-Identifier: GPL-2.0+ #define pr_fmt(fmt) "clk-aspeed: " fmt #include <linux/clk-provider.h> #include <linux/mfd/syscon.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset-controller.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <dt-bindings/clock/aspeed-clock.h> #define ASPEED_NUM_CLKS 36 #define ASPEED_RESET2_OFFSET 32 #define ASPEED_RESET_CTRL 0x04 #define ASPEED_CLK_SELECTION 0x08 #define ASPEED_CLK_STOP_CTRL 0x0c #define ASPEED_MPLL_PARAM 0x20 #define ASPEED_HPLL_PARAM 0x24 #define AST2500_HPLL_BYPASS_EN BIT(20) #define AST2400_HPLL_PROGRAMMED BIT(18) #define AST2400_HPLL_BYPASS_EN BIT(17) #define ASPEED_MISC_CTRL 0x2c #define UART_DIV13_EN BIT(12) #define ASPEED_STRAP 0x70 #define CLKIN_25MHZ_EN BIT(23) #define AST2400_CLK_SOURCE_SEL BIT(18) #define ASPEED_CLK_SELECTION_2 0xd8 #define ASPEED_RESET_CTRL2 0xd4 /* Globally visible clocks */ static DEFINE_SPINLOCK(aspeed_clk_lock); /* Keeps track of all clocks */ static struct clk_hw_onecell_data *aspeed_clk_data; static void __iomem *scu_base; /** * struct aspeed_gate_data - Aspeed gated clocks * @clock_idx: bit used to gate this clock in the clock register * @reset_idx: bit used to reset this IP in the reset register. -1 if no * reset is required when enabling the clock * @name: the clock name * @parent_name: the name of the parent clock * @flags: standard clock framework flags */ struct aspeed_gate_data { u8 clock_idx; s8 reset_idx; const char *name; const char *parent_name; unsigned long flags; }; /** * struct aspeed_clk_gate - Aspeed specific clk_gate structure * @hw: handle between common and hardware-specific interfaces * @reg: register controlling gate * @clock_idx: bit used to gate this clock in the clock register * @reset_idx: bit used to reset this IP in the reset register. -1 if no * reset is required when enabling the clock * @flags: hardware-specific flags * @lock: register lock * * Some of the clocks in the Aspeed SoC must be put in reset before enabling. * This modified version of clk_gate allows an optional reset bit to be * specified. */ struct aspeed_clk_gate { struct clk_hw hw; struct regmap *map; u8 clock_idx; s8 reset_idx; u8 flags; spinlock_t *lock; }; #define to_aspeed_clk_gate(_hw) container_of(_hw, struct aspeed_clk_gate, hw) /* TODO: ask Aspeed about the actual parent data */ static const struct aspeed_gate_data aspeed_gates[] = { /* clk rst name parent flags */ [ASPEED_CLK_GATE_ECLK] = { 0, 6, "eclk-gate", "eclk", 0 }, /* Video Engine */ [ASPEED_CLK_GATE_GCLK] = { 1, 7, "gclk-gate", NULL, 0 }, /* 2D engine */ [ASPEED_CLK_GATE_MCLK] = { 2, -1, "mclk-gate", "mpll", CLK_IS_CRITICAL }, /* SDRAM */ [ASPEED_CLK_GATE_VCLK] = { 3, -1, "vclk-gate", NULL, 0 }, /* Video Capture */ [ASPEED_CLK_GATE_BCLK] = { 4, 8, "bclk-gate", "bclk", CLK_IS_CRITICAL }, /* PCIe/PCI */ [ASPEED_CLK_GATE_DCLK] = { 5, -1, "dclk-gate", NULL, CLK_IS_CRITICAL }, /* DAC */ [ASPEED_CLK_GATE_REFCLK] = { 6, -1, "refclk-gate", "clkin", CLK_IS_CRITICAL }, [ASPEED_CLK_GATE_USBPORT2CLK] = { 7, 3, "usb-port2-gate", NULL, 0 }, /* USB2.0 Host port 2 */ [ASPEED_CLK_GATE_LCLK] = { 8, 5, "lclk-gate", NULL, 0 }, /* LPC */ [ASPEED_CLK_GATE_USBUHCICLK] = { 9, 15, "usb-uhci-gate", NULL, 0 }, /* USB1.1 (requires port 2 enabled) */ [ASPEED_CLK_GATE_D1CLK] = { 10, 13, "d1clk-gate", NULL, 0 }, /* GFX CRT */ [ASPEED_CLK_GATE_YCLK] = { 13, 4, "yclk-gate", NULL, 0 }, /* HAC */ [ASPEED_CLK_GATE_USBPORT1CLK] = { 14, 14, "usb-port1-gate", NULL, 0 }, /* USB2 hub/USB2 host port 1/USB1.1 dev */ [ASPEED_CLK_GATE_UART1CLK] = { 15, -1, "uart1clk-gate", "uart", 0 }, /* UART1 */ [ASPEED_CLK_GATE_UART2CLK] = { 16, -1, "uart2clk-gate", "uart", 0 }, /* UART2 */ [ASPEED_CLK_GATE_UART5CLK] = { 17, -1, "uart5clk-gate", "uart", 0 }, /* UART5 */ [ASPEED_CLK_GATE_ESPICLK] = { 19, -1, "espiclk-gate", NULL, 0 }, /* eSPI */ [ASPEED_CLK_GATE_MAC1CLK] = { 20, 11, "mac1clk-gate", "mac", 0 }, /* MAC1 */ [ASPEED_CLK_GATE_MAC2CLK] = { 21, 12, "mac2clk-gate", "mac", 0 }, /* MAC2 */ [ASPEED_CLK_GATE_RSACLK] = { 24, -1, "rsaclk-gate", NULL, 0 }, /* RSA */ [ASPEED_CLK_GATE_UART3CLK] = { 25, -1, "uart3clk-gate", "uart", 0 }, /* UART3 */ [ASPEED_CLK_GATE_UART4CLK] = { 26, -1, "uart4clk-gate", "uart", 0 }, /* UART4 */ [ASPEED_CLK_GATE_SDCLK] = { 27, 16, "sdclk-gate", NULL, 0 }, /* SDIO/SD */ [ASPEED_CLK_GATE_LHCCLK] = { 28, -1, "lhclk-gate", "lhclk", 0 }, /* LPC master/LPC+ */ }; static const char * const eclk_parent_names[] = { "mpll", "hpll", "dpll", }; static const struct clk_div_table ast2500_eclk_div_table[] = { { 0x0, 2 }, { 0x1, 2 }, { 0x2, 3 }, { 0x3, 4 }, { 0x4, 5 }, { 0x5, 6 }, { 0x6, 7 }, { 0x7, 8 }, { 0 } }; static const struct clk_div_table ast2500_mac_div_table[] = { { 0x0, 4 }, /* Yep, really. Aspeed confirmed this is correct */ { 0x1, 4 }, { 0x2, 6 }, { 0x3, 8 }, { 0x4, 10 }, { 0x5, 12 }, { 0x6, 14 }, { 0x7, 16 }, { 0 } }; static const struct clk_div_table ast2400_div_table[] = { { 0x0, 2 }, { 0x1, 4 }, { 0x2, 6 }, { 0x3, 8 }, { 0x4, 10 }, { 0x5, 12 }, { 0x6, 14 }, { 0x7, 16 }, { 0 } }; static const struct clk_div_table ast2500_div_table[] = { { 0x0, 4 }, { 0x1, 8 }, { 0x2, 12 }, { 0x3, 16 }, { 0x4, 20 }, { 0x5, 24 }, { 0x6, 28 }, { 0x7, 32 }, { 0 } }; static struct clk_hw *aspeed_ast2400_calc_pll(const char *name, u32 val) { unsigned int mult, div; if (val & AST2400_HPLL_BYPASS_EN) { /* Pass through mode */ mult = div = 1; } else { /* F = 24Mhz * (2-OD) * [(N + 2) / (D + 1)] */ u32 n = (val >> 5) & 0x3f; u32 od = (val >> 4) & 0x1; u32 d = val & 0xf; mult = (2 - od) * (n + 2); div = d + 1; } return clk_hw_register_fixed_factor(NULL, name, "clkin", 0, mult, div); }; static struct clk_hw *aspeed_ast2500_calc_pll(const char *name, u32 val) { unsigned int mult, div; if (val & AST2500_HPLL_BYPASS_EN) { /* Pass through mode */ mult = div = 1; } else { /* F = clkin * [(M+1) / (N+1)] / (P + 1) */ u32 p = (val >> 13) & 0x3f; u32 m = (val >> 5) & 0xff; u32 n = val & 0x1f; mult = (m + 1) / (n + 1); div = p + 1; } return clk_hw_register_fixed_factor(NULL, name, "clkin", 0, mult, div); } struct aspeed_clk_soc_data { const struct clk_div_table *div_table; const struct clk_div_table *eclk_div_table; const struct clk_div_table *mac_div_table; struct clk_hw *(*calc_pll)(const char *name, u32 val); }; static const struct aspeed_clk_soc_data ast2500_data = { .div_table = ast2500_div_table, .eclk_div_table = ast2500_eclk_div_table, .mac_div_table = ast2500_mac_div_table, .calc_pll = aspeed_ast2500_calc_pll, }; static const struct aspeed_clk_soc_data ast2400_data = { .div_table = ast2400_div_table, .eclk_div_table = ast2400_div_table, .mac_div_table = ast2400_div_table, .calc_pll = aspeed_ast2400_calc_pll, }; static int aspeed_clk_is_enabled(struct clk_hw *hw) { struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw); u32 clk = BIT(gate->clock_idx); u32 rst = BIT(gate->reset_idx); u32 enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk; u32 reg; /* * If the IP is in reset, treat the clock as not enabled, * this happens with some clocks such as the USB one when * coming from cold reset. Without this, aspeed_clk_enable() * will fail to lift the reset. */ if (gate->reset_idx >= 0) { regmap_read(gate->map, ASPEED_RESET_CTRL, ®); if (reg & rst) return 0; } regmap_read(gate->map, ASPEED_CLK_STOP_CTRL, ®); return ((reg & clk) == enval) ? 1 : 0; } static int aspeed_clk_enable(struct clk_hw *hw) { struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw); unsigned long flags; u32 clk = BIT(gate->clock_idx); u32 rst = BIT(gate->reset_idx); u32 enval; spin_lock_irqsave(gate->lock, flags); if (aspeed_clk_is_enabled(hw)) { spin_unlock_irqrestore(gate->lock, flags); return 0; } if (gate->reset_idx >= 0) { /* Put IP in reset */ regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, rst); /* Delay 100us */ udelay(100); } /* Enable clock */ enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk; regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval); if (gate->reset_idx >= 0) { /* A delay of 10ms is specified by the ASPEED docs */ mdelay(10); /* Take IP out of reset */ regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, 0); } spin_unlock_irqrestore(gate->lock, flags); return 0; } static void aspeed_clk_disable(struct clk_hw *hw) { struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw); unsigned long flags; u32 clk = BIT(gate->clock_idx); u32 enval; spin_lock_irqsave(gate->lock, flags); enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? clk : 0; regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval); spin_unlock_irqrestore(gate->lock, flags); } static const struct clk_ops aspeed_clk_gate_ops = { .enable = aspeed_clk_enable, .disable = aspeed_clk_disable, .is_enabled = aspeed_clk_is_enabled, }; /** * struct aspeed_reset - Aspeed reset controller * @map: regmap to access the containing system controller * @rcdev: reset controller device */ struct aspeed_reset { struct regmap *map; struct reset_controller_dev rcdev; }; #define to_aspeed_reset(p) container_of((p), struct aspeed_reset, rcdev) static const u8 aspeed_resets[] = { /* SCU04 resets */ [ASPEED_RESET_XDMA] = 25, [ASPEED_RESET_MCTP] = 24, [ASPEED_RESET_ADC] = 23, [ASPEED_RESET_JTAG_MASTER] = 22, [ASPEED_RESET_MIC] = 18, [ASPEED_RESET_PWM] = 9, [ASPEED_RESET_PECI] = 10, [ASPEED_RESET_I2C] = 2, [ASPEED_RESET_AHB] = 1, /* * SCUD4 resets start at an offset to separate them from * the SCU04 resets. */ [ASPEED_RESET_CRT1] = ASPEED_RESET2_OFFSET + 5, }; static int aspeed_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct aspeed_reset *ar = to_aspeed_reset(rcdev); u32 reg = ASPEED_RESET_CTRL; u32 bit = aspeed_resets[id]; if (bit >= ASPEED_RESET2_OFFSET) { bit -= ASPEED_RESET2_OFFSET; reg = ASPEED_RESET_CTRL2; } return regmap_update_bits(ar->map, reg, BIT(bit), 0); } static int aspeed_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct aspeed_reset *ar = to_aspeed_reset(rcdev); u32 reg = ASPEED_RESET_CTRL; u32 bit = aspeed_resets[id]; if (bit >= ASPEED_RESET2_OFFSET) { bit -= ASPEED_RESET2_OFFSET; reg = ASPEED_RESET_CTRL2; } return regmap_update_bits(ar->map, reg, BIT(bit), BIT(bit)); } static int aspeed_reset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct aspeed_reset *ar = to_aspeed_reset(rcdev); u32 reg = ASPEED_RESET_CTRL; u32 bit = aspeed_resets[id]; int ret, val; if (bit >= ASPEED_RESET2_OFFSET) { bit -= ASPEED_RESET2_OFFSET; reg = ASPEED_RESET_CTRL2; } ret = regmap_read(ar->map, reg, &val); if (ret) return ret; return !!(val & BIT(bit)); } static const struct reset_control_ops aspeed_reset_ops = { .assert = aspeed_reset_assert, .deassert = aspeed_reset_deassert, .status = aspeed_reset_status, }; static struct clk_hw *aspeed_clk_hw_register_gate(struct device *dev, const char *name, const char *parent_name, unsigned long flags, struct regmap *map, u8 clock_idx, u8 reset_idx, u8 clk_gate_flags, spinlock_t *lock) { struct aspeed_clk_gate *gate; struct clk_init_data init; struct clk_hw *hw; int ret; gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &aspeed_clk_gate_ops; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; gate->map = map; gate->clock_idx = clock_idx; gate->reset_idx = reset_idx; gate->flags = clk_gate_flags; gate->lock = lock; gate->hw.init = &init; hw = &gate->hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(gate); hw = ERR_PTR(ret); } return hw; } static int aspeed_clk_probe(struct platform_device *pdev) { const struct aspeed_clk_soc_data *soc_data; struct device *dev = &pdev->dev; struct aspeed_reset *ar; struct regmap *map; struct clk_hw *hw; u32 val, rate; int i, ret; map = syscon_node_to_regmap(dev->of_node); if (IS_ERR(map)) { dev_err(dev, "no syscon regmap\n"); return PTR_ERR(map); } ar = devm_kzalloc(dev, sizeof(*ar), GFP_KERNEL); if (!ar) return -ENOMEM; ar->map = map; ar->rcdev.owner = THIS_MODULE; ar->rcdev.nr_resets = ARRAY_SIZE(aspeed_resets); ar->rcdev.ops = &aspeed_reset_ops; ar->rcdev.of_node = dev->of_node; ret = devm_reset_controller_register(dev, &ar->rcdev); if (ret) { dev_err(dev, "could not register reset controller\n"); return ret; } /* SoC generations share common layouts but have different divisors */ soc_data = of_device_get_match_data(dev); if (!soc_data) { dev_err(dev, "no match data for platform\n"); return -EINVAL; } /* UART clock div13 setting */ regmap_read(map, ASPEED_MISC_CTRL, &val); if (val & UART_DIV13_EN) rate = 24000000 / 13; else rate = 24000000; /* TODO: Find the parent data for the uart clock */ hw = clk_hw_register_fixed_rate(dev, "uart", NULL, 0, rate); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_UART] = hw; /* * Memory controller (M-PLL) PLL. This clock is configured by the * bootloader, and is exposed to Linux as a read-only clock rate. */ regmap_read(map, ASPEED_MPLL_PARAM, &val); hw = soc_data->calc_pll("mpll", val); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_MPLL] = hw; /* SD/SDIO clock divider (TODO: There's a gate too) */ hw = clk_hw_register_divider_table(dev, "sdio", "hpll", 0, scu_base + ASPEED_CLK_SELECTION, 12, 3, 0, soc_data->div_table, &aspeed_clk_lock); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_SDIO] = hw; /* MAC AHB bus clock divider */ hw = clk_hw_register_divider_table(dev, "mac", "hpll", 0, scu_base + ASPEED_CLK_SELECTION, 16, 3, 0, soc_data->mac_div_table, &aspeed_clk_lock); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_MAC] = hw; /* LPC Host (LHCLK) clock divider */ hw = clk_hw_register_divider_table(dev, "lhclk", "hpll", 0, scu_base + ASPEED_CLK_SELECTION, 20, 3, 0, soc_data->div_table, &aspeed_clk_lock); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_LHCLK] = hw; /* P-Bus (BCLK) clock divider */ hw = clk_hw_register_divider_table(dev, "bclk", "hpll", 0, scu_base + ASPEED_CLK_SELECTION_2, 0, 2, 0, soc_data->div_table, &aspeed_clk_lock); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_BCLK] = hw; /* Fixed 24MHz clock */ hw = clk_hw_register_fixed_rate(NULL, "fixed-24m", "clkin", 0, 24000000); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_24M] = hw; hw = clk_hw_register_mux(dev, "eclk-mux", eclk_parent_names, ARRAY_SIZE(eclk_parent_names), 0, scu_base + ASPEED_CLK_SELECTION, 2, 0x3, 0, &aspeed_clk_lock); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_ECLK_MUX] = hw; hw = clk_hw_register_divider_table(dev, "eclk", "eclk-mux", 0, scu_base + ASPEED_CLK_SELECTION, 28, 3, 0, soc_data->eclk_div_table, &aspeed_clk_lock); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[ASPEED_CLK_ECLK] = hw; /* * TODO: There are a number of clocks that not included in this driver * as more information is required: * D2-PLL * D-PLL * YCLK * RGMII * RMII * UART[1..5] clock source mux */ for (i = 0; i < ARRAY_SIZE(aspeed_gates); i++) { const struct aspeed_gate_data *gd = &aspeed_gates[i]; u32 gate_flags; /* Special case: the USB port 1 clock (bit 14) is always * working the opposite way from the other ones. */ gate_flags = (gd->clock_idx == 14) ? 0 : CLK_GATE_SET_TO_DISABLE; hw = aspeed_clk_hw_register_gate(dev, gd->name, gd->parent_name, gd->flags, map, gd->clock_idx, gd->reset_idx, gate_flags, &aspeed_clk_lock); if (IS_ERR(hw)) return PTR_ERR(hw); aspeed_clk_data->hws[i] = hw; } return 0; }; static const struct of_device_id aspeed_clk_dt_ids[] = { { .compatible = "aspeed,ast2400-scu", .data = &ast2400_data }, { .compatible = "aspeed,ast2500-scu", .data = &ast2500_data }, { } }; static struct platform_driver aspeed_clk_driver = { .probe = aspeed_clk_probe, .driver = { .name = "aspeed-clk", .of_match_table = aspeed_clk_dt_ids, .suppress_bind_attrs = true, }, }; builtin_platform_driver(aspeed_clk_driver); static void __init aspeed_ast2400_cc(struct regmap *map) { struct clk_hw *hw; u32 val, div, clkin, hpll; const u16 hpll_rates[][4] = { {384, 360, 336, 408}, {400, 375, 350, 425}, }; int rate; /* * CLKIN is the crystal oscillator, 24, 48 or 25MHz selected by * strapping */ regmap_read(map, ASPEED_STRAP, &val); rate = (val >> 8) & 3; if (val & CLKIN_25MHZ_EN) { clkin = 25000000; hpll = hpll_rates[1][rate]; } else if (val & AST2400_CLK_SOURCE_SEL) { clkin = 48000000; hpll = hpll_rates[0][rate]; } else { clkin = 24000000; hpll = hpll_rates[0][rate]; } hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, clkin); pr_debug("clkin @%u MHz\n", clkin / 1000000); /* * High-speed PLL clock derived from the crystal. This the CPU clock, * and we assume that it is enabled. It can be configured through the * HPLL_PARAM register, or set to a specified frequency by strapping. */ regmap_read(map, ASPEED_HPLL_PARAM, &val); if (val & AST2400_HPLL_PROGRAMMED) hw = aspeed_ast2400_calc_pll("hpll", val); else hw = clk_hw_register_fixed_rate(NULL, "hpll", "clkin", 0, hpll * 1000000); aspeed_clk_data->hws[ASPEED_CLK_HPLL] = hw; /* * Strap bits 11:10 define the CPU/AHB clock frequency ratio (aka HCLK) * 00: Select CPU:AHB = 1:1 * 01: Select CPU:AHB = 2:1 * 10: Select CPU:AHB = 4:1 * 11: Select CPU:AHB = 3:1 */ regmap_read(map, ASPEED_STRAP, &val); val = (val >> 10) & 0x3; div = val + 1; if (div == 3) div = 4; else if (div == 4) div = 3; hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div); aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw; /* APB clock clock selection register SCU08 (aka PCLK) */ hw = clk_hw_register_divider_table(NULL, "apb", "hpll", 0, scu_base + ASPEED_CLK_SELECTION, 23, 3, 0, ast2400_div_table, &aspeed_clk_lock); aspeed_clk_data->hws[ASPEED_CLK_APB] = hw; } static void __init aspeed_ast2500_cc(struct regmap *map) { struct clk_hw *hw; u32 val, freq, div; /* CLKIN is the crystal oscillator, 24 or 25MHz selected by strapping */ regmap_read(map, ASPEED_STRAP, &val); if (val & CLKIN_25MHZ_EN) freq = 25000000; else freq = 24000000; hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, freq); pr_debug("clkin @%u MHz\n", freq / 1000000); /* * High-speed PLL clock derived from the crystal. This the CPU clock, * and we assume that it is enabled */ regmap_read(map, ASPEED_HPLL_PARAM, &val); aspeed_clk_data->hws[ASPEED_CLK_HPLL] = aspeed_ast2500_calc_pll("hpll", val); /* Strap bits 11:9 define the AXI/AHB clock frequency ratio (aka HCLK)*/ regmap_read(map, ASPEED_STRAP, &val); val = (val >> 9) & 0x7; WARN(val == 0, "strapping is zero: cannot determine ahb clock"); div = 2 * (val + 1); hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div); aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw; /* APB clock clock selection register SCU08 (aka PCLK) */ regmap_read(map, ASPEED_CLK_SELECTION, &val); val = (val >> 23) & 0x7; div = 4 * (val + 1); hw = clk_hw_register_fixed_factor(NULL, "apb", "hpll", 0, 1, div); aspeed_clk_data->hws[ASPEED_CLK_APB] = hw; }; static void __init aspeed_cc_init(struct device_node *np) { struct regmap *map; u32 val; int ret; int i; scu_base = of_iomap(np, 0); if (!scu_base) return; aspeed_clk_data = kzalloc(struct_size(aspeed_clk_data, hws, ASPEED_NUM_CLKS), GFP_KERNEL); if (!aspeed_clk_data) return; /* * This way all clocks fetched before the platform device probes, * except those we assign here for early use, will be deferred. */ for (i = 0; i < ASPEED_NUM_CLKS; i++) aspeed_clk_data->hws[i] = ERR_PTR(-EPROBE_DEFER); map = syscon_node_to_regmap(np); if (IS_ERR(map)) { pr_err("no syscon regmap\n"); return; } /* * We check that the regmap works on this very first access, * but as this is an MMIO-backed regmap, subsequent regmap * access is not going to fail and we skip error checks from * this point. */ ret = regmap_read(map, ASPEED_STRAP, &val); if (ret) { pr_err("failed to read strapping register\n"); return; } if (of_device_is_compatible(np, "aspeed,ast2400-scu")) aspeed_ast2400_cc(map); else if (of_device_is_compatible(np, "aspeed,ast2500-scu")) aspeed_ast2500_cc(map); else pr_err("unknown platform, failed to add clocks\n"); aspeed_clk_data->num = ASPEED_NUM_CLKS; ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, aspeed_clk_data); if (ret) pr_err("failed to add DT provider: %d\n", ret); }; CLK_OF_DECLARE_DRIVER(aspeed_cc_g5, "aspeed,ast2500-scu", aspeed_cc_init); CLK_OF_DECLARE_DRIVER(aspeed_cc_g4, "aspeed,ast2400-scu", aspeed_cc_init);