/* * SPDX-License-Identifier: MIT * * Copyright © 2017-2018 Intel Corporation */ #include #include #include "gt/intel_engine.h" #include "gt/intel_engine_pm.h" #include "gt/intel_engine_user.h" #include "gt/intel_gt_pm.h" #include "gt/intel_rc6.h" #include "gt/intel_rps.h" #include "i915_drv.h" #include "i915_pmu.h" #include "intel_pm.h" /* Frequency for the sampling timer for events which need it. */ #define FREQUENCY 200 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY) #define ENGINE_SAMPLE_MASK \ (BIT(I915_SAMPLE_BUSY) | \ BIT(I915_SAMPLE_WAIT) | \ BIT(I915_SAMPLE_SEMA)) #define ENGINE_SAMPLE_BITS (1 << I915_PMU_SAMPLE_BITS) static cpumask_t i915_pmu_cpumask; static u8 engine_config_sample(u64 config) { return config & I915_PMU_SAMPLE_MASK; } static u8 engine_event_sample(struct perf_event *event) { return engine_config_sample(event->attr.config); } static u8 engine_event_class(struct perf_event *event) { return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff; } static u8 engine_event_instance(struct perf_event *event) { return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff; } static bool is_engine_config(u64 config) { return config < __I915_PMU_OTHER(0); } static unsigned int config_enabled_bit(u64 config) { if (is_engine_config(config)) return engine_config_sample(config); else return ENGINE_SAMPLE_BITS + (config - __I915_PMU_OTHER(0)); } static u64 config_enabled_mask(u64 config) { return BIT_ULL(config_enabled_bit(config)); } static bool is_engine_event(struct perf_event *event) { return is_engine_config(event->attr.config); } static unsigned int event_enabled_bit(struct perf_event *event) { return config_enabled_bit(event->attr.config); } static bool pmu_needs_timer(struct i915_pmu *pmu, bool gpu_active) { struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); u64 enable; /* * Only some counters need the sampling timer. * * We start with a bitmask of all currently enabled events. */ enable = pmu->enable; /* * Mask out all the ones which do not need the timer, or in * other words keep all the ones that could need the timer. */ enable &= config_enabled_mask(I915_PMU_ACTUAL_FREQUENCY) | config_enabled_mask(I915_PMU_REQUESTED_FREQUENCY) | ENGINE_SAMPLE_MASK; /* * When the GPU is idle per-engine counters do not need to be * running so clear those bits out. */ if (!gpu_active) enable &= ~ENGINE_SAMPLE_MASK; /* * Also there is software busyness tracking available we do not * need the timer for I915_SAMPLE_BUSY counter. */ else if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS) enable &= ~BIT(I915_SAMPLE_BUSY); /* * If some bits remain it means we need the sampling timer running. */ return enable; } static u64 __get_rc6(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; u64 val; val = intel_rc6_residency_ns(>->rc6, IS_VALLEYVIEW(i915) ? VLV_GT_RENDER_RC6 : GEN6_GT_GFX_RC6); if (HAS_RC6p(i915)) val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6p); if (HAS_RC6pp(i915)) val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6pp); return val; } #if IS_ENABLED(CONFIG_PM) static inline s64 ktime_since(const ktime_t kt) { return ktime_to_ns(ktime_sub(ktime_get(), kt)); } static u64 __pmu_estimate_rc6(struct i915_pmu *pmu) { u64 val; /* * We think we are runtime suspended. * * Report the delta from when the device was suspended to now, * on top of the last known real value, as the approximated RC6 * counter value. */ val = ktime_since(pmu->sleep_last); val += pmu->sample[__I915_SAMPLE_RC6].cur; pmu->sample[__I915_SAMPLE_RC6_ESTIMATED].cur = val; return val; } static u64 __pmu_update_rc6(struct i915_pmu *pmu, u64 val) { /* * If we are coming back from being runtime suspended we must * be careful not to report a larger value than returned * previously. */ if (val >= pmu->sample[__I915_SAMPLE_RC6_ESTIMATED].cur) { pmu->sample[__I915_SAMPLE_RC6_ESTIMATED].cur = 0; pmu->sample[__I915_SAMPLE_RC6].cur = val; } else { val = pmu->sample[__I915_SAMPLE_RC6_ESTIMATED].cur; } return val; } static u64 get_rc6(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct i915_pmu *pmu = &i915->pmu; unsigned long flags; u64 val; val = 0; if (intel_gt_pm_get_if_awake(gt)) { val = __get_rc6(gt); intel_gt_pm_put_async(gt); } spin_lock_irqsave(&pmu->lock, flags); if (val) val = __pmu_update_rc6(pmu, val); else val = __pmu_estimate_rc6(pmu); spin_unlock_irqrestore(&pmu->lock, flags); return val; } static void park_rc6(struct drm_i915_private *i915) { struct i915_pmu *pmu = &i915->pmu; if (pmu->enable & config_enabled_mask(I915_PMU_RC6_RESIDENCY)) __pmu_update_rc6(pmu, __get_rc6(&i915->gt)); pmu->sleep_last = ktime_get(); } static void unpark_rc6(struct drm_i915_private *i915) { struct i915_pmu *pmu = &i915->pmu; /* Estimate how long we slept and accumulate that into rc6 counters */ if (pmu->enable & config_enabled_mask(I915_PMU_RC6_RESIDENCY)) __pmu_estimate_rc6(pmu); } #else static u64 get_rc6(struct intel_gt *gt) { return __get_rc6(gt); } static void park_rc6(struct drm_i915_private *i915) {} static void unpark_rc6(struct drm_i915_private *i915) {} #endif static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu) { if (!pmu->timer_enabled && pmu_needs_timer(pmu, true)) { pmu->timer_enabled = true; pmu->timer_last = ktime_get(); hrtimer_start_range_ns(&pmu->timer, ns_to_ktime(PERIOD), 0, HRTIMER_MODE_REL_PINNED); } } void i915_pmu_gt_parked(struct drm_i915_private *i915) { struct i915_pmu *pmu = &i915->pmu; if (!pmu->base.event_init) return; spin_lock_irq(&pmu->lock); park_rc6(i915); /* * Signal sampling timer to stop if only engine events are enabled and * GPU went idle. */ pmu->timer_enabled = pmu_needs_timer(pmu, false); spin_unlock_irq(&pmu->lock); } void i915_pmu_gt_unparked(struct drm_i915_private *i915) { struct i915_pmu *pmu = &i915->pmu; if (!pmu->base.event_init) return; spin_lock_irq(&pmu->lock); /* * Re-enable sampling timer when GPU goes active. */ __i915_pmu_maybe_start_timer(pmu); unpark_rc6(i915); spin_unlock_irq(&pmu->lock); } static void add_sample(struct i915_pmu_sample *sample, u32 val) { sample->cur += val; } static bool exclusive_mmio_access(const struct drm_i915_private *i915) { /* * We have to avoid concurrent mmio cache line access on gen7 or * risk a machine hang. For a fun history lesson dig out the old * userspace intel_gpu_top and run it on Ivybridge or Haswell! */ return IS_GEN(i915, 7); } static void engines_sample(struct intel_gt *gt, unsigned int period_ns) { struct drm_i915_private *i915 = gt->i915; struct intel_engine_cs *engine; enum intel_engine_id id; if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0) return; for_each_engine(engine, gt, id) { struct intel_engine_pmu *pmu = &engine->pmu; spinlock_t *mmio_lock; unsigned long flags; bool busy; u32 val; if (!intel_engine_pm_get_if_awake(engine)) continue; mmio_lock = NULL; if (exclusive_mmio_access(i915)) mmio_lock = &engine->uncore->lock; if (unlikely(mmio_lock)) spin_lock_irqsave(mmio_lock, flags); val = ENGINE_READ_FW(engine, RING_CTL); if (val == 0) /* powerwell off => engine idle */ goto skip; if (val & RING_WAIT) add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns); if (val & RING_WAIT_SEMAPHORE) add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns); /* No need to sample when busy stats are supported. */ if (intel_engine_supports_stats(engine)) goto skip; /* * While waiting on a semaphore or event, MI_MODE reports the * ring as idle. However, previously using the seqno, and with * execlists sampling, we account for the ring waiting as the * engine being busy. Therefore, we record the sample as being * busy if either waiting or !idle. */ busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT); if (!busy) { val = ENGINE_READ_FW(engine, RING_MI_MODE); busy = !(val & MODE_IDLE); } if (busy) add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns); skip: if (unlikely(mmio_lock)) spin_unlock_irqrestore(mmio_lock, flags); intel_engine_pm_put_async(engine); } } static void add_sample_mult(struct i915_pmu_sample *sample, u32 val, u32 mul) { sample->cur += mul_u32_u32(val, mul); } static void frequency_sample(struct intel_gt *gt, unsigned int period_ns) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; struct i915_pmu *pmu = &i915->pmu; struct intel_rps *rps = >->rps; if (pmu->enable & config_enabled_mask(I915_PMU_ACTUAL_FREQUENCY)) { u32 val; val = rps->cur_freq; if (intel_gt_pm_get_if_awake(gt)) { u32 stat; /* * We take a quick peek here without using forcewake * so that we don't perturb the system under observation * (forcewake => !rc6 => increased power use). We expect * that if the read fails because it is outside of the * mmio power well, then it will return 0 -- in which * case we assume the system is running at the intended * frequency. Fortunately, the read should rarely fail! */ stat = intel_uncore_read_fw(uncore, GEN6_RPSTAT1); if (stat) val = intel_get_cagf(rps, stat); intel_gt_pm_put_async(gt); } add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_ACT], intel_gpu_freq(rps, val), period_ns / 1000); } if (pmu->enable & config_enabled_mask(I915_PMU_REQUESTED_FREQUENCY)) { add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_REQ], intel_gpu_freq(rps, rps->cur_freq), period_ns / 1000); } } static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer) { struct drm_i915_private *i915 = container_of(hrtimer, struct drm_i915_private, pmu.timer); struct i915_pmu *pmu = &i915->pmu; struct intel_gt *gt = &i915->gt; unsigned int period_ns; ktime_t now; if (!READ_ONCE(pmu->timer_enabled)) return HRTIMER_NORESTART; now = ktime_get(); period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last)); pmu->timer_last = now; /* * Strictly speaking the passed in period may not be 100% accurate for * all internal calculation, since some amount of time can be spent on * grabbing the forcewake. However the potential error from timer call- * back delay greatly dominates this so we keep it simple. */ engines_sample(gt, period_ns); frequency_sample(gt, period_ns); hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD)); return HRTIMER_RESTART; } static u64 count_interrupts(struct drm_i915_private *i915) { /* open-coded kstat_irqs() */ struct irq_desc *desc = irq_to_desc(i915->drm.pdev->irq); u64 sum = 0; int cpu; if (!desc || !desc->kstat_irqs) return 0; for_each_possible_cpu(cpu) sum += *per_cpu_ptr(desc->kstat_irqs, cpu); return sum; } static void engine_event_destroy(struct perf_event *event) { struct drm_i915_private *i915 = container_of(event->pmu, typeof(*i915), pmu.base); struct intel_engine_cs *engine; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); if (WARN_ON_ONCE(!engine)) return; if (engine_event_sample(event) == I915_SAMPLE_BUSY && intel_engine_supports_stats(engine)) intel_disable_engine_stats(engine); } static void i915_pmu_event_destroy(struct perf_event *event) { WARN_ON(event->parent); if (is_engine_event(event)) engine_event_destroy(event); } static int engine_event_status(struct intel_engine_cs *engine, enum drm_i915_pmu_engine_sample sample) { switch (sample) { case I915_SAMPLE_BUSY: case I915_SAMPLE_WAIT: break; case I915_SAMPLE_SEMA: if (INTEL_GEN(engine->i915) < 6) return -ENODEV; break; default: return -ENOENT; } return 0; } static int config_status(struct drm_i915_private *i915, u64 config) { switch (config) { case I915_PMU_ACTUAL_FREQUENCY: if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) /* Requires a mutex for sampling! */ return -ENODEV; /* Fall-through. */ case I915_PMU_REQUESTED_FREQUENCY: if (INTEL_GEN(i915) < 6) return -ENODEV; break; case I915_PMU_INTERRUPTS: break; case I915_PMU_RC6_RESIDENCY: if (!HAS_RC6(i915)) return -ENODEV; break; default: return -ENOENT; } return 0; } static int engine_event_init(struct perf_event *event) { struct drm_i915_private *i915 = container_of(event->pmu, typeof(*i915), pmu.base); struct intel_engine_cs *engine; u8 sample; int ret; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); if (!engine) return -ENODEV; sample = engine_event_sample(event); ret = engine_event_status(engine, sample); if (ret) return ret; if (sample == I915_SAMPLE_BUSY && intel_engine_supports_stats(engine)) ret = intel_enable_engine_stats(engine); return ret; } static int i915_pmu_event_init(struct perf_event *event) { struct drm_i915_private *i915 = container_of(event->pmu, typeof(*i915), pmu.base); int ret; if (event->attr.type != event->pmu->type) return -ENOENT; /* unsupported modes and filters */ if (event->attr.sample_period) /* no sampling */ return -EINVAL; if (has_branch_stack(event)) return -EOPNOTSUPP; if (event->cpu < 0) return -EINVAL; /* only allow running on one cpu at a time */ if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask)) return -EINVAL; if (is_engine_event(event)) ret = engine_event_init(event); else ret = config_status(i915, event->attr.config); if (ret) return ret; if (!event->parent) event->destroy = i915_pmu_event_destroy; return 0; } static u64 __i915_pmu_event_read(struct perf_event *event) { struct drm_i915_private *i915 = container_of(event->pmu, typeof(*i915), pmu.base); struct i915_pmu *pmu = &i915->pmu; u64 val = 0; if (is_engine_event(event)) { u8 sample = engine_event_sample(event); struct intel_engine_cs *engine; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); if (WARN_ON_ONCE(!engine)) { /* Do nothing */ } else if (sample == I915_SAMPLE_BUSY && intel_engine_supports_stats(engine)) { val = ktime_to_ns(intel_engine_get_busy_time(engine)); } else { val = engine->pmu.sample[sample].cur; } } else { switch (event->attr.config) { case I915_PMU_ACTUAL_FREQUENCY: val = div_u64(pmu->sample[__I915_SAMPLE_FREQ_ACT].cur, USEC_PER_SEC /* to MHz */); break; case I915_PMU_REQUESTED_FREQUENCY: val = div_u64(pmu->sample[__I915_SAMPLE_FREQ_REQ].cur, USEC_PER_SEC /* to MHz */); break; case I915_PMU_INTERRUPTS: val = count_interrupts(i915); break; case I915_PMU_RC6_RESIDENCY: val = get_rc6(&i915->gt); break; } } return val; } static void i915_pmu_event_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 prev, new; again: prev = local64_read(&hwc->prev_count); new = __i915_pmu_event_read(event); if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev) goto again; local64_add(new - prev, &event->count); } static void i915_pmu_enable(struct perf_event *event) { struct drm_i915_private *i915 = container_of(event->pmu, typeof(*i915), pmu.base); unsigned int bit = event_enabled_bit(event); struct i915_pmu *pmu = &i915->pmu; unsigned long flags; spin_lock_irqsave(&pmu->lock, flags); /* * Update the bitmask of enabled events and increment * the event reference counter. */ BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS); GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); GEM_BUG_ON(pmu->enable_count[bit] == ~0); pmu->enable |= BIT_ULL(bit); pmu->enable_count[bit]++; /* * Start the sampling timer if needed and not already enabled. */ __i915_pmu_maybe_start_timer(pmu); /* * For per-engine events the bitmask and reference counting * is stored per engine. */ if (is_engine_event(event)) { u8 sample = engine_event_sample(event); struct intel_engine_cs *engine; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) != I915_ENGINE_SAMPLE_COUNT); BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) != I915_ENGINE_SAMPLE_COUNT); GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0); engine->pmu.enable |= BIT(sample); engine->pmu.enable_count[sample]++; } spin_unlock_irqrestore(&pmu->lock, flags); /* * Store the current counter value so we can report the correct delta * for all listeners. Even when the event was already enabled and has * an existing non-zero value. */ local64_set(&event->hw.prev_count, __i915_pmu_event_read(event)); } static void i915_pmu_disable(struct perf_event *event) { struct drm_i915_private *i915 = container_of(event->pmu, typeof(*i915), pmu.base); unsigned int bit = event_enabled_bit(event); struct i915_pmu *pmu = &i915->pmu; unsigned long flags; spin_lock_irqsave(&pmu->lock, flags); if (is_engine_event(event)) { u8 sample = engine_event_sample(event); struct intel_engine_cs *engine; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); GEM_BUG_ON(engine->pmu.enable_count[sample] == 0); /* * Decrement the reference count and clear the enabled * bitmask when the last listener on an event goes away. */ if (--engine->pmu.enable_count[sample] == 0) engine->pmu.enable &= ~BIT(sample); } GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); GEM_BUG_ON(pmu->enable_count[bit] == 0); /* * Decrement the reference count and clear the enabled * bitmask when the last listener on an event goes away. */ if (--pmu->enable_count[bit] == 0) { pmu->enable &= ~BIT_ULL(bit); pmu->timer_enabled &= pmu_needs_timer(pmu, true); } spin_unlock_irqrestore(&pmu->lock, flags); } static void i915_pmu_event_start(struct perf_event *event, int flags) { i915_pmu_enable(event); event->hw.state = 0; } static void i915_pmu_event_stop(struct perf_event *event, int flags) { if (flags & PERF_EF_UPDATE) i915_pmu_event_read(event); i915_pmu_disable(event); event->hw.state = PERF_HES_STOPPED; } static int i915_pmu_event_add(struct perf_event *event, int flags) { if (flags & PERF_EF_START) i915_pmu_event_start(event, flags); return 0; } static void i915_pmu_event_del(struct perf_event *event, int flags) { i915_pmu_event_stop(event, PERF_EF_UPDATE); } static int i915_pmu_event_event_idx(struct perf_event *event) { return 0; } struct i915_str_attribute { struct device_attribute attr; const char *str; }; static ssize_t i915_pmu_format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i915_str_attribute *eattr; eattr = container_of(attr, struct i915_str_attribute, attr); return sprintf(buf, "%s\n", eattr->str); } #define I915_PMU_FORMAT_ATTR(_name, _config) \ (&((struct i915_str_attribute[]) { \ { .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \ .str = _config, } \ })[0].attr.attr) static struct attribute *i915_pmu_format_attrs[] = { I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"), NULL, }; static const struct attribute_group i915_pmu_format_attr_group = { .name = "format", .attrs = i915_pmu_format_attrs, }; struct i915_ext_attribute { struct device_attribute attr; unsigned long val; }; static ssize_t i915_pmu_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i915_ext_attribute *eattr; eattr = container_of(attr, struct i915_ext_attribute, attr); return sprintf(buf, "config=0x%lx\n", eattr->val); } static struct attribute_group i915_pmu_events_attr_group = { .name = "events", /* Patch in attrs at runtime. */ }; static ssize_t i915_pmu_get_attr_cpumask(struct device *dev, struct device_attribute *attr, char *buf) { return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask); } static DEVICE_ATTR(cpumask, 0444, i915_pmu_get_attr_cpumask, NULL); static struct attribute *i915_cpumask_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static const struct attribute_group i915_pmu_cpumask_attr_group = { .attrs = i915_cpumask_attrs, }; static const struct attribute_group *i915_pmu_attr_groups[] = { &i915_pmu_format_attr_group, &i915_pmu_events_attr_group, &i915_pmu_cpumask_attr_group, NULL }; #define __event(__config, __name, __unit) \ { \ .config = (__config), \ .name = (__name), \ .unit = (__unit), \ } #define __engine_event(__sample, __name) \ { \ .sample = (__sample), \ .name = (__name), \ } static struct i915_ext_attribute * add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config) { sysfs_attr_init(&attr->attr.attr); attr->attr.attr.name = name; attr->attr.attr.mode = 0444; attr->attr.show = i915_pmu_event_show; attr->val = config; return ++attr; } static struct perf_pmu_events_attr * add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name, const char *str) { sysfs_attr_init(&attr->attr.attr); attr->attr.attr.name = name; attr->attr.attr.mode = 0444; attr->attr.show = perf_event_sysfs_show; attr->event_str = str; return ++attr; } static struct attribute ** create_event_attributes(struct i915_pmu *pmu) { struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); static const struct { u64 config; const char *name; const char *unit; } events[] = { __event(I915_PMU_ACTUAL_FREQUENCY, "actual-frequency", "M"), __event(I915_PMU_REQUESTED_FREQUENCY, "requested-frequency", "M"), __event(I915_PMU_INTERRUPTS, "interrupts", NULL), __event(I915_PMU_RC6_RESIDENCY, "rc6-residency", "ns"), }; static const struct { enum drm_i915_pmu_engine_sample sample; char *name; } engine_events[] = { __engine_event(I915_SAMPLE_BUSY, "busy"), __engine_event(I915_SAMPLE_SEMA, "sema"), __engine_event(I915_SAMPLE_WAIT, "wait"), }; unsigned int count = 0; struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter; struct i915_ext_attribute *i915_attr = NULL, *i915_iter; struct attribute **attr = NULL, **attr_iter; struct intel_engine_cs *engine; unsigned int i; /* Count how many counters we will be exposing. */ for (i = 0; i < ARRAY_SIZE(events); i++) { if (!config_status(i915, events[i].config)) count++; } for_each_uabi_engine(engine, i915) { for (i = 0; i < ARRAY_SIZE(engine_events); i++) { if (!engine_event_status(engine, engine_events[i].sample)) count++; } } /* Allocate attribute objects and table. */ i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL); if (!i915_attr) goto err_alloc; pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL); if (!pmu_attr) goto err_alloc; /* Max one pointer of each attribute type plus a termination entry. */ attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL); if (!attr) goto err_alloc; i915_iter = i915_attr; pmu_iter = pmu_attr; attr_iter = attr; /* Initialize supported non-engine counters. */ for (i = 0; i < ARRAY_SIZE(events); i++) { char *str; if (config_status(i915, events[i].config)) continue; str = kstrdup(events[i].name, GFP_KERNEL); if (!str) goto err; *attr_iter++ = &i915_iter->attr.attr; i915_iter = add_i915_attr(i915_iter, str, events[i].config); if (events[i].unit) { str = kasprintf(GFP_KERNEL, "%s.unit", events[i].name); if (!str) goto err; *attr_iter++ = &pmu_iter->attr.attr; pmu_iter = add_pmu_attr(pmu_iter, str, events[i].unit); } } /* Initialize supported engine counters. */ for_each_uabi_engine(engine, i915) { for (i = 0; i < ARRAY_SIZE(engine_events); i++) { char *str; if (engine_event_status(engine, engine_events[i].sample)) continue; str = kasprintf(GFP_KERNEL, "%s-%s", engine->name, engine_events[i].name); if (!str) goto err; *attr_iter++ = &i915_iter->attr.attr; i915_iter = add_i915_attr(i915_iter, str, __I915_PMU_ENGINE(engine->uabi_class, engine->uabi_instance, engine_events[i].sample)); str = kasprintf(GFP_KERNEL, "%s-%s.unit", engine->name, engine_events[i].name); if (!str) goto err; *attr_iter++ = &pmu_iter->attr.attr; pmu_iter = add_pmu_attr(pmu_iter, str, "ns"); } } pmu->i915_attr = i915_attr; pmu->pmu_attr = pmu_attr; return attr; err:; for (attr_iter = attr; *attr_iter; attr_iter++) kfree((*attr_iter)->name); err_alloc: kfree(attr); kfree(i915_attr); kfree(pmu_attr); return NULL; } static void free_event_attributes(struct i915_pmu *pmu) { struct attribute **attr_iter = i915_pmu_events_attr_group.attrs; for (; *attr_iter; attr_iter++) kfree((*attr_iter)->name); kfree(i915_pmu_events_attr_group.attrs); kfree(pmu->i915_attr); kfree(pmu->pmu_attr); i915_pmu_events_attr_group.attrs = NULL; pmu->i915_attr = NULL; pmu->pmu_attr = NULL; } static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node) { struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), node); GEM_BUG_ON(!pmu->base.event_init); /* Select the first online CPU as a designated reader. */ if (!cpumask_weight(&i915_pmu_cpumask)) cpumask_set_cpu(cpu, &i915_pmu_cpumask); return 0; } static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node) { struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), node); unsigned int target; GEM_BUG_ON(!pmu->base.event_init); if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) { target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu); /* Migrate events if there is a valid target */ if (target < nr_cpu_ids) { cpumask_set_cpu(target, &i915_pmu_cpumask); perf_pmu_migrate_context(&pmu->base, cpu, target); } } return 0; } static enum cpuhp_state cpuhp_slot = CPUHP_INVALID; static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu) { enum cpuhp_state slot; int ret; ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "perf/x86/intel/i915:online", i915_pmu_cpu_online, i915_pmu_cpu_offline); if (ret < 0) return ret; slot = ret; ret = cpuhp_state_add_instance(slot, &pmu->node); if (ret) { cpuhp_remove_multi_state(slot); return ret; } cpuhp_slot = slot; return 0; } static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu) { WARN_ON(cpuhp_slot == CPUHP_INVALID); WARN_ON(cpuhp_state_remove_instance(cpuhp_slot, &pmu->node)); cpuhp_remove_multi_state(cpuhp_slot); } static bool is_igp(struct drm_i915_private *i915) { struct pci_dev *pdev = i915->drm.pdev; /* IGP is 0000:00:02.0 */ return pci_domain_nr(pdev->bus) == 0 && pdev->bus->number == 0 && PCI_SLOT(pdev->devfn) == 2 && PCI_FUNC(pdev->devfn) == 0; } void i915_pmu_register(struct drm_i915_private *i915) { struct i915_pmu *pmu = &i915->pmu; int ret = -ENOMEM; if (INTEL_GEN(i915) <= 2) { dev_info(i915->drm.dev, "PMU not supported for this GPU."); return; } spin_lock_init(&pmu->lock); hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); pmu->timer.function = i915_sample; if (!is_igp(i915)) pmu->name = kasprintf(GFP_KERNEL, "i915-%s", dev_name(i915->drm.dev)); else pmu->name = "i915"; if (!pmu->name) goto err; i915_pmu_events_attr_group.attrs = create_event_attributes(pmu); if (!i915_pmu_events_attr_group.attrs) goto err_name; pmu->base.attr_groups = i915_pmu_attr_groups; pmu->base.task_ctx_nr = perf_invalid_context; pmu->base.event_init = i915_pmu_event_init; pmu->base.add = i915_pmu_event_add; pmu->base.del = i915_pmu_event_del; pmu->base.start = i915_pmu_event_start; pmu->base.stop = i915_pmu_event_stop; pmu->base.read = i915_pmu_event_read; pmu->base.event_idx = i915_pmu_event_event_idx; ret = perf_pmu_register(&pmu->base, pmu->name, -1); if (ret) goto err_attr; ret = i915_pmu_register_cpuhp_state(pmu); if (ret) goto err_unreg; return; err_unreg: perf_pmu_unregister(&pmu->base); err_attr: pmu->base.event_init = NULL; free_event_attributes(pmu); err_name: if (!is_igp(i915)) kfree(pmu->name); err: dev_notice(i915->drm.dev, "Failed to register PMU!\n"); } void i915_pmu_unregister(struct drm_i915_private *i915) { struct i915_pmu *pmu = &i915->pmu; if (!pmu->base.event_init) return; WARN_ON(pmu->enable); hrtimer_cancel(&pmu->timer); i915_pmu_unregister_cpuhp_state(pmu); perf_pmu_unregister(&pmu->base); pmu->base.event_init = NULL; if (!is_igp(i915)) kfree(pmu->name); free_event_attributes(pmu); }