/* * Copyright(c) 2016 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include "vt.h" #include "mr.h" #include "trace.h" /** * rvt_driver_mr_init - Init MR resources per driver * @rdi: rvt dev struct * * Do any intilization needed when a driver registers with rdmavt. * * Return: 0 on success or errno on failure */ int rvt_driver_mr_init(struct rvt_dev_info *rdi) { unsigned int lkey_table_size = rdi->dparms.lkey_table_size; unsigned lk_tab_size; int i; /* * The top hfi1_lkey_table_size bits are used to index the * table. The lower 8 bits can be owned by the user (copied from * the LKEY). The remaining bits act as a generation number or tag. */ if (!lkey_table_size) return -EINVAL; spin_lock_init(&rdi->lkey_table.lock); /* ensure generation is at least 4 bits */ if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; lkey_table_size = rdi->dparms.lkey_table_size; } rdi->lkey_table.max = 1 << lkey_table_size; rdi->lkey_table.shift = 32 - lkey_table_size; lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); rdi->lkey_table.table = (struct rvt_mregion __rcu **) vmalloc_node(lk_tab_size, rdi->dparms.node); if (!rdi->lkey_table.table) return -ENOMEM; RCU_INIT_POINTER(rdi->dma_mr, NULL); for (i = 0; i < rdi->lkey_table.max; i++) RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); return 0; } /** *rvt_mr_exit: clean up MR *@rdi: rvt dev structure * * called when drivers have unregistered or perhaps failed to register with us */ void rvt_mr_exit(struct rvt_dev_info *rdi) { if (rdi->dma_mr) rvt_pr_err(rdi, "DMA MR not null!\n"); vfree(rdi->lkey_table.table); } static void rvt_deinit_mregion(struct rvt_mregion *mr) { int i = mr->mapsz; mr->mapsz = 0; while (i) kfree(mr->map[--i]); percpu_ref_exit(&mr->refcount); } static void __rvt_mregion_complete(struct percpu_ref *ref) { struct rvt_mregion *mr = container_of(ref, struct rvt_mregion, refcount); complete(&mr->comp); } static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, int count, unsigned int percpu_flags) { int m, i = 0; struct rvt_dev_info *dev = ib_to_rvt(pd->device); mr->mapsz = 0; m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; for (; i < m; i++) { mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL, dev->dparms.node); if (!mr->map[i]) goto bail; mr->mapsz++; } init_completion(&mr->comp); /* count returning the ptr to user */ if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete, percpu_flags, GFP_KERNEL)) goto bail; atomic_set(&mr->lkey_invalid, 0); mr->pd = pd; mr->max_segs = count; return 0; bail: rvt_deinit_mregion(mr); return -ENOMEM; } /** * rvt_alloc_lkey - allocate an lkey * @mr: memory region that this lkey protects * @dma_region: 0->normal key, 1->restricted DMA key * * Returns 0 if successful, otherwise returns -errno. * * Increments mr reference count as required. * * Sets the lkey field mr for non-dma regions. * */ static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) { unsigned long flags; u32 r; u32 n; int ret = 0; struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); struct rvt_lkey_table *rkt = &dev->lkey_table; rvt_get_mr(mr); spin_lock_irqsave(&rkt->lock, flags); /* special case for dma_mr lkey == 0 */ if (dma_region) { struct rvt_mregion *tmr; tmr = rcu_access_pointer(dev->dma_mr); if (!tmr) { mr->lkey_published = 1; /* Insure published written first */ rcu_assign_pointer(dev->dma_mr, mr); rvt_get_mr(mr); } goto success; } /* Find the next available LKEY */ r = rkt->next; n = r; for (;;) { if (!rcu_access_pointer(rkt->table[r])) break; r = (r + 1) & (rkt->max - 1); if (r == n) goto bail; } rkt->next = (r + 1) & (rkt->max - 1); /* * Make sure lkey is never zero which is reserved to indicate an * unrestricted LKEY. */ rkt->gen++; /* * bits are capped to ensure enough bits for generation number */ mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) << 8); if (mr->lkey == 0) { mr->lkey |= 1 << 8; rkt->gen++; } mr->lkey_published = 1; /* Insure published written first */ rcu_assign_pointer(rkt->table[r], mr); success: spin_unlock_irqrestore(&rkt->lock, flags); out: return ret; bail: rvt_put_mr(mr); spin_unlock_irqrestore(&rkt->lock, flags); ret = -ENOMEM; goto out; } /** * rvt_free_lkey - free an lkey * @mr: mr to free from tables */ static void rvt_free_lkey(struct rvt_mregion *mr) { unsigned long flags; u32 lkey = mr->lkey; u32 r; struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); struct rvt_lkey_table *rkt = &dev->lkey_table; int freed = 0; spin_lock_irqsave(&rkt->lock, flags); if (!lkey) { if (mr->lkey_published) { mr->lkey_published = 0; /* insure published is written before pointer */ rcu_assign_pointer(dev->dma_mr, NULL); rvt_put_mr(mr); } } else { if (!mr->lkey_published) goto out; r = lkey >> (32 - dev->dparms.lkey_table_size); mr->lkey_published = 0; /* insure published is written before pointer */ rcu_assign_pointer(rkt->table[r], NULL); } freed++; out: spin_unlock_irqrestore(&rkt->lock, flags); if (freed) percpu_ref_kill(&mr->refcount); } static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) { struct rvt_mr *mr; int rval = -ENOMEM; int m; /* Allocate struct plus pointers to first level page tables. */ m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL); if (!mr) goto bail; rval = rvt_init_mregion(&mr->mr, pd, count, 0); if (rval) goto bail; /* * ib_reg_phys_mr() will initialize mr->ibmr except for * lkey and rkey. */ rval = rvt_alloc_lkey(&mr->mr, 0); if (rval) goto bail_mregion; mr->ibmr.lkey = mr->mr.lkey; mr->ibmr.rkey = mr->mr.lkey; done: return mr; bail_mregion: rvt_deinit_mregion(&mr->mr); bail: kfree(mr); mr = ERR_PTR(rval); goto done; } static void __rvt_free_mr(struct rvt_mr *mr) { rvt_free_lkey(&mr->mr); rvt_deinit_mregion(&mr->mr); kfree(mr); } /** * rvt_get_dma_mr - get a DMA memory region * @pd: protection domain for this memory region * @acc: access flags * * Return: the memory region on success, otherwise returns an errno. * Note that all DMA addresses should be created via the functions in * struct dma_virt_ops. */ struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) { struct rvt_mr *mr; struct ib_mr *ret; int rval; if (ibpd_to_rvtpd(pd)->user) return ERR_PTR(-EPERM); mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) { ret = ERR_PTR(-ENOMEM); goto bail; } rval = rvt_init_mregion(&mr->mr, pd, 0, 0); if (rval) { ret = ERR_PTR(rval); goto bail; } rval = rvt_alloc_lkey(&mr->mr, 1); if (rval) { ret = ERR_PTR(rval); goto bail_mregion; } mr->mr.access_flags = acc; ret = &mr->ibmr; done: return ret; bail_mregion: rvt_deinit_mregion(&mr->mr); bail: kfree(mr); goto done; } /** * rvt_reg_user_mr - register a userspace memory region * @pd: protection domain for this memory region * @start: starting userspace address * @length: length of region to register * @mr_access_flags: access flags for this memory region * @udata: unused by the driver * * Return: the memory region on success, otherwise returns an errno. */ struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int mr_access_flags, struct ib_udata *udata) { struct rvt_mr *mr; struct ib_umem *umem; struct scatterlist *sg; int n, m, entry; struct ib_mr *ret; if (length == 0) return ERR_PTR(-EINVAL); umem = ib_umem_get(udata, start, length, mr_access_flags, 0); if (IS_ERR(umem)) return (void *)umem; n = umem->nmap; mr = __rvt_alloc_mr(n, pd); if (IS_ERR(mr)) { ret = (struct ib_mr *)mr; goto bail_umem; } mr->mr.user_base = start; mr->mr.iova = virt_addr; mr->mr.length = length; mr->mr.offset = ib_umem_offset(umem); mr->mr.access_flags = mr_access_flags; mr->umem = umem; mr->mr.page_shift = umem->page_shift; m = 0; n = 0; for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { void *vaddr; vaddr = page_address(sg_page(sg)); if (!vaddr) { ret = ERR_PTR(-EINVAL); goto bail_inval; } mr->mr.map[m]->segs[n].vaddr = vaddr; mr->mr.map[m]->segs[n].length = BIT(umem->page_shift); trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, BIT(umem->page_shift)); n++; if (n == RVT_SEGSZ) { m++; n = 0; } } return &mr->ibmr; bail_inval: __rvt_free_mr(mr); bail_umem: ib_umem_release(umem); return ret; } /** * rvt_dereg_clean_qp_cb - callback from iterator * @qp - the qp * @v - the mregion (as u64) * * This routine fields the callback for all QPs and * for QPs in the same PD as the MR will call the * rvt_qp_mr_clean() to potentially cleanup references. */ static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v) { struct rvt_mregion *mr = (struct rvt_mregion *)v; /* skip PDs that are not ours */ if (mr->pd != qp->ibqp.pd) return; rvt_qp_mr_clean(qp, mr->lkey); } /** * rvt_dereg_clean_qps - find QPs for reference cleanup * @mr - the MR that is being deregistered * * This routine iterates RC QPs looking for references * to the lkey noted in mr. */ static void rvt_dereg_clean_qps(struct rvt_mregion *mr) { struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb); } /** * rvt_check_refs - check references * @mr - the megion * @t - the caller identification * * This routine checks MRs holding a reference during * when being de-registered. * * If the count is non-zero, the code calls a clean routine then * waits for the timeout for the count to zero. */ static int rvt_check_refs(struct rvt_mregion *mr, const char *t) { unsigned long timeout; struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); if (mr->lkey) { /* avoid dma mr */ rvt_dereg_clean_qps(mr); /* @mr was indexed on rcu protected @lkey_table */ synchronize_rcu(); } timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ); if (!timeout) { rvt_pr_err(rdi, "%s timeout mr %p pd %p lkey %x refcount %ld\n", t, mr, mr->pd, mr->lkey, atomic_long_read(&mr->refcount.count)); rvt_get_mr(mr); return -EBUSY; } return 0; } /** * rvt_mr_has_lkey - is MR * @mr - the mregion * @lkey - the lkey */ bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey) { return mr && lkey == mr->lkey; } /** * rvt_ss_has_lkey - is mr in sge tests * @ss - the sge state * @lkey * * This code tests for an MR in the indicated * sge state. */ bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey) { int i; bool rval = false; if (!ss->num_sge) return rval; /* first one */ rval = rvt_mr_has_lkey(ss->sge.mr, lkey); /* any others */ for (i = 0; !rval && i < ss->num_sge - 1; i++) rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey); return rval; } /** * rvt_dereg_mr - unregister and free a memory region * @ibmr: the memory region to free * * * Note that this is called to free MRs created by rvt_get_dma_mr() * or rvt_reg_user_mr(). * * Returns 0 on success. */ int rvt_dereg_mr(struct ib_mr *ibmr) { struct rvt_mr *mr = to_imr(ibmr); int ret; rvt_free_lkey(&mr->mr); rvt_put_mr(&mr->mr); /* will set completion if last */ ret = rvt_check_refs(&mr->mr, __func__); if (ret) goto out; rvt_deinit_mregion(&mr->mr); if (mr->umem) ib_umem_release(mr->umem); kfree(mr); out: return ret; } /** * rvt_alloc_mr - Allocate a memory region usable with the * @pd: protection domain for this memory region * @mr_type: mem region type * @max_num_sg: Max number of segments allowed * * Return: the memory region on success, otherwise return an errno. */ struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { struct rvt_mr *mr; if (mr_type != IB_MR_TYPE_MEM_REG) return ERR_PTR(-EINVAL); mr = __rvt_alloc_mr(max_num_sg, pd); if (IS_ERR(mr)) return (struct ib_mr *)mr; return &mr->ibmr; } /** * rvt_set_page - page assignment function called by ib_sg_to_pages * @ibmr: memory region * @addr: dma address of mapped page * * Return: 0 on success */ static int rvt_set_page(struct ib_mr *ibmr, u64 addr) { struct rvt_mr *mr = to_imr(ibmr); u32 ps = 1 << mr->mr.page_shift; u32 mapped_segs = mr->mr.length >> mr->mr.page_shift; int m, n; if (unlikely(mapped_segs == mr->mr.max_segs)) return -ENOMEM; if (mr->mr.length == 0) { mr->mr.user_base = addr; mr->mr.iova = addr; } m = mapped_segs / RVT_SEGSZ; n = mapped_segs % RVT_SEGSZ; mr->mr.map[m]->segs[n].vaddr = (void *)addr; mr->mr.map[m]->segs[n].length = ps; trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps); mr->mr.length += ps; return 0; } /** * rvt_map_mr_sg - map sg list and set it the memory region * @ibmr: memory region * @sg: dma mapped scatterlist * @sg_nents: number of entries in sg * @sg_offset: offset in bytes into sg * * Return: number of sg elements mapped to the memory region */ int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct rvt_mr *mr = to_imr(ibmr); mr->mr.length = 0; mr->mr.page_shift = PAGE_SHIFT; return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page); } /** * rvt_fast_reg_mr - fast register physical MR * @qp: the queue pair where the work request comes from * @ibmr: the memory region to be registered * @key: updated key for this memory region * @access: access flags for this memory region * * Returns 0 on success. */ int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key, int access) { struct rvt_mr *mr = to_imr(ibmr); if (qp->ibqp.pd != mr->mr.pd) return -EACCES; /* not applicable to dma MR or user MR */ if (!mr->mr.lkey || mr->umem) return -EINVAL; if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00)) return -EINVAL; ibmr->lkey = key; ibmr->rkey = key; mr->mr.lkey = key; mr->mr.access_flags = access; atomic_set(&mr->mr.lkey_invalid, 0); return 0; } EXPORT_SYMBOL(rvt_fast_reg_mr); /** * rvt_invalidate_rkey - invalidate an MR rkey * @qp: queue pair associated with the invalidate op * @rkey: rkey to invalidate * * Returns 0 on success. */ int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey) { struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); struct rvt_lkey_table *rkt = &dev->lkey_table; struct rvt_mregion *mr; if (rkey == 0) return -EINVAL; rcu_read_lock(); mr = rcu_dereference( rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) goto bail; atomic_set(&mr->lkey_invalid, 1); rcu_read_unlock(); return 0; bail: rcu_read_unlock(); return -EINVAL; } EXPORT_SYMBOL(rvt_invalidate_rkey); /** * rvt_alloc_fmr - allocate a fast memory region * @pd: the protection domain for this memory region * @mr_access_flags: access flags for this memory region * @fmr_attr: fast memory region attributes * * Return: the memory region on success, otherwise returns an errno. */ struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags, struct ib_fmr_attr *fmr_attr) { struct rvt_fmr *fmr; int m; struct ib_fmr *ret; int rval = -ENOMEM; /* Allocate struct plus pointers to first level page tables. */ m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ; fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL); if (!fmr) goto bail; rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages, PERCPU_REF_INIT_ATOMIC); if (rval) goto bail; /* * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey & * rkey. */ rval = rvt_alloc_lkey(&fmr->mr, 0); if (rval) goto bail_mregion; fmr->ibfmr.rkey = fmr->mr.lkey; fmr->ibfmr.lkey = fmr->mr.lkey; /* * Resources are allocated but no valid mapping (RKEY can't be * used). */ fmr->mr.access_flags = mr_access_flags; fmr->mr.max_segs = fmr_attr->max_pages; fmr->mr.page_shift = fmr_attr->page_shift; ret = &fmr->ibfmr; done: return ret; bail_mregion: rvt_deinit_mregion(&fmr->mr); bail: kfree(fmr); ret = ERR_PTR(rval); goto done; } /** * rvt_map_phys_fmr - set up a fast memory region * @ibfmr: the fast memory region to set up * @page_list: the list of pages to associate with the fast memory region * @list_len: the number of pages to associate with the fast memory region * @iova: the virtual address of the start of the fast memory region * * This may be called from interrupt context. * * Return: 0 on success */ int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, int list_len, u64 iova) { struct rvt_fmr *fmr = to_ifmr(ibfmr); struct rvt_lkey_table *rkt; unsigned long flags; int m, n; unsigned long i; u32 ps; struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device); i = atomic_long_read(&fmr->mr.refcount.count); if (i > 2) return -EBUSY; if (list_len > fmr->mr.max_segs) return -EINVAL; rkt = &rdi->lkey_table; spin_lock_irqsave(&rkt->lock, flags); fmr->mr.user_base = iova; fmr->mr.iova = iova; ps = 1 << fmr->mr.page_shift; fmr->mr.length = list_len * ps; m = 0; n = 0; for (i = 0; i < list_len; i++) { fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i]; fmr->mr.map[m]->segs[n].length = ps; trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps); if (++n == RVT_SEGSZ) { m++; n = 0; } } spin_unlock_irqrestore(&rkt->lock, flags); return 0; } /** * rvt_unmap_fmr - unmap fast memory regions * @fmr_list: the list of fast memory regions to unmap * * Return: 0 on success. */ int rvt_unmap_fmr(struct list_head *fmr_list) { struct rvt_fmr *fmr; struct rvt_lkey_table *rkt; unsigned long flags; struct rvt_dev_info *rdi; list_for_each_entry(fmr, fmr_list, ibfmr.list) { rdi = ib_to_rvt(fmr->ibfmr.device); rkt = &rdi->lkey_table; spin_lock_irqsave(&rkt->lock, flags); fmr->mr.user_base = 0; fmr->mr.iova = 0; fmr->mr.length = 0; spin_unlock_irqrestore(&rkt->lock, flags); } return 0; } /** * rvt_dealloc_fmr - deallocate a fast memory region * @ibfmr: the fast memory region to deallocate * * Return: 0 on success. */ int rvt_dealloc_fmr(struct ib_fmr *ibfmr) { struct rvt_fmr *fmr = to_ifmr(ibfmr); int ret = 0; rvt_free_lkey(&fmr->mr); rvt_put_mr(&fmr->mr); /* will set completion if last */ ret = rvt_check_refs(&fmr->mr, __func__); if (ret) goto out; rvt_deinit_mregion(&fmr->mr); kfree(fmr); out: return ret; } /** * rvt_sge_adjacent - is isge compressible * @last_sge: last outgoing SGE written * @sge: SGE to check * * If adjacent will update last_sge to add length. * * Return: true if isge is adjacent to last sge */ static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge, struct ib_sge *sge) { if (last_sge && sge->lkey == last_sge->mr->lkey && ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) { if (sge->lkey) { if (unlikely((sge->addr - last_sge->mr->user_base + sge->length > last_sge->mr->length))) return false; /* overrun, caller will catch */ } else { last_sge->length += sge->length; } last_sge->sge_length += sge->length; trace_rvt_sge_adjacent(last_sge, sge); return true; } return false; } /** * rvt_lkey_ok - check IB SGE for validity and initialize * @rkt: table containing lkey to check SGE against * @pd: protection domain * @isge: outgoing internal SGE * @last_sge: last outgoing SGE written * @sge: SGE to check * @acc: access flags * * Check the IB SGE for validity and initialize our internal version * of it. * * Increments the reference count when a new sge is stored. * * Return: 0 if compressed, 1 if added , otherwise returns -errno. */ int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, struct rvt_sge *isge, struct rvt_sge *last_sge, struct ib_sge *sge, int acc) { struct rvt_mregion *mr; unsigned n, m; size_t off; /* * We use LKEY == zero for kernel virtual addresses * (see rvt_get_dma_mr() and dma_virt_ops). */ if (sge->lkey == 0) { struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); if (pd->user) return -EINVAL; if (rvt_sge_adjacent(last_sge, sge)) return 0; rcu_read_lock(); mr = rcu_dereference(dev->dma_mr); if (!mr) goto bail; rvt_get_mr(mr); rcu_read_unlock(); isge->mr = mr; isge->vaddr = (void *)sge->addr; isge->length = sge->length; isge->sge_length = sge->length; isge->m = 0; isge->n = 0; goto ok; } if (rvt_sge_adjacent(last_sge, sge)) return 0; rcu_read_lock(); mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]); if (!mr) goto bail; rvt_get_mr(mr); if (!READ_ONCE(mr->lkey_published)) goto bail_unref; if (unlikely(atomic_read(&mr->lkey_invalid) || mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) goto bail_unref; off = sge->addr - mr->user_base; if (unlikely(sge->addr < mr->user_base || off + sge->length > mr->length || (mr->access_flags & acc) != acc)) goto bail_unref; rcu_read_unlock(); off += mr->offset; if (mr->page_shift) { /* * page sizes are uniform power of 2 so no loop is necessary * entries_spanned_by_off is the number of times the loop below * would have executed. */ size_t entries_spanned_by_off; entries_spanned_by_off = off >> mr->page_shift; off -= (entries_spanned_by_off << mr->page_shift); m = entries_spanned_by_off / RVT_SEGSZ; n = entries_spanned_by_off % RVT_SEGSZ; } else { m = 0; n = 0; while (off >= mr->map[m]->segs[n].length) { off -= mr->map[m]->segs[n].length; n++; if (n >= RVT_SEGSZ) { m++; n = 0; } } } isge->mr = mr; isge->vaddr = mr->map[m]->segs[n].vaddr + off; isge->length = mr->map[m]->segs[n].length - off; isge->sge_length = sge->length; isge->m = m; isge->n = n; ok: trace_rvt_sge_new(isge, sge); return 1; bail_unref: rvt_put_mr(mr); bail: rcu_read_unlock(); return -EINVAL; } EXPORT_SYMBOL(rvt_lkey_ok); /** * rvt_rkey_ok - check the IB virtual address, length, and RKEY * @qp: qp for validation * @sge: SGE state * @len: length of data * @vaddr: virtual address to place data * @rkey: rkey to check * @acc: access flags * * Return: 1 if successful, otherwise 0. * * increments the reference count upon success */ int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, u32 len, u64 vaddr, u32 rkey, int acc) { struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); struct rvt_lkey_table *rkt = &dev->lkey_table; struct rvt_mregion *mr; unsigned n, m; size_t off; /* * We use RKEY == zero for kernel virtual addresses * (see rvt_get_dma_mr() and dma_virt_ops). */ rcu_read_lock(); if (rkey == 0) { struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); if (pd->user) goto bail; mr = rcu_dereference(rdi->dma_mr); if (!mr) goto bail; rvt_get_mr(mr); rcu_read_unlock(); sge->mr = mr; sge->vaddr = (void *)vaddr; sge->length = len; sge->sge_length = len; sge->m = 0; sge->n = 0; goto ok; } mr = rcu_dereference(rkt->table[rkey >> rkt->shift]); if (!mr) goto bail; rvt_get_mr(mr); /* insure mr read is before test */ if (!READ_ONCE(mr->lkey_published)) goto bail_unref; if (unlikely(atomic_read(&mr->lkey_invalid) || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) goto bail_unref; off = vaddr - mr->iova; if (unlikely(vaddr < mr->iova || off + len > mr->length || (mr->access_flags & acc) == 0)) goto bail_unref; rcu_read_unlock(); off += mr->offset; if (mr->page_shift) { /* * page sizes are uniform power of 2 so no loop is necessary * entries_spanned_by_off is the number of times the loop below * would have executed. */ size_t entries_spanned_by_off; entries_spanned_by_off = off >> mr->page_shift; off -= (entries_spanned_by_off << mr->page_shift); m = entries_spanned_by_off / RVT_SEGSZ; n = entries_spanned_by_off % RVT_SEGSZ; } else { m = 0; n = 0; while (off >= mr->map[m]->segs[n].length) { off -= mr->map[m]->segs[n].length; n++; if (n >= RVT_SEGSZ) { m++; n = 0; } } } sge->mr = mr; sge->vaddr = mr->map[m]->segs[n].vaddr + off; sge->length = mr->map[m]->segs[n].length - off; sge->sge_length = len; sge->m = m; sge->n = n; ok: return 1; bail_unref: rvt_put_mr(mr); bail: rcu_read_unlock(); return 0; } EXPORT_SYMBOL(rvt_rkey_ok);