/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Keith Packard * */ #include #include #include #include #include "display/intel_display_types.h" #include "display/intel_dp.h" #include "display/intel_fbc.h" #include "display/intel_hdcp.h" #include "display/intel_hdmi.h" #include "display/intel_psr.h" #include "gem/i915_gem_context.h" #include "gt/intel_gt_pm.h" #include "gt/intel_reset.h" #include "gt/uc/intel_guc_submission.h" #include "i915_debugfs.h" #include "i915_irq.h" #include "i915_trace.h" #include "intel_csr.h" #include "intel_pm.h" #include "intel_sideband.h" static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node) { return to_i915(node->minor->dev); } static int i915_capabilities(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); const struct intel_device_info *info = INTEL_INFO(dev_priv); struct drm_printer p = drm_seq_file_printer(m); seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv)); seq_printf(m, "platform: %s\n", intel_platform_name(info->platform)); seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv)); intel_device_info_dump_flags(info, &p); intel_device_info_dump_runtime(RUNTIME_INFO(dev_priv), &p); intel_driver_caps_print(&dev_priv->caps, &p); kernel_param_lock(THIS_MODULE); i915_params_dump(&i915_modparams, &p); kernel_param_unlock(THIS_MODULE); return 0; } static char get_pin_flag(struct drm_i915_gem_object *obj) { return obj->pin_global ? 'p' : ' '; } static char get_tiling_flag(struct drm_i915_gem_object *obj) { switch (i915_gem_object_get_tiling(obj)) { default: case I915_TILING_NONE: return ' '; case I915_TILING_X: return 'X'; case I915_TILING_Y: return 'Y'; } } static char get_global_flag(struct drm_i915_gem_object *obj) { return obj->userfault_count ? 'g' : ' '; } static char get_pin_mapped_flag(struct drm_i915_gem_object *obj) { return obj->mm.mapping ? 'M' : ' '; } static const char * stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len) { size_t x = 0; switch (page_sizes) { case 0: return ""; case I915_GTT_PAGE_SIZE_4K: return "4K"; case I915_GTT_PAGE_SIZE_64K: return "64K"; case I915_GTT_PAGE_SIZE_2M: return "2M"; default: if (!buf) return "M"; if (page_sizes & I915_GTT_PAGE_SIZE_2M) x += snprintf(buf + x, len - x, "2M, "); if (page_sizes & I915_GTT_PAGE_SIZE_64K) x += snprintf(buf + x, len - x, "64K, "); if (page_sizes & I915_GTT_PAGE_SIZE_4K) x += snprintf(buf + x, len - x, "4K, "); buf[x-2] = '\0'; return buf; } } static void describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct intel_engine_cs *engine; struct i915_vma *vma; int pin_count = 0; seq_printf(m, "%pK: %c%c%c%c %8zdKiB %02x %02x %s%s%s", &obj->base, get_pin_flag(obj), get_tiling_flag(obj), get_global_flag(obj), get_pin_mapped_flag(obj), obj->base.size / 1024, obj->read_domains, obj->write_domain, i915_cache_level_str(dev_priv, obj->cache_level), obj->mm.dirty ? " dirty" : "", obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : ""); if (obj->base.name) seq_printf(m, " (name: %d)", obj->base.name); spin_lock(&obj->vma.lock); list_for_each_entry(vma, &obj->vma.list, obj_link) { if (!drm_mm_node_allocated(&vma->node)) continue; spin_unlock(&obj->vma.lock); if (i915_vma_is_pinned(vma)) pin_count++; seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s", i915_vma_is_ggtt(vma) ? "g" : "pp", vma->node.start, vma->node.size, stringify_page_sizes(vma->page_sizes.gtt, NULL, 0)); if (i915_vma_is_ggtt(vma)) { switch (vma->ggtt_view.type) { case I915_GGTT_VIEW_NORMAL: seq_puts(m, ", normal"); break; case I915_GGTT_VIEW_PARTIAL: seq_printf(m, ", partial [%08llx+%x]", vma->ggtt_view.partial.offset << PAGE_SHIFT, vma->ggtt_view.partial.size << PAGE_SHIFT); break; case I915_GGTT_VIEW_ROTATED: seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]", vma->ggtt_view.rotated.plane[0].width, vma->ggtt_view.rotated.plane[0].height, vma->ggtt_view.rotated.plane[0].stride, vma->ggtt_view.rotated.plane[0].offset, vma->ggtt_view.rotated.plane[1].width, vma->ggtt_view.rotated.plane[1].height, vma->ggtt_view.rotated.plane[1].stride, vma->ggtt_view.rotated.plane[1].offset); break; case I915_GGTT_VIEW_REMAPPED: seq_printf(m, ", remapped [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]", vma->ggtt_view.remapped.plane[0].width, vma->ggtt_view.remapped.plane[0].height, vma->ggtt_view.remapped.plane[0].stride, vma->ggtt_view.remapped.plane[0].offset, vma->ggtt_view.remapped.plane[1].width, vma->ggtt_view.remapped.plane[1].height, vma->ggtt_view.remapped.plane[1].stride, vma->ggtt_view.remapped.plane[1].offset); break; default: MISSING_CASE(vma->ggtt_view.type); break; } } if (vma->fence) seq_printf(m, " , fence: %d", vma->fence->id); seq_puts(m, ")"); spin_lock(&obj->vma.lock); } spin_unlock(&obj->vma.lock); seq_printf(m, " (pinned x %d)", pin_count); if (obj->stolen) seq_printf(m, " (stolen: %08llx)", obj->stolen->start); if (obj->pin_global) seq_printf(m, " (global)"); engine = i915_gem_object_last_write_engine(obj); if (engine) seq_printf(m, " (%s)", engine->name); } struct file_stats { struct i915_address_space *vm; unsigned long count; u64 total, unbound; u64 active, inactive; u64 closed; }; static int per_file_stats(int id, void *ptr, void *data) { struct drm_i915_gem_object *obj = ptr; struct file_stats *stats = data; struct i915_vma *vma; stats->count++; stats->total += obj->base.size; if (!atomic_read(&obj->bind_count)) stats->unbound += obj->base.size; spin_lock(&obj->vma.lock); if (!stats->vm) { for_each_ggtt_vma(vma, obj) { if (!drm_mm_node_allocated(&vma->node)) continue; if (i915_vma_is_active(vma)) stats->active += vma->node.size; else stats->inactive += vma->node.size; if (i915_vma_is_closed(vma)) stats->closed += vma->node.size; } } else { struct rb_node *p = obj->vma.tree.rb_node; while (p) { long cmp; vma = rb_entry(p, typeof(*vma), obj_node); cmp = i915_vma_compare(vma, stats->vm, NULL); if (cmp == 0) { if (drm_mm_node_allocated(&vma->node)) { if (i915_vma_is_active(vma)) stats->active += vma->node.size; else stats->inactive += vma->node.size; if (i915_vma_is_closed(vma)) stats->closed += vma->node.size; } break; } if (cmp < 0) p = p->rb_right; else p = p->rb_left; } } spin_unlock(&obj->vma.lock); return 0; } #define print_file_stats(m, name, stats) do { \ if (stats.count) \ seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu unbound, %llu closed)\n", \ name, \ stats.count, \ stats.total, \ stats.active, \ stats.inactive, \ stats.unbound, \ stats.closed); \ } while (0) static void print_context_stats(struct seq_file *m, struct drm_i915_private *i915) { struct file_stats kstats = {}; struct i915_gem_context *ctx; list_for_each_entry(ctx, &i915->contexts.list, link) { struct i915_gem_engines_iter it; struct intel_context *ce; for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { intel_context_lock_pinned(ce); if (intel_context_is_pinned(ce)) { if (ce->state) per_file_stats(0, ce->state->obj, &kstats); per_file_stats(0, ce->ring->vma->obj, &kstats); } intel_context_unlock_pinned(ce); } i915_gem_context_unlock_engines(ctx); if (!IS_ERR_OR_NULL(ctx->file_priv)) { struct file_stats stats = { .vm = ctx->vm, }; struct drm_file *file = ctx->file_priv->file; struct task_struct *task; char name[80]; spin_lock(&file->table_lock); idr_for_each(&file->object_idr, per_file_stats, &stats); spin_unlock(&file->table_lock); rcu_read_lock(); task = pid_task(ctx->pid ?: file->pid, PIDTYPE_PID); snprintf(name, sizeof(name), "%s", task ? task->comm : ""); rcu_read_unlock(); print_file_stats(m, name, stats); } } print_file_stats(m, "[k]contexts", kstats); } static int i915_gem_object_info(struct seq_file *m, void *data) { struct drm_i915_private *i915 = node_to_i915(m->private); int ret; seq_printf(m, "%u shrinkable [%u free] objects, %llu bytes\n", i915->mm.shrink_count, atomic_read(&i915->mm.free_count), i915->mm.shrink_memory); seq_putc(m, '\n'); ret = mutex_lock_interruptible(&i915->drm.struct_mutex); if (ret) return ret; print_context_stats(m, i915); mutex_unlock(&i915->drm.struct_mutex); return 0; } static void gen8_display_interrupt_info(struct seq_file *m) { struct drm_i915_private *dev_priv = node_to_i915(m->private); int pipe; for_each_pipe(dev_priv, pipe) { enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; power_domain = POWER_DOMAIN_PIPE(pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) { seq_printf(m, "Pipe %c power disabled\n", pipe_name(pipe)); continue; } seq_printf(m, "Pipe %c IMR:\t%08x\n", pipe_name(pipe), I915_READ(GEN8_DE_PIPE_IMR(pipe))); seq_printf(m, "Pipe %c IIR:\t%08x\n", pipe_name(pipe), I915_READ(GEN8_DE_PIPE_IIR(pipe))); seq_printf(m, "Pipe %c IER:\t%08x\n", pipe_name(pipe), I915_READ(GEN8_DE_PIPE_IER(pipe))); intel_display_power_put(dev_priv, power_domain, wakeref); } seq_printf(m, "Display Engine port interrupt mask:\t%08x\n", I915_READ(GEN8_DE_PORT_IMR)); seq_printf(m, "Display Engine port interrupt identity:\t%08x\n", I915_READ(GEN8_DE_PORT_IIR)); seq_printf(m, "Display Engine port interrupt enable:\t%08x\n", I915_READ(GEN8_DE_PORT_IER)); seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n", I915_READ(GEN8_DE_MISC_IMR)); seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n", I915_READ(GEN8_DE_MISC_IIR)); seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n", I915_READ(GEN8_DE_MISC_IER)); seq_printf(m, "PCU interrupt mask:\t%08x\n", I915_READ(GEN8_PCU_IMR)); seq_printf(m, "PCU interrupt identity:\t%08x\n", I915_READ(GEN8_PCU_IIR)); seq_printf(m, "PCU interrupt enable:\t%08x\n", I915_READ(GEN8_PCU_IER)); } static int i915_interrupt_info(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct intel_engine_cs *engine; intel_wakeref_t wakeref; int i, pipe; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); if (IS_CHERRYVIEW(dev_priv)) { intel_wakeref_t pref; seq_printf(m, "Master Interrupt Control:\t%08x\n", I915_READ(GEN8_MASTER_IRQ)); seq_printf(m, "Display IER:\t%08x\n", I915_READ(VLV_IER)); seq_printf(m, "Display IIR:\t%08x\n", I915_READ(VLV_IIR)); seq_printf(m, "Display IIR_RW:\t%08x\n", I915_READ(VLV_IIR_RW)); seq_printf(m, "Display IMR:\t%08x\n", I915_READ(VLV_IMR)); for_each_pipe(dev_priv, pipe) { enum intel_display_power_domain power_domain; power_domain = POWER_DOMAIN_PIPE(pipe); pref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!pref) { seq_printf(m, "Pipe %c power disabled\n", pipe_name(pipe)); continue; } seq_printf(m, "Pipe %c stat:\t%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); intel_display_power_put(dev_priv, power_domain, pref); } pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); seq_printf(m, "Port hotplug:\t%08x\n", I915_READ(PORT_HOTPLUG_EN)); seq_printf(m, "DPFLIPSTAT:\t%08x\n", I915_READ(VLV_DPFLIPSTAT)); seq_printf(m, "DPINVGTT:\t%08x\n", I915_READ(DPINVGTT)); intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref); for (i = 0; i < 4; i++) { seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", i, I915_READ(GEN8_GT_IMR(i))); seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", i, I915_READ(GEN8_GT_IIR(i))); seq_printf(m, "GT Interrupt IER %d:\t%08x\n", i, I915_READ(GEN8_GT_IER(i))); } seq_printf(m, "PCU interrupt mask:\t%08x\n", I915_READ(GEN8_PCU_IMR)); seq_printf(m, "PCU interrupt identity:\t%08x\n", I915_READ(GEN8_PCU_IIR)); seq_printf(m, "PCU interrupt enable:\t%08x\n", I915_READ(GEN8_PCU_IER)); } else if (INTEL_GEN(dev_priv) >= 11) { seq_printf(m, "Master Interrupt Control: %08x\n", I915_READ(GEN11_GFX_MSTR_IRQ)); seq_printf(m, "Render/Copy Intr Enable: %08x\n", I915_READ(GEN11_RENDER_COPY_INTR_ENABLE)); seq_printf(m, "VCS/VECS Intr Enable: %08x\n", I915_READ(GEN11_VCS_VECS_INTR_ENABLE)); seq_printf(m, "GUC/SG Intr Enable:\t %08x\n", I915_READ(GEN11_GUC_SG_INTR_ENABLE)); seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n", I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE)); seq_printf(m, "Crypto Intr Enable:\t %08x\n", I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE)); seq_printf(m, "GUnit/CSME Intr Enable:\t %08x\n", I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE)); seq_printf(m, "Display Interrupt Control:\t%08x\n", I915_READ(GEN11_DISPLAY_INT_CTL)); gen8_display_interrupt_info(m); } else if (INTEL_GEN(dev_priv) >= 8) { seq_printf(m, "Master Interrupt Control:\t%08x\n", I915_READ(GEN8_MASTER_IRQ)); for (i = 0; i < 4; i++) { seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", i, I915_READ(GEN8_GT_IMR(i))); seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", i, I915_READ(GEN8_GT_IIR(i))); seq_printf(m, "GT Interrupt IER %d:\t%08x\n", i, I915_READ(GEN8_GT_IER(i))); } gen8_display_interrupt_info(m); } else if (IS_VALLEYVIEW(dev_priv)) { seq_printf(m, "Display IER:\t%08x\n", I915_READ(VLV_IER)); seq_printf(m, "Display IIR:\t%08x\n", I915_READ(VLV_IIR)); seq_printf(m, "Display IIR_RW:\t%08x\n", I915_READ(VLV_IIR_RW)); seq_printf(m, "Display IMR:\t%08x\n", I915_READ(VLV_IMR)); for_each_pipe(dev_priv, pipe) { enum intel_display_power_domain power_domain; intel_wakeref_t pref; power_domain = POWER_DOMAIN_PIPE(pipe); pref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!pref) { seq_printf(m, "Pipe %c power disabled\n", pipe_name(pipe)); continue; } seq_printf(m, "Pipe %c stat:\t%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); intel_display_power_put(dev_priv, power_domain, pref); } seq_printf(m, "Master IER:\t%08x\n", I915_READ(VLV_MASTER_IER)); seq_printf(m, "Render IER:\t%08x\n", I915_READ(GTIER)); seq_printf(m, "Render IIR:\t%08x\n", I915_READ(GTIIR)); seq_printf(m, "Render IMR:\t%08x\n", I915_READ(GTIMR)); seq_printf(m, "PM IER:\t\t%08x\n", I915_READ(GEN6_PMIER)); seq_printf(m, "PM IIR:\t\t%08x\n", I915_READ(GEN6_PMIIR)); seq_printf(m, "PM IMR:\t\t%08x\n", I915_READ(GEN6_PMIMR)); seq_printf(m, "Port hotplug:\t%08x\n", I915_READ(PORT_HOTPLUG_EN)); seq_printf(m, "DPFLIPSTAT:\t%08x\n", I915_READ(VLV_DPFLIPSTAT)); seq_printf(m, "DPINVGTT:\t%08x\n", I915_READ(DPINVGTT)); } else if (!HAS_PCH_SPLIT(dev_priv)) { seq_printf(m, "Interrupt enable: %08x\n", I915_READ(GEN2_IER)); seq_printf(m, "Interrupt identity: %08x\n", I915_READ(GEN2_IIR)); seq_printf(m, "Interrupt mask: %08x\n", I915_READ(GEN2_IMR)); for_each_pipe(dev_priv, pipe) seq_printf(m, "Pipe %c stat: %08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); } else { seq_printf(m, "North Display Interrupt enable: %08x\n", I915_READ(DEIER)); seq_printf(m, "North Display Interrupt identity: %08x\n", I915_READ(DEIIR)); seq_printf(m, "North Display Interrupt mask: %08x\n", I915_READ(DEIMR)); seq_printf(m, "South Display Interrupt enable: %08x\n", I915_READ(SDEIER)); seq_printf(m, "South Display Interrupt identity: %08x\n", I915_READ(SDEIIR)); seq_printf(m, "South Display Interrupt mask: %08x\n", I915_READ(SDEIMR)); seq_printf(m, "Graphics Interrupt enable: %08x\n", I915_READ(GTIER)); seq_printf(m, "Graphics Interrupt identity: %08x\n", I915_READ(GTIIR)); seq_printf(m, "Graphics Interrupt mask: %08x\n", I915_READ(GTIMR)); } if (INTEL_GEN(dev_priv) >= 11) { seq_printf(m, "RCS Intr Mask:\t %08x\n", I915_READ(GEN11_RCS0_RSVD_INTR_MASK)); seq_printf(m, "BCS Intr Mask:\t %08x\n", I915_READ(GEN11_BCS_RSVD_INTR_MASK)); seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n", I915_READ(GEN11_VCS0_VCS1_INTR_MASK)); seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n", I915_READ(GEN11_VCS2_VCS3_INTR_MASK)); seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n", I915_READ(GEN11_VECS0_VECS1_INTR_MASK)); seq_printf(m, "GUC/SG Intr Mask:\t %08x\n", I915_READ(GEN11_GUC_SG_INTR_MASK)); seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n", I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK)); seq_printf(m, "Crypto Intr Mask:\t %08x\n", I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK)); seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n", I915_READ(GEN11_GUNIT_CSME_INTR_MASK)); } else if (INTEL_GEN(dev_priv) >= 6) { for_each_uabi_engine(engine, dev_priv) { seq_printf(m, "Graphics Interrupt mask (%s): %08x\n", engine->name, ENGINE_READ(engine, RING_IMR)); } } intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static int i915_gem_fence_regs_info(struct seq_file *m, void *data) { struct drm_i915_private *i915 = node_to_i915(m->private); unsigned int i; seq_printf(m, "Total fences = %d\n", i915->ggtt.num_fences); rcu_read_lock(); for (i = 0; i < i915->ggtt.num_fences; i++) { struct i915_vma *vma = i915->ggtt.fence_regs[i].vma; seq_printf(m, "Fence %d, pin count = %d, object = ", i, i915->ggtt.fence_regs[i].pin_count); if (!vma) seq_puts(m, "unused"); else describe_obj(m, vma->obj); seq_putc(m, '\n'); } rcu_read_unlock(); return 0; } #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) static ssize_t gpu_state_read(struct file *file, char __user *ubuf, size_t count, loff_t *pos) { struct i915_gpu_state *error; ssize_t ret; void *buf; error = file->private_data; if (!error) return 0; /* Bounce buffer required because of kernfs __user API convenience. */ buf = kmalloc(count, GFP_KERNEL); if (!buf) return -ENOMEM; ret = i915_gpu_state_copy_to_buffer(error, buf, *pos, count); if (ret <= 0) goto out; if (!copy_to_user(ubuf, buf, ret)) *pos += ret; else ret = -EFAULT; out: kfree(buf); return ret; } static int gpu_state_release(struct inode *inode, struct file *file) { i915_gpu_state_put(file->private_data); return 0; } static int i915_gpu_info_open(struct inode *inode, struct file *file) { struct drm_i915_private *i915 = inode->i_private; struct i915_gpu_state *gpu; intel_wakeref_t wakeref; gpu = NULL; with_intel_runtime_pm(&i915->runtime_pm, wakeref) gpu = i915_capture_gpu_state(i915); if (IS_ERR(gpu)) return PTR_ERR(gpu); file->private_data = gpu; return 0; } static const struct file_operations i915_gpu_info_fops = { .owner = THIS_MODULE, .open = i915_gpu_info_open, .read = gpu_state_read, .llseek = default_llseek, .release = gpu_state_release, }; static ssize_t i915_error_state_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct i915_gpu_state *error = filp->private_data; if (!error) return 0; DRM_DEBUG_DRIVER("Resetting error state\n"); i915_reset_error_state(error->i915); return cnt; } static int i915_error_state_open(struct inode *inode, struct file *file) { struct i915_gpu_state *error; error = i915_first_error_state(inode->i_private); if (IS_ERR(error)) return PTR_ERR(error); file->private_data = error; return 0; } static const struct file_operations i915_error_state_fops = { .owner = THIS_MODULE, .open = i915_error_state_open, .read = gpu_state_read, .write = i915_error_state_write, .llseek = default_llseek, .release = gpu_state_release, }; #endif static int i915_frequency_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct intel_uncore *uncore = &dev_priv->uncore; struct intel_rps *rps = &dev_priv->gt_pm.rps; intel_wakeref_t wakeref; int ret = 0; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); if (IS_GEN(dev_priv, 5)) { u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK); seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f); seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> MEMSTAT_VID_SHIFT); seq_printf(m, "Current P-state: %d\n", (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { u32 rpmodectl, freq_sts; rpmodectl = I915_READ(GEN6_RP_CONTROL); seq_printf(m, "Video Turbo Mode: %s\n", yesno(rpmodectl & GEN6_RP_MEDIA_TURBO)); seq_printf(m, "HW control enabled: %s\n", yesno(rpmodectl & GEN6_RP_ENABLE)); seq_printf(m, "SW control enabled: %s\n", yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); vlv_punit_get(dev_priv); freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(dev_priv); seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts); seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq); seq_printf(m, "actual GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff)); seq_printf(m, "current GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->cur_freq)); seq_printf(m, "max GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->max_freq)); seq_printf(m, "min GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->min_freq)); seq_printf(m, "idle GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->idle_freq)); seq_printf(m, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(dev_priv, rps->efficient_freq)); } else if (INTEL_GEN(dev_priv) >= 6) { u32 rp_state_limits; u32 gt_perf_status; u32 rp_state_cap; u32 rpmodectl, rpinclimit, rpdeclimit; u32 rpstat, cagf, reqf; u32 rpupei, rpcurup, rpprevup; u32 rpdownei, rpcurdown, rpprevdown; u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask; int max_freq; rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS); if (IS_GEN9_LP(dev_priv)) { rp_state_cap = I915_READ(BXT_RP_STATE_CAP); gt_perf_status = I915_READ(BXT_GT_PERF_STATUS); } else { rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); } /* RPSTAT1 is in the GT power well */ intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); reqf = I915_READ(GEN6_RPNSWREQ); if (INTEL_GEN(dev_priv) >= 9) reqf >>= 23; else { reqf &= ~GEN6_TURBO_DISABLE; if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) reqf >>= 24; else reqf >>= 25; } reqf = intel_gpu_freq(dev_priv, reqf); rpmodectl = I915_READ(GEN6_RP_CONTROL); rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD); rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD); rpstat = I915_READ(GEN6_RPSTAT1); rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK; rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK; rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK; rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK; rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK; rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK; cagf = intel_gpu_freq(dev_priv, intel_get_cagf(dev_priv, rpstat)); intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); if (INTEL_GEN(dev_priv) >= 11) { pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE); pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK); /* * The equivalent to the PM ISR & IIR cannot be read * without affecting the current state of the system */ pm_isr = 0; pm_iir = 0; } else if (INTEL_GEN(dev_priv) >= 8) { pm_ier = I915_READ(GEN8_GT_IER(2)); pm_imr = I915_READ(GEN8_GT_IMR(2)); pm_isr = I915_READ(GEN8_GT_ISR(2)); pm_iir = I915_READ(GEN8_GT_IIR(2)); } else { pm_ier = I915_READ(GEN6_PMIER); pm_imr = I915_READ(GEN6_PMIMR); pm_isr = I915_READ(GEN6_PMISR); pm_iir = I915_READ(GEN6_PMIIR); } pm_mask = I915_READ(GEN6_PMINTRMSK); seq_printf(m, "Video Turbo Mode: %s\n", yesno(rpmodectl & GEN6_RP_MEDIA_TURBO)); seq_printf(m, "HW control enabled: %s\n", yesno(rpmodectl & GEN6_RP_ENABLE)); seq_printf(m, "SW control enabled: %s\n", yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n", pm_ier, pm_imr, pm_mask); if (INTEL_GEN(dev_priv) <= 10) seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n", pm_isr, pm_iir); seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n", rps->pm_intrmsk_mbz); seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); seq_printf(m, "Render p-state ratio: %d\n", (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8); seq_printf(m, "Render p-state VID: %d\n", gt_perf_status & 0xff); seq_printf(m, "Render p-state limit: %d\n", rp_state_limits & 0xff); seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat); seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl); seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit); seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit); seq_printf(m, "RPNSWREQ: %dMHz\n", reqf); seq_printf(m, "CAGF: %dMHz\n", cagf); seq_printf(m, "RP CUR UP EI: %d (%dus)\n", rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei)); seq_printf(m, "RP CUR UP: %d (%dus)\n", rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup)); seq_printf(m, "RP PREV UP: %d (%dus)\n", rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup)); seq_printf(m, "Up threshold: %d%%\n", rps->power.up_threshold); seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n", rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei)); seq_printf(m, "RP CUR DOWN: %d (%dus)\n", rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown)); seq_printf(m, "RP PREV DOWN: %d (%dus)\n", rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown)); seq_printf(m, "Down threshold: %d%%\n", rps->power.down_threshold); max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 : rp_state_cap >> 16) & 0xff; max_freq *= (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1); seq_printf(m, "Lowest (RPN) frequency: %dMHz\n", intel_gpu_freq(dev_priv, max_freq)); max_freq = (rp_state_cap & 0xff00) >> 8; max_freq *= (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1); seq_printf(m, "Nominal (RP1) frequency: %dMHz\n", intel_gpu_freq(dev_priv, max_freq)); max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 : rp_state_cap >> 0) & 0xff; max_freq *= (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1); seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n", intel_gpu_freq(dev_priv, max_freq)); seq_printf(m, "Max overclocked frequency: %dMHz\n", intel_gpu_freq(dev_priv, rps->max_freq)); seq_printf(m, "Current freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->cur_freq)); seq_printf(m, "Actual freq: %d MHz\n", cagf); seq_printf(m, "Idle freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->idle_freq)); seq_printf(m, "Min freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->min_freq)); seq_printf(m, "Boost freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->boost_freq)); seq_printf(m, "Max freq: %d MHz\n", intel_gpu_freq(dev_priv, rps->max_freq)); seq_printf(m, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(dev_priv, rps->efficient_freq)); } else { seq_puts(m, "no P-state info available\n"); } seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk); seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq); seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return ret; } static void i915_instdone_info(struct drm_i915_private *dev_priv, struct seq_file *m, struct intel_instdone *instdone) { int slice; int subslice; seq_printf(m, "\t\tINSTDONE: 0x%08x\n", instdone->instdone); if (INTEL_GEN(dev_priv) <= 3) return; seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n", instdone->slice_common); if (INTEL_GEN(dev_priv) <= 6) return; for_each_instdone_slice_subslice(dev_priv, slice, subslice) seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n", slice, subslice, instdone->sampler[slice][subslice]); for_each_instdone_slice_subslice(dev_priv, slice, subslice) seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n", slice, subslice, instdone->row[slice][subslice]); } static int i915_hangcheck_info(struct seq_file *m, void *unused) { struct drm_i915_private *i915 = node_to_i915(m->private); struct intel_gt *gt = &i915->gt; struct intel_engine_cs *engine; intel_wakeref_t wakeref; enum intel_engine_id id; seq_printf(m, "Reset flags: %lx\n", gt->reset.flags); if (test_bit(I915_WEDGED, >->reset.flags)) seq_puts(m, "\tWedged\n"); if (test_bit(I915_RESET_BACKOFF, >->reset.flags)) seq_puts(m, "\tDevice (global) reset in progress\n"); if (!i915_modparams.enable_hangcheck) { seq_puts(m, "Hangcheck disabled\n"); return 0; } if (timer_pending(>->hangcheck.work.timer)) seq_printf(m, "Hangcheck active, timer fires in %dms\n", jiffies_to_msecs(gt->hangcheck.work.timer.expires - jiffies)); else if (delayed_work_pending(>->hangcheck.work)) seq_puts(m, "Hangcheck active, work pending\n"); else seq_puts(m, "Hangcheck inactive\n"); seq_printf(m, "GT active? %s\n", yesno(gt->awake)); with_intel_runtime_pm(&i915->runtime_pm, wakeref) { for_each_engine(engine, i915, id) { struct intel_instdone instdone; seq_printf(m, "%s: %d ms ago\n", engine->name, jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp)); seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n", (long long)engine->hangcheck.acthd, intel_engine_get_active_head(engine)); intel_engine_get_instdone(engine, &instdone); seq_puts(m, "\tinstdone read =\n"); i915_instdone_info(i915, m, &instdone); seq_puts(m, "\tinstdone accu =\n"); i915_instdone_info(i915, m, &engine->hangcheck.instdone); } } return 0; } static int ironlake_drpc_info(struct seq_file *m) { struct drm_i915_private *i915 = node_to_i915(m->private); struct intel_uncore *uncore = &i915->uncore; u32 rgvmodectl, rstdbyctl; u16 crstandvid; rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); rstdbyctl = intel_uncore_read(uncore, RSTDBYCTL); crstandvid = intel_uncore_read16(uncore, CRSTANDVID); seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN)); seq_printf(m, "Boost freq: %d\n", (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> MEMMODE_BOOST_FREQ_SHIFT); seq_printf(m, "HW control enabled: %s\n", yesno(rgvmodectl & MEMMODE_HWIDLE_EN)); seq_printf(m, "SW control enabled: %s\n", yesno(rgvmodectl & MEMMODE_SWMODE_EN)); seq_printf(m, "Gated voltage change: %s\n", yesno(rgvmodectl & MEMMODE_RCLK_GATE)); seq_printf(m, "Starting frequency: P%d\n", (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); seq_printf(m, "Max P-state: P%d\n", (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); seq_printf(m, "Render standby enabled: %s\n", yesno(!(rstdbyctl & RCX_SW_EXIT))); seq_puts(m, "Current RS state: "); switch (rstdbyctl & RSX_STATUS_MASK) { case RSX_STATUS_ON: seq_puts(m, "on\n"); break; case RSX_STATUS_RC1: seq_puts(m, "RC1\n"); break; case RSX_STATUS_RC1E: seq_puts(m, "RC1E\n"); break; case RSX_STATUS_RS1: seq_puts(m, "RS1\n"); break; case RSX_STATUS_RS2: seq_puts(m, "RS2 (RC6)\n"); break; case RSX_STATUS_RS3: seq_puts(m, "RC3 (RC6+)\n"); break; default: seq_puts(m, "unknown\n"); break; } return 0; } static int i915_forcewake_domains(struct seq_file *m, void *data) { struct drm_i915_private *i915 = node_to_i915(m->private); struct intel_uncore *uncore = &i915->uncore; struct intel_uncore_forcewake_domain *fw_domain; unsigned int tmp; seq_printf(m, "user.bypass_count = %u\n", uncore->user_forcewake_count); for_each_fw_domain(fw_domain, uncore, tmp) seq_printf(m, "%s.wake_count = %u\n", intel_uncore_forcewake_domain_to_str(fw_domain->id), READ_ONCE(fw_domain->wake_count)); return 0; } static void print_rc6_res(struct seq_file *m, const char *title, const i915_reg_t reg) { struct drm_i915_private *dev_priv = node_to_i915(m->private); seq_printf(m, "%s %u (%llu us)\n", title, I915_READ(reg), intel_rc6_residency_us(dev_priv, reg)); } static int vlv_drpc_info(struct seq_file *m) { struct drm_i915_private *dev_priv = node_to_i915(m->private); u32 rcctl1, pw_status; pw_status = I915_READ(VLV_GTLC_PW_STATUS); rcctl1 = I915_READ(GEN6_RC_CONTROL); seq_printf(m, "RC6 Enabled: %s\n", yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))); seq_printf(m, "Render Power Well: %s\n", (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down"); seq_printf(m, "Media Power Well: %s\n", (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down"); print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6); print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6); return i915_forcewake_domains(m, NULL); } static int gen6_drpc_info(struct seq_file *m) { struct drm_i915_private *dev_priv = node_to_i915(m->private); u32 gt_core_status, rcctl1, rc6vids = 0; u32 gen9_powergate_enable = 0, gen9_powergate_status = 0; gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS); trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true); rcctl1 = I915_READ(GEN6_RC_CONTROL); if (INTEL_GEN(dev_priv) >= 9) { gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE); gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS); } if (INTEL_GEN(dev_priv) <= 7) sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids, NULL); seq_printf(m, "RC1e Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); seq_printf(m, "RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); if (INTEL_GEN(dev_priv) >= 9) { seq_printf(m, "Render Well Gating Enabled: %s\n", yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE)); seq_printf(m, "Media Well Gating Enabled: %s\n", yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE)); } seq_printf(m, "Deep RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); seq_printf(m, "Deepest RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); seq_puts(m, "Current RC state: "); switch (gt_core_status & GEN6_RCn_MASK) { case GEN6_RC0: if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) seq_puts(m, "Core Power Down\n"); else seq_puts(m, "on\n"); break; case GEN6_RC3: seq_puts(m, "RC3\n"); break; case GEN6_RC6: seq_puts(m, "RC6\n"); break; case GEN6_RC7: seq_puts(m, "RC7\n"); break; default: seq_puts(m, "Unknown\n"); break; } seq_printf(m, "Core Power Down: %s\n", yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); if (INTEL_GEN(dev_priv) >= 9) { seq_printf(m, "Render Power Well: %s\n", (gen9_powergate_status & GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down"); seq_printf(m, "Media Power Well: %s\n", (gen9_powergate_status & GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down"); } /* Not exactly sure what this is */ print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:", GEN6_GT_GFX_RC6_LOCKED); print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6); print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p); print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp); if (INTEL_GEN(dev_priv) <= 7) { seq_printf(m, "RC6 voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff))); seq_printf(m, "RC6+ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff))); seq_printf(m, "RC6++ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff))); } return i915_forcewake_domains(m, NULL); } static int i915_drpc_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); intel_wakeref_t wakeref; int err = -ENODEV; with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) err = vlv_drpc_info(m); else if (INTEL_GEN(dev_priv) >= 6) err = gen6_drpc_info(m); else err = ironlake_drpc_info(m); } return err; } static int i915_frontbuffer_tracking(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); seq_printf(m, "FB tracking busy bits: 0x%08x\n", dev_priv->fb_tracking.busy_bits); seq_printf(m, "FB tracking flip bits: 0x%08x\n", dev_priv->fb_tracking.flip_bits); return 0; } static int i915_fbc_status(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct intel_fbc *fbc = &dev_priv->fbc; intel_wakeref_t wakeref; if (!HAS_FBC(dev_priv)) return -ENODEV; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); mutex_lock(&fbc->lock); if (intel_fbc_is_active(dev_priv)) seq_puts(m, "FBC enabled\n"); else seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason); if (intel_fbc_is_active(dev_priv)) { u32 mask; if (INTEL_GEN(dev_priv) >= 8) mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK; else if (INTEL_GEN(dev_priv) >= 7) mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK; else if (INTEL_GEN(dev_priv) >= 5) mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK; else if (IS_G4X(dev_priv)) mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK; else mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING | FBC_STAT_COMPRESSED); seq_printf(m, "Compressing: %s\n", yesno(mask)); } mutex_unlock(&fbc->lock); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static int i915_fbc_false_color_get(void *data, u64 *val) { struct drm_i915_private *dev_priv = data; if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv)) return -ENODEV; *val = dev_priv->fbc.false_color; return 0; } static int i915_fbc_false_color_set(void *data, u64 val) { struct drm_i915_private *dev_priv = data; u32 reg; if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv)) return -ENODEV; mutex_lock(&dev_priv->fbc.lock); reg = I915_READ(ILK_DPFC_CONTROL); dev_priv->fbc.false_color = val; I915_WRITE(ILK_DPFC_CONTROL, val ? (reg | FBC_CTL_FALSE_COLOR) : (reg & ~FBC_CTL_FALSE_COLOR)); mutex_unlock(&dev_priv->fbc.lock); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops, i915_fbc_false_color_get, i915_fbc_false_color_set, "%llu\n"); static int i915_ips_status(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); intel_wakeref_t wakeref; if (!HAS_IPS(dev_priv)) return -ENODEV; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); seq_printf(m, "Enabled by kernel parameter: %s\n", yesno(i915_modparams.enable_ips)); if (INTEL_GEN(dev_priv) >= 8) { seq_puts(m, "Currently: unknown\n"); } else { if (I915_READ(IPS_CTL) & IPS_ENABLE) seq_puts(m, "Currently: enabled\n"); else seq_puts(m, "Currently: disabled\n"); } intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static int i915_sr_status(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); intel_wakeref_t wakeref; bool sr_enabled = false; wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); if (INTEL_GEN(dev_priv) >= 9) /* no global SR status; inspect per-plane WM */; else if (HAS_PCH_SPLIT(dev_priv)) sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN; else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) || IS_I945G(dev_priv) || IS_I945GM(dev_priv)) sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; else if (IS_I915GM(dev_priv)) sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; else if (IS_PINEVIEW(dev_priv)) sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN; else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled)); return 0; } static int i915_ring_freq_table(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct intel_rps *rps = &dev_priv->gt_pm.rps; unsigned int max_gpu_freq, min_gpu_freq; intel_wakeref_t wakeref; int gpu_freq, ia_freq; if (!HAS_LLC(dev_priv)) return -ENODEV; min_gpu_freq = rps->min_freq; max_gpu_freq = rps->max_freq; if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) { /* Convert GT frequency to 50 HZ units */ min_gpu_freq /= GEN9_FREQ_SCALER; max_gpu_freq /= GEN9_FREQ_SCALER; } seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n"); wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) { ia_freq = gpu_freq; sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_MIN_FREQ_TABLE, &ia_freq, NULL); seq_printf(m, "%d\t\t%d\t\t\t\t%d\n", intel_gpu_freq(dev_priv, (gpu_freq * (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1))), ((ia_freq >> 0) & 0xff) * 100, ((ia_freq >> 8) & 0xff) * 100); } intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static int i915_opregion(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct intel_opregion *opregion = &dev_priv->opregion; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) goto out; if (opregion->header) seq_write(m, opregion->header, OPREGION_SIZE); mutex_unlock(&dev->struct_mutex); out: return 0; } static int i915_vbt(struct seq_file *m, void *unused) { struct intel_opregion *opregion = &node_to_i915(m->private)->opregion; if (opregion->vbt) seq_write(m, opregion->vbt, opregion->vbt_size); return 0; } static int i915_gem_framebuffer_info(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct intel_framebuffer *fbdev_fb = NULL; struct drm_framebuffer *drm_fb; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; #ifdef CONFIG_DRM_FBDEV_EMULATION if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) { fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb); seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ", fbdev_fb->base.width, fbdev_fb->base.height, fbdev_fb->base.format->depth, fbdev_fb->base.format->cpp[0] * 8, fbdev_fb->base.modifier, drm_framebuffer_read_refcount(&fbdev_fb->base)); describe_obj(m, intel_fb_obj(&fbdev_fb->base)); seq_putc(m, '\n'); } #endif mutex_lock(&dev->mode_config.fb_lock); drm_for_each_fb(drm_fb, dev) { struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb); if (fb == fbdev_fb) continue; seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ", fb->base.width, fb->base.height, fb->base.format->depth, fb->base.format->cpp[0] * 8, fb->base.modifier, drm_framebuffer_read_refcount(&fb->base)); describe_obj(m, intel_fb_obj(&fb->base)); seq_putc(m, '\n'); } mutex_unlock(&dev->mode_config.fb_lock); mutex_unlock(&dev->struct_mutex); return 0; } static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring) { seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)", ring->space, ring->head, ring->tail, ring->emit); } static int i915_context_status(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct i915_gem_context *ctx; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; list_for_each_entry(ctx, &dev_priv->contexts.list, link) { struct i915_gem_engines_iter it; struct intel_context *ce; seq_puts(m, "HW context "); if (!list_empty(&ctx->hw_id_link)) seq_printf(m, "%x [pin %u]", ctx->hw_id, atomic_read(&ctx->hw_id_pin_count)); if (ctx->pid) { struct task_struct *task; task = get_pid_task(ctx->pid, PIDTYPE_PID); if (task) { seq_printf(m, "(%s [%d]) ", task->comm, task->pid); put_task_struct(task); } } else if (IS_ERR(ctx->file_priv)) { seq_puts(m, "(deleted) "); } else { seq_puts(m, "(kernel) "); } seq_putc(m, ctx->remap_slice ? 'R' : 'r'); seq_putc(m, '\n'); for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { intel_context_lock_pinned(ce); if (intel_context_is_pinned(ce)) { seq_printf(m, "%s: ", ce->engine->name); if (ce->state) describe_obj(m, ce->state->obj); describe_ctx_ring(m, ce->ring); seq_putc(m, '\n'); } intel_context_unlock_pinned(ce); } i915_gem_context_unlock_engines(ctx); seq_putc(m, '\n'); } mutex_unlock(&dev->struct_mutex); return 0; } static const char *swizzle_string(unsigned swizzle) { switch (swizzle) { case I915_BIT_6_SWIZZLE_NONE: return "none"; case I915_BIT_6_SWIZZLE_9: return "bit9"; case I915_BIT_6_SWIZZLE_9_10: return "bit9/bit10"; case I915_BIT_6_SWIZZLE_9_11: return "bit9/bit11"; case I915_BIT_6_SWIZZLE_9_10_11: return "bit9/bit10/bit11"; case I915_BIT_6_SWIZZLE_9_17: return "bit9/bit17"; case I915_BIT_6_SWIZZLE_9_10_17: return "bit9/bit10/bit17"; case I915_BIT_6_SWIZZLE_UNKNOWN: return "unknown"; } return "bug"; } static int i915_swizzle_info(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct intel_uncore *uncore = &dev_priv->uncore; intel_wakeref_t wakeref; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); seq_printf(m, "bit6 swizzle for X-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_x)); seq_printf(m, "bit6 swizzle for Y-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_y)); if (IS_GEN_RANGE(dev_priv, 3, 4)) { seq_printf(m, "DDC = 0x%08x\n", intel_uncore_read(uncore, DCC)); seq_printf(m, "DDC2 = 0x%08x\n", intel_uncore_read(uncore, DCC2)); seq_printf(m, "C0DRB3 = 0x%04x\n", intel_uncore_read16(uncore, C0DRB3)); seq_printf(m, "C1DRB3 = 0x%04x\n", intel_uncore_read16(uncore, C1DRB3)); } else if (INTEL_GEN(dev_priv) >= 6) { seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n", intel_uncore_read(uncore, MAD_DIMM_C0)); seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n", intel_uncore_read(uncore, MAD_DIMM_C1)); seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n", intel_uncore_read(uncore, MAD_DIMM_C2)); seq_printf(m, "TILECTL = 0x%08x\n", intel_uncore_read(uncore, TILECTL)); if (INTEL_GEN(dev_priv) >= 8) seq_printf(m, "GAMTARBMODE = 0x%08x\n", intel_uncore_read(uncore, GAMTARBMODE)); else seq_printf(m, "ARB_MODE = 0x%08x\n", intel_uncore_read(uncore, ARB_MODE)); seq_printf(m, "DISP_ARB_CTL = 0x%08x\n", intel_uncore_read(uncore, DISP_ARB_CTL)); } if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) seq_puts(m, "L-shaped memory detected\n"); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static const char *rps_power_to_str(unsigned int power) { static const char * const strings[] = { [LOW_POWER] = "low power", [BETWEEN] = "mixed", [HIGH_POWER] = "high power", }; if (power >= ARRAY_SIZE(strings) || !strings[power]) return "unknown"; return strings[power]; } static int i915_rps_boost_info(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct intel_rps *rps = &dev_priv->gt_pm.rps; u32 act_freq = rps->cur_freq; intel_wakeref_t wakeref; with_intel_runtime_pm_if_in_use(&dev_priv->runtime_pm, wakeref) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { vlv_punit_get(dev_priv); act_freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(dev_priv); act_freq = (act_freq >> 8) & 0xff; } else { act_freq = intel_get_cagf(dev_priv, I915_READ(GEN6_RPSTAT1)); } } seq_printf(m, "RPS enabled? %d\n", rps->enabled); seq_printf(m, "GPU busy? %s\n", yesno(dev_priv->gt.awake)); seq_printf(m, "Boosts outstanding? %d\n", atomic_read(&rps->num_waiters)); seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive)); seq_printf(m, "Frequency requested %d, actual %d\n", intel_gpu_freq(dev_priv, rps->cur_freq), intel_gpu_freq(dev_priv, act_freq)); seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n", intel_gpu_freq(dev_priv, rps->min_freq), intel_gpu_freq(dev_priv, rps->min_freq_softlimit), intel_gpu_freq(dev_priv, rps->max_freq_softlimit), intel_gpu_freq(dev_priv, rps->max_freq)); seq_printf(m, " idle:%d, efficient:%d, boost:%d\n", intel_gpu_freq(dev_priv, rps->idle_freq), intel_gpu_freq(dev_priv, rps->efficient_freq), intel_gpu_freq(dev_priv, rps->boost_freq)); seq_printf(m, "Wait boosts: %d\n", atomic_read(&rps->boosts)); if (INTEL_GEN(dev_priv) >= 6 && rps->enabled && dev_priv->gt.awake) { u32 rpup, rpupei; u32 rpdown, rpdownei; intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK; rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK; rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK; rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK; intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n", rps_power_to_str(rps->power.mode)); seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n", rpup && rpupei ? 100 * rpup / rpupei : 0, rps->power.up_threshold); seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n", rpdown && rpdownei ? 100 * rpdown / rpdownei : 0, rps->power.down_threshold); } else { seq_puts(m, "\nRPS Autotuning inactive\n"); } return 0; } static int i915_llc(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); const bool edram = INTEL_GEN(dev_priv) > 8; seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv))); seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC", dev_priv->edram_size_mb); return 0; } static int i915_huc_load_status_info(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); intel_wakeref_t wakeref; struct drm_printer p; if (!HAS_GT_UC(dev_priv)) return -ENODEV; p = drm_seq_file_printer(m); intel_uc_fw_dump(&dev_priv->gt.uc.huc.fw, &p); with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2)); return 0; } static int i915_guc_load_status_info(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); intel_wakeref_t wakeref; struct drm_printer p; if (!HAS_GT_UC(dev_priv)) return -ENODEV; p = drm_seq_file_printer(m); intel_uc_fw_dump(&dev_priv->gt.uc.guc.fw, &p); with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) { u32 tmp = I915_READ(GUC_STATUS); u32 i; seq_printf(m, "\nGuC status 0x%08x:\n", tmp); seq_printf(m, "\tBootrom status = 0x%x\n", (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); seq_printf(m, "\tuKernel status = 0x%x\n", (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); seq_printf(m, "\tMIA Core status = 0x%x\n", (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT); seq_puts(m, "\nScratch registers:\n"); for (i = 0; i < 16; i++) { seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i))); } } return 0; } static const char * stringify_guc_log_type(enum guc_log_buffer_type type) { switch (type) { case GUC_ISR_LOG_BUFFER: return "ISR"; case GUC_DPC_LOG_BUFFER: return "DPC"; case GUC_CRASH_DUMP_LOG_BUFFER: return "CRASH"; default: MISSING_CASE(type); } return ""; } static void i915_guc_log_info(struct seq_file *m, struct drm_i915_private *dev_priv) { struct intel_guc_log *log = &dev_priv->gt.uc.guc.log; enum guc_log_buffer_type type; if (!intel_guc_log_relay_enabled(log)) { seq_puts(m, "GuC log relay disabled\n"); return; } seq_puts(m, "GuC logging stats:\n"); seq_printf(m, "\tRelay full count: %u\n", log->relay.full_count); for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { seq_printf(m, "\t%s:\tflush count %10u, overflow count %10u\n", stringify_guc_log_type(type), log->stats[type].flush, log->stats[type].sampled_overflow); } } static int i915_guc_info(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); const struct intel_guc *guc = &dev_priv->gt.uc.guc; struct intel_guc_client *client = guc->execbuf_client; if (!USES_GUC(dev_priv)) return -ENODEV; i915_guc_log_info(m, dev_priv); if (!USES_GUC_SUBMISSION(dev_priv)) return 0; GEM_BUG_ON(!guc->execbuf_client); seq_printf(m, "\nDoorbell map:\n"); seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap); seq_printf(m, "Doorbell next cacheline: 0x%x\n", guc->db_cacheline); seq_printf(m, "\nGuC execbuf client @ %p:\n", client); seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n", client->priority, client->stage_id, client->proc_desc_offset); seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n", client->doorbell_id, client->doorbell_offset); /* Add more as required ... */ return 0; } static int i915_guc_stage_pool(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); const struct intel_guc *guc = &dev_priv->gt.uc.guc; struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr; int index; if (!USES_GUC_SUBMISSION(dev_priv)) return -ENODEV; for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) { struct intel_engine_cs *engine; if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE)) continue; seq_printf(m, "GuC stage descriptor %u:\n", index); seq_printf(m, "\tIndex: %u\n", desc->stage_id); seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute); seq_printf(m, "\tPriority: %d\n", desc->priority); seq_printf(m, "\tDoorbell id: %d\n", desc->db_id); seq_printf(m, "\tEngines used: 0x%x\n", desc->engines_used); seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n", desc->db_trigger_phy, desc->db_trigger_cpu, desc->db_trigger_uk); seq_printf(m, "\tProcess descriptor: 0x%x\n", desc->process_desc); seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n", desc->wq_addr, desc->wq_size); seq_putc(m, '\n'); for_each_uabi_engine(engine, dev_priv) { u32 guc_engine_id = engine->guc_id; struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id]; seq_printf(m, "\t%s LRC:\n", engine->name); seq_printf(m, "\t\tContext desc: 0x%x\n", lrc->context_desc); seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id); seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca); seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin); seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end); seq_putc(m, '\n'); } } return 0; } static int i915_guc_log_dump(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_i915_private *dev_priv = node_to_i915(node); bool dump_load_err = !!node->info_ent->data; struct drm_i915_gem_object *obj = NULL; u32 *log; int i = 0; if (!HAS_GT_UC(dev_priv)) return -ENODEV; if (dump_load_err) obj = dev_priv->gt.uc.load_err_log; else if (dev_priv->gt.uc.guc.log.vma) obj = dev_priv->gt.uc.guc.log.vma->obj; if (!obj) return 0; log = i915_gem_object_pin_map(obj, I915_MAP_WC); if (IS_ERR(log)) { DRM_DEBUG("Failed to pin object\n"); seq_puts(m, "(log data unaccessible)\n"); return PTR_ERR(log); } for (i = 0; i < obj->base.size / sizeof(u32); i += 4) seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n", *(log + i), *(log + i + 1), *(log + i + 2), *(log + i + 3)); seq_putc(m, '\n'); i915_gem_object_unpin_map(obj); return 0; } static int i915_guc_log_level_get(void *data, u64 *val) { struct drm_i915_private *dev_priv = data; if (!USES_GUC(dev_priv)) return -ENODEV; *val = intel_guc_log_get_level(&dev_priv->gt.uc.guc.log); return 0; } static int i915_guc_log_level_set(void *data, u64 val) { struct drm_i915_private *dev_priv = data; if (!USES_GUC(dev_priv)) return -ENODEV; return intel_guc_log_set_level(&dev_priv->gt.uc.guc.log, val); } DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_level_fops, i915_guc_log_level_get, i915_guc_log_level_set, "%lld\n"); static int i915_guc_log_relay_open(struct inode *inode, struct file *file) { struct drm_i915_private *i915 = inode->i_private; struct intel_guc *guc = &i915->gt.uc.guc; struct intel_guc_log *log = &guc->log; if (!intel_guc_is_running(guc)) return -ENODEV; file->private_data = log; return intel_guc_log_relay_open(log); } static ssize_t i915_guc_log_relay_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct intel_guc_log *log = filp->private_data; intel_guc_log_relay_flush(log); return cnt; } static int i915_guc_log_relay_release(struct inode *inode, struct file *file) { struct drm_i915_private *i915 = inode->i_private; struct intel_guc *guc = &i915->gt.uc.guc; intel_guc_log_relay_close(&guc->log); return 0; } static const struct file_operations i915_guc_log_relay_fops = { .owner = THIS_MODULE, .open = i915_guc_log_relay_open, .write = i915_guc_log_relay_write, .release = i915_guc_log_relay_release, }; static int i915_psr_sink_status_show(struct seq_file *m, void *data) { u8 val; static const char * const sink_status[] = { "inactive", "transition to active, capture and display", "active, display from RFB", "active, capture and display on sink device timings", "transition to inactive, capture and display, timing re-sync", "reserved", "reserved", "sink internal error", }; struct drm_connector *connector = m->private; struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_dp *intel_dp = enc_to_intel_dp(&intel_attached_encoder(connector)->base); int ret; if (!CAN_PSR(dev_priv)) { seq_puts(m, "PSR Unsupported\n"); return -ENODEV; } if (connector->status != connector_status_connected) return -ENODEV; ret = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val); if (ret == 1) { const char *str = "unknown"; val &= DP_PSR_SINK_STATE_MASK; if (val < ARRAY_SIZE(sink_status)) str = sink_status[val]; seq_printf(m, "Sink PSR status: 0x%x [%s]\n", val, str); } else { return ret; } return 0; } DEFINE_SHOW_ATTRIBUTE(i915_psr_sink_status); static void psr_source_status(struct drm_i915_private *dev_priv, struct seq_file *m) { u32 val, status_val; const char *status = "unknown"; if (dev_priv->psr.psr2_enabled) { static const char * const live_status[] = { "IDLE", "CAPTURE", "CAPTURE_FS", "SLEEP", "BUFON_FW", "ML_UP", "SU_STANDBY", "FAST_SLEEP", "DEEP_SLEEP", "BUF_ON", "TG_ON" }; val = I915_READ(EDP_PSR2_STATUS); status_val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT; if (status_val < ARRAY_SIZE(live_status)) status = live_status[status_val]; } else { static const char * const live_status[] = { "IDLE", "SRDONACK", "SRDENT", "BUFOFF", "BUFON", "AUXACK", "SRDOFFACK", "SRDENT_ON", }; val = I915_READ(EDP_PSR_STATUS); status_val = (val & EDP_PSR_STATUS_STATE_MASK) >> EDP_PSR_STATUS_STATE_SHIFT; if (status_val < ARRAY_SIZE(live_status)) status = live_status[status_val]; } seq_printf(m, "Source PSR status: %s [0x%08x]\n", status, val); } static int i915_edp_psr_status(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct i915_psr *psr = &dev_priv->psr; intel_wakeref_t wakeref; const char *status; bool enabled; u32 val; if (!HAS_PSR(dev_priv)) return -ENODEV; seq_printf(m, "Sink support: %s", yesno(psr->sink_support)); if (psr->dp) seq_printf(m, " [0x%02x]", psr->dp->psr_dpcd[0]); seq_puts(m, "\n"); if (!psr->sink_support) return 0; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); mutex_lock(&psr->lock); if (psr->enabled) status = psr->psr2_enabled ? "PSR2 enabled" : "PSR1 enabled"; else status = "disabled"; seq_printf(m, "PSR mode: %s\n", status); if (!psr->enabled) goto unlock; if (psr->psr2_enabled) { val = I915_READ(EDP_PSR2_CTL); enabled = val & EDP_PSR2_ENABLE; } else { val = I915_READ(EDP_PSR_CTL); enabled = val & EDP_PSR_ENABLE; } seq_printf(m, "Source PSR ctl: %s [0x%08x]\n", enableddisabled(enabled), val); psr_source_status(dev_priv, m); seq_printf(m, "Busy frontbuffer bits: 0x%08x\n", psr->busy_frontbuffer_bits); /* * SKL+ Perf counter is reset to 0 everytime DC state is entered */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { val = I915_READ(EDP_PSR_PERF_CNT) & EDP_PSR_PERF_CNT_MASK; seq_printf(m, "Performance counter: %u\n", val); } if (psr->debug & I915_PSR_DEBUG_IRQ) { seq_printf(m, "Last attempted entry at: %lld\n", psr->last_entry_attempt); seq_printf(m, "Last exit at: %lld\n", psr->last_exit); } if (psr->psr2_enabled) { u32 su_frames_val[3]; int frame; /* * Reading all 3 registers before hand to minimize crossing a * frame boundary between register reads */ for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame += 3) su_frames_val[frame / 3] = I915_READ(PSR2_SU_STATUS(frame)); seq_puts(m, "Frame:\tPSR2 SU blocks:\n"); for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame++) { u32 su_blocks; su_blocks = su_frames_val[frame / 3] & PSR2_SU_STATUS_MASK(frame); su_blocks = su_blocks >> PSR2_SU_STATUS_SHIFT(frame); seq_printf(m, "%d\t%d\n", frame, su_blocks); } } unlock: mutex_unlock(&psr->lock); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static int i915_edp_psr_debug_set(void *data, u64 val) { struct drm_i915_private *dev_priv = data; intel_wakeref_t wakeref; int ret; if (!CAN_PSR(dev_priv)) return -ENODEV; DRM_DEBUG_KMS("Setting PSR debug to %llx\n", val); wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); ret = intel_psr_debug_set(dev_priv, val); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return ret; } static int i915_edp_psr_debug_get(void *data, u64 *val) { struct drm_i915_private *dev_priv = data; if (!CAN_PSR(dev_priv)) return -ENODEV; *val = READ_ONCE(dev_priv->psr.debug); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_edp_psr_debug_fops, i915_edp_psr_debug_get, i915_edp_psr_debug_set, "%llu\n"); static int i915_energy_uJ(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = node_to_i915(m->private); unsigned long long power; intel_wakeref_t wakeref; u32 units; if (INTEL_GEN(dev_priv) < 6) return -ENODEV; if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) return -ENODEV; units = (power & 0x1f00) >> 8; with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) power = I915_READ(MCH_SECP_NRG_STTS); power = (1000000 * power) >> units; /* convert to uJ */ seq_printf(m, "%llu", power); return 0; } static int i915_runtime_pm_status(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct pci_dev *pdev = dev_priv->drm.pdev; if (!HAS_RUNTIME_PM(dev_priv)) seq_puts(m, "Runtime power management not supported\n"); seq_printf(m, "Runtime power status: %s\n", enableddisabled(!dev_priv->power_domains.wakeref)); seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake)); seq_printf(m, "IRQs disabled: %s\n", yesno(!intel_irqs_enabled(dev_priv))); #ifdef CONFIG_PM seq_printf(m, "Usage count: %d\n", atomic_read(&dev_priv->drm.dev->power.usage_count)); #else seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n"); #endif seq_printf(m, "PCI device power state: %s [%d]\n", pci_power_name(pdev->current_state), pdev->current_state); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)) { struct drm_printer p = drm_seq_file_printer(m); print_intel_runtime_pm_wakeref(&dev_priv->runtime_pm, &p); } return 0; } static int i915_power_domain_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct i915_power_domains *power_domains = &dev_priv->power_domains; int i; mutex_lock(&power_domains->lock); seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); for (i = 0; i < power_domains->power_well_count; i++) { struct i915_power_well *power_well; enum intel_display_power_domain power_domain; power_well = &power_domains->power_wells[i]; seq_printf(m, "%-25s %d\n", power_well->desc->name, power_well->count); for_each_power_domain(power_domain, power_well->desc->domains) seq_printf(m, " %-23s %d\n", intel_display_power_domain_str(dev_priv, power_domain), power_domains->domain_use_count[power_domain]); } mutex_unlock(&power_domains->lock); return 0; } static int i915_dmc_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); intel_wakeref_t wakeref; struct intel_csr *csr; i915_reg_t dc5_reg, dc6_reg = {}; if (!HAS_CSR(dev_priv)) return -ENODEV; csr = &dev_priv->csr; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL)); seq_printf(m, "path: %s\n", csr->fw_path); if (!csr->dmc_payload) goto out; seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version), CSR_VERSION_MINOR(csr->version)); if (INTEL_GEN(dev_priv) >= 12) { dc5_reg = TGL_DMC_DEBUG_DC5_COUNT; dc6_reg = TGL_DMC_DEBUG_DC6_COUNT; } else { dc5_reg = IS_BROXTON(dev_priv) ? BXT_CSR_DC3_DC5_COUNT : SKL_CSR_DC3_DC5_COUNT; if (!IS_GEN9_LP(dev_priv)) dc6_reg = SKL_CSR_DC5_DC6_COUNT; } seq_printf(m, "DC3 -> DC5 count: %d\n", I915_READ(dc5_reg)); if (dc6_reg.reg) seq_printf(m, "DC5 -> DC6 count: %d\n", I915_READ(dc6_reg)); out: seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0))); seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE)); seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL)); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static void intel_seq_print_mode(struct seq_file *m, int tabs, struct drm_display_mode *mode) { int i; for (i = 0; i < tabs; i++) seq_putc(m, '\t'); seq_printf(m, DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); } static void intel_encoder_info(struct seq_file *m, struct intel_crtc *intel_crtc, struct intel_encoder *intel_encoder) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct drm_crtc *crtc = &intel_crtc->base; struct intel_connector *intel_connector; struct drm_encoder *encoder; encoder = &intel_encoder->base; seq_printf(m, "\tencoder %d: type: %s, connectors:\n", encoder->base.id, encoder->name); for_each_connector_on_encoder(dev, encoder, intel_connector) { struct drm_connector *connector = &intel_connector->base; seq_printf(m, "\t\tconnector %d: type: %s, status: %s", connector->base.id, connector->name, drm_get_connector_status_name(connector->status)); if (connector->status == connector_status_connected) { struct drm_display_mode *mode = &crtc->mode; seq_printf(m, ", mode:\n"); intel_seq_print_mode(m, 2, mode); } else { seq_putc(m, '\n'); } } } static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct drm_crtc *crtc = &intel_crtc->base; struct intel_encoder *intel_encoder; struct drm_plane_state *plane_state = crtc->primary->state; struct drm_framebuffer *fb = plane_state->fb; if (fb) seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n", fb->base.id, plane_state->src_x >> 16, plane_state->src_y >> 16, fb->width, fb->height); else seq_puts(m, "\tprimary plane disabled\n"); for_each_encoder_on_crtc(dev, crtc, intel_encoder) intel_encoder_info(m, intel_crtc, intel_encoder); } static void intel_panel_info(struct seq_file *m, struct intel_panel *panel) { struct drm_display_mode *mode = panel->fixed_mode; seq_printf(m, "\tfixed mode:\n"); intel_seq_print_mode(m, 2, mode); } static void intel_hdcp_info(struct seq_file *m, struct intel_connector *intel_connector) { bool hdcp_cap, hdcp2_cap; hdcp_cap = intel_hdcp_capable(intel_connector); hdcp2_cap = intel_hdcp2_capable(intel_connector); if (hdcp_cap) seq_puts(m, "HDCP1.4 "); if (hdcp2_cap) seq_puts(m, "HDCP2.2 "); if (!hdcp_cap && !hdcp2_cap) seq_puts(m, "None"); seq_puts(m, "\n"); } static void intel_dp_info(struct seq_file *m, struct intel_connector *intel_connector) { struct intel_encoder *intel_encoder = intel_connector->encoder; struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]); seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio)); if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP) intel_panel_info(m, &intel_connector->panel); drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports, &intel_dp->aux); if (intel_connector->hdcp.shim) { seq_puts(m, "\tHDCP version: "); intel_hdcp_info(m, intel_connector); } } static void intel_dp_mst_info(struct seq_file *m, struct intel_connector *intel_connector) { struct intel_encoder *intel_encoder = intel_connector->encoder; struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&intel_encoder->base); struct intel_digital_port *intel_dig_port = intel_mst->primary; struct intel_dp *intel_dp = &intel_dig_port->dp; bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr, intel_connector->port); seq_printf(m, "\taudio support: %s\n", yesno(has_audio)); } static void intel_hdmi_info(struct seq_file *m, struct intel_connector *intel_connector) { struct intel_encoder *intel_encoder = intel_connector->encoder; struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base); seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio)); if (intel_connector->hdcp.shim) { seq_puts(m, "\tHDCP version: "); intel_hdcp_info(m, intel_connector); } } static void intel_lvds_info(struct seq_file *m, struct intel_connector *intel_connector) { intel_panel_info(m, &intel_connector->panel); } static void intel_connector_info(struct seq_file *m, struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_encoder *intel_encoder = intel_connector->encoder; struct drm_display_mode *mode; seq_printf(m, "connector %d: type %s, status: %s\n", connector->base.id, connector->name, drm_get_connector_status_name(connector->status)); if (connector->status == connector_status_disconnected) return; seq_printf(m, "\tphysical dimensions: %dx%dmm\n", connector->display_info.width_mm, connector->display_info.height_mm); seq_printf(m, "\tsubpixel order: %s\n", drm_get_subpixel_order_name(connector->display_info.subpixel_order)); seq_printf(m, "\tCEA rev: %d\n", connector->display_info.cea_rev); if (!intel_encoder) return; switch (connector->connector_type) { case DRM_MODE_CONNECTOR_DisplayPort: case DRM_MODE_CONNECTOR_eDP: if (intel_encoder->type == INTEL_OUTPUT_DP_MST) intel_dp_mst_info(m, intel_connector); else intel_dp_info(m, intel_connector); break; case DRM_MODE_CONNECTOR_LVDS: if (intel_encoder->type == INTEL_OUTPUT_LVDS) intel_lvds_info(m, intel_connector); break; case DRM_MODE_CONNECTOR_HDMIA: if (intel_encoder->type == INTEL_OUTPUT_HDMI || intel_encoder->type == INTEL_OUTPUT_DDI) intel_hdmi_info(m, intel_connector); break; default: break; } seq_printf(m, "\tmodes:\n"); list_for_each_entry(mode, &connector->modes, head) intel_seq_print_mode(m, 2, mode); } static const char *plane_type(enum drm_plane_type type) { switch (type) { case DRM_PLANE_TYPE_OVERLAY: return "OVL"; case DRM_PLANE_TYPE_PRIMARY: return "PRI"; case DRM_PLANE_TYPE_CURSOR: return "CUR"; /* * Deliberately omitting default: to generate compiler warnings * when a new drm_plane_type gets added. */ } return "unknown"; } static void plane_rotation(char *buf, size_t bufsize, unsigned int rotation) { /* * According to doc only one DRM_MODE_ROTATE_ is allowed but this * will print them all to visualize if the values are misused */ snprintf(buf, bufsize, "%s%s%s%s%s%s(0x%08x)", (rotation & DRM_MODE_ROTATE_0) ? "0 " : "", (rotation & DRM_MODE_ROTATE_90) ? "90 " : "", (rotation & DRM_MODE_ROTATE_180) ? "180 " : "", (rotation & DRM_MODE_ROTATE_270) ? "270 " : "", (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "", (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "", rotation); } static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct intel_plane *intel_plane; for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) { struct drm_plane_state *state; struct drm_plane *plane = &intel_plane->base; struct drm_format_name_buf format_name; char rot_str[48]; if (!plane->state) { seq_puts(m, "plane->state is NULL!\n"); continue; } state = plane->state; if (state->fb) { drm_get_format_name(state->fb->format->format, &format_name); } else { sprintf(format_name.str, "N/A"); } plane_rotation(rot_str, sizeof(rot_str), state->rotation); seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n", plane->base.id, plane_type(intel_plane->base.type), state->crtc_x, state->crtc_y, state->crtc_w, state->crtc_h, (state->src_x >> 16), ((state->src_x & 0xffff) * 15625) >> 10, (state->src_y >> 16), ((state->src_y & 0xffff) * 15625) >> 10, (state->src_w >> 16), ((state->src_w & 0xffff) * 15625) >> 10, (state->src_h >> 16), ((state->src_h & 0xffff) * 15625) >> 10, format_name.str, rot_str); } } static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc) { struct intel_crtc_state *pipe_config; int num_scalers = intel_crtc->num_scalers; int i; pipe_config = to_intel_crtc_state(intel_crtc->base.state); /* Not all platformas have a scaler */ if (num_scalers) { seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d", num_scalers, pipe_config->scaler_state.scaler_users, pipe_config->scaler_state.scaler_id); for (i = 0; i < num_scalers; i++) { struct intel_scaler *sc = &pipe_config->scaler_state.scalers[i]; seq_printf(m, ", scalers[%d]: use=%s, mode=%x", i, yesno(sc->in_use), sc->mode); } seq_puts(m, "\n"); } else { seq_puts(m, "\tNo scalers available on this platform\n"); } } static int i915_display_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct intel_crtc *crtc; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; intel_wakeref_t wakeref; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); seq_printf(m, "CRTC info\n"); seq_printf(m, "---------\n"); for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *pipe_config; drm_modeset_lock(&crtc->base.mutex, NULL); pipe_config = to_intel_crtc_state(crtc->base.state); seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n", crtc->base.base.id, pipe_name(crtc->pipe), yesno(pipe_config->base.active), pipe_config->pipe_src_w, pipe_config->pipe_src_h, yesno(pipe_config->dither), pipe_config->pipe_bpp); if (pipe_config->base.active) { struct intel_plane *cursor = to_intel_plane(crtc->base.cursor); intel_crtc_info(m, crtc); seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n", yesno(cursor->base.state->visible), cursor->base.state->crtc_x, cursor->base.state->crtc_y, cursor->base.state->crtc_w, cursor->base.state->crtc_h, cursor->cursor.base); intel_scaler_info(m, crtc); intel_plane_info(m, crtc); } seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n", yesno(!crtc->cpu_fifo_underrun_disabled), yesno(!crtc->pch_fifo_underrun_disabled)); drm_modeset_unlock(&crtc->base.mutex); } seq_printf(m, "\n"); seq_printf(m, "Connector info\n"); seq_printf(m, "--------------\n"); mutex_lock(&dev->mode_config.mutex); drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) intel_connector_info(m, connector); drm_connector_list_iter_end(&conn_iter); mutex_unlock(&dev->mode_config.mutex); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static int i915_engine_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct intel_engine_cs *engine; intel_wakeref_t wakeref; struct drm_printer p; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); seq_printf(m, "GT awake? %s [%d]\n", yesno(dev_priv->gt.awake), atomic_read(&dev_priv->gt.wakeref.count)); seq_printf(m, "CS timestamp frequency: %u kHz\n", RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz); p = drm_seq_file_printer(m); for_each_uabi_engine(engine, dev_priv) intel_engine_dump(engine, &p, "%s\n", engine->name); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static int i915_rcs_topology(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_printer p = drm_seq_file_printer(m); intel_device_info_dump_topology(&RUNTIME_INFO(dev_priv)->sseu, &p); return 0; } static int i915_shrinker_info(struct seq_file *m, void *unused) { struct drm_i915_private *i915 = node_to_i915(m->private); seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks); seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch); return 0; } static int i915_shared_dplls_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; int i; drm_modeset_lock_all(dev); for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->info->name, pll->info->id); seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n", pll->state.crtc_mask, pll->active_mask, yesno(pll->on)); seq_printf(m, " tracked hardware state:\n"); seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll); seq_printf(m, " dpll_md: 0x%08x\n", pll->state.hw_state.dpll_md); seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0); seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1); seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll); seq_printf(m, " cfgcr0: 0x%08x\n", pll->state.hw_state.cfgcr0); seq_printf(m, " cfgcr1: 0x%08x\n", pll->state.hw_state.cfgcr1); seq_printf(m, " mg_refclkin_ctl: 0x%08x\n", pll->state.hw_state.mg_refclkin_ctl); seq_printf(m, " mg_clktop2_coreclkctl1: 0x%08x\n", pll->state.hw_state.mg_clktop2_coreclkctl1); seq_printf(m, " mg_clktop2_hsclkctl: 0x%08x\n", pll->state.hw_state.mg_clktop2_hsclkctl); seq_printf(m, " mg_pll_div0: 0x%08x\n", pll->state.hw_state.mg_pll_div0); seq_printf(m, " mg_pll_div1: 0x%08x\n", pll->state.hw_state.mg_pll_div1); seq_printf(m, " mg_pll_lf: 0x%08x\n", pll->state.hw_state.mg_pll_lf); seq_printf(m, " mg_pll_frac_lock: 0x%08x\n", pll->state.hw_state.mg_pll_frac_lock); seq_printf(m, " mg_pll_ssc: 0x%08x\n", pll->state.hw_state.mg_pll_ssc); seq_printf(m, " mg_pll_bias: 0x%08x\n", pll->state.hw_state.mg_pll_bias); seq_printf(m, " mg_pll_tdc_coldst_bias: 0x%08x\n", pll->state.hw_state.mg_pll_tdc_coldst_bias); } drm_modeset_unlock_all(dev); return 0; } static int i915_wa_registers(struct seq_file *m, void *unused) { struct drm_i915_private *i915 = node_to_i915(m->private); struct intel_engine_cs *engine; for_each_uabi_engine(engine, i915) { const struct i915_wa_list *wal = &engine->ctx_wa_list; const struct i915_wa *wa; unsigned int count; count = wal->count; if (!count) continue; seq_printf(m, "%s: Workarounds applied: %u\n", engine->name, count); for (wa = wal->list; count--; wa++) seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n", i915_mmio_reg_offset(wa->reg), wa->val, wa->mask); seq_printf(m, "\n"); } return 0; } static int i915_ipc_status_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; seq_printf(m, "Isochronous Priority Control: %s\n", yesno(dev_priv->ipc_enabled)); return 0; } static int i915_ipc_status_open(struct inode *inode, struct file *file) { struct drm_i915_private *dev_priv = inode->i_private; if (!HAS_IPC(dev_priv)) return -ENODEV; return single_open(file, i915_ipc_status_show, dev_priv); } static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_i915_private *dev_priv = m->private; intel_wakeref_t wakeref; bool enable; int ret; ret = kstrtobool_from_user(ubuf, len, &enable); if (ret < 0) return ret; with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) { if (!dev_priv->ipc_enabled && enable) DRM_INFO("Enabling IPC: WM will be proper only after next commit\n"); dev_priv->wm.distrust_bios_wm = true; dev_priv->ipc_enabled = enable; intel_enable_ipc(dev_priv); } return len; } static const struct file_operations i915_ipc_status_fops = { .owner = THIS_MODULE, .open = i915_ipc_status_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = i915_ipc_status_write }; static int i915_ddb_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct skl_ddb_entry *entry; struct intel_crtc *crtc; if (INTEL_GEN(dev_priv) < 9) return -ENODEV; drm_modeset_lock_all(dev); seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size"); for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); enum pipe pipe = crtc->pipe; enum plane_id plane_id; seq_printf(m, "Pipe %c\n", pipe_name(pipe)); for_each_plane_id_on_crtc(crtc, plane_id) { entry = &crtc_state->wm.skl.plane_ddb_y[plane_id]; seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane_id + 1, entry->start, entry->end, skl_ddb_entry_size(entry)); } entry = &crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start, entry->end, skl_ddb_entry_size(entry)); } drm_modeset_unlock_all(dev); return 0; } static void drrs_status_per_crtc(struct seq_file *m, struct drm_device *dev, struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = to_i915(dev); struct i915_drrs *drrs = &dev_priv->drrs; int vrefresh = 0; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { if (connector->state->crtc != &intel_crtc->base) continue; seq_printf(m, "%s:\n", connector->name); } drm_connector_list_iter_end(&conn_iter); if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT) seq_puts(m, "\tVBT: DRRS_type: Static"); else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT) seq_puts(m, "\tVBT: DRRS_type: Seamless"); else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED) seq_puts(m, "\tVBT: DRRS_type: None"); else seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value"); seq_puts(m, "\n\n"); if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) { struct intel_panel *panel; mutex_lock(&drrs->mutex); /* DRRS Supported */ seq_puts(m, "\tDRRS Supported: Yes\n"); /* disable_drrs() will make drrs->dp NULL */ if (!drrs->dp) { seq_puts(m, "Idleness DRRS: Disabled\n"); if (dev_priv->psr.enabled) seq_puts(m, "\tAs PSR is enabled, DRRS is not enabled\n"); mutex_unlock(&drrs->mutex); return; } panel = &drrs->dp->attached_connector->panel; seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X", drrs->busy_frontbuffer_bits); seq_puts(m, "\n\t\t"); if (drrs->refresh_rate_type == DRRS_HIGH_RR) { seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n"); vrefresh = panel->fixed_mode->vrefresh; } else if (drrs->refresh_rate_type == DRRS_LOW_RR) { seq_puts(m, "DRRS_State: DRRS_LOW_RR\n"); vrefresh = panel->downclock_mode->vrefresh; } else { seq_printf(m, "DRRS_State: Unknown(%d)\n", drrs->refresh_rate_type); mutex_unlock(&drrs->mutex); return; } seq_printf(m, "\t\tVrefresh: %d", vrefresh); seq_puts(m, "\n\t\t"); mutex_unlock(&drrs->mutex); } else { /* DRRS not supported. Print the VBT parameter*/ seq_puts(m, "\tDRRS Supported : No"); } seq_puts(m, "\n"); } static int i915_drrs_status(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct intel_crtc *intel_crtc; int active_crtc_cnt = 0; drm_modeset_lock_all(dev); for_each_intel_crtc(dev, intel_crtc) { if (intel_crtc->base.state->active) { active_crtc_cnt++; seq_printf(m, "\nCRTC %d: ", active_crtc_cnt); drrs_status_per_crtc(m, dev, intel_crtc); } } drm_modeset_unlock_all(dev); if (!active_crtc_cnt) seq_puts(m, "No active crtc found\n"); return 0; } static int i915_dp_mst_info(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct drm_device *dev = &dev_priv->drm; struct intel_encoder *intel_encoder; struct intel_digital_port *intel_dig_port; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; intel_encoder = intel_attached_encoder(connector); if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST) continue; intel_dig_port = enc_to_dig_port(&intel_encoder->base); if (!intel_dig_port->dp.can_mst) continue; seq_printf(m, "MST Source Port %c\n", port_name(intel_dig_port->base.port)); drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr); } drm_connector_list_iter_end(&conn_iter); return 0; } static ssize_t i915_displayport_test_active_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { char *input_buffer; int status = 0; struct drm_device *dev; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; struct intel_dp *intel_dp; int val = 0; dev = ((struct seq_file *)file->private_data)->private; if (len == 0) return 0; input_buffer = memdup_user_nul(ubuf, len); if (IS_ERR(input_buffer)) return PTR_ERR(input_buffer); DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len); drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct intel_encoder *encoder; if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; encoder = to_intel_encoder(connector->encoder); if (encoder && encoder->type == INTEL_OUTPUT_DP_MST) continue; if (encoder && connector->status == connector_status_connected) { intel_dp = enc_to_intel_dp(&encoder->base); status = kstrtoint(input_buffer, 10, &val); if (status < 0) break; DRM_DEBUG_DRIVER("Got %d for test active\n", val); /* To prevent erroneous activation of the compliance * testing code, only accept an actual value of 1 here */ if (val == 1) intel_dp->compliance.test_active = 1; else intel_dp->compliance.test_active = 0; } } drm_connector_list_iter_end(&conn_iter); kfree(input_buffer); if (status < 0) return status; *offp += len; return len; } static int i915_displayport_test_active_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; struct drm_device *dev = &dev_priv->drm; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; struct intel_dp *intel_dp; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct intel_encoder *encoder; if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; encoder = to_intel_encoder(connector->encoder); if (encoder && encoder->type == INTEL_OUTPUT_DP_MST) continue; if (encoder && connector->status == connector_status_connected) { intel_dp = enc_to_intel_dp(&encoder->base); if (intel_dp->compliance.test_active) seq_puts(m, "1"); else seq_puts(m, "0"); } else seq_puts(m, "0"); } drm_connector_list_iter_end(&conn_iter); return 0; } static int i915_displayport_test_active_open(struct inode *inode, struct file *file) { return single_open(file, i915_displayport_test_active_show, inode->i_private); } static const struct file_operations i915_displayport_test_active_fops = { .owner = THIS_MODULE, .open = i915_displayport_test_active_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = i915_displayport_test_active_write }; static int i915_displayport_test_data_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; struct drm_device *dev = &dev_priv->drm; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; struct intel_dp *intel_dp; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct intel_encoder *encoder; if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; encoder = to_intel_encoder(connector->encoder); if (encoder && encoder->type == INTEL_OUTPUT_DP_MST) continue; if (encoder && connector->status == connector_status_connected) { intel_dp = enc_to_intel_dp(&encoder->base); if (intel_dp->compliance.test_type == DP_TEST_LINK_EDID_READ) seq_printf(m, "%lx", intel_dp->compliance.test_data.edid); else if (intel_dp->compliance.test_type == DP_TEST_LINK_VIDEO_PATTERN) { seq_printf(m, "hdisplay: %d\n", intel_dp->compliance.test_data.hdisplay); seq_printf(m, "vdisplay: %d\n", intel_dp->compliance.test_data.vdisplay); seq_printf(m, "bpc: %u\n", intel_dp->compliance.test_data.bpc); } } else seq_puts(m, "0"); } drm_connector_list_iter_end(&conn_iter); return 0; } DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_data); static int i915_displayport_test_type_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; struct drm_device *dev = &dev_priv->drm; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; struct intel_dp *intel_dp; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct intel_encoder *encoder; if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; encoder = to_intel_encoder(connector->encoder); if (encoder && encoder->type == INTEL_OUTPUT_DP_MST) continue; if (encoder && connector->status == connector_status_connected) { intel_dp = enc_to_intel_dp(&encoder->base); seq_printf(m, "%02lx", intel_dp->compliance.test_type); } else seq_puts(m, "0"); } drm_connector_list_iter_end(&conn_iter); return 0; } DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_type); static void wm_latency_show(struct seq_file *m, const u16 wm[8]) { struct drm_i915_private *dev_priv = m->private; struct drm_device *dev = &dev_priv->drm; int level; int num_levels; if (IS_CHERRYVIEW(dev_priv)) num_levels = 3; else if (IS_VALLEYVIEW(dev_priv)) num_levels = 1; else if (IS_G4X(dev_priv)) num_levels = 3; else num_levels = ilk_wm_max_level(dev_priv) + 1; drm_modeset_lock_all(dev); for (level = 0; level < num_levels; level++) { unsigned int latency = wm[level]; /* * - WM1+ latency values in 0.5us units * - latencies are in us on gen9/vlv/chv */ if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) || IS_G4X(dev_priv)) latency *= 10; else if (level > 0) latency *= 5; seq_printf(m, "WM%d %u (%u.%u usec)\n", level, wm[level], latency / 10, latency % 10); } drm_modeset_unlock_all(dev); } static int pri_wm_latency_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; const u16 *latencies; if (INTEL_GEN(dev_priv) >= 9) latencies = dev_priv->wm.skl_latency; else latencies = dev_priv->wm.pri_latency; wm_latency_show(m, latencies); return 0; } static int spr_wm_latency_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; const u16 *latencies; if (INTEL_GEN(dev_priv) >= 9) latencies = dev_priv->wm.skl_latency; else latencies = dev_priv->wm.spr_latency; wm_latency_show(m, latencies); return 0; } static int cur_wm_latency_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; const u16 *latencies; if (INTEL_GEN(dev_priv) >= 9) latencies = dev_priv->wm.skl_latency; else latencies = dev_priv->wm.cur_latency; wm_latency_show(m, latencies); return 0; } static int pri_wm_latency_open(struct inode *inode, struct file *file) { struct drm_i915_private *dev_priv = inode->i_private; if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) return -ENODEV; return single_open(file, pri_wm_latency_show, dev_priv); } static int spr_wm_latency_open(struct inode *inode, struct file *file) { struct drm_i915_private *dev_priv = inode->i_private; if (HAS_GMCH(dev_priv)) return -ENODEV; return single_open(file, spr_wm_latency_show, dev_priv); } static int cur_wm_latency_open(struct inode *inode, struct file *file) { struct drm_i915_private *dev_priv = inode->i_private; if (HAS_GMCH(dev_priv)) return -ENODEV; return single_open(file, cur_wm_latency_show, dev_priv); } static ssize_t wm_latency_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp, u16 wm[8]) { struct seq_file *m = file->private_data; struct drm_i915_private *dev_priv = m->private; struct drm_device *dev = &dev_priv->drm; u16 new[8] = { 0 }; int num_levels; int level; int ret; char tmp[32]; if (IS_CHERRYVIEW(dev_priv)) num_levels = 3; else if (IS_VALLEYVIEW(dev_priv)) num_levels = 1; else if (IS_G4X(dev_priv)) num_levels = 3; else num_levels = ilk_wm_max_level(dev_priv) + 1; if (len >= sizeof(tmp)) return -EINVAL; if (copy_from_user(tmp, ubuf, len)) return -EFAULT; tmp[len] = '\0'; ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4], &new[5], &new[6], &new[7]); if (ret != num_levels) return -EINVAL; drm_modeset_lock_all(dev); for (level = 0; level < num_levels; level++) wm[level] = new[level]; drm_modeset_unlock_all(dev); return len; } static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_i915_private *dev_priv = m->private; u16 *latencies; if (INTEL_GEN(dev_priv) >= 9) latencies = dev_priv->wm.skl_latency; else latencies = dev_priv->wm.pri_latency; return wm_latency_write(file, ubuf, len, offp, latencies); } static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_i915_private *dev_priv = m->private; u16 *latencies; if (INTEL_GEN(dev_priv) >= 9) latencies = dev_priv->wm.skl_latency; else latencies = dev_priv->wm.spr_latency; return wm_latency_write(file, ubuf, len, offp, latencies); } static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_i915_private *dev_priv = m->private; u16 *latencies; if (INTEL_GEN(dev_priv) >= 9) latencies = dev_priv->wm.skl_latency; else latencies = dev_priv->wm.cur_latency; return wm_latency_write(file, ubuf, len, offp, latencies); } static const struct file_operations i915_pri_wm_latency_fops = { .owner = THIS_MODULE, .open = pri_wm_latency_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = pri_wm_latency_write }; static const struct file_operations i915_spr_wm_latency_fops = { .owner = THIS_MODULE, .open = spr_wm_latency_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = spr_wm_latency_write }; static const struct file_operations i915_cur_wm_latency_fops = { .owner = THIS_MODULE, .open = cur_wm_latency_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = cur_wm_latency_write }; static int i915_wedged_get(void *data, u64 *val) { struct drm_i915_private *i915 = data; int ret = intel_gt_terminally_wedged(&i915->gt); switch (ret) { case -EIO: *val = 1; return 0; case 0: *val = 0; return 0; default: return ret; } } static int i915_wedged_set(void *data, u64 val) { struct drm_i915_private *i915 = data; /* Flush any previous reset before applying for a new one */ wait_event(i915->gt.reset.queue, !test_bit(I915_RESET_BACKOFF, &i915->gt.reset.flags)); intel_gt_handle_error(&i915->gt, val, I915_ERROR_CAPTURE, "Manually set wedged engine mask = %llx", val); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops, i915_wedged_get, i915_wedged_set, "%llu\n"); #define DROP_UNBOUND BIT(0) #define DROP_BOUND BIT(1) #define DROP_RETIRE BIT(2) #define DROP_ACTIVE BIT(3) #define DROP_FREED BIT(4) #define DROP_SHRINK_ALL BIT(5) #define DROP_IDLE BIT(6) #define DROP_RESET_ACTIVE BIT(7) #define DROP_RESET_SEQNO BIT(8) #define DROP_ALL (DROP_UNBOUND | \ DROP_BOUND | \ DROP_RETIRE | \ DROP_ACTIVE | \ DROP_FREED | \ DROP_SHRINK_ALL |\ DROP_IDLE | \ DROP_RESET_ACTIVE | \ DROP_RESET_SEQNO) static int i915_drop_caches_get(void *data, u64 *val) { *val = DROP_ALL; return 0; } static int i915_drop_caches_set(void *data, u64 val) { struct drm_i915_private *i915 = data; DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n", val, val & DROP_ALL); if (val & DROP_RESET_ACTIVE && wait_for(intel_engines_are_idle(&i915->gt), I915_IDLE_ENGINES_TIMEOUT)) intel_gt_set_wedged(&i915->gt); /* No need to check and wait for gpu resets, only libdrm auto-restarts * on ioctls on -EAGAIN. */ if (val & (DROP_ACTIVE | DROP_IDLE | DROP_RETIRE | DROP_RESET_SEQNO)) { int ret; ret = mutex_lock_interruptible(&i915->drm.struct_mutex); if (ret) return ret; /* * To finish the flush of the idle_worker, we must complete * the switch-to-kernel-context, which requires a double * pass through wait_for_idle: first queues the switch, * second waits for the switch. */ if (ret == 0 && val & (DROP_IDLE | DROP_ACTIVE)) ret = i915_gem_wait_for_idle(i915, I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED, MAX_SCHEDULE_TIMEOUT); if (ret == 0 && val & DROP_IDLE) ret = i915_gem_wait_for_idle(i915, I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED, MAX_SCHEDULE_TIMEOUT); if (val & DROP_RETIRE) i915_retire_requests(i915); mutex_unlock(&i915->drm.struct_mutex); if (ret == 0 && val & DROP_IDLE) ret = intel_gt_pm_wait_for_idle(&i915->gt); } if (val & DROP_RESET_ACTIVE && intel_gt_terminally_wedged(&i915->gt)) intel_gt_handle_error(&i915->gt, ALL_ENGINES, 0, NULL); fs_reclaim_acquire(GFP_KERNEL); if (val & DROP_BOUND) i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_BOUND); if (val & DROP_UNBOUND) i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_UNBOUND); if (val & DROP_SHRINK_ALL) i915_gem_shrink_all(i915); fs_reclaim_release(GFP_KERNEL); if (val & DROP_IDLE) { flush_delayed_work(&i915->gem.retire_work); flush_work(&i915->gem.idle_work); } if (val & DROP_FREED) i915_gem_drain_freed_objects(i915); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops, i915_drop_caches_get, i915_drop_caches_set, "0x%08llx\n"); static int i915_cache_sharing_get(void *data, u64 *val) { struct drm_i915_private *dev_priv = data; intel_wakeref_t wakeref; u32 snpcr = 0; if (!(IS_GEN_RANGE(dev_priv, 6, 7))) return -ENODEV; with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT; return 0; } static int i915_cache_sharing_set(void *data, u64 val) { struct drm_i915_private *dev_priv = data; intel_wakeref_t wakeref; if (!(IS_GEN_RANGE(dev_priv, 6, 7))) return -ENODEV; if (val > 3) return -EINVAL; DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val); with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) { u32 snpcr; /* Update the cache sharing policy here as well */ snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); snpcr &= ~GEN6_MBC_SNPCR_MASK; snpcr |= val << GEN6_MBC_SNPCR_SHIFT; I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); } return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops, i915_cache_sharing_get, i915_cache_sharing_set, "%llu\n"); static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv, struct sseu_dev_info *sseu) { #define SS_MAX 2 const int ss_max = SS_MAX; u32 sig1[SS_MAX], sig2[SS_MAX]; int ss; sig1[0] = I915_READ(CHV_POWER_SS0_SIG1); sig1[1] = I915_READ(CHV_POWER_SS1_SIG1); sig2[0] = I915_READ(CHV_POWER_SS0_SIG2); sig2[1] = I915_READ(CHV_POWER_SS1_SIG2); for (ss = 0; ss < ss_max; ss++) { unsigned int eu_cnt; if (sig1[ss] & CHV_SS_PG_ENABLE) /* skip disabled subslice */ continue; sseu->slice_mask = BIT(0); sseu->subslice_mask[0] |= BIT(ss); eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) + ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) + ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) + ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2); sseu->eu_total += eu_cnt; sseu->eu_per_subslice = max_t(unsigned int, sseu->eu_per_subslice, eu_cnt); } #undef SS_MAX } static void gen10_sseu_device_status(struct drm_i915_private *dev_priv, struct sseu_dev_info *sseu) { #define SS_MAX 6 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv); u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2]; int s, ss; for (s = 0; s < info->sseu.max_slices; s++) { /* * FIXME: Valid SS Mask respects the spec and read * only valid bits for those registers, excluding reserved * although this seems wrong because it would leave many * subslices without ACK. */ s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) & GEN10_PGCTL_VALID_SS_MASK(s); eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s)); eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s)); } eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK | GEN9_PGCTL_SSA_EU19_ACK | GEN9_PGCTL_SSA_EU210_ACK | GEN9_PGCTL_SSA_EU311_ACK; eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK | GEN9_PGCTL_SSB_EU19_ACK | GEN9_PGCTL_SSB_EU210_ACK | GEN9_PGCTL_SSB_EU311_ACK; for (s = 0; s < info->sseu.max_slices; s++) { if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0) /* skip disabled slice */ continue; sseu->slice_mask |= BIT(s); sseu->subslice_mask[s] = info->sseu.subslice_mask[s]; for (ss = 0; ss < info->sseu.max_subslices; ss++) { unsigned int eu_cnt; if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss)))) /* skip disabled subslice */ continue; eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] & eu_mask[ss % 2]); sseu->eu_total += eu_cnt; sseu->eu_per_subslice = max_t(unsigned int, sseu->eu_per_subslice, eu_cnt); } } #undef SS_MAX } static void gen9_sseu_device_status(struct drm_i915_private *dev_priv, struct sseu_dev_info *sseu) { #define SS_MAX 3 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv); u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2]; int s, ss; for (s = 0; s < info->sseu.max_slices; s++) { s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s)); eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s)); eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s)); } eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK | GEN9_PGCTL_SSA_EU19_ACK | GEN9_PGCTL_SSA_EU210_ACK | GEN9_PGCTL_SSA_EU311_ACK; eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK | GEN9_PGCTL_SSB_EU19_ACK | GEN9_PGCTL_SSB_EU210_ACK | GEN9_PGCTL_SSB_EU311_ACK; for (s = 0; s < info->sseu.max_slices; s++) { if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0) /* skip disabled slice */ continue; sseu->slice_mask |= BIT(s); if (IS_GEN9_BC(dev_priv)) sseu->subslice_mask[s] = RUNTIME_INFO(dev_priv)->sseu.subslice_mask[s]; for (ss = 0; ss < info->sseu.max_subslices; ss++) { unsigned int eu_cnt; if (IS_GEN9_LP(dev_priv)) { if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss)))) /* skip disabled subslice */ continue; sseu->subslice_mask[s] |= BIT(ss); } eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] & eu_mask[ss%2]); sseu->eu_total += eu_cnt; sseu->eu_per_subslice = max_t(unsigned int, sseu->eu_per_subslice, eu_cnt); } } #undef SS_MAX } static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv, struct sseu_dev_info *sseu) { u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO); int s; sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK; if (sseu->slice_mask) { sseu->eu_per_subslice = RUNTIME_INFO(dev_priv)->sseu.eu_per_subslice; for (s = 0; s < fls(sseu->slice_mask); s++) { sseu->subslice_mask[s] = RUNTIME_INFO(dev_priv)->sseu.subslice_mask[s]; } sseu->eu_total = sseu->eu_per_subslice * intel_sseu_subslice_total(sseu); /* subtract fused off EU(s) from enabled slice(s) */ for (s = 0; s < fls(sseu->slice_mask); s++) { u8 subslice_7eu = RUNTIME_INFO(dev_priv)->sseu.subslice_7eu[s]; sseu->eu_total -= hweight8(subslice_7eu); } } } static void i915_print_sseu_info(struct seq_file *m, bool is_available_info, const struct sseu_dev_info *sseu) { struct drm_i915_private *dev_priv = node_to_i915(m->private); const char *type = is_available_info ? "Available" : "Enabled"; int s; seq_printf(m, " %s Slice Mask: %04x\n", type, sseu->slice_mask); seq_printf(m, " %s Slice Total: %u\n", type, hweight8(sseu->slice_mask)); seq_printf(m, " %s Subslice Total: %u\n", type, intel_sseu_subslice_total(sseu)); for (s = 0; s < fls(sseu->slice_mask); s++) { seq_printf(m, " %s Slice%i subslices: %u\n", type, s, intel_sseu_subslices_per_slice(sseu, s)); } seq_printf(m, " %s EU Total: %u\n", type, sseu->eu_total); seq_printf(m, " %s EU Per Subslice: %u\n", type, sseu->eu_per_subslice); if (!is_available_info) return; seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv))); if (HAS_POOLED_EU(dev_priv)) seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool); seq_printf(m, " Has Slice Power Gating: %s\n", yesno(sseu->has_slice_pg)); seq_printf(m, " Has Subslice Power Gating: %s\n", yesno(sseu->has_subslice_pg)); seq_printf(m, " Has EU Power Gating: %s\n", yesno(sseu->has_eu_pg)); } static int i915_sseu_status(struct seq_file *m, void *unused) { struct drm_i915_private *dev_priv = node_to_i915(m->private); struct sseu_dev_info sseu; intel_wakeref_t wakeref; if (INTEL_GEN(dev_priv) < 8) return -ENODEV; seq_puts(m, "SSEU Device Info\n"); i915_print_sseu_info(m, true, &RUNTIME_INFO(dev_priv)->sseu); seq_puts(m, "SSEU Device Status\n"); memset(&sseu, 0, sizeof(sseu)); sseu.max_slices = RUNTIME_INFO(dev_priv)->sseu.max_slices; sseu.max_subslices = RUNTIME_INFO(dev_priv)->sseu.max_subslices; sseu.max_eus_per_subslice = RUNTIME_INFO(dev_priv)->sseu.max_eus_per_subslice; with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) { if (IS_CHERRYVIEW(dev_priv)) cherryview_sseu_device_status(dev_priv, &sseu); else if (IS_BROADWELL(dev_priv)) broadwell_sseu_device_status(dev_priv, &sseu); else if (IS_GEN(dev_priv, 9)) gen9_sseu_device_status(dev_priv, &sseu); else if (INTEL_GEN(dev_priv) >= 10) gen10_sseu_device_status(dev_priv, &sseu); } i915_print_sseu_info(m, false, &sseu); return 0; } static int i915_forcewake_open(struct inode *inode, struct file *file) { struct drm_i915_private *i915 = inode->i_private; if (INTEL_GEN(i915) < 6) return 0; file->private_data = (void *)(uintptr_t)intel_runtime_pm_get(&i915->runtime_pm); intel_uncore_forcewake_user_get(&i915->uncore); return 0; } static int i915_forcewake_release(struct inode *inode, struct file *file) { struct drm_i915_private *i915 = inode->i_private; if (INTEL_GEN(i915) < 6) return 0; intel_uncore_forcewake_user_put(&i915->uncore); intel_runtime_pm_put(&i915->runtime_pm, (intel_wakeref_t)(uintptr_t)file->private_data); return 0; } static const struct file_operations i915_forcewake_fops = { .owner = THIS_MODULE, .open = i915_forcewake_open, .release = i915_forcewake_release, }; static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; struct i915_hotplug *hotplug = &dev_priv->hotplug; /* Synchronize with everything first in case there's been an HPD * storm, but we haven't finished handling it in the kernel yet */ intel_synchronize_irq(dev_priv); flush_work(&dev_priv->hotplug.dig_port_work); flush_delayed_work(&dev_priv->hotplug.hotplug_work); seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold); seq_printf(m, "Detected: %s\n", yesno(delayed_work_pending(&hotplug->reenable_work))); return 0; } static ssize_t i915_hpd_storm_ctl_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_i915_private *dev_priv = m->private; struct i915_hotplug *hotplug = &dev_priv->hotplug; unsigned int new_threshold; int i; char *newline; char tmp[16]; if (len >= sizeof(tmp)) return -EINVAL; if (copy_from_user(tmp, ubuf, len)) return -EFAULT; tmp[len] = '\0'; /* Strip newline, if any */ newline = strchr(tmp, '\n'); if (newline) *newline = '\0'; if (strcmp(tmp, "reset") == 0) new_threshold = HPD_STORM_DEFAULT_THRESHOLD; else if (kstrtouint(tmp, 10, &new_threshold) != 0) return -EINVAL; if (new_threshold > 0) DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n", new_threshold); else DRM_DEBUG_KMS("Disabling HPD storm detection\n"); spin_lock_irq(&dev_priv->irq_lock); hotplug->hpd_storm_threshold = new_threshold; /* Reset the HPD storm stats so we don't accidentally trigger a storm */ for_each_hpd_pin(i) hotplug->stats[i].count = 0; spin_unlock_irq(&dev_priv->irq_lock); /* Re-enable hpd immediately if we were in an irq storm */ flush_delayed_work(&dev_priv->hotplug.reenable_work); return len; } static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file) { return single_open(file, i915_hpd_storm_ctl_show, inode->i_private); } static const struct file_operations i915_hpd_storm_ctl_fops = { .owner = THIS_MODULE, .open = i915_hpd_storm_ctl_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = i915_hpd_storm_ctl_write }; static int i915_hpd_short_storm_ctl_show(struct seq_file *m, void *data) { struct drm_i915_private *dev_priv = m->private; seq_printf(m, "Enabled: %s\n", yesno(dev_priv->hotplug.hpd_short_storm_enabled)); return 0; } static int i915_hpd_short_storm_ctl_open(struct inode *inode, struct file *file) { return single_open(file, i915_hpd_short_storm_ctl_show, inode->i_private); } static ssize_t i915_hpd_short_storm_ctl_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_i915_private *dev_priv = m->private; struct i915_hotplug *hotplug = &dev_priv->hotplug; char *newline; char tmp[16]; int i; bool new_state; if (len >= sizeof(tmp)) return -EINVAL; if (copy_from_user(tmp, ubuf, len)) return -EFAULT; tmp[len] = '\0'; /* Strip newline, if any */ newline = strchr(tmp, '\n'); if (newline) *newline = '\0'; /* Reset to the "default" state for this system */ if (strcmp(tmp, "reset") == 0) new_state = !HAS_DP_MST(dev_priv); else if (kstrtobool(tmp, &new_state) != 0) return -EINVAL; DRM_DEBUG_KMS("%sabling HPD short storm detection\n", new_state ? "En" : "Dis"); spin_lock_irq(&dev_priv->irq_lock); hotplug->hpd_short_storm_enabled = new_state; /* Reset the HPD storm stats so we don't accidentally trigger a storm */ for_each_hpd_pin(i) hotplug->stats[i].count = 0; spin_unlock_irq(&dev_priv->irq_lock); /* Re-enable hpd immediately if we were in an irq storm */ flush_delayed_work(&dev_priv->hotplug.reenable_work); return len; } static const struct file_operations i915_hpd_short_storm_ctl_fops = { .owner = THIS_MODULE, .open = i915_hpd_short_storm_ctl_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = i915_hpd_short_storm_ctl_write, }; static int i915_drrs_ctl_set(void *data, u64 val) { struct drm_i915_private *dev_priv = data; struct drm_device *dev = &dev_priv->drm; struct intel_crtc *crtc; if (INTEL_GEN(dev_priv) < 7) return -ENODEV; for_each_intel_crtc(dev, crtc) { struct drm_connector_list_iter conn_iter; struct intel_crtc_state *crtc_state; struct drm_connector *connector; struct drm_crtc_commit *commit; int ret; ret = drm_modeset_lock_single_interruptible(&crtc->base.mutex); if (ret) return ret; crtc_state = to_intel_crtc_state(crtc->base.state); if (!crtc_state->base.active || !crtc_state->has_drrs) goto out; commit = crtc_state->base.commit; if (commit) { ret = wait_for_completion_interruptible(&commit->hw_done); if (ret) goto out; } drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct intel_encoder *encoder; struct intel_dp *intel_dp; if (!(crtc_state->base.connector_mask & drm_connector_mask(connector))) continue; encoder = intel_attached_encoder(connector); if (encoder->type != INTEL_OUTPUT_EDP) continue; DRM_DEBUG_DRIVER("Manually %sabling DRRS. %llu\n", val ? "en" : "dis", val); intel_dp = enc_to_intel_dp(&encoder->base); if (val) intel_edp_drrs_enable(intel_dp, crtc_state); else intel_edp_drrs_disable(intel_dp, crtc_state); } drm_connector_list_iter_end(&conn_iter); out: drm_modeset_unlock(&crtc->base.mutex); if (ret) return ret; } return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_drrs_ctl_fops, NULL, i915_drrs_ctl_set, "%llu\n"); static ssize_t i915_fifo_underrun_reset_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct drm_i915_private *dev_priv = filp->private_data; struct intel_crtc *intel_crtc; struct drm_device *dev = &dev_priv->drm; int ret; bool reset; ret = kstrtobool_from_user(ubuf, cnt, &reset); if (ret) return ret; if (!reset) return cnt; for_each_intel_crtc(dev, intel_crtc) { struct drm_crtc_commit *commit; struct intel_crtc_state *crtc_state; ret = drm_modeset_lock_single_interruptible(&intel_crtc->base.mutex); if (ret) return ret; crtc_state = to_intel_crtc_state(intel_crtc->base.state); commit = crtc_state->base.commit; if (commit) { ret = wait_for_completion_interruptible(&commit->hw_done); if (!ret) ret = wait_for_completion_interruptible(&commit->flip_done); } if (!ret && crtc_state->base.active) { DRM_DEBUG_KMS("Re-arming FIFO underruns on pipe %c\n", pipe_name(intel_crtc->pipe)); intel_crtc_arm_fifo_underrun(intel_crtc, crtc_state); } drm_modeset_unlock(&intel_crtc->base.mutex); if (ret) return ret; } ret = intel_fbc_reset_underrun(dev_priv); if (ret) return ret; return cnt; } static const struct file_operations i915_fifo_underrun_reset_ops = { .owner = THIS_MODULE, .open = simple_open, .write = i915_fifo_underrun_reset_write, .llseek = default_llseek, }; static const struct drm_info_list i915_debugfs_list[] = { {"i915_capabilities", i915_capabilities, 0}, {"i915_gem_objects", i915_gem_object_info, 0}, {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0}, {"i915_gem_interrupt", i915_interrupt_info, 0}, {"i915_guc_info", i915_guc_info, 0}, {"i915_guc_load_status", i915_guc_load_status_info, 0}, {"i915_guc_log_dump", i915_guc_log_dump, 0}, {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1}, {"i915_guc_stage_pool", i915_guc_stage_pool, 0}, {"i915_huc_load_status", i915_huc_load_status_info, 0}, {"i915_frequency_info", i915_frequency_info, 0}, {"i915_hangcheck_info", i915_hangcheck_info, 0}, {"i915_drpc_info", i915_drpc_info, 0}, {"i915_ring_freq_table", i915_ring_freq_table, 0}, {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0}, {"i915_fbc_status", i915_fbc_status, 0}, {"i915_ips_status", i915_ips_status, 0}, {"i915_sr_status", i915_sr_status, 0}, {"i915_opregion", i915_opregion, 0}, {"i915_vbt", i915_vbt, 0}, {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0}, {"i915_context_status", i915_context_status, 0}, {"i915_forcewake_domains", i915_forcewake_domains, 0}, {"i915_swizzle_info", i915_swizzle_info, 0}, {"i915_llc", i915_llc, 0}, {"i915_edp_psr_status", i915_edp_psr_status, 0}, {"i915_energy_uJ", i915_energy_uJ, 0}, {"i915_runtime_pm_status", i915_runtime_pm_status, 0}, {"i915_power_domain_info", i915_power_domain_info, 0}, {"i915_dmc_info", i915_dmc_info, 0}, {"i915_display_info", i915_display_info, 0}, {"i915_engine_info", i915_engine_info, 0}, {"i915_rcs_topology", i915_rcs_topology, 0}, {"i915_shrinker_info", i915_shrinker_info, 0}, {"i915_shared_dplls_info", i915_shared_dplls_info, 0}, {"i915_dp_mst_info", i915_dp_mst_info, 0}, {"i915_wa_registers", i915_wa_registers, 0}, {"i915_ddb_info", i915_ddb_info, 0}, {"i915_sseu_status", i915_sseu_status, 0}, {"i915_drrs_status", i915_drrs_status, 0}, {"i915_rps_boost_info", i915_rps_boost_info, 0}, }; #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list) static const struct i915_debugfs_files { const char *name; const struct file_operations *fops; } i915_debugfs_files[] = { {"i915_wedged", &i915_wedged_fops}, {"i915_cache_sharing", &i915_cache_sharing_fops}, {"i915_gem_drop_caches", &i915_drop_caches_fops}, #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) {"i915_error_state", &i915_error_state_fops}, {"i915_gpu_info", &i915_gpu_info_fops}, #endif {"i915_fifo_underrun_reset", &i915_fifo_underrun_reset_ops}, {"i915_pri_wm_latency", &i915_pri_wm_latency_fops}, {"i915_spr_wm_latency", &i915_spr_wm_latency_fops}, {"i915_cur_wm_latency", &i915_cur_wm_latency_fops}, {"i915_fbc_false_color", &i915_fbc_false_color_fops}, {"i915_dp_test_data", &i915_displayport_test_data_fops}, {"i915_dp_test_type", &i915_displayport_test_type_fops}, {"i915_dp_test_active", &i915_displayport_test_active_fops}, {"i915_guc_log_level", &i915_guc_log_level_fops}, {"i915_guc_log_relay", &i915_guc_log_relay_fops}, {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}, {"i915_hpd_short_storm_ctl", &i915_hpd_short_storm_ctl_fops}, {"i915_ipc_status", &i915_ipc_status_fops}, {"i915_drrs_ctl", &i915_drrs_ctl_fops}, {"i915_edp_psr_debug", &i915_edp_psr_debug_fops} }; int i915_debugfs_register(struct drm_i915_private *dev_priv) { struct drm_minor *minor = dev_priv->drm.primary; int i; debugfs_create_file("i915_forcewake_user", S_IRUSR, minor->debugfs_root, to_i915(minor->dev), &i915_forcewake_fops); for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { debugfs_create_file(i915_debugfs_files[i].name, S_IRUGO | S_IWUSR, minor->debugfs_root, to_i915(minor->dev), i915_debugfs_files[i].fops); } return drm_debugfs_create_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor->debugfs_root, minor); } struct dpcd_block { /* DPCD dump start address. */ unsigned int offset; /* DPCD dump end address, inclusive. If unset, .size will be used. */ unsigned int end; /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */ size_t size; /* Only valid for eDP. */ bool edp; }; static const struct dpcd_block i915_dpcd_debug[] = { { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE }, { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS }, { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 }, { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET }, { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 }, { .offset = DP_SET_POWER }, { .offset = DP_EDP_DPCD_REV }, { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 }, { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB }, { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET }, }; static int i915_dpcd_show(struct seq_file *m, void *data) { struct drm_connector *connector = m->private; struct intel_dp *intel_dp = enc_to_intel_dp(&intel_attached_encoder(connector)->base); u8 buf[16]; ssize_t err; int i; if (connector->status != connector_status_connected) return -ENODEV; for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) { const struct dpcd_block *b = &i915_dpcd_debug[i]; size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1); if (b->edp && connector->connector_type != DRM_MODE_CONNECTOR_eDP) continue; /* low tech for now */ if (WARN_ON(size > sizeof(buf))) continue; err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size); if (err < 0) seq_printf(m, "%04x: ERROR %d\n", b->offset, (int)err); else seq_printf(m, "%04x: %*ph\n", b->offset, (int)err, buf); } return 0; } DEFINE_SHOW_ATTRIBUTE(i915_dpcd); static int i915_panel_show(struct seq_file *m, void *data) { struct drm_connector *connector = m->private; struct intel_dp *intel_dp = enc_to_intel_dp(&intel_attached_encoder(connector)->base); if (connector->status != connector_status_connected) return -ENODEV; seq_printf(m, "Panel power up delay: %d\n", intel_dp->panel_power_up_delay); seq_printf(m, "Panel power down delay: %d\n", intel_dp->panel_power_down_delay); seq_printf(m, "Backlight on delay: %d\n", intel_dp->backlight_on_delay); seq_printf(m, "Backlight off delay: %d\n", intel_dp->backlight_off_delay); return 0; } DEFINE_SHOW_ATTRIBUTE(i915_panel); static int i915_hdcp_sink_capability_show(struct seq_file *m, void *data) { struct drm_connector *connector = m->private; struct intel_connector *intel_connector = to_intel_connector(connector); if (connector->status != connector_status_connected) return -ENODEV; /* HDCP is supported by connector */ if (!intel_connector->hdcp.shim) return -EINVAL; seq_printf(m, "%s:%d HDCP version: ", connector->name, connector->base.id); intel_hdcp_info(m, intel_connector); return 0; } DEFINE_SHOW_ATTRIBUTE(i915_hdcp_sink_capability); static int i915_dsc_fec_support_show(struct seq_file *m, void *data) { struct drm_connector *connector = m->private; struct drm_device *dev = connector->dev; struct drm_crtc *crtc; struct intel_dp *intel_dp; struct drm_modeset_acquire_ctx ctx; struct intel_crtc_state *crtc_state = NULL; int ret = 0; bool try_again = false; drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE); do { try_again = false; ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx); if (ret) { if (ret == -EDEADLK && !drm_modeset_backoff(&ctx)) { try_again = true; continue; } break; } crtc = connector->state->crtc; if (connector->status != connector_status_connected || !crtc) { ret = -ENODEV; break; } ret = drm_modeset_lock(&crtc->mutex, &ctx); if (ret == -EDEADLK) { ret = drm_modeset_backoff(&ctx); if (!ret) { try_again = true; continue; } break; } else if (ret) { break; } intel_dp = enc_to_intel_dp(&intel_attached_encoder(connector)->base); crtc_state = to_intel_crtc_state(crtc->state); seq_printf(m, "DSC_Enabled: %s\n", yesno(crtc_state->dsc_params.compression_enable)); seq_printf(m, "DSC_Sink_Support: %s\n", yesno(drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd))); seq_printf(m, "Force_DSC_Enable: %s\n", yesno(intel_dp->force_dsc_en)); if (!intel_dp_is_edp(intel_dp)) seq_printf(m, "FEC_Sink_Support: %s\n", yesno(drm_dp_sink_supports_fec(intel_dp->fec_capable))); } while (try_again); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); return ret; } static ssize_t i915_dsc_fec_support_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { bool dsc_enable = false; int ret; struct drm_connector *connector = ((struct seq_file *)file->private_data)->private; struct intel_encoder *encoder = intel_attached_encoder(connector); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); if (len == 0) return 0; DRM_DEBUG_DRIVER("Copied %zu bytes from user to force DSC\n", len); ret = kstrtobool_from_user(ubuf, len, &dsc_enable); if (ret < 0) return ret; DRM_DEBUG_DRIVER("Got %s for DSC Enable\n", (dsc_enable) ? "true" : "false"); intel_dp->force_dsc_en = dsc_enable; *offp += len; return len; } static int i915_dsc_fec_support_open(struct inode *inode, struct file *file) { return single_open(file, i915_dsc_fec_support_show, inode->i_private); } static const struct file_operations i915_dsc_fec_support_fops = { .owner = THIS_MODULE, .open = i915_dsc_fec_support_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = i915_dsc_fec_support_write }; /** * i915_debugfs_connector_add - add i915 specific connector debugfs files * @connector: pointer to a registered drm_connector * * Cleanup will be done by drm_connector_unregister() through a call to * drm_debugfs_connector_remove(). * * Returns 0 on success, negative error codes on error. */ int i915_debugfs_connector_add(struct drm_connector *connector) { struct dentry *root = connector->debugfs_entry; struct drm_i915_private *dev_priv = to_i915(connector->dev); /* The connector must have been registered beforehands. */ if (!root) return -ENODEV; if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || connector->connector_type == DRM_MODE_CONNECTOR_eDP) debugfs_create_file("i915_dpcd", S_IRUGO, root, connector, &i915_dpcd_fops); if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) { debugfs_create_file("i915_panel_timings", S_IRUGO, root, connector, &i915_panel_fops); debugfs_create_file("i915_psr_sink_status", S_IRUGO, root, connector, &i915_psr_sink_status_fops); } if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || connector->connector_type == DRM_MODE_CONNECTOR_HDMIA || connector->connector_type == DRM_MODE_CONNECTOR_HDMIB) { debugfs_create_file("i915_hdcp_sink_capability", S_IRUGO, root, connector, &i915_hdcp_sink_capability_fops); } if (INTEL_GEN(dev_priv) >= 10 && (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || connector->connector_type == DRM_MODE_CONNECTOR_eDP)) debugfs_create_file("i915_dsc_fec_support", S_IRUGO, root, connector, &i915_dsc_fec_support_fops); return 0; }