// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2017 * Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/regmap.h> #include <dt-bindings/clock/stm32h7-clks.h> /* Reset Clock Control Registers */ #define RCC_CR 0x00 #define RCC_CFGR 0x10 #define RCC_D1CFGR 0x18 #define RCC_D2CFGR 0x1C #define RCC_D3CFGR 0x20 #define RCC_PLLCKSELR 0x28 #define RCC_PLLCFGR 0x2C #define RCC_PLL1DIVR 0x30 #define RCC_PLL1FRACR 0x34 #define RCC_PLL2DIVR 0x38 #define RCC_PLL2FRACR 0x3C #define RCC_PLL3DIVR 0x40 #define RCC_PLL3FRACR 0x44 #define RCC_D1CCIPR 0x4C #define RCC_D2CCIP1R 0x50 #define RCC_D2CCIP2R 0x54 #define RCC_D3CCIPR 0x58 #define RCC_BDCR 0x70 #define RCC_CSR 0x74 #define RCC_AHB3ENR 0xD4 #define RCC_AHB1ENR 0xD8 #define RCC_AHB2ENR 0xDC #define RCC_AHB4ENR 0xE0 #define RCC_APB3ENR 0xE4 #define RCC_APB1LENR 0xE8 #define RCC_APB1HENR 0xEC #define RCC_APB2ENR 0xF0 #define RCC_APB4ENR 0xF4 static DEFINE_SPINLOCK(stm32rcc_lock); static void __iomem *base; static struct clk_hw **hws; /* System clock parent */ static const char * const sys_src[] = { "hsi_ck", "csi_ck", "hse_ck", "pll1_p" }; static const char * const tracein_src[] = { "hsi_ck", "csi_ck", "hse_ck", "pll1_r" }; static const char * const per_src[] = { "hsi_ker", "csi_ker", "hse_ck", "disabled" }; static const char * const pll_src[] = { "hsi_ck", "csi_ck", "hse_ck", "no clock" }; static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" }; static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" }; static const char * const qspi_src[] = { "hclk", "pll1_q", "pll2_r", "per_ck" }; static const char * const fmc_src[] = { "hclk", "pll1_q", "pll2_r", "per_ck" }; /* Kernel clock parent */ static const char * const swp_src[] = { "pclk1", "hsi_ker" }; static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" }; static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" }; static const char * const spdifrx_src[] = { "pll1_q", "pll2_r", "pll3_r", "hsi_ker" }; static const char *spi_src1[5] = { "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" }; static const char * const spi_src2[] = { "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" }; static const char * const spi_src3[] = { "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" }; static const char * const lptim_src1[] = { "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" }; static const char * const lptim_src2[] = { "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" }; static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" }; static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" }; /* i2c 1,2,3 src */ static const char * const i2c_src1[] = { "pclk1", "pll3_r", "hsi_ker", "csi_ker" }; static const char * const i2c_src2[] = { "pclk4", "pll3_r", "hsi_ker", "csi_ker" }; static const char * const rng_src[] = { "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" }; /* usart 1,6 src */ static const char * const usart_src1[] = { "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" }; /* usart 2,3,4,5,7,8 src */ static const char * const usart_src2[] = { "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" }; static const char *sai_src[5] = { "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" }; static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" }; /* lptim 2,3,4,5 src */ static const char * const lpuart1_src[] = { "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" }; static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" }; /* RTC clock parent */ static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" }; /* Micro-controller output clock parent */ static const char * const mco_src1[] = { "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" }; static const char * const mco_src2[] = { "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" }; /* LCD clock */ static const char * const ltdc_src[] = {"pll3_r"}; /* Gate clock with ready bit and backup domain management */ struct stm32_ready_gate { struct clk_gate gate; u8 bit_rdy; }; #define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\ gate) #define RGATE_TIMEOUT 10000 static int ready_gate_clk_enable(struct clk_hw *hw) { struct clk_gate *gate = to_clk_gate(hw); struct stm32_ready_gate *rgate = to_ready_gate_clk(gate); int bit_status; unsigned int timeout = RGATE_TIMEOUT; if (clk_gate_ops.is_enabled(hw)) return 0; clk_gate_ops.enable(hw); /* We can't use readl_poll_timeout() because we can blocked if * someone enables this clock before clocksource changes. * Only jiffies counter is available. Jiffies are incremented by * interruptions and enable op does not allow to be interrupted. */ do { bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy)); if (bit_status) udelay(100); } while (bit_status && --timeout); return bit_status; } static void ready_gate_clk_disable(struct clk_hw *hw) { struct clk_gate *gate = to_clk_gate(hw); struct stm32_ready_gate *rgate = to_ready_gate_clk(gate); int bit_status; unsigned int timeout = RGATE_TIMEOUT; if (!clk_gate_ops.is_enabled(hw)) return; clk_gate_ops.disable(hw); do { bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy)); if (bit_status) udelay(100); } while (bit_status && --timeout); } static const struct clk_ops ready_gate_clk_ops = { .enable = ready_gate_clk_enable, .disable = ready_gate_clk_disable, .is_enabled = clk_gate_is_enabled, }; static struct clk_hw *clk_register_ready_gate(struct device *dev, const char *name, const char *parent_name, void __iomem *reg, u8 bit_idx, u8 bit_rdy, unsigned long flags, spinlock_t *lock) { struct stm32_ready_gate *rgate; struct clk_init_data init = { NULL }; struct clk_hw *hw; int ret; rgate = kzalloc(sizeof(*rgate), GFP_KERNEL); if (!rgate) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &ready_gate_clk_ops; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; rgate->bit_rdy = bit_rdy; rgate->gate.lock = lock; rgate->gate.reg = reg; rgate->gate.bit_idx = bit_idx; rgate->gate.hw.init = &init; hw = &rgate->gate.hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(rgate); hw = ERR_PTR(ret); } return hw; } struct gate_cfg { u32 offset; u8 bit_idx; }; struct muxdiv_cfg { u32 offset; u8 shift; u8 width; }; struct composite_clk_cfg { struct gate_cfg *gate; struct muxdiv_cfg *mux; struct muxdiv_cfg *div; const char *name; const char * const *parent_name; int num_parents; u32 flags; }; struct composite_clk_gcfg_t { u8 flags; const struct clk_ops *ops; }; /* * General config definition of a composite clock (only clock diviser for rate) */ struct composite_clk_gcfg { struct composite_clk_gcfg_t *mux; struct composite_clk_gcfg_t *div; struct composite_clk_gcfg_t *gate; }; #define M_CFG_MUX(_mux_ops, _mux_flags)\ .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops} #define M_CFG_DIV(_rate_ops, _rate_flags)\ .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops} #define M_CFG_GATE(_gate_ops, _gate_flags)\ .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops} static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width, u32 flags, spinlock_t *lock) { struct clk_mux *mux; mux = kzalloc(sizeof(*mux), GFP_KERNEL); if (!mux) return ERR_PTR(-ENOMEM); mux->reg = reg; mux->shift = shift; mux->mask = (1 << width) - 1; mux->flags = flags; mux->lock = lock; return mux; } static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width, u32 flags, spinlock_t *lock) { struct clk_divider *div; div = kzalloc(sizeof(*div), GFP_KERNEL); if (!div) return ERR_PTR(-ENOMEM); div->reg = reg; div->shift = shift; div->width = width; div->flags = flags; div->lock = lock; return div; } static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags, spinlock_t *lock) { struct clk_gate *gate; gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) return ERR_PTR(-ENOMEM); gate->reg = reg; gate->bit_idx = bit_idx; gate->flags = flags; gate->lock = lock; return gate; } struct composite_cfg { struct clk_hw *mux_hw; struct clk_hw *div_hw; struct clk_hw *gate_hw; const struct clk_ops *mux_ops; const struct clk_ops *div_ops; const struct clk_ops *gate_ops; }; static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg, const struct composite_clk_cfg *cfg, struct composite_cfg *composite, spinlock_t *lock) { struct clk_mux *mux = NULL; struct clk_divider *div = NULL; struct clk_gate *gate = NULL; const struct clk_ops *mux_ops, *div_ops, *gate_ops; struct clk_hw *mux_hw; struct clk_hw *div_hw; struct clk_hw *gate_hw; mux_ops = div_ops = gate_ops = NULL; mux_hw = div_hw = gate_hw = NULL; if (gcfg->mux && cfg->mux) { mux = _get_cmux(base + cfg->mux->offset, cfg->mux->shift, cfg->mux->width, gcfg->mux->flags, lock); if (!IS_ERR(mux)) { mux_hw = &mux->hw; mux_ops = gcfg->mux->ops ? gcfg->mux->ops : &clk_mux_ops; } } if (gcfg->div && cfg->div) { div = _get_cdiv(base + cfg->div->offset, cfg->div->shift, cfg->div->width, gcfg->div->flags, lock); if (!IS_ERR(div)) { div_hw = &div->hw; div_ops = gcfg->div->ops ? gcfg->div->ops : &clk_divider_ops; } } if (gcfg->gate && cfg->gate) { gate = _get_cgate(base + cfg->gate->offset, cfg->gate->bit_idx, gcfg->gate->flags, lock); if (!IS_ERR(gate)) { gate_hw = &gate->hw; gate_ops = gcfg->gate->ops ? gcfg->gate->ops : &clk_gate_ops; } } composite->mux_hw = mux_hw; composite->mux_ops = mux_ops; composite->div_hw = div_hw; composite->div_ops = div_ops; composite->gate_hw = gate_hw; composite->gate_ops = gate_ops; } /* Kernel Timer */ struct timer_ker { u8 dppre_shift; struct clk_hw hw; spinlock_t *lock; }; #define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw) static unsigned long timer_ker_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct timer_ker *clk_elem = to_timer_ker(hw); u32 timpre; u32 dppre_shift = clk_elem->dppre_shift; u32 prescaler; u32 mul; timpre = (readl(base + RCC_CFGR) >> 15) & 0x01; prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03; mul = 2; if (prescaler < 4) mul = 1; else if (timpre && prescaler > 4) mul = 4; return parent_rate * mul; } static const struct clk_ops timer_ker_ops = { .recalc_rate = timer_ker_recalc_rate, }; static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev, const char *name, const char *parent_name, unsigned long flags, u8 dppre_shift, spinlock_t *lock) { struct timer_ker *element; struct clk_init_data init; struct clk_hw *hw; int err; element = kzalloc(sizeof(*element), GFP_KERNEL); if (!element) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &timer_ker_ops; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; element->hw.init = &init; element->lock = lock; element->dppre_shift = dppre_shift; hw = &element->hw; err = clk_hw_register(dev, hw); if (err) { kfree(element); return ERR_PTR(err); } return hw; } static const struct clk_div_table d1cpre_div_table[] = { { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1}, { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1}, { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 }, { 12, 64 }, { 13, 128 }, { 14, 256 }, { 15, 512 }, { 0 }, }; static const struct clk_div_table ppre_div_table[] = { { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1}, { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 }, { 0 }, }; static void register_core_and_bus_clocks(void) { /* CORE AND BUS */ hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre", "sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0, d1cpre_div_table, &stm32rcc_lock); hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0, d1cpre_div_table, &stm32rcc_lock); /* D1 DOMAIN */ /* * CPU Systick */ hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick", "d1cpre", 0, 1, 8); /* * APB3 peripheral */ hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0, base + RCC_D1CFGR, 4, 3, 0, ppre_div_table, &stm32rcc_lock); /* D2 DOMAIN */ /* * APB1 peripheral */ hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0, base + RCC_D2CFGR, 4, 3, 0, ppre_div_table, &stm32rcc_lock); /* Timers prescaler clocks */ clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0, 4, &stm32rcc_lock); /* * APB2 peripheral */ hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0, base + RCC_D2CFGR, 8, 3, 0, ppre_div_table, &stm32rcc_lock); clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8, &stm32rcc_lock); /* D3 DOMAIN */ /* * APB4 peripheral */ hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0, base + RCC_D3CFGR, 4, 3, 0, ppre_div_table, &stm32rcc_lock); } /* MUX clock configuration */ struct stm32_mux_clk { const char *name; const char * const *parents; u8 num_parents; u32 offset; u8 shift; u8 width; u32 flags; }; #define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\ {\ .name = _name,\ .parents = _parents,\ .num_parents = ARRAY_SIZE(_parents),\ .offset = _mux_offset,\ .shift = _mux_shift,\ .width = _mux_width,\ .flags = _flags,\ } #define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\ M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\ static const struct stm32_mux_clk stm32_mclk[] __initconst = { M_MCLOC("per_ck", per_src, RCC_D1CCIPR, 28, 3), M_MCLOC("pllsrc", pll_src, RCC_PLLCKSELR, 0, 3), M_MCLOC("sys_ck", sys_src, RCC_CFGR, 0, 3), M_MCLOC("tracein_ck", tracein_src, RCC_CFGR, 0, 3), }; /* Oscillary clock configuration */ struct stm32_osc_clk { const char *name; const char *parent; u32 gate_offset; u8 bit_idx; u8 bit_rdy; u32 flags; }; #define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\ {\ .name = _name,\ .parent = _parent,\ .gate_offset = _gate_offset,\ .bit_idx = _bit_idx,\ .bit_rdy = _bit_rdy,\ .flags = _flags,\ } #define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\ OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0) static const struct stm32_osc_clk stm32_oclk[] __initconst = { OSC_CLKF("hsi_ck", "hsidiv", RCC_CR, 0, 2, CLK_IGNORE_UNUSED), OSC_CLKF("hsi_ker", "hsidiv", RCC_CR, 1, 2, CLK_IGNORE_UNUSED), OSC_CLKF("csi_ck", "clk-csi", RCC_CR, 7, 8, CLK_IGNORE_UNUSED), OSC_CLKF("csi_ker", "clk-csi", RCC_CR, 9, 8, CLK_IGNORE_UNUSED), OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR, 12, 13, CLK_IGNORE_UNUSED), OSC_CLKF("lsi_ck", "clk-lsi", RCC_CSR, 0, 1, CLK_IGNORE_UNUSED), }; /* PLL configuration */ struct st32h7_pll_cfg { u8 bit_idx; u32 offset_divr; u8 bit_frac_en; u32 offset_frac; u8 divm; }; struct stm32_pll_data { const char *name; const char *parent_name; unsigned long flags; const struct st32h7_pll_cfg *cfg; }; static const struct st32h7_pll_cfg stm32h7_pll1 = { .bit_idx = 24, .offset_divr = RCC_PLL1DIVR, .bit_frac_en = 0, .offset_frac = RCC_PLL1FRACR, .divm = 4, }; static const struct st32h7_pll_cfg stm32h7_pll2 = { .bit_idx = 26, .offset_divr = RCC_PLL2DIVR, .bit_frac_en = 4, .offset_frac = RCC_PLL2FRACR, .divm = 12, }; static const struct st32h7_pll_cfg stm32h7_pll3 = { .bit_idx = 28, .offset_divr = RCC_PLL3DIVR, .bit_frac_en = 8, .offset_frac = RCC_PLL3FRACR, .divm = 20, }; static const struct stm32_pll_data stm32_pll[] = { { "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 }, { "vco2", "pllsrc", 0, &stm32h7_pll2 }, { "vco3", "pllsrc", 0, &stm32h7_pll3 }, }; struct stm32_fractional_divider { void __iomem *mreg; u8 mshift; u8 mwidth; u32 mmask; void __iomem *nreg; u8 nshift; u8 nwidth; void __iomem *freg_status; u8 freg_bit; void __iomem *freg_value; u8 fshift; u8 fwidth; u8 flags; struct clk_hw hw; spinlock_t *lock; }; struct stm32_pll_obj { spinlock_t *lock; struct stm32_fractional_divider div; struct stm32_ready_gate rgate; struct clk_hw hw; }; #define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw) static int pll_is_enabled(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); struct clk_hw *_hw = &clk_elem->rgate.gate.hw; __clk_hw_set_clk(_hw, hw); return ready_gate_clk_ops.is_enabled(_hw); } static int pll_enable(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); struct clk_hw *_hw = &clk_elem->rgate.gate.hw; __clk_hw_set_clk(_hw, hw); return ready_gate_clk_ops.enable(_hw); } static void pll_disable(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); struct clk_hw *_hw = &clk_elem->rgate.gate.hw; __clk_hw_set_clk(_hw, hw); ready_gate_clk_ops.disable(_hw); } static int pll_frac_is_enabled(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); struct stm32_fractional_divider *fd = &clk_elem->div; return (readl(fd->freg_status) >> fd->freg_bit) & 0x01; } static unsigned long pll_read_frac(struct clk_hw *hw) { struct stm32_pll_obj *clk_elem = to_pll(hw); struct stm32_fractional_divider *fd = &clk_elem->div; return (readl(fd->freg_value) >> fd->fshift) & GENMASK(fd->fwidth - 1, 0); } static unsigned long pll_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct stm32_pll_obj *clk_elem = to_pll(hw); struct stm32_fractional_divider *fd = &clk_elem->div; unsigned long m, n; u32 val, mask; u64 rate, rate1 = 0; val = readl(fd->mreg); mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift; m = (val & mask) >> fd->mshift; val = readl(fd->nreg); mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift; n = ((val & mask) >> fd->nshift) + 1; if (!n || !m) return parent_rate; rate = (u64)parent_rate * n; do_div(rate, m); if (pll_frac_is_enabled(hw)) { val = pll_read_frac(hw); rate1 = (u64)parent_rate * (u64)val; do_div(rate1, (m * 8191)); } return rate + rate1; } static const struct clk_ops pll_ops = { .enable = pll_enable, .disable = pll_disable, .is_enabled = pll_is_enabled, .recalc_rate = pll_fd_recalc_rate, }; static struct clk_hw *clk_register_stm32_pll(struct device *dev, const char *name, const char *parent, unsigned long flags, const struct st32h7_pll_cfg *cfg, spinlock_t *lock) { struct stm32_pll_obj *pll; struct clk_init_data init = { NULL }; struct clk_hw *hw; int ret; struct stm32_fractional_divider *div = NULL; struct stm32_ready_gate *rgate; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &pll_ops; init.flags = flags; init.parent_names = &parent; init.num_parents = 1; pll->hw.init = &init; hw = &pll->hw; rgate = &pll->rgate; rgate->bit_rdy = cfg->bit_idx + 1; rgate->gate.lock = lock; rgate->gate.reg = base + RCC_CR; rgate->gate.bit_idx = cfg->bit_idx; div = &pll->div; div->flags = 0; div->mreg = base + RCC_PLLCKSELR; div->mshift = cfg->divm; div->mwidth = 6; div->nreg = base + cfg->offset_divr; div->nshift = 0; div->nwidth = 9; div->freg_status = base + RCC_PLLCFGR; div->freg_bit = cfg->bit_frac_en; div->freg_value = base + cfg->offset_frac; div->fshift = 3; div->fwidth = 13; div->lock = lock; ret = clk_hw_register(dev, hw); if (ret) { kfree(pll); hw = ERR_PTR(ret); } return hw; } /* ODF CLOCKS */ static unsigned long odf_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return clk_divider_ops.recalc_rate(hw, parent_rate); } static long odf_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { return clk_divider_ops.round_rate(hw, rate, prate); } static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_hw *hwp; int pll_status; int ret; hwp = clk_hw_get_parent(hw); pll_status = pll_is_enabled(hwp); if (pll_status) pll_disable(hwp); ret = clk_divider_ops.set_rate(hw, rate, parent_rate); if (pll_status) pll_enable(hwp); return ret; } static const struct clk_ops odf_divider_ops = { .recalc_rate = odf_divider_recalc_rate, .round_rate = odf_divider_round_rate, .set_rate = odf_divider_set_rate, }; static int odf_gate_enable(struct clk_hw *hw) { struct clk_hw *hwp; int pll_status; int ret; if (clk_gate_ops.is_enabled(hw)) return 0; hwp = clk_hw_get_parent(hw); pll_status = pll_is_enabled(hwp); if (pll_status) pll_disable(hwp); ret = clk_gate_ops.enable(hw); if (pll_status) pll_enable(hwp); return ret; } static void odf_gate_disable(struct clk_hw *hw) { struct clk_hw *hwp; int pll_status; if (!clk_gate_ops.is_enabled(hw)) return; hwp = clk_hw_get_parent(hw); pll_status = pll_is_enabled(hwp); if (pll_status) pll_disable(hwp); clk_gate_ops.disable(hw); if (pll_status) pll_enable(hwp); } static const struct clk_ops odf_gate_ops = { .enable = odf_gate_enable, .disable = odf_gate_disable, .is_enabled = clk_gate_is_enabled, }; static struct composite_clk_gcfg odf_clk_gcfg = { M_CFG_DIV(&odf_divider_ops, 0), M_CFG_GATE(&odf_gate_ops, 0), }; #define M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\ _rate_shift, _rate_width, _flags)\ {\ .mux = NULL,\ .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\ .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\ .name = _name,\ .parent_name = &(const char *) {_parent},\ .num_parents = 1,\ .flags = _flags,\ } #define M_ODF(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\ _rate_shift, _rate_width)\ M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\ _rate_shift, _rate_width, 0)\ static const struct composite_clk_cfg stm32_odf[3][3] = { { M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR, 9, 7, CLK_IGNORE_UNUSED), M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7, CLK_IGNORE_UNUSED), M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7, CLK_IGNORE_UNUSED), }, { M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR, 9, 7), M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7), M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7), }, { M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR, 9, 7), M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7), M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7), } }; /* PERIF CLOCKS */ struct pclk_t { u32 gate_offset; u8 bit_idx; const char *name; const char *parent; u32 flags; }; #define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\ {\ .gate_offset = _gate_offset,\ .bit_idx = _bit_idx,\ .name = _name,\ .parent = _parent,\ .flags = _flags,\ } #define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\ PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0) static const struct pclk_t pclk[] = { PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"), PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"), PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"), PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"), PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"), PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"), PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"), PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"), PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"), PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"), PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"), PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"), PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"), PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"), PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"), PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"), PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"), PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"), PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"), PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"), PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"), PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"), PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"), PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"), PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"), PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"), PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"), PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"), PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"), PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"), PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"), PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"), PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"), PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"), PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"), PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"), PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"), PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"), PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"), PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"), PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"), PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"), PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"), PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"), PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"), PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"), PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"), PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"), PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"), PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"), PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"), PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"), PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"), PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"), PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"), PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"), PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"), PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"), PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"), PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"), PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"), PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"), }; /* KERNEL CLOCKS */ #define KER_CLKF(_gate_offset, _bit_idx,\ _mux_offset, _mux_shift, _mux_width,\ _name, _parent_name,\ _flags) \ { \ .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\ .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\ .name = _name, \ .parent_name = _parent_name, \ .num_parents = ARRAY_SIZE(_parent_name),\ .flags = _flags,\ } #define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\ _name, _parent_name) \ KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\ _name, _parent_name, 0)\ #define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\ _name, _parent_name,\ _flags) \ { \ .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\ .mux = NULL,\ .name = _name, \ .parent_name = _parent_name, \ .num_parents = 1,\ .flags = _flags,\ } static const struct composite_clk_cfg kclk[] = { KER_CLK(RCC_AHB3ENR, 16, RCC_D1CCIPR, 16, 1, "sdmmc1", sdmmc_src), KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR, 4, 2, "quadspi", qspi_src, CLK_IGNORE_UNUSED), KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR, 0, 2, "fmc", fmc_src, CLK_IGNORE_UNUSED), KER_CLK(RCC_AHB1ENR, 27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src), KER_CLK(RCC_AHB1ENR, 25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src), KER_CLK(RCC_AHB1ENR, 5, RCC_D3CCIPR, 16, 2, "adc12", adc_src), KER_CLK(RCC_AHB2ENR, 9, RCC_D1CCIPR, 16, 1, "sdmmc2", sdmmc_src), KER_CLK(RCC_AHB2ENR, 6, RCC_D2CCIP2R, 8, 2, "rng", rng_src), KER_CLK(RCC_AHB4ENR, 24, RCC_D3CCIPR, 16, 2, "adc3", adc_src), KER_CLKF(RCC_APB3ENR, 4, RCC_D1CCIPR, 8, 1, "dsi", dsi_src, CLK_SET_RATE_PARENT), KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT), KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R, 0, 3, "usart8", usart_src2), KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R, 0, 3, "usart7", usart_src2), KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src), KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1), KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1), KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1), KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R, 0, 3, "uart5", usart_src2), KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R, 0, 3, "uart4", usart_src2), KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R, 0, 3, "usart3", usart_src2), KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R, 0, 3, "usart2", usart_src2), KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src), KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1), KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1), KER_CLK(RCC_APB1LENR, 9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1), KER_CLK(RCC_APB1HENR, 8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src), KER_CLK(RCC_APB1HENR, 2, RCC_D2CCIP1R, 31, 1, "swp", swp_src), KER_CLK(RCC_APB2ENR, 29, RCC_CFGR, 14, 1, "hrtim", hrtim_src), KER_CLK(RCC_APB2ENR, 28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src), KER_CLKF(RCC_APB2ENR, 24, RCC_D2CCIP1R, 6, 3, "sai3", sai_src, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT), KER_CLKF(RCC_APB2ENR, 23, RCC_D2CCIP1R, 6, 3, "sai2", sai_src, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT), KER_CLKF(RCC_APB2ENR, 22, RCC_D2CCIP1R, 0, 3, "sai1", sai_src, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT), KER_CLK(RCC_APB2ENR, 20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2), KER_CLK(RCC_APB2ENR, 13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2), KER_CLK(RCC_APB2ENR, 12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1), KER_CLK(RCC_APB2ENR, 5, RCC_D2CCIP2R, 3, 3, "usart6", usart_src1), KER_CLK(RCC_APB2ENR, 4, RCC_D2CCIP2R, 3, 3, "usart1", usart_src1), KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 24, 3, "sai4b", sai_src), KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 21, 3, "sai4a", sai_src), KER_CLK(RCC_APB4ENR, 12, RCC_D3CCIPR, 13, 3, "lptim5", lptim_src2), KER_CLK(RCC_APB4ENR, 11, RCC_D3CCIPR, 13, 3, "lptim4", lptim_src2), KER_CLK(RCC_APB4ENR, 10, RCC_D3CCIPR, 13, 3, "lptim3", lptim_src2), KER_CLK(RCC_APB4ENR, 9, RCC_D3CCIPR, 10, 3, "lptim2", lptim_src2), KER_CLK(RCC_APB4ENR, 7, RCC_D3CCIPR, 8, 2, "i2c4", i2c_src2), KER_CLK(RCC_APB4ENR, 5, RCC_D3CCIPR, 28, 3, "spi6", spi_src3), KER_CLK(RCC_APB4ENR, 3, RCC_D3CCIPR, 0, 3, "lpuart1", lpuart1_src), }; static struct composite_clk_gcfg kernel_clk_cfg = { M_CFG_MUX(NULL, 0), M_CFG_GATE(NULL, 0), }; /* RTC clock */ /* * RTC & LSE registers are protected against parasitic write access. * PWR_CR_DBP bit must be set to enable write access to RTC registers. */ /* STM32_PWR_CR */ #define PWR_CR 0x00 /* STM32_PWR_CR bit field */ #define PWR_CR_DBP BIT(8) static struct composite_clk_gcfg rtc_clk_cfg = { M_CFG_MUX(NULL, 0), M_CFG_GATE(NULL, 0), }; static const struct composite_clk_cfg rtc_clk = KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src); /* Micro-controller output clock */ static struct composite_clk_gcfg mco_clk_cfg = { M_CFG_MUX(NULL, 0), M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO), }; #define M_MCO_F(_name, _parents, _mux_offset, _mux_shift, _mux_width,\ _rate_offset, _rate_shift, _rate_width,\ _flags)\ {\ .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\ .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\ .gate = NULL,\ .name = _name,\ .parent_name = _parents,\ .num_parents = ARRAY_SIZE(_parents),\ .flags = _flags,\ } static const struct composite_clk_cfg mco_clk[] = { M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0), M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0), }; static void __init stm32h7_rcc_init(struct device_node *np) { struct clk_hw_onecell_data *clk_data; struct composite_cfg c_cfg; int n; const char *hse_clk, *lse_clk, *i2s_clk; struct regmap *pdrm; clk_data = kzalloc(struct_size(clk_data, hws, STM32H7_MAX_CLKS), GFP_KERNEL); if (!clk_data) return; clk_data->num = STM32H7_MAX_CLKS; hws = clk_data->hws; for (n = 0; n < STM32H7_MAX_CLKS; n++) hws[n] = ERR_PTR(-ENOENT); /* get RCC base @ from DT */ base = of_iomap(np, 0); if (!base) { pr_err("%pOFn: unable to map resource", np); goto err_free_clks; } pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); if (IS_ERR(pdrm)) pr_warn("%s: Unable to get syscfg\n", __func__); else /* In any case disable backup domain write protection * and will never be enabled. * Needed by LSE & RTC clocks. */ regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP); /* Put parent names from DT */ hse_clk = of_clk_get_parent_name(np, 0); lse_clk = of_clk_get_parent_name(np, 1); i2s_clk = of_clk_get_parent_name(np, 2); sai_src[3] = i2s_clk; spi_src1[3] = i2s_clk; /* Register Internal oscillators */ clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000); clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000); clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000); clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000); /* This clock is coming from outside. Frequencies unknown */ hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL, 0, 0); hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0, base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO, &stm32rcc_lock); hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0, base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &stm32rcc_lock); /* Mux system clocks */ for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++) hws[MCLK_BANK + n] = clk_hw_register_mux(NULL, stm32_mclk[n].name, stm32_mclk[n].parents, stm32_mclk[n].num_parents, stm32_mclk[n].flags, stm32_mclk[n].offset + base, stm32_mclk[n].shift, stm32_mclk[n].width, 0, &stm32rcc_lock); register_core_and_bus_clocks(); /* Oscillary clocks */ for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++) hws[OSC_BANK + n] = clk_register_ready_gate(NULL, stm32_oclk[n].name, stm32_oclk[n].parent, stm32_oclk[n].gate_offset + base, stm32_oclk[n].bit_idx, stm32_oclk[n].bit_rdy, stm32_oclk[n].flags, &stm32rcc_lock); hws[HSE_CK] = clk_register_ready_gate(NULL, "hse_ck", hse_clk, RCC_CR + base, 16, 17, 0, &stm32rcc_lock); hws[LSE_CK] = clk_register_ready_gate(NULL, "lse_ck", lse_clk, RCC_BDCR + base, 0, 1, 0, &stm32rcc_lock); hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL, "csi_ker_div122", "csi_ker", 0, 1, 122); /* PLLs */ for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) { int odf; /* Register the VCO */ clk_register_stm32_pll(NULL, stm32_pll[n].name, stm32_pll[n].parent_name, stm32_pll[n].flags, stm32_pll[n].cfg, &stm32rcc_lock); /* Register the 3 output dividers */ for (odf = 0; odf < 3; odf++) { int idx = n * 3 + odf; get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf], &c_cfg, &stm32rcc_lock); hws[ODF_BANK + idx] = clk_hw_register_composite(NULL, stm32_odf[n][odf].name, stm32_odf[n][odf].parent_name, stm32_odf[n][odf].num_parents, c_cfg.mux_hw, c_cfg.mux_ops, c_cfg.div_hw, c_cfg.div_ops, c_cfg.gate_hw, c_cfg.gate_ops, stm32_odf[n][odf].flags); } } /* Peripheral clocks */ for (n = 0; n < ARRAY_SIZE(pclk); n++) hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name, pclk[n].parent, pclk[n].flags, base + pclk[n].gate_offset, pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock); /* Kernel clocks */ for (n = 0; n < ARRAY_SIZE(kclk); n++) { get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg, &stm32rcc_lock); hws[KERN_BANK + n] = clk_hw_register_composite(NULL, kclk[n].name, kclk[n].parent_name, kclk[n].num_parents, c_cfg.mux_hw, c_cfg.mux_ops, c_cfg.div_hw, c_cfg.div_ops, c_cfg.gate_hw, c_cfg.gate_ops, kclk[n].flags); } /* RTC clock (default state is off) */ clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0); get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock); hws[RTC_CK] = clk_hw_register_composite(NULL, rtc_clk.name, rtc_clk.parent_name, rtc_clk.num_parents, c_cfg.mux_hw, c_cfg.mux_ops, c_cfg.div_hw, c_cfg.div_ops, c_cfg.gate_hw, c_cfg.gate_ops, rtc_clk.flags); /* Micro-controller clocks */ for (n = 0; n < ARRAY_SIZE(mco_clk); n++) { get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg, &stm32rcc_lock); hws[MCO_BANK + n] = clk_hw_register_composite(NULL, mco_clk[n].name, mco_clk[n].parent_name, mco_clk[n].num_parents, c_cfg.mux_hw, c_cfg.mux_ops, c_cfg.div_hw, c_cfg.div_ops, c_cfg.gate_hw, c_cfg.gate_ops, mco_clk[n].flags); } of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); return; err_free_clks: kfree(clk_data); } /* The RCC node is a clock and reset controller, and these * functionalities are supported by different drivers that * matches the same compatible strings. */ CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);