/* * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor * * Copyright 2014 Peter Meerwald * * This file is subject to the terms and conditions of version 2 of * the GNU General Public License. See the file COPYING in the main * directory of this archive for more details. * * 7-bit I2C slave address 0x23 * * TODO: IR LED characteristics */ #include #include #include #include #include #include #include #include #include #include #include #include #define LTR501_DRV_NAME "ltr501" #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ #define LTR501_PS_CONTR 0x81 /* PS operation mode */ #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/ #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/ #define LTR501_PART_ID 0x86 #define LTR501_MANUFAC_ID 0x87 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */ #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */ #define LTR501_ALS_PS_STATUS 0x8c #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */ #define LTR501_INTR 0x8f /* output mode, polarity, mode */ #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */ #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */ #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */ #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */ #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */ #define LTR501_MAX_REG 0x9f #define LTR501_ALS_CONTR_SW_RESET BIT(2) #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2)) #define LTR501_CONTR_PS_GAIN_SHIFT 2 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3) #define LTR501_CONTR_ACTIVE BIT(1) #define LTR501_STATUS_ALS_INTR BIT(3) #define LTR501_STATUS_ALS_RDY BIT(2) #define LTR501_STATUS_PS_INTR BIT(1) #define LTR501_STATUS_PS_RDY BIT(0) #define LTR501_PS_DATA_MASK 0x7ff #define LTR501_PS_THRESH_MASK 0x7ff #define LTR501_ALS_THRESH_MASK 0xffff #define LTR501_ALS_DEF_PERIOD 500000 #define LTR501_PS_DEF_PERIOD 100000 #define LTR501_REGMAP_NAME "ltr501_regmap" static const int int_time_mapping[] = {100000, 50000, 200000, 400000}; static const struct reg_field reg_field_it = REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4); static const struct reg_field reg_field_als_intr = REG_FIELD(LTR501_INTR, 0, 0); static const struct reg_field reg_field_ps_intr = REG_FIELD(LTR501_INTR, 1, 1); static const struct reg_field reg_field_als_rate = REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2); static const struct reg_field reg_field_ps_rate = REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3); static const struct reg_field reg_field_als_prst = REG_FIELD(LTR501_INTR_PRST, 0, 3); static const struct reg_field reg_field_ps_prst = REG_FIELD(LTR501_INTR_PRST, 4, 7); struct ltr501_samp_table { int freq_val; /* repetition frequency in micro HZ*/ int time_val; /* repetition rate in micro seconds */ }; #define LTR501_RESERVED_GAIN -1 enum { ltr501 = 0, ltr559, ltr301, }; struct ltr501_gain { int scale; int uscale; }; static struct ltr501_gain ltr501_als_gain_tbl[] = { {1, 0}, {0, 5000}, }; static struct ltr501_gain ltr559_als_gain_tbl[] = { {1, 0}, {0, 500000}, {0, 250000}, {0, 125000}, {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, {0, 20000}, {0, 10000}, }; static struct ltr501_gain ltr501_ps_gain_tbl[] = { {1, 0}, {0, 250000}, {0, 125000}, {0, 62500}, }; static struct ltr501_gain ltr559_ps_gain_tbl[] = { {0, 62500}, /* x16 gain */ {0, 31250}, /* x32 gain */ {0, 15625}, /* bits X1 are for x64 gain */ {0, 15624}, }; struct ltr501_chip_info { u8 partid; struct ltr501_gain *als_gain; int als_gain_tbl_size; struct ltr501_gain *ps_gain; int ps_gain_tbl_size; u8 als_mode_active; u8 als_gain_mask; u8 als_gain_shift; struct iio_chan_spec const *channels; const int no_channels; const struct iio_info *info; const struct iio_info *info_no_irq; }; struct ltr501_data { struct i2c_client *client; struct mutex lock_als, lock_ps; struct ltr501_chip_info *chip_info; u8 als_contr, ps_contr; int als_period, ps_period; /* period in micro seconds */ struct regmap *regmap; struct regmap_field *reg_it; struct regmap_field *reg_als_intr; struct regmap_field *reg_ps_intr; struct regmap_field *reg_als_rate; struct regmap_field *reg_ps_rate; struct regmap_field *reg_als_prst; struct regmap_field *reg_ps_prst; }; static const struct ltr501_samp_table ltr501_als_samp_table[] = { {20000000, 50000}, {10000000, 100000}, {5000000, 200000}, {2000000, 500000}, {1000000, 1000000}, {500000, 2000000}, {500000, 2000000}, {500000, 2000000} }; static const struct ltr501_samp_table ltr501_ps_samp_table[] = { {20000000, 50000}, {14285714, 70000}, {10000000, 100000}, {5000000, 200000}, {2000000, 500000}, {1000000, 1000000}, {500000, 2000000}, {500000, 2000000}, {500000, 2000000} }; static unsigned int ltr501_match_samp_freq(const struct ltr501_samp_table *tab, int len, int val, int val2) { int i, freq; freq = val * 1000000 + val2; for (i = 0; i < len; i++) { if (tab[i].freq_val == freq) return i; } return -EINVAL; } static int ltr501_als_read_samp_freq(struct ltr501_data *data, int *val, int *val2) { int ret, i; ret = regmap_field_read(data->reg_als_rate, &i); if (ret < 0) return ret; if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) return -EINVAL; *val = ltr501_als_samp_table[i].freq_val / 1000000; *val2 = ltr501_als_samp_table[i].freq_val % 1000000; return IIO_VAL_INT_PLUS_MICRO; } static int ltr501_ps_read_samp_freq(struct ltr501_data *data, int *val, int *val2) { int ret, i; ret = regmap_field_read(data->reg_ps_rate, &i); if (ret < 0) return ret; if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) return -EINVAL; *val = ltr501_ps_samp_table[i].freq_val / 1000000; *val2 = ltr501_ps_samp_table[i].freq_val % 1000000; return IIO_VAL_INT_PLUS_MICRO; } static int ltr501_als_write_samp_freq(struct ltr501_data *data, int val, int val2) { int i, ret; i = ltr501_match_samp_freq(ltr501_als_samp_table, ARRAY_SIZE(ltr501_als_samp_table), val, val2); if (i < 0) return i; mutex_lock(&data->lock_als); ret = regmap_field_write(data->reg_als_rate, i); mutex_unlock(&data->lock_als); return ret; } static int ltr501_ps_write_samp_freq(struct ltr501_data *data, int val, int val2) { int i, ret; i = ltr501_match_samp_freq(ltr501_ps_samp_table, ARRAY_SIZE(ltr501_ps_samp_table), val, val2); if (i < 0) return i; mutex_lock(&data->lock_ps); ret = regmap_field_write(data->reg_ps_rate, i); mutex_unlock(&data->lock_ps); return ret; } static int ltr501_als_read_samp_period(struct ltr501_data *data, int *val) { int ret, i; ret = regmap_field_read(data->reg_als_rate, &i); if (ret < 0) return ret; if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) return -EINVAL; *val = ltr501_als_samp_table[i].time_val; return IIO_VAL_INT; } static int ltr501_ps_read_samp_period(struct ltr501_data *data, int *val) { int ret, i; ret = regmap_field_read(data->reg_ps_rate, &i); if (ret < 0) return ret; if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) return -EINVAL; *val = ltr501_ps_samp_table[i].time_val; return IIO_VAL_INT; } static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask) { int tries = 100; int ret, status; while (tries--) { ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); if (ret < 0) return ret; if ((status & drdy_mask) == drdy_mask) return 0; msleep(25); } dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n"); return -EIO; } static int ltr501_set_it_time(struct ltr501_data *data, int it) { int ret, i, index = -1, status; for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) { if (int_time_mapping[i] == it) { index = i; break; } } /* Make sure integ time index is valid */ if (index < 0) return -EINVAL; ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); if (ret < 0) return ret; if (status & LTR501_CONTR_ALS_GAIN_MASK) { /* * 200 ms and 400 ms integ time can only be * used in dynamic range 1 */ if (index > 1) return -EINVAL; } else /* 50 ms integ time can only be used in dynamic range 2 */ if (index == 1) return -EINVAL; return regmap_field_write(data->reg_it, index); } /* read int time in micro seconds */ static int ltr501_read_it_time(struct ltr501_data *data, int *val, int *val2) { int ret, index; ret = regmap_field_read(data->reg_it, &index); if (ret < 0) return ret; /* Make sure integ time index is valid */ if (index < 0 || index >= ARRAY_SIZE(int_time_mapping)) return -EINVAL; *val2 = int_time_mapping[index]; *val = 0; return IIO_VAL_INT_PLUS_MICRO; } static int ltr501_read_als(struct ltr501_data *data, __le16 buf[2]) { int ret; ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY); if (ret < 0) return ret; /* always read both ALS channels in given order */ return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, buf, 2 * sizeof(__le16)); } static int ltr501_read_ps(struct ltr501_data *data) { int ret, status; ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY); if (ret < 0) return ret; ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, &status, 2); if (ret < 0) return ret; return status; } static int ltr501_read_intr_prst(struct ltr501_data *data, enum iio_chan_type type, int *val2) { int ret, samp_period, prst; switch (type) { case IIO_INTENSITY: ret = regmap_field_read(data->reg_als_prst, &prst); if (ret < 0) return ret; ret = ltr501_als_read_samp_period(data, &samp_period); if (ret < 0) return ret; *val2 = samp_period * prst; return IIO_VAL_INT_PLUS_MICRO; case IIO_PROXIMITY: ret = regmap_field_read(data->reg_ps_prst, &prst); if (ret < 0) return ret; ret = ltr501_ps_read_samp_period(data, &samp_period); if (ret < 0) return ret; *val2 = samp_period * prst; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } return -EINVAL; } static int ltr501_write_intr_prst(struct ltr501_data *data, enum iio_chan_type type, int val, int val2) { int ret, samp_period, new_val; unsigned long period; if (val < 0 || val2 < 0) return -EINVAL; /* period in microseconds */ period = ((val * 1000000) + val2); switch (type) { case IIO_INTENSITY: ret = ltr501_als_read_samp_period(data, &samp_period); if (ret < 0) return ret; /* period should be atleast equal to sampling period */ if (period < samp_period) return -EINVAL; new_val = DIV_ROUND_UP(period, samp_period); if (new_val < 0 || new_val > 0x0f) return -EINVAL; mutex_lock(&data->lock_als); ret = regmap_field_write(data->reg_als_prst, new_val); mutex_unlock(&data->lock_als); if (ret >= 0) data->als_period = period; return ret; case IIO_PROXIMITY: ret = ltr501_ps_read_samp_period(data, &samp_period); if (ret < 0) return ret; /* period should be atleast equal to rate */ if (period < samp_period) return -EINVAL; new_val = DIV_ROUND_UP(period, samp_period); if (new_val < 0 || new_val > 0x0f) return -EINVAL; mutex_lock(&data->lock_ps); ret = regmap_field_write(data->reg_ps_prst, new_val); mutex_unlock(&data->lock_ps); if (ret >= 0) data->ps_period = period; return ret; default: return -EINVAL; } return -EINVAL; } static const struct iio_event_spec ltr501_als_event_spec[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD), }, }; static const struct iio_event_spec ltr501_pxs_event_spec[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD), }, }; #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \ _evspec, _evsize) { \ .type = IIO_INTENSITY, \ .modified = 1, \ .address = (_addr), \ .channel2 = (_mod), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = (_shared), \ .scan_index = (_idx), \ .scan_type = { \ .sign = 'u', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ .event_spec = _evspec,\ .num_event_specs = _evsize,\ } static const struct iio_chan_spec ltr501_channels[] = { LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, ltr501_als_event_spec, ARRAY_SIZE(ltr501_als_event_spec)), LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SAMP_FREQ), NULL, 0), { .type = IIO_PROXIMITY, .address = LTR501_PS_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 2, .scan_type = { .sign = 'u', .realbits = 11, .storagebits = 16, .endianness = IIO_CPU, }, .event_spec = ltr501_pxs_event_spec, .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec), }, IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct iio_chan_spec ltr301_channels[] = { LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, ltr501_als_event_spec, ARRAY_SIZE(ltr501_als_event_spec)), LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SAMP_FREQ), NULL, 0), IIO_CHAN_SOFT_TIMESTAMP(2), }; static int ltr501_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ltr501_data *data = iio_priv(indio_dev); __le16 buf[2]; int ret, i; switch (mask) { case IIO_CHAN_INFO_RAW: if (iio_buffer_enabled(indio_dev)) return -EBUSY; switch (chan->type) { case IIO_INTENSITY: mutex_lock(&data->lock_als); ret = ltr501_read_als(data, buf); mutex_unlock(&data->lock_als); if (ret < 0) return ret; *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ? buf[0] : buf[1]); return IIO_VAL_INT; case IIO_PROXIMITY: mutex_lock(&data->lock_ps); ret = ltr501_read_ps(data); mutex_unlock(&data->lock_ps); if (ret < 0) return ret; *val = ret & LTR501_PS_DATA_MASK; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_INTENSITY: i = (data->als_contr & data->chip_info->als_gain_mask) >> data->chip_info->als_gain_shift; *val = data->chip_info->als_gain[i].scale; *val2 = data->chip_info->als_gain[i].uscale; return IIO_VAL_INT_PLUS_MICRO; case IIO_PROXIMITY: i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >> LTR501_CONTR_PS_GAIN_SHIFT; *val = data->chip_info->ps_gain[i].scale; *val2 = data->chip_info->ps_gain[i].uscale; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_INT_TIME: switch (chan->type) { case IIO_INTENSITY: return ltr501_read_it_time(data, val, val2); default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: switch (chan->type) { case IIO_INTENSITY: return ltr501_als_read_samp_freq(data, val, val2); case IIO_PROXIMITY: return ltr501_ps_read_samp_freq(data, val, val2); default: return -EINVAL; } } return -EINVAL; } static int ltr501_get_gain_index(struct ltr501_gain *gain, int size, int val, int val2) { int i; for (i = 0; i < size; i++) if (val == gain[i].scale && val2 == gain[i].uscale) return i; return -1; } static int ltr501_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ltr501_data *data = iio_priv(indio_dev); int i, ret, freq_val, freq_val2; struct ltr501_chip_info *info = data->chip_info; if (iio_buffer_enabled(indio_dev)) return -EBUSY; switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_INTENSITY: i = ltr501_get_gain_index(info->als_gain, info->als_gain_tbl_size, val, val2); if (i < 0) return -EINVAL; data->als_contr &= ~info->als_gain_mask; data->als_contr |= i << info->als_gain_shift; return regmap_write(data->regmap, LTR501_ALS_CONTR, data->als_contr); case IIO_PROXIMITY: i = ltr501_get_gain_index(info->ps_gain, info->ps_gain_tbl_size, val, val2); if (i < 0) return -EINVAL; data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK; data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT; return regmap_write(data->regmap, LTR501_PS_CONTR, data->ps_contr); default: return -EINVAL; } case IIO_CHAN_INFO_INT_TIME: switch (chan->type) { case IIO_INTENSITY: if (val != 0) return -EINVAL; mutex_lock(&data->lock_als); i = ltr501_set_it_time(data, val2); mutex_unlock(&data->lock_als); return i; default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: switch (chan->type) { case IIO_INTENSITY: ret = ltr501_als_read_samp_freq(data, &freq_val, &freq_val2); if (ret < 0) return ret; ret = ltr501_als_write_samp_freq(data, val, val2); if (ret < 0) return ret; /* update persistence count when changing frequency */ ret = ltr501_write_intr_prst(data, chan->type, 0, data->als_period); if (ret < 0) return ltr501_als_write_samp_freq(data, freq_val, freq_val2); return ret; case IIO_PROXIMITY: ret = ltr501_ps_read_samp_freq(data, &freq_val, &freq_val2); if (ret < 0) return ret; ret = ltr501_ps_write_samp_freq(data, val, val2); if (ret < 0) return ret; /* update persistence count when changing frequency */ ret = ltr501_write_intr_prst(data, chan->type, 0, data->ps_period); if (ret < 0) return ltr501_ps_write_samp_freq(data, freq_val, freq_val2); return ret; default: return -EINVAL; } } return -EINVAL; } static int ltr501_read_thresh(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct ltr501_data *data = iio_priv(indio_dev); int ret, thresh_data; switch (chan->type) { case IIO_INTENSITY: switch (dir) { case IIO_EV_DIR_RISING: ret = regmap_bulk_read(data->regmap, LTR501_ALS_THRESH_UP, &thresh_data, 2); if (ret < 0) return ret; *val = thresh_data & LTR501_ALS_THRESH_MASK; return IIO_VAL_INT; case IIO_EV_DIR_FALLING: ret = regmap_bulk_read(data->regmap, LTR501_ALS_THRESH_LOW, &thresh_data, 2); if (ret < 0) return ret; *val = thresh_data & LTR501_ALS_THRESH_MASK; return IIO_VAL_INT; default: return -EINVAL; } case IIO_PROXIMITY: switch (dir) { case IIO_EV_DIR_RISING: ret = regmap_bulk_read(data->regmap, LTR501_PS_THRESH_UP, &thresh_data, 2); if (ret < 0) return ret; *val = thresh_data & LTR501_PS_THRESH_MASK; return IIO_VAL_INT; case IIO_EV_DIR_FALLING: ret = regmap_bulk_read(data->regmap, LTR501_PS_THRESH_LOW, &thresh_data, 2); if (ret < 0) return ret; *val = thresh_data & LTR501_PS_THRESH_MASK; return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } return -EINVAL; } static int ltr501_write_thresh(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct ltr501_data *data = iio_priv(indio_dev); int ret; if (val < 0) return -EINVAL; switch (chan->type) { case IIO_INTENSITY: if (val > LTR501_ALS_THRESH_MASK) return -EINVAL; switch (dir) { case IIO_EV_DIR_RISING: mutex_lock(&data->lock_als); ret = regmap_bulk_write(data->regmap, LTR501_ALS_THRESH_UP, &val, 2); mutex_unlock(&data->lock_als); return ret; case IIO_EV_DIR_FALLING: mutex_lock(&data->lock_als); ret = regmap_bulk_write(data->regmap, LTR501_ALS_THRESH_LOW, &val, 2); mutex_unlock(&data->lock_als); return ret; default: return -EINVAL; } case IIO_PROXIMITY: if (val > LTR501_PS_THRESH_MASK) return -EINVAL; switch (dir) { case IIO_EV_DIR_RISING: mutex_lock(&data->lock_ps); ret = regmap_bulk_write(data->regmap, LTR501_PS_THRESH_UP, &val, 2); mutex_unlock(&data->lock_ps); return ret; case IIO_EV_DIR_FALLING: mutex_lock(&data->lock_ps); ret = regmap_bulk_write(data->regmap, LTR501_PS_THRESH_LOW, &val, 2); mutex_unlock(&data->lock_ps); return ret; default: return -EINVAL; } default: return -EINVAL; } return -EINVAL; } static int ltr501_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { int ret; switch (info) { case IIO_EV_INFO_VALUE: return ltr501_read_thresh(indio_dev, chan, type, dir, info, val, val2); case IIO_EV_INFO_PERIOD: ret = ltr501_read_intr_prst(iio_priv(indio_dev), chan->type, val2); *val = *val2 / 1000000; *val2 = *val2 % 1000000; return ret; default: return -EINVAL; } return -EINVAL; } static int ltr501_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { switch (info) { case IIO_EV_INFO_VALUE: if (val2 != 0) return -EINVAL; return ltr501_write_thresh(indio_dev, chan, type, dir, info, val, val2); case IIO_EV_INFO_PERIOD: return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type, val, val2); default: return -EINVAL; } return -EINVAL; } static int ltr501_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct ltr501_data *data = iio_priv(indio_dev); int ret, status; switch (chan->type) { case IIO_INTENSITY: ret = regmap_field_read(data->reg_als_intr, &status); if (ret < 0) return ret; return status; case IIO_PROXIMITY: ret = regmap_field_read(data->reg_ps_intr, &status); if (ret < 0) return ret; return status; default: return -EINVAL; } return -EINVAL; } static int ltr501_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct ltr501_data *data = iio_priv(indio_dev); int ret; /* only 1 and 0 are valid inputs */ if (state != 1 && state != 0) return -EINVAL; switch (chan->type) { case IIO_INTENSITY: mutex_lock(&data->lock_als); ret = regmap_field_write(data->reg_als_intr, state); mutex_unlock(&data->lock_als); return ret; case IIO_PROXIMITY: mutex_lock(&data->lock_ps); ret = regmap_field_write(data->reg_ps_intr, state); mutex_unlock(&data->lock_ps); return ret; default: return -EINVAL; } return -EINVAL; } static ssize_t ltr501_show_proximity_scale_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); struct ltr501_chip_info *info = data->chip_info; ssize_t len = 0; int i; for (i = 0; i < info->ps_gain_tbl_size; i++) { if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN) continue; len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", info->ps_gain[i].scale, info->ps_gain[i].uscale); } buf[len - 1] = '\n'; return len; } static ssize_t ltr501_show_intensity_scale_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); struct ltr501_chip_info *info = data->chip_info; ssize_t len = 0; int i; for (i = 0; i < info->als_gain_tbl_size; i++) { if (info->als_gain[i].scale == LTR501_RESERVED_GAIN) continue; len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", info->als_gain[i].scale, info->als_gain[i].uscale); } buf[len - 1] = '\n'; return len; } static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4"); static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5"); static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO, ltr501_show_proximity_scale_avail, NULL, 0); static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO, ltr501_show_intensity_scale_avail, NULL, 0); static struct attribute *ltr501_attributes[] = { &iio_dev_attr_in_proximity_scale_available.dev_attr.attr, &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, &iio_const_attr_integration_time_available.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL }; static struct attribute *ltr301_attributes[] = { &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, &iio_const_attr_integration_time_available.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group ltr501_attribute_group = { .attrs = ltr501_attributes, }; static const struct attribute_group ltr301_attribute_group = { .attrs = ltr301_attributes, }; static const struct iio_info ltr501_info_no_irq = { .read_raw = ltr501_read_raw, .write_raw = ltr501_write_raw, .attrs = <r501_attribute_group, .driver_module = THIS_MODULE, }; static const struct iio_info ltr501_info = { .read_raw = ltr501_read_raw, .write_raw = ltr501_write_raw, .attrs = <r501_attribute_group, .read_event_value = <r501_read_event, .write_event_value = <r501_write_event, .read_event_config = <r501_read_event_config, .write_event_config = <r501_write_event_config, .driver_module = THIS_MODULE, }; static const struct iio_info ltr301_info_no_irq = { .read_raw = ltr501_read_raw, .write_raw = ltr501_write_raw, .attrs = <r301_attribute_group, .driver_module = THIS_MODULE, }; static const struct iio_info ltr301_info = { .read_raw = ltr501_read_raw, .write_raw = ltr501_write_raw, .attrs = <r301_attribute_group, .read_event_value = <r501_read_event, .write_event_value = <r501_write_event, .read_event_config = <r501_read_event_config, .write_event_config = <r501_write_event_config, .driver_module = THIS_MODULE, }; static struct ltr501_chip_info ltr501_chip_info_tbl[] = { [ltr501] = { .partid = 0x08, .als_gain = ltr501_als_gain_tbl, .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), .ps_gain = ltr501_ps_gain_tbl, .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl), .als_mode_active = BIT(0) | BIT(1), .als_gain_mask = BIT(3), .als_gain_shift = 3, .info = <r501_info, .info_no_irq = <r501_info_no_irq, .channels = ltr501_channels, .no_channels = ARRAY_SIZE(ltr501_channels), }, [ltr559] = { .partid = 0x09, .als_gain = ltr559_als_gain_tbl, .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), .ps_gain = ltr559_ps_gain_tbl, .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl), .als_mode_active = BIT(1), .als_gain_mask = BIT(2) | BIT(3) | BIT(4), .als_gain_shift = 2, .info = <r501_info, .info_no_irq = <r501_info_no_irq, .channels = ltr501_channels, .no_channels = ARRAY_SIZE(ltr501_channels), }, [ltr301] = { .partid = 0x08, .als_gain = ltr501_als_gain_tbl, .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), .als_mode_active = BIT(0) | BIT(1), .als_gain_mask = BIT(3), .als_gain_shift = 3, .info = <r301_info, .info_no_irq = <r301_info_no_irq, .channels = ltr301_channels, .no_channels = ARRAY_SIZE(ltr301_channels), }, }; static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val) { int ret; ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val); if (ret < 0) return ret; return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val); } static irqreturn_t ltr501_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ltr501_data *data = iio_priv(indio_dev); u16 buf[8]; __le16 als_buf[2]; u8 mask = 0; int j = 0; int ret, psdata; memset(buf, 0, sizeof(buf)); /* figure out which data needs to be ready */ if (test_bit(0, indio_dev->active_scan_mask) || test_bit(1, indio_dev->active_scan_mask)) mask |= LTR501_STATUS_ALS_RDY; if (test_bit(2, indio_dev->active_scan_mask)) mask |= LTR501_STATUS_PS_RDY; ret = ltr501_drdy(data, mask); if (ret < 0) goto done; if (mask & LTR501_STATUS_ALS_RDY) { ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, (u8 *)als_buf, sizeof(als_buf)); if (ret < 0) return ret; if (test_bit(0, indio_dev->active_scan_mask)) buf[j++] = le16_to_cpu(als_buf[1]); if (test_bit(1, indio_dev->active_scan_mask)) buf[j++] = le16_to_cpu(als_buf[0]); } if (mask & LTR501_STATUS_PS_RDY) { ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, &psdata, 2); if (ret < 0) goto done; buf[j++] = psdata & LTR501_PS_DATA_MASK; } iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns()); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static irqreturn_t ltr501_interrupt_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct ltr501_data *data = iio_priv(indio_dev); int ret, status; ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); if (ret < 0) { dev_err(&data->client->dev, "irq read int reg failed\n"); return IRQ_HANDLED; } if (status & LTR501_STATUS_ALS_INTR) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), iio_get_time_ns()); if (status & LTR501_STATUS_PS_INTR) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), iio_get_time_ns()); return IRQ_HANDLED; } static int ltr501_init(struct ltr501_data *data) { int ret, status; ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); if (ret < 0) return ret; data->als_contr = ret | data->chip_info->als_mode_active; ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status); if (ret < 0) return ret; data->ps_contr = status | LTR501_CONTR_ACTIVE; ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period); if (ret < 0) return ret; ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period); if (ret < 0) return ret; return ltr501_write_contr(data, data->als_contr, data->ps_contr); } static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case LTR501_ALS_DATA1: case LTR501_ALS_DATA0: case LTR501_ALS_PS_STATUS: case LTR501_PS_DATA: return true; default: return false; } } static struct regmap_config ltr501_regmap_config = { .name = LTR501_REGMAP_NAME, .reg_bits = 8, .val_bits = 8, .max_register = LTR501_MAX_REG, .cache_type = REGCACHE_RBTREE, .volatile_reg = ltr501_is_volatile_reg, }; static int ltr501_powerdown(struct ltr501_data *data) { return ltr501_write_contr(data, data->als_contr & ~data->chip_info->als_mode_active, data->ps_contr & ~LTR501_CONTR_ACTIVE); } static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; *chip_idx = id->driver_data; return dev_name(dev); } static int ltr501_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct ltr501_data *data; struct iio_dev *indio_dev; struct regmap *regmap; int ret, partid, chip_idx = 0; const char *name = NULL; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; regmap = devm_regmap_init_i2c(client, <r501_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "Regmap initialization failed.\n"); return PTR_ERR(regmap); } data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; data->regmap = regmap; mutex_init(&data->lock_als); mutex_init(&data->lock_ps); data->reg_it = devm_regmap_field_alloc(&client->dev, regmap, reg_field_it); if (IS_ERR(data->reg_it)) { dev_err(&client->dev, "Integ time reg field init failed.\n"); return PTR_ERR(data->reg_it); } data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap, reg_field_als_intr); if (IS_ERR(data->reg_als_intr)) { dev_err(&client->dev, "ALS intr mode reg field init failed\n"); return PTR_ERR(data->reg_als_intr); } data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap, reg_field_ps_intr); if (IS_ERR(data->reg_ps_intr)) { dev_err(&client->dev, "PS intr mode reg field init failed.\n"); return PTR_ERR(data->reg_ps_intr); } data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap, reg_field_als_rate); if (IS_ERR(data->reg_als_rate)) { dev_err(&client->dev, "ALS samp rate field init failed.\n"); return PTR_ERR(data->reg_als_rate); } data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap, reg_field_ps_rate); if (IS_ERR(data->reg_ps_rate)) { dev_err(&client->dev, "PS samp rate field init failed.\n"); return PTR_ERR(data->reg_ps_rate); } data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap, reg_field_als_prst); if (IS_ERR(data->reg_als_prst)) { dev_err(&client->dev, "ALS prst reg field init failed\n"); return PTR_ERR(data->reg_als_prst); } data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap, reg_field_ps_prst); if (IS_ERR(data->reg_ps_prst)) { dev_err(&client->dev, "PS prst reg field init failed.\n"); return PTR_ERR(data->reg_ps_prst); } ret = regmap_read(data->regmap, LTR501_PART_ID, &partid); if (ret < 0) return ret; if (id) { name = id->name; chip_idx = id->driver_data; } else if (ACPI_HANDLE(&client->dev)) { name = ltr501_match_acpi_device(&client->dev, &chip_idx); } else { return -ENODEV; } data->chip_info = <r501_chip_info_tbl[chip_idx]; if ((partid >> 4) != data->chip_info->partid) return -ENODEV; indio_dev->dev.parent = &client->dev; indio_dev->info = data->chip_info->info; indio_dev->channels = data->chip_info->channels; indio_dev->num_channels = data->chip_info->no_channels; indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; ret = ltr501_init(data); if (ret < 0) return ret; if (client->irq > 0) { ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, ltr501_interrupt_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "ltr501_thresh_event", indio_dev); if (ret) { dev_err(&client->dev, "request irq (%d) failed\n", client->irq); return ret; } } else { indio_dev->info = data->chip_info->info_no_irq; } ret = iio_triggered_buffer_setup(indio_dev, NULL, ltr501_trigger_handler, NULL); if (ret) goto powerdown_on_error; ret = iio_device_register(indio_dev); if (ret) goto error_unreg_buffer; return 0; error_unreg_buffer: iio_triggered_buffer_cleanup(indio_dev); powerdown_on_error: ltr501_powerdown(data); return ret; } static int ltr501_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); ltr501_powerdown(iio_priv(indio_dev)); return 0; } #ifdef CONFIG_PM_SLEEP static int ltr501_suspend(struct device *dev) { struct ltr501_data *data = iio_priv(i2c_get_clientdata( to_i2c_client(dev))); return ltr501_powerdown(data); } static int ltr501_resume(struct device *dev) { struct ltr501_data *data = iio_priv(i2c_get_clientdata( to_i2c_client(dev))); return ltr501_write_contr(data, data->als_contr, data->ps_contr); } #endif static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume); static const struct acpi_device_id ltr_acpi_match[] = { {"LTER0501", ltr501}, {"LTER0559", ltr559}, {"LTER0301", ltr301}, { }, }; MODULE_DEVICE_TABLE(acpi, ltr_acpi_match); static const struct i2c_device_id ltr501_id[] = { { "ltr501", ltr501}, { "ltr559", ltr559}, { "ltr301", ltr301}, { } }; MODULE_DEVICE_TABLE(i2c, ltr501_id); static struct i2c_driver ltr501_driver = { .driver = { .name = LTR501_DRV_NAME, .pm = <r501_pm_ops, .acpi_match_table = ACPI_PTR(ltr_acpi_match), .owner = THIS_MODULE, }, .probe = ltr501_probe, .remove = ltr501_remove, .id_table = ltr501_id, }; module_i2c_driver(ltr501_driver); MODULE_AUTHOR("Peter Meerwald "); MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver"); MODULE_LICENSE("GPL");