#ifndef MY_ABC_HERE #define MY_ABC_HERE #endif // SPDX-License-Identifier: GPL-2.0 #include "misc.h" #include "ctree.h" #include "block-group.h" #include "space-info.h" #include "disk-io.h" #include "free-space-cache.h" #include "free-space-tree.h" #include "volumes.h" #include "transaction.h" #include "ref-verify.h" #include "sysfs.h" #include "tree-log.h" #include "delalloc-space.h" #include "discard.h" #include "raid56.h" /* * Return target flags in extended format or 0 if restripe for this chunk_type * is not in progress * * Should be called with balance_lock held */ static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) { struct btrfs_balance_control *bctl = fs_info->balance_ctl; u64 target = 0; if (!bctl) return 0; if (flags & BTRFS_BLOCK_GROUP_DATA && bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; } else if (flags & BTRFS_BLOCK_GROUP_METADATA && bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; } return target; } /* * @flags: available profiles in extended format (see ctree.h) * * Return reduced profile in chunk format. If profile changing is in progress * (either running or paused) picks the target profile (if it's already * available), otherwise falls back to plain reducing. */ static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) { u64 num_devices = fs_info->fs_devices->rw_devices; u64 target; u64 raid_type; u64 allowed = 0; /* * See if restripe for this chunk_type is in progress, if so try to * reduce to the target profile */ spin_lock(&fs_info->balance_lock); target = get_restripe_target(fs_info, flags); if (target) { spin_unlock(&fs_info->balance_lock); return extended_to_chunk(target); } spin_unlock(&fs_info->balance_lock); /* First, mask out the RAID levels which aren't possible */ for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { if (num_devices >= btrfs_raid_array[raid_type].devs_min) allowed |= btrfs_raid_array[raid_type].bg_flag; } allowed &= flags; if (allowed & BTRFS_BLOCK_GROUP_RAID6) allowed = BTRFS_BLOCK_GROUP_RAID6; else if (allowed & BTRFS_BLOCK_GROUP_RAID5) allowed = BTRFS_BLOCK_GROUP_RAID5; else if (allowed & BTRFS_BLOCK_GROUP_RAID10) allowed = BTRFS_BLOCK_GROUP_RAID10; else if (allowed & BTRFS_BLOCK_GROUP_RAID1) allowed = BTRFS_BLOCK_GROUP_RAID1; else if (allowed & BTRFS_BLOCK_GROUP_RAID0) allowed = BTRFS_BLOCK_GROUP_RAID0; flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; return extended_to_chunk(flags | allowed); } u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) { unsigned seq; u64 flags; do { flags = orig_flags; seq = read_seqbegin(&fs_info->profiles_lock); if (flags & BTRFS_BLOCK_GROUP_DATA) flags |= fs_info->avail_data_alloc_bits; else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) flags |= fs_info->avail_system_alloc_bits; else if (flags & BTRFS_BLOCK_GROUP_METADATA) flags |= fs_info->avail_metadata_alloc_bits; } while (read_seqretry(&fs_info->profiles_lock, seq)); return btrfs_reduce_alloc_profile(fs_info, flags); } void btrfs_get_block_group(struct btrfs_block_group *cache) { refcount_inc(&cache->refs); } void btrfs_put_block_group(struct btrfs_block_group *cache) { if (refcount_dec_and_test(&cache->refs)) { WARN_ON(cache->pinned > 0); WARN_ON(cache->reserved > 0); /* * A block_group shouldn't be on the discard_list anymore. * Remove the block_group from the discard_list to prevent us * from causing a panic due to NULL pointer dereference. */ if (WARN_ON(!list_empty(&cache->discard_list))) btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, cache); /* * If not empty, someone is still holding mutex of * full_stripe_lock, which can only be released by caller. * And it will definitely cause use-after-free when caller * tries to release full stripe lock. * * No better way to resolve, but only to warn. */ WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); #ifdef MY_ABC_HERE atomic64_dec(&cache->fs_info->block_group_cnt); #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE WARN_ON_ONCE(!RB_EMPTY_NODE(&cache->syno_allocator.bytes_index)); WARN_ON_ONCE(!RB_EMPTY_NODE(&cache->syno_allocator.max_length_index)); WARN_ON_ONCE(!RB_EMPTY_NODE(&cache->syno_allocator.max_length_with_extent_index)); WARN_ON_ONCE(!RB_EMPTY_NODE(&cache->syno_allocator.preload_index)); #endif /* MY_ABC_HERE */ kfree(cache->free_space_ctl); kfree(cache); } } /* * This adds the block group to the fs_info rb tree for the block group cache */ static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, struct btrfs_block_group *block_group) { struct rb_node **p; struct rb_node *parent = NULL; struct btrfs_block_group *cache; ASSERT(block_group->length != 0); spin_lock(&info->block_group_cache_lock); p = &info->block_group_cache_tree.rb_node; while (*p) { parent = *p; cache = rb_entry(parent, struct btrfs_block_group, cache_node); if (block_group->start < cache->start) { p = &(*p)->rb_left; } else if (block_group->start > cache->start) { p = &(*p)->rb_right; } else { spin_unlock(&info->block_group_cache_lock); return -EEXIST; } } rb_link_node(&block_group->cache_node, parent, p); rb_insert_color(&block_group->cache_node, &info->block_group_cache_tree); if (info->first_logical_byte > block_group->start) info->first_logical_byte = block_group->start; spin_unlock(&info->block_group_cache_lock); return 0; } /* * This will return the block group at or after bytenr if contains is 0, else * it will return the block group that contains the bytenr */ static struct btrfs_block_group *block_group_cache_tree_search( struct btrfs_fs_info *info, u64 bytenr, int contains) { struct btrfs_block_group *cache, *ret = NULL; struct rb_node *n; u64 end, start; spin_lock(&info->block_group_cache_lock); n = info->block_group_cache_tree.rb_node; while (n) { cache = rb_entry(n, struct btrfs_block_group, cache_node); end = cache->start + cache->length - 1; start = cache->start; if (bytenr < start) { if (!contains && (!ret || start < ret->start)) ret = cache; n = n->rb_left; } else if (bytenr > start) { if (contains && bytenr <= end) { ret = cache; break; } n = n->rb_right; } else { ret = cache; break; } } if (ret) { btrfs_get_block_group(ret); if (bytenr == 0 && info->first_logical_byte > ret->start) info->first_logical_byte = ret->start; } spin_unlock(&info->block_group_cache_lock); return ret; } /* * Return the block group that starts at or after bytenr */ struct btrfs_block_group *btrfs_lookup_first_block_group( struct btrfs_fs_info *info, u64 bytenr) { return block_group_cache_tree_search(info, bytenr, 0); } /* * Return the block group that contains the given bytenr */ struct btrfs_block_group *btrfs_lookup_block_group( struct btrfs_fs_info *info, u64 bytenr) { return block_group_cache_tree_search(info, bytenr, 1); } struct btrfs_block_group *btrfs_next_block_group( struct btrfs_block_group *cache) { struct btrfs_fs_info *fs_info = cache->fs_info; struct rb_node *node; spin_lock(&fs_info->block_group_cache_lock); /* If our block group was removed, we need a full search. */ if (RB_EMPTY_NODE(&cache->cache_node)) { const u64 next_bytenr = cache->start + cache->length; spin_unlock(&fs_info->block_group_cache_lock); btrfs_put_block_group(cache); cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; } node = rb_next(&cache->cache_node); btrfs_put_block_group(cache); if (node) { cache = rb_entry(node, struct btrfs_block_group, cache_node); btrfs_get_block_group(cache); } else cache = NULL; spin_unlock(&fs_info->block_group_cache_lock); return cache; } bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) { struct btrfs_block_group *bg; bool ret = true; bg = btrfs_lookup_block_group(fs_info, bytenr); if (!bg) return false; spin_lock(&bg->lock); if (bg->ro) ret = false; else atomic_inc(&bg->nocow_writers); spin_unlock(&bg->lock); /* No put on block group, done by btrfs_dec_nocow_writers */ if (!ret) btrfs_put_block_group(bg); return ret; } void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) { struct btrfs_block_group *bg; bg = btrfs_lookup_block_group(fs_info, bytenr); ASSERT(bg); if (atomic_dec_and_test(&bg->nocow_writers)) wake_up_var(&bg->nocow_writers); /* * Once for our lookup and once for the lookup done by a previous call * to btrfs_inc_nocow_writers() */ btrfs_put_block_group(bg); btrfs_put_block_group(bg); } void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) { wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); } void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, const u64 start) { struct btrfs_block_group *bg; bg = btrfs_lookup_block_group(fs_info, start); ASSERT(bg); if (atomic_dec_and_test(&bg->reservations)) wake_up_var(&bg->reservations); btrfs_put_block_group(bg); } void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) { struct btrfs_space_info *space_info = bg->space_info; ASSERT(bg->ro); if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) return; /* * Our block group is read only but before we set it to read only, * some task might have had allocated an extent from it already, but it * has not yet created a respective ordered extent (and added it to a * root's list of ordered extents). * Therefore wait for any task currently allocating extents, since the * block group's reservations counter is incremented while a read lock * on the groups' semaphore is held and decremented after releasing * the read access on that semaphore and creating the ordered extent. */ down_write(&space_info->groups_sem); up_write(&space_info->groups_sem); wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); } struct btrfs_caching_control *btrfs_get_caching_control( struct btrfs_block_group *cache) { struct btrfs_caching_control *ctl; spin_lock(&cache->lock); if (!cache->caching_ctl) { spin_unlock(&cache->lock); return NULL; } ctl = cache->caching_ctl; refcount_inc(&ctl->count); spin_unlock(&cache->lock); return ctl; } void btrfs_put_caching_control(struct btrfs_caching_control *ctl) { if (refcount_dec_and_test(&ctl->count)) kfree(ctl); } /* * When we wait for progress in the block group caching, its because our * allocation attempt failed at least once. So, we must sleep and let some * progress happen before we try again. * * This function will sleep at least once waiting for new free space to show * up, and then it will check the block group free space numbers for our min * num_bytes. Another option is to have it go ahead and look in the rbtree for * a free extent of a given size, but this is a good start. * * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using * any of the information in this block group. */ void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, u64 num_bytes) { struct btrfs_caching_control *caching_ctl; caching_ctl = btrfs_get_caching_control(cache); if (!caching_ctl) return; wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || (cache->free_space_ctl->free_space >= num_bytes)); btrfs_put_caching_control(caching_ctl); } static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, struct btrfs_caching_control *caching_ctl) { wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; } static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) { struct btrfs_caching_control *caching_ctl; int ret; caching_ctl = btrfs_get_caching_control(cache); if (!caching_ctl) return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); btrfs_put_caching_control(caching_ctl); return ret; } #ifdef CONFIG_BTRFS_DEBUG static void fragment_free_space(struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = block_group->fs_info; u64 start = block_group->start; u64 len = block_group->length; u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? fs_info->nodesize : fs_info->sectorsize; u64 step = chunk << 1; while (len > chunk) { btrfs_remove_free_space(block_group, start, chunk); start += step; if (len < step) len = 0; else len -= step; } } #endif /* * This is only called by btrfs_cache_block_group, since we could have freed * extents we need to check the pinned_extents for any extents that can't be * used yet since their free space will be released as soon as the transaction * commits. */ u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) { struct btrfs_fs_info *info = block_group->fs_info; u64 extent_start, extent_end, size, total_added = 0; int ret; while (start < end) { ret = find_first_extent_bit(&info->excluded_extents, start, &extent_start, &extent_end, EXTENT_DIRTY | EXTENT_UPTODATE, NULL); if (ret) break; if (extent_start <= start) { start = extent_end + 1; } else if (extent_start > start && extent_start < end) { size = extent_start - start; total_added += size; ret = btrfs_add_free_space_async_trimmed(block_group, start, size); BUG_ON(ret); /* -ENOMEM or logic error */ start = extent_end + 1; } else { break; } } if (start < end) { size = end - start; total_added += size; ret = btrfs_add_free_space_async_trimmed(block_group, start, size); BUG_ON(ret); /* -ENOMEM or logic error */ } return total_added; } static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) { struct btrfs_block_group *block_group = caching_ctl->block_group; struct btrfs_fs_info *fs_info = block_group->fs_info; struct btrfs_root *extent_root = fs_info->extent_root; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; u64 total_found = 0; u64 last = 0; u32 nritems; int ret; bool wakeup = true; path = btrfs_alloc_path(); if (!path) return -ENOMEM; last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); #ifdef CONFIG_BTRFS_DEBUG /* * If we're fragmenting we don't want to make anybody think we can * allocate from this block group until we've had a chance to fragment * the free space. */ if (btrfs_should_fragment_free_space(block_group)) wakeup = false; #endif /* * We don't want to deadlock with somebody trying to allocate a new * extent for the extent root while also trying to search the extent * root to add free space. So we skip locking and search the commit * root, since its read-only */ path->skip_locking = 1; path->search_commit_root = 1; path->reada = READA_FORWARD; key.objectid = last; key.offset = 0; key.type = BTRFS_EXTENT_ITEM_KEY; next: ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); if (ret < 0) goto out; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); while (1) { if (btrfs_fs_closing(fs_info) > 1) { last = (u64)-1; break; } if (path->slots[0] < nritems) { btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); } else { ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); if (ret) break; if (need_resched() || rwsem_is_contended(&fs_info->commit_root_sem)) { btrfs_release_path(path); up_read(&fs_info->commit_root_sem); mutex_unlock(&caching_ctl->mutex); cond_resched(); mutex_lock(&caching_ctl->mutex); down_read(&fs_info->commit_root_sem); goto next; } ret = btrfs_next_leaf(extent_root, path); if (ret < 0) goto out; if (ret) break; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); continue; } if (key.objectid < last) { key.objectid = last; key.offset = 0; key.type = BTRFS_EXTENT_ITEM_KEY; btrfs_release_path(path); goto next; } if (key.objectid < block_group->start) { path->slots[0]++; continue; } if (key.objectid >= block_group->start + block_group->length) break; if (key.type == BTRFS_EXTENT_ITEM_KEY || key.type == BTRFS_METADATA_ITEM_KEY) { total_found += add_new_free_space(block_group, last, key.objectid); if (key.type == BTRFS_METADATA_ITEM_KEY) last = key.objectid + fs_info->nodesize; else last = key.objectid + key.offset; if (total_found > CACHING_CTL_WAKE_UP) { total_found = 0; if (wakeup) wake_up(&caching_ctl->wait); } } path->slots[0]++; } ret = 0; total_found += add_new_free_space(block_group, last, block_group->start + block_group->length); out: btrfs_free_path(path); return ret; } static noinline void caching_thread(struct btrfs_work *work) { struct btrfs_block_group *block_group; struct btrfs_fs_info *fs_info; struct btrfs_caching_control *caching_ctl; int ret; #ifdef MY_ABC_HERE struct btrfs_space_info *sinfo; #endif /* MY_ABC_HERE */ caching_ctl = container_of(work, struct btrfs_caching_control, work); block_group = caching_ctl->block_group; fs_info = block_group->fs_info; mutex_lock(&caching_ctl->mutex); down_read(&fs_info->commit_root_sem); if (btrfs_test_opt(fs_info, SPACE_CACHE)) { ret = load_free_space_cache(block_group); if (ret == 1) { ret = 0; goto done; } /* * We failed to load the space cache, set ourselves to * CACHE_STARTED and carry on. */ spin_lock(&block_group->lock); block_group->cached = BTRFS_CACHE_STARTED; spin_unlock(&block_group->lock); wake_up(&caching_ctl->wait); } /* * If we are in the transaction that populated the free space tree we * can't actually cache from the free space tree as our commit root and * real root are the same, so we could change the contents of the blocks * while caching. Instead do the slow caching in this case, and after * the transaction has committed we will be safe. */ if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) ret = load_free_space_tree(caching_ctl); else ret = load_extent_tree_free(caching_ctl); done: spin_lock(&block_group->lock); block_group->caching_ctl = NULL; block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; spin_unlock(&block_group->lock); #ifdef MY_ABC_HERE sinfo = block_group->syno_allocator.space_info; spin_lock(&sinfo->syno_allocator.lock); if (!RB_EMPTY_NODE(&block_group->syno_allocator.preload_index)) { rb_erase_cached(&block_group->syno_allocator.preload_index, &sinfo->syno_allocator.preload); RB_CLEAR_NODE(&block_group->syno_allocator.preload_index); } spin_unlock(&sinfo->syno_allocator.lock); /* * If an error occurs, we should relink block_group to the * corresponding position. */ if (ret) btrfs_syno_allocator_relink_block_group(block_group); #endif /* MY_ABC_HERE */ #ifdef CONFIG_BTRFS_DEBUG if (btrfs_should_fragment_free_space(block_group)) { u64 bytes_used; spin_lock(&block_group->space_info->lock); spin_lock(&block_group->lock); bytes_used = block_group->length - block_group->used; block_group->space_info->bytes_used += bytes_used >> 1; spin_unlock(&block_group->lock); spin_unlock(&block_group->space_info->lock); fragment_free_space(block_group); } #endif up_read(&fs_info->commit_root_sem); btrfs_free_excluded_extents(block_group); mutex_unlock(&caching_ctl->mutex); wake_up(&caching_ctl->wait); btrfs_put_caching_control(caching_ctl); btrfs_put_block_group(block_group); } int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) { struct btrfs_fs_info *fs_info = cache->fs_info; struct btrfs_caching_control *caching_ctl = NULL; int ret = 0; caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); if (!caching_ctl) return -ENOMEM; INIT_LIST_HEAD(&caching_ctl->list); mutex_init(&caching_ctl->mutex); init_waitqueue_head(&caching_ctl->wait); caching_ctl->block_group = cache; refcount_set(&caching_ctl->count, 2); btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); spin_lock(&cache->lock); if (cache->cached != BTRFS_CACHE_NO) { kfree(caching_ctl); caching_ctl = cache->caching_ctl; if (caching_ctl) refcount_inc(&caching_ctl->count); spin_unlock(&cache->lock); goto out; } WARN_ON(cache->caching_ctl); cache->caching_ctl = caching_ctl; cache->cached = BTRFS_CACHE_STARTED; cache->has_caching_ctl = 1; spin_unlock(&cache->lock); spin_lock(&fs_info->block_group_cache_lock); refcount_inc(&caching_ctl->count); list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); spin_unlock(&fs_info->block_group_cache_lock); btrfs_get_block_group(cache); #ifdef MY_ABC_HERE if (btrfs_test_opt(fs_info, SYNO_ALLOCATOR)) btrfs_queue_work(fs_info->syno_allocator.caching_workers, &caching_ctl->work); else btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); #else /* MY_ABC_HERE */ btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); #endif /* MY_ABC_HERE */ out: if (wait && caching_ctl) ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); if (caching_ctl) btrfs_put_caching_control(caching_ctl); return ret; } static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) { u64 extra_flags = chunk_to_extended(flags) & BTRFS_EXTENDED_PROFILE_MASK; write_seqlock(&fs_info->profiles_lock); if (flags & BTRFS_BLOCK_GROUP_DATA) fs_info->avail_data_alloc_bits &= ~extra_flags; if (flags & BTRFS_BLOCK_GROUP_METADATA) fs_info->avail_metadata_alloc_bits &= ~extra_flags; if (flags & BTRFS_BLOCK_GROUP_SYSTEM) fs_info->avail_system_alloc_bits &= ~extra_flags; write_sequnlock(&fs_info->profiles_lock); } /* * Clear incompat bits for the following feature(s): * * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group * in the whole filesystem * * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups */ static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) { bool found_raid56 = false; bool found_raid1c34 = false; if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || (flags & BTRFS_BLOCK_GROUP_RAID1C3) || (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { struct list_head *head = &fs_info->space_info; struct btrfs_space_info *sinfo; list_for_each_entry_rcu(sinfo, head, list) { down_read(&sinfo->groups_sem); if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) found_raid56 = true; if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) found_raid56 = true; if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) found_raid1c34 = true; if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) found_raid1c34 = true; up_read(&sinfo->groups_sem); } if (!found_raid56) btrfs_clear_fs_incompat(fs_info, RAID56); if (!found_raid1c34) btrfs_clear_fs_incompat(fs_info, RAID1C34); } } static int remove_block_group_item(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root; struct btrfs_key key; int ret; #ifdef MY_ABC_HERE int err; #endif /* MY_ABC_HERE */ root = fs_info->extent_root; key.objectid = block_group->start; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; key.offset = block_group->length; #ifdef MY_ABC_HERE if (fs_info->block_group_hint_root) { err = btrfs_search_slot(trans, fs_info->block_group_hint_root, &key, path, -1, 1); if (!err) btrfs_del_item(trans, fs_info->block_group_hint_root, path); btrfs_release_path(path); } #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE if (btrfs_syno_block_group_cache_tree_enabled(fs_info)) { ret = btrfs_search_slot(trans, fs_info->block_group_cache_root, &key, path, -1, 1); if (ret > 0) ret = -ENOENT; if (ret < 0) { btrfs_err(fs_info, "Failed to search block group item %llu-%llu from cache tree, err = %d", key.objectid, key.offset, ret); return ret; } ret = btrfs_del_item(trans, fs_info->block_group_cache_root, path); if (ret) { btrfs_err(fs_info, "Failed to remove block group item %llu-%llu from cache tree, err = %d", key.objectid, key.offset, ret); return ret; } btrfs_release_path(path); } #endif /* MY_ABC_HERE */ ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0) ret = -ENOENT; if (ret < 0) return ret; ret = btrfs_del_item(trans, root, path); return ret; } int btrfs_remove_block_group(struct btrfs_trans_handle *trans, u64 group_start, struct extent_map *em) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_path *path; struct btrfs_block_group *block_group; struct btrfs_free_cluster *cluster; struct inode *inode; struct kobject *kobj = NULL; int ret; int index; int factor; struct btrfs_caching_control *caching_ctl = NULL; bool remove_em; bool remove_rsv = false; #ifdef MY_ABC_HERE bool has_metadata_group = false; #endif /* MY_ABC_HERE */ block_group = btrfs_lookup_block_group(fs_info, group_start); BUG_ON(!block_group); BUG_ON(!block_group->ro); trace_btrfs_remove_block_group(block_group); #ifdef MY_ABC_HERE if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) has_metadata_group = true; #endif /* MY_ABC_HERE */ /* * Free the reserved super bytes from this block group before * remove it. */ btrfs_free_excluded_extents(block_group); btrfs_free_ref_tree_range(fs_info, block_group->start, block_group->length); index = btrfs_bg_flags_to_raid_index(block_group->flags); factor = btrfs_bg_type_to_factor(block_group->flags); /* make sure this block group isn't part of an allocation cluster */ cluster = &fs_info->data_alloc_cluster; spin_lock(&cluster->refill_lock); btrfs_return_cluster_to_free_space(block_group, cluster); spin_unlock(&cluster->refill_lock); /* * make sure this block group isn't part of a metadata * allocation cluster */ cluster = &fs_info->meta_alloc_cluster; spin_lock(&cluster->refill_lock); btrfs_return_cluster_to_free_space(block_group, cluster); spin_unlock(&cluster->refill_lock); #ifdef MY_ABC_HERE btrfs_syno_allocator_release_cache_block_group(block_group); btrfs_syno_allocator_remove_block_group(block_group); #endif /* MY_ABC_HERE */ path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } /* * get the inode first so any iput calls done for the io_list * aren't the final iput (no unlinks allowed now) */ inode = lookup_free_space_inode(block_group, path); mutex_lock(&trans->transaction->cache_write_mutex); /* * Make sure our free space cache IO is done before removing the * free space inode */ spin_lock(&trans->transaction->dirty_bgs_lock); if (!list_empty(&block_group->io_list)) { list_del_init(&block_group->io_list); WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); spin_unlock(&trans->transaction->dirty_bgs_lock); btrfs_wait_cache_io(trans, block_group, path); btrfs_put_block_group(block_group); spin_lock(&trans->transaction->dirty_bgs_lock); } if (!list_empty(&block_group->dirty_list)) { list_del_init(&block_group->dirty_list); remove_rsv = true; btrfs_put_block_group(block_group); } spin_unlock(&trans->transaction->dirty_bgs_lock); mutex_unlock(&trans->transaction->cache_write_mutex); ret = btrfs_remove_free_space_inode(trans, inode, block_group); if (ret) goto out; spin_lock(&fs_info->block_group_cache_lock); rb_erase(&block_group->cache_node, &fs_info->block_group_cache_tree); RB_CLEAR_NODE(&block_group->cache_node); /* Once for the block groups rbtree */ btrfs_put_block_group(block_group); if (fs_info->first_logical_byte == block_group->start) fs_info->first_logical_byte = (u64)-1; spin_unlock(&fs_info->block_group_cache_lock); down_write(&block_group->space_info->groups_sem); /* * we must use list_del_init so people can check to see if they * are still on the list after taking the semaphore */ list_del_init(&block_group->list); if (list_empty(&block_group->space_info->block_groups[index])) { kobj = block_group->space_info->block_group_kobjs[index]; block_group->space_info->block_group_kobjs[index] = NULL; clear_avail_alloc_bits(fs_info, block_group->flags); } up_write(&block_group->space_info->groups_sem); clear_incompat_bg_bits(fs_info, block_group->flags); if (kobj) { kobject_del(kobj); kobject_put(kobj); } if (block_group->has_caching_ctl) caching_ctl = btrfs_get_caching_control(block_group); if (block_group->cached == BTRFS_CACHE_STARTED) btrfs_wait_block_group_cache_done(block_group); if (block_group->has_caching_ctl) { spin_lock(&fs_info->block_group_cache_lock); if (!caching_ctl) { struct btrfs_caching_control *ctl; list_for_each_entry(ctl, &fs_info->caching_block_groups, list) if (ctl->block_group == block_group) { caching_ctl = ctl; refcount_inc(&caching_ctl->count); break; } } if (caching_ctl) list_del_init(&caching_ctl->list); spin_unlock(&fs_info->block_group_cache_lock); if (caching_ctl) { /* Once for the caching bgs list and once for us. */ btrfs_put_caching_control(caching_ctl); btrfs_put_caching_control(caching_ctl); } } spin_lock(&trans->transaction->dirty_bgs_lock); WARN_ON(!list_empty(&block_group->dirty_list)); WARN_ON(!list_empty(&block_group->io_list)); spin_unlock(&trans->transaction->dirty_bgs_lock); btrfs_remove_free_space_cache(block_group); spin_lock(&block_group->space_info->lock); list_del_init(&block_group->ro_list); if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { WARN_ON(block_group->space_info->total_bytes < block_group->length); WARN_ON(block_group->space_info->bytes_readonly < block_group->length); WARN_ON(block_group->space_info->disk_total < block_group->length * factor); } block_group->space_info->total_bytes -= block_group->length; block_group->space_info->bytes_readonly -= block_group->length; block_group->space_info->disk_total -= block_group->length * factor; spin_unlock(&block_group->space_info->lock); /* * Remove the free space for the block group from the free space tree * and the block group's item from the extent tree before marking the * block group as removed. This is to prevent races with tasks that * freeze and unfreeze a block group, this task and another task * allocating a new block group - the unfreeze task ends up removing * the block group's extent map before the task calling this function * deletes the block group item from the extent tree, allowing for * another task to attempt to create another block group with the same * item key (and failing with -EEXIST and a transaction abort). */ ret = remove_block_group_free_space(trans, block_group); if (ret) goto out; ret = remove_block_group_item(trans, path, block_group); if (ret < 0) goto out; spin_lock(&block_group->lock); block_group->removed = 1; /* * At this point trimming or scrub can't start on this block group, * because we removed the block group from the rbtree * fs_info->block_group_cache_tree so no one can't find it anymore and * even if someone already got this block group before we removed it * from the rbtree, they have already incremented block_group->frozen - * if they didn't, for the trimming case they won't find any free space * entries because we already removed them all when we called * btrfs_remove_free_space_cache(). * * And we must not remove the extent map from the fs_info->mapping_tree * to prevent the same logical address range and physical device space * ranges from being reused for a new block group. This is needed to * avoid races with trimming and scrub. * * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is * completely transactionless, so while it is trimming a range the * currently running transaction might finish and a new one start, * allowing for new block groups to be created that can reuse the same * physical device locations unless we take this special care. * * There may also be an implicit trim operation if the file system * is mounted with -odiscard. The same protections must remain * in place until the extents have been discarded completely when * the transaction commit has completed. */ remove_em = (atomic_read(&block_group->frozen) == 0); spin_unlock(&block_group->lock); if (remove_em) { struct extent_map_tree *em_tree; em_tree = &fs_info->mapping_tree; write_lock(&em_tree->lock); remove_extent_mapping(em_tree, em); write_unlock(&em_tree->lock); /* once for the tree */ free_extent_map(em); } out: /* Once for the lookup reference */ btrfs_put_block_group(block_group); if (remove_rsv) btrfs_delayed_refs_rsv_release(fs_info, 1); btrfs_free_path(path); #ifdef MY_ABC_HERE if (!ret && has_metadata_group && fs_info->metadata_cache_enable) atomic_inc(&fs_info->syno_metadata_block_group_update_count); #endif /* MY_ABC_HERE */ return ret; } struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( struct btrfs_fs_info *fs_info, const u64 chunk_offset) { struct extent_map_tree *em_tree = &fs_info->mapping_tree; struct extent_map *em; struct map_lookup *map; unsigned int num_items; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, chunk_offset, 1); read_unlock(&em_tree->lock); ASSERT(em && em->start == chunk_offset); /* * We need to reserve 3 + N units from the metadata space info in order * to remove a block group (done at btrfs_remove_chunk() and at * btrfs_remove_block_group()), which are used for: * * 1 unit for adding the free space inode's orphan (located in the tree * of tree roots). * 1 unit for deleting the block group item (located in the extent * tree). * 1 unit for deleting the free space item (located in tree of tree * roots). * N units for deleting N device extent items corresponding to each * stripe (located in the device tree). * * In order to remove a block group we also need to reserve units in the * system space info in order to update the chunk tree (update one or * more device items and remove one chunk item), but this is done at * btrfs_remove_chunk() through a call to check_system_chunk(). */ map = em->map_lookup; num_items = 3 + map->num_stripes; free_extent_map(em); return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, num_items); } /* * Mark block group @cache read-only, so later write won't happen to block * group @cache. * * If @force is not set, this function will only mark the block group readonly * if we have enough free space (1M) in other metadata/system block groups. * If @force is not set, this function will mark the block group readonly * without checking free space. * * NOTE: This function doesn't care if other block groups can contain all the * data in this block group. That check should be done by relocation routine, * not this function. */ static int inc_block_group_ro(struct btrfs_block_group *cache, int force) { struct btrfs_space_info *sinfo = cache->space_info; u64 num_bytes; int ret = -ENOSPC; #ifdef MY_ABC_HERE down_write(&sinfo->syno_allocator.allocation_sem); #endif /* MY_ABC_HERE */ spin_lock(&sinfo->lock); spin_lock(&cache->lock); if (cache->swap_extents) { ret = -ETXTBSY; goto out; } if (cache->ro) { cache->ro++; ret = 0; goto out; } num_bytes = cache->length - cache->reserved - cache->pinned - cache->bytes_super - cache->used; /* * Data never overcommits, even in mixed mode, so do just the straight * check of left over space in how much we have allocated. */ if (force) { ret = 0; } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { u64 sinfo_used = btrfs_space_info_used(sinfo, true); /* * Here we make sure if we mark this bg RO, we still have enough * free space as buffer. */ if (sinfo_used + num_bytes <= sinfo->total_bytes) ret = 0; } else { /* * We overcommit metadata, so we need to do the * btrfs_can_overcommit check here, and we need to pass in * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of * leeway to allow us to mark this block group as read only. */ if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, BTRFS_RESERVE_NO_FLUSH)) ret = 0; } if (!ret) { sinfo->bytes_readonly += num_bytes; cache->ro++; list_add_tail(&cache->ro_list, &sinfo->ro_bgs); } out: spin_unlock(&cache->lock); spin_unlock(&sinfo->lock); if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { btrfs_info(cache->fs_info, "unable to make block group %llu ro", cache->start); btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); } #ifdef MY_ABC_HERE /* * If the block_group is successfully switched to ro, * we should relink block_group to the corresponding position. */ if (!ret) btrfs_syno_allocator_relink_block_group(cache); up_write(&sinfo->syno_allocator.allocation_sem); #endif /* MY_ABC_HERE */ return ret; } static bool clean_pinned_extents(struct btrfs_trans_handle *trans, struct btrfs_block_group *bg) { struct btrfs_fs_info *fs_info = bg->fs_info; struct btrfs_transaction *prev_trans = NULL; const u64 start = bg->start; const u64 end = start + bg->length - 1; int ret; spin_lock(&fs_info->trans_lock); if (trans->transaction->list.prev != &fs_info->trans_list) { prev_trans = list_last_entry(&trans->transaction->list, struct btrfs_transaction, list); refcount_inc(&prev_trans->use_count); } spin_unlock(&fs_info->trans_lock); /* * Hold the unused_bg_unpin_mutex lock to avoid racing with * btrfs_finish_extent_commit(). If we are at transaction N, another * task might be running finish_extent_commit() for the previous * transaction N - 1, and have seen a range belonging to the block * group in pinned_extents before we were able to clear the whole block * group range from pinned_extents. This means that task can lookup for * the block group after we unpinned it from pinned_extents and removed * it, leading to a BUG_ON() at unpin_extent_range(). */ mutex_lock(&fs_info->unused_bg_unpin_mutex); if (prev_trans) { ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, EXTENT_DIRTY); if (ret) goto out; } ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, EXTENT_DIRTY); out: mutex_unlock(&fs_info->unused_bg_unpin_mutex); if (prev_trans) btrfs_put_transaction(prev_trans); return ret == 0; } /* * Process the unused_bgs list and remove any that don't have any allocated * space inside of them. */ void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) { struct btrfs_block_group *block_group; struct btrfs_space_info *space_info; struct btrfs_trans_handle *trans; const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); int ret = 0; if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) return; spin_lock(&fs_info->unused_bgs_lock); while (!list_empty(&fs_info->unused_bgs)) { int trimming; block_group = list_first_entry(&fs_info->unused_bgs, struct btrfs_block_group, bg_list); list_del_init(&block_group->bg_list); space_info = block_group->space_info; if (ret || btrfs_mixed_space_info(space_info)) { btrfs_put_block_group(block_group); continue; } spin_unlock(&fs_info->unused_bgs_lock); btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); mutex_lock(&fs_info->delete_unused_bgs_mutex); /* Don't want to race with allocators so take the groups_sem */ #ifdef MY_ABC_HERE /* * Avoid race with syno_allocation. * Because in syno_allocation, we may release groups_sem when * do chunk allocation, but we are still using the block_group. * So we add checking syno_allocator.refs to avoid the above race. */ #endif /* MY_ABC_HERE */ down_write(&space_info->groups_sem); /* * Async discard moves the final block group discard to be prior * to the unused_bgs code path. Therefore, if it's not fully * trimmed, punt it back to the async discard lists. */ if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && !btrfs_is_free_space_trimmed(block_group)) { trace_btrfs_skip_unused_block_group(block_group); up_write(&space_info->groups_sem); /* Requeue if we failed because of async discard */ btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); goto next; } spin_lock(&block_group->lock); if (block_group->reserved || block_group->pinned || block_group->used || block_group->ro || list_is_singular(&block_group->list) #ifdef MY_ABC_HERE // Do not release reserve block. || block_group->start == fs_info->log_tree_rsv_start #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE || atomic_read(&block_group->syno_allocator.refs) #endif /* MY_ABC_HERE */ ) { /* * We want to bail if we made new allocations or have * outstanding allocations in this block group. We do * the ro check in case balance is currently acting on * this block group. */ trace_btrfs_skip_unused_block_group(block_group); spin_unlock(&block_group->lock); up_write(&space_info->groups_sem); goto next; } spin_unlock(&block_group->lock); /* We don't want to force the issue, only flip if it's ok. */ ret = inc_block_group_ro(block_group, 0); up_write(&space_info->groups_sem); if (ret < 0) { ret = 0; goto next; } /* * Want to do this before we do anything else so we can recover * properly if we fail to join the transaction. */ trans = btrfs_start_trans_remove_block_group(fs_info, block_group->start); if (IS_ERR(trans)) { btrfs_dec_block_group_ro(block_group); ret = PTR_ERR(trans); goto next; } /* * We could have pending pinned extents for this block group, * just delete them, we don't care about them anymore. */ if (!clean_pinned_extents(trans, block_group)) { btrfs_dec_block_group_ro(block_group); goto end_trans; } /* * At this point, the block_group is read only and should fail * new allocations. However, btrfs_finish_extent_commit() can * cause this block_group to be placed back on the discard * lists because now the block_group isn't fully discarded. * Bail here and try again later after discarding everything. */ spin_lock(&fs_info->discard_ctl.lock); if (!list_empty(&block_group->discard_list)) { spin_unlock(&fs_info->discard_ctl.lock); btrfs_dec_block_group_ro(block_group); btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); goto end_trans; } spin_unlock(&fs_info->discard_ctl.lock); /* Reset pinned so btrfs_put_block_group doesn't complain */ spin_lock(&space_info->lock); spin_lock(&block_group->lock); btrfs_space_info_update_bytes_pinned(fs_info, space_info, -block_group->pinned); space_info->bytes_readonly += block_group->pinned; __btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned); block_group->pinned = 0; spin_unlock(&block_group->lock); spin_unlock(&space_info->lock); /* * The normal path here is an unused block group is passed here, * then trimming is handled in the transaction commit path. * Async discard interposes before this to do the trimming * before coming down the unused block group path as trimming * will no longer be done later in the transaction commit path. */ if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) goto flip_async; /* DISCARD can flip during remount */ trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); /* Implicit trim during transaction commit. */ if (trimming) btrfs_freeze_block_group(block_group); /* * Btrfs_remove_chunk will abort the transaction if things go * horribly wrong. */ ret = btrfs_remove_chunk(trans, block_group->start); if (ret) { if (trimming) btrfs_unfreeze_block_group(block_group); goto end_trans; } /* * If we're not mounted with -odiscard, we can just forget * about this block group. Otherwise we'll need to wait * until transaction commit to do the actual discard. */ if (trimming) { spin_lock(&fs_info->unused_bgs_lock); /* * A concurrent scrub might have added us to the list * fs_info->unused_bgs, so use a list_move operation * to add the block group to the deleted_bgs list. */ list_move(&block_group->bg_list, &trans->transaction->deleted_bgs); spin_unlock(&fs_info->unused_bgs_lock); btrfs_get_block_group(block_group); } end_trans: btrfs_end_transaction(trans); next: mutex_unlock(&fs_info->delete_unused_bgs_mutex); btrfs_put_block_group(block_group); spin_lock(&fs_info->unused_bgs_lock); } spin_unlock(&fs_info->unused_bgs_lock); return; flip_async: btrfs_end_transaction(trans); mutex_unlock(&fs_info->delete_unused_bgs_mutex); btrfs_put_block_group(block_group); btrfs_discard_punt_unused_bgs_list(fs_info); } #ifdef MY_ABC_HERE #define READA_BLOCK_GROUP_THREAD_MAX 10 static void reada_root(struct btrfs_root *root) { struct extent_buffer *node; int level; u64 search; u32 nr = 0; u32 nritems; node = btrfs_root_node(root); level = btrfs_header_level(node); if (level == 0) goto out; nritems = btrfs_header_nritems(node); while (nr < nritems) { search = btrfs_node_blockptr(node, nr); readahead_tree_block(root->fs_info, search); nr++; } out: free_extent_buffer(node); } struct btrfs_bg_reada_work { struct btrfs_root *root; struct btrfs_key key; struct btrfs_work work; }; static void btrfs_run_bg_reada_work(struct btrfs_work *work) { struct btrfs_bg_reada_work *reada_work; struct btrfs_path *path; struct btrfs_fs_info *fs_info; reada_work = container_of(work, struct btrfs_bg_reada_work, work); fs_info = reada_work->root->fs_info; path = btrfs_alloc_path(); if (!path) goto out; btrfs_search_slot(NULL, reada_work->root, &reada_work->key, path, 0, 0); btrfs_free_path(path); out: kfree(reada_work); atomic_dec(&fs_info->reada_block_group_threads); } /* * Iteratively use hint_path to search next block group item in hint tree to do readahead. * It will release hint_path if no block group item with greater key in hint tree can be found, * so caller knows he can stop doing readahead. But caller still need to free hint_path itself * to avoid leaking. */ static void btrfs_reada_block_group_item(struct btrfs_fs_info *fs_info, struct btrfs_path *hint_path) { struct btrfs_bg_reada_work *reada_work; struct extent_buffer *leaf; int slot; int i; // We have search all block group items in hint tree. if (!hint_path->nodes[0]) return; for (i = 0; i < READA_BLOCK_GROUP_THREAD_MAX; i++) { if (atomic_read(&fs_info->reada_block_group_threads) >= READA_BLOCK_GROUP_THREAD_MAX) break; slot = hint_path->slots[0]; leaf = hint_path->nodes[0]; reada_work = kmalloc(sizeof(*reada_work), GFP_NOFS); if (!reada_work) goto stop_readahead; reada_work->root = fs_info->extent_root; btrfs_item_key_to_cpu(leaf, &reada_work->key, slot); btrfs_init_work(&reada_work->work, btrfs_run_bg_reada_work, NULL, NULL); btrfs_queue_work(fs_info->bg_reada_workers, &reada_work->work); atomic_inc(&fs_info->reada_block_group_threads); if (slot + 1 < btrfs_header_nritems(leaf)) hint_path->slots[0]++; else if (btrfs_next_leaf(fs_info->block_group_hint_root, hint_path)) goto stop_readahead; } return; stop_readahead: btrfs_release_path(hint_path); return; } #endif /* MY_ABC_HERE */ void btrfs_mark_bg_unused(struct btrfs_block_group *bg) { struct btrfs_fs_info *fs_info = bg->fs_info; #ifdef MY_ABC_HERE if (bg->start == fs_info->log_tree_rsv_start) return; #endif /* MY_ABC_HERE */ spin_lock(&fs_info->unused_bgs_lock); if (list_empty(&bg->bg_list)) { btrfs_get_block_group(bg); trace_btrfs_add_unused_block_group(bg); list_add_tail(&bg->bg_list, &fs_info->unused_bgs); } spin_unlock(&fs_info->unused_bgs_lock); } static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, struct btrfs_path *path) { struct extent_map_tree *em_tree; struct extent_map *em; struct btrfs_block_group_item bg; struct extent_buffer *leaf; int slot; u64 flags; int ret = 0; slot = path->slots[0]; leaf = path->nodes[0]; em_tree = &fs_info->mapping_tree; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, key->objectid, key->offset); read_unlock(&em_tree->lock); if (!em) { btrfs_err(fs_info, "logical %llu len %llu found bg but no related chunk", key->objectid, key->offset); return -ENOENT; } if (em->start != key->objectid || em->len != key->offset) { btrfs_err(fs_info, "block group %llu len %llu mismatch with chunk %llu len %llu", key->objectid, key->offset, em->start, em->len); ret = -EUCLEAN; goto out_free_em; } read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), sizeof(bg)); flags = btrfs_stack_block_group_flags(&bg) & BTRFS_BLOCK_GROUP_TYPE_MASK; if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { btrfs_err(fs_info, "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", key->objectid, key->offset, flags, (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); ret = -EUCLEAN; } out_free_em: free_extent_map(em); return ret; } static int find_first_block_group(struct btrfs_fs_info *fs_info, struct btrfs_path *path, struct btrfs_key *key #ifdef MY_ABC_HERE , struct btrfs_root *block_group_cache_root #endif /* MY_ABC_HERE */ ) { struct btrfs_root *root = fs_info->extent_root; int ret; struct btrfs_key found_key; struct extent_buffer *leaf; int slot; #ifdef MY_ABC_HERE if (block_group_cache_root) root = block_group_cache_root; #endif /* MY_ABC_HERE */ ret = btrfs_search_slot(NULL, root, key, path, 0, 0); if (ret < 0) return ret; while (1) { slot = path->slots[0]; leaf = path->nodes[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto out; break; } btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.objectid >= key->objectid && found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { ret = read_bg_from_eb(fs_info, &found_key, path); break; } path->slots[0]++; } out: return ret; } static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) { u64 extra_flags = chunk_to_extended(flags) & BTRFS_EXTENDED_PROFILE_MASK; write_seqlock(&fs_info->profiles_lock); if (flags & BTRFS_BLOCK_GROUP_DATA) fs_info->avail_data_alloc_bits |= extra_flags; if (flags & BTRFS_BLOCK_GROUP_METADATA) fs_info->avail_metadata_alloc_bits |= extra_flags; if (flags & BTRFS_BLOCK_GROUP_SYSTEM) fs_info->avail_system_alloc_bits |= extra_flags; write_sequnlock(&fs_info->profiles_lock); } /** * btrfs_rmap_block - Map a physical disk address to a list of logical addresses * @chunk_start: logical address of block group * @physical: physical address to map to logical addresses * @logical: return array of logical addresses which map to @physical * @naddrs: length of @logical * @stripe_len: size of IO stripe for the given block group * * Maps a particular @physical disk address to a list of @logical addresses. * Used primarily to exclude those portions of a block group that contain super * block copies. */ EXPORT_FOR_TESTS int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, u64 physical, u64 **logical, int *naddrs, int *stripe_len) { struct extent_map *em; struct map_lookup *map; u64 *buf; u64 bytenr; u64 data_stripe_length; u64 io_stripe_size; int i, nr = 0; int ret = 0; em = btrfs_get_chunk_map(fs_info, chunk_start, 1); if (IS_ERR(em)) return -EIO; map = em->map_lookup; data_stripe_length = em->orig_block_len; io_stripe_size = map->stripe_len; /* For RAID5/6 adjust to a full IO stripe length */ if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) io_stripe_size = map->stripe_len * nr_data_stripes(map); buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); if (!buf) { ret = -ENOMEM; goto out; } for (i = 0; i < map->num_stripes; i++) { bool already_inserted = false; u64 stripe_nr; int j; if (!in_range(physical, map->stripes[i].physical, data_stripe_length)) continue; stripe_nr = physical - map->stripes[i].physical; stripe_nr = div64_u64(stripe_nr, map->stripe_len); if (map->type & BTRFS_BLOCK_GROUP_RAID10) { stripe_nr = stripe_nr * map->num_stripes + i; stripe_nr = div_u64(stripe_nr, map->sub_stripes); } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { stripe_nr = stripe_nr * map->num_stripes + i; } /* * The remaining case would be for RAID56, multiply by * nr_data_stripes(). Alternatively, just use rmap_len below * instead of map->stripe_len */ bytenr = chunk_start + stripe_nr * io_stripe_size; /* Ensure we don't add duplicate addresses */ for (j = 0; j < nr; j++) { if (buf[j] == bytenr) { already_inserted = true; break; } } if (!already_inserted) buf[nr++] = bytenr; } *logical = buf; *naddrs = nr; *stripe_len = io_stripe_size; out: free_extent_map(em); return ret; } static int exclude_super_stripes(struct btrfs_block_group *cache) { struct btrfs_fs_info *fs_info = cache->fs_info; u64 bytenr; u64 *logical; int stripe_len; int i, nr, ret; if (cache->start < BTRFS_SUPER_INFO_OFFSET) { stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; cache->bytes_super += stripe_len; ret = btrfs_add_excluded_extent(fs_info, cache->start, stripe_len); if (ret) return ret; } for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); ret = btrfs_rmap_block(fs_info, cache->start, bytenr, &logical, &nr, &stripe_len); if (ret) return ret; while (nr--) { u64 len = min_t(u64, stripe_len, cache->start + cache->length - logical[nr]); cache->bytes_super += len; ret = btrfs_add_excluded_extent(fs_info, logical[nr], len); if (ret) { kfree(logical); return ret; } } kfree(logical); } return 0; } static void link_block_group(struct btrfs_block_group *cache) { struct btrfs_space_info *space_info = cache->space_info; int index = btrfs_bg_flags_to_raid_index(cache->flags); down_write(&space_info->groups_sem); list_add_tail(&cache->list, &space_info->block_groups[index]); up_write(&space_info->groups_sem); #ifdef MY_ABC_HERE spin_lock(&cache->lock); cache->syno_allocator.initialized = true; spin_unlock(&cache->lock); #endif /* MY_ABC_HERE */ } static struct btrfs_block_group *btrfs_create_block_group_cache( struct btrfs_fs_info *fs_info, u64 start) { struct btrfs_block_group *cache; cache = kzalloc(sizeof(*cache), GFP_NOFS); if (!cache) return NULL; cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), GFP_NOFS); if (!cache->free_space_ctl) { kfree(cache); return NULL; } cache->start = start; cache->fs_info = fs_info; #ifdef MY_ABC_HERE atomic64_inc(&cache->fs_info->block_group_cnt); #endif /* MY_ABC_HERE */ cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; refcount_set(&cache->refs, 1); spin_lock_init(&cache->lock); init_rwsem(&cache->data_rwsem); INIT_LIST_HEAD(&cache->list); INIT_LIST_HEAD(&cache->cluster_list); INIT_LIST_HEAD(&cache->bg_list); INIT_LIST_HEAD(&cache->ro_list); INIT_LIST_HEAD(&cache->discard_list); INIT_LIST_HEAD(&cache->dirty_list); INIT_LIST_HEAD(&cache->io_list); btrfs_init_free_space_ctl(cache, cache->free_space_ctl); atomic_set(&cache->frozen, 0); mutex_init(&cache->free_space_lock); btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); #ifdef MY_ABC_HERE cache->syno_allocator.space_info = NULL; RB_CLEAR_NODE(&cache->syno_allocator.bytes_index); RB_CLEAR_NODE(&cache->syno_allocator.max_length_index); RB_CLEAR_NODE(&cache->syno_allocator.max_length_with_extent_index); RB_CLEAR_NODE(&cache->syno_allocator.preload_index); cache->syno_allocator.last_bytes = 0; cache->syno_allocator.last_max_length = 0; cache->syno_allocator.last_max_length_with_extent = 0; cache->syno_allocator.preload_free_space = 0; cache->syno_allocator.ro = false; cache->syno_allocator.cache_error = false; cache->syno_allocator.removed = false; cache->syno_allocator.initialized = false; atomic_set(&cache->syno_allocator.refs, 0); #endif /* MY_ABC_HERE */ return cache; } /* * Iterate all chunks and verify that each of them has the corresponding block * group */ static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) { struct extent_map_tree *map_tree = &fs_info->mapping_tree; struct extent_map *em; struct btrfs_block_group *bg; u64 start = 0; int ret = 0; while (1) { read_lock(&map_tree->lock); /* * lookup_extent_mapping will return the first extent map * intersecting the range, so setting @len to 1 is enough to * get the first chunk. */ em = lookup_extent_mapping(map_tree, start, 1); read_unlock(&map_tree->lock); if (!em) break; bg = btrfs_lookup_block_group(fs_info, em->start); if (!bg) { btrfs_err(fs_info, "chunk start=%llu len=%llu doesn't have corresponding block group", em->start, em->len); ret = -EUCLEAN; free_extent_map(em); break; } if (bg->start != em->start || bg->length != em->len || (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { btrfs_err(fs_info, "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", em->start, em->len, em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, bg->start, bg->length, bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); ret = -EUCLEAN; free_extent_map(em); btrfs_put_block_group(bg); break; } start = em->start + em->len; free_extent_map(em); btrfs_put_block_group(bg); } return ret; } static void read_block_group_item(struct btrfs_block_group *cache, struct btrfs_path *path, const struct btrfs_key *key) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_block_group_item bgi; int slot = path->slots[0]; cache->length = key->offset; read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), sizeof(bgi)); cache->used = btrfs_stack_block_group_used(&bgi); cache->flags = btrfs_stack_block_group_flags(&bgi); } static int read_one_block_group(struct btrfs_fs_info *info, struct btrfs_path *path, const struct btrfs_key *key, int need_clear) { struct btrfs_block_group *cache; struct btrfs_space_info *space_info; const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); int ret; ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); cache = btrfs_create_block_group_cache(info, key->objectid); if (!cache) return -ENOMEM; read_block_group_item(cache, path, key); set_free_space_tree_thresholds(cache); if (need_clear) { /* * When we mount with old space cache, we need to * set BTRFS_DC_CLEAR and set dirty flag. * * a) Setting 'BTRFS_DC_CLEAR' makes sure that we * truncate the old free space cache inode and * setup a new one. * b) Setting 'dirty flag' makes sure that we flush * the new space cache info onto disk. */ if (btrfs_test_opt(info, SPACE_CACHE)) cache->disk_cache_state = BTRFS_DC_CLEAR; } if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { btrfs_err(info, "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", cache->start); ret = -EINVAL; goto error; } #ifdef MY_ABC_HERE cache->syno_allocator.space_info = btrfs_find_space_info(info, cache->flags); if (!cache->syno_allocator.space_info) { btrfs_err(info, "No space info for %llu", cache->flags); ret = -EINVAL; goto error; } /* avoid null pointer when syno_allocation->btrfs_add_reserved_bytes */ cache->space_info = cache->syno_allocator.space_info; #endif /* MY_ABC_HERE */ /* * We need to exclude the super stripes now so that the space info has * super bytes accounted for, otherwise we'll think we have more space * than we actually do. */ ret = exclude_super_stripes(cache); if (ret) { /* We may have excluded something, so call this just in case. */ btrfs_free_excluded_extents(cache); goto error; } #ifdef MY_ABC_HERE btrfs_syno_allocator_preload_block_group(cache, cache->length - cache->used); btrfs_syno_allocator_relink_block_group(cache); #endif /* MY_ABC_HERE */ /* * Check for two cases, either we are full, and therefore don't need * to bother with the caching work since we won't find any space, or we * are empty, and we can just add all the space in and be done with it. * This saves us _a_lot_ of time, particularly in the full case. */ if (cache->length == cache->used) { cache->cached = BTRFS_CACHE_FINISHED; btrfs_free_excluded_extents(cache); } else if (cache->used == 0) { cache->cached = BTRFS_CACHE_FINISHED; add_new_free_space(cache, cache->start, cache->start + cache->length); btrfs_free_excluded_extents(cache); } ret = btrfs_add_block_group_cache(info, cache); if (ret) { btrfs_remove_free_space_cache(cache); goto error; } trace_btrfs_add_block_group(info, cache, 0); btrfs_update_space_info(info, cache->flags, cache->length, cache->used, cache->bytes_super, &space_info); cache->space_info = space_info; link_block_group(cache); set_avail_alloc_bits(info, cache->flags); #ifdef MY_ABC_HERE if (cache->start == info->log_tree_rsv_start) info->log_tree_rsv_size = cache->length; #endif /* MY_ABC_HERE*/ if (btrfs_chunk_readonly(info, cache->start)) { inc_block_group_ro(cache, 1); } else if (cache->used == 0) { ASSERT(list_empty(&cache->bg_list)); if (btrfs_test_opt(info, DISCARD_ASYNC)) btrfs_discard_queue_work(&info->discard_ctl, cache); else btrfs_mark_bg_unused(cache); } return 0; error: btrfs_put_block_group(cache); return ret; } int btrfs_read_block_groups(struct btrfs_fs_info *info) { struct btrfs_path *path; int ret; struct btrfs_block_group *cache; struct btrfs_space_info *space_info; struct btrfs_key key; int need_clear = 0; u64 cache_gen; #ifdef MY_ABC_HERE struct btrfs_path *hint_path; #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE bool use_cache_tree; struct btrfs_root *block_group_cache_root = NULL; #endif /* MY_ABC_HERE */ key.objectid = 0; key.offset = 0; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; path = btrfs_alloc_path(); if (!path) return -ENOMEM; #ifdef MY_ABC_HERE hint_path = btrfs_alloc_path(); if (!hint_path) { ret = -ENOMEM; goto error; } hint_path->reada = READA_FORWARD_ALWAYS; #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE use_cache_tree = btrfs_syno_block_group_cache_tree_enabled(info); if (use_cache_tree) { block_group_cache_root = info->block_group_cache_root; path->reada = READA_FORWARD_ALWAYS; } #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE if (btrfs_test_opt(info, BLOCK_GROUP_HINT_TREE) #ifdef MY_ABC_HERE && !use_cache_tree #endif /* MY_ABC_HERE */ ) { info->bg_reada_workers = btrfs_alloc_workqueue(info, "bg-reada", WQ_FREEZABLE | WQ_UNBOUND, info->thread_pool_size, 2); reada_root(info->extent_root); if (info->block_group_hint_root) { reada_root(info->block_group_hint_root); ret = btrfs_search_slot(NULL, info->block_group_hint_root, &key, hint_path, 0, 0); if (ret < 0) btrfs_release_path(hint_path); } } #endif /* MY_ABC_HERE */ cache_gen = btrfs_super_cache_generation(info->super_copy); if (btrfs_test_opt(info, SPACE_CACHE) && btrfs_super_generation(info->super_copy) != cache_gen) need_clear = 1; if (btrfs_test_opt(info, CLEAR_CACHE)) need_clear = 1; while (1) { #ifdef MY_ABC_HERE if (info->block_group_hint_root && info->bg_reada_workers #ifdef MY_ABC_HERE && !use_cache_tree #endif /* MY_ABC_HERE */ ) btrfs_reada_block_group_item(info, hint_path); #endif /* MY_ABC_HERE */ ret = find_first_block_group(info, path, &key #ifdef MY_ABC_HERE , block_group_cache_root #endif /* MY_ABC_HERE */ ); if (ret > 0) break; if (ret != 0) goto error; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); ret = read_one_block_group(info, path, &key, need_clear); if (ret < 0) goto error; key.objectid += key.offset; key.offset = 0; btrfs_release_path(path); } btrfs_release_path(path); list_for_each_entry(space_info, &info->space_info, list) { int i; for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { if (list_empty(&space_info->block_groups[i])) continue; cache = list_first_entry(&space_info->block_groups[i], struct btrfs_block_group, list); btrfs_sysfs_add_block_group_type(cache); } if (!(btrfs_get_alloc_profile(info, space_info->flags) & (BTRFS_BLOCK_GROUP_RAID10 | BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID56_MASK | BTRFS_BLOCK_GROUP_DUP))) continue; /* * Avoid allocating from un-mirrored block group if there are * mirrored block groups. */ list_for_each_entry(cache, &space_info->block_groups[BTRFS_RAID_RAID0], list) inc_block_group_ro(cache, 1); list_for_each_entry(cache, &space_info->block_groups[BTRFS_RAID_SINGLE], list) inc_block_group_ro(cache, 1); } btrfs_init_global_block_rsv(info); ret = check_chunk_block_group_mappings(info); error: #ifdef MY_ABC_HERE btrfs_destroy_workqueue(info->bg_reada_workers); info->bg_reada_workers = NULL; btrfs_free_path(hint_path); #endif /* MY_ABC_HERE */ btrfs_free_path(path); return ret; } static int insert_block_group_item(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_block_group_item bgi; struct btrfs_root *root; struct btrfs_key key; #ifdef MY_ABC_HERE int err; #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE int ret; #endif /* MY_ABC_HERE */ spin_lock(&block_group->lock); btrfs_set_stack_block_group_used(&bgi, block_group->used); btrfs_set_stack_block_group_chunk_objectid(&bgi, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_stack_block_group_flags(&bgi, block_group->flags); key.objectid = block_group->start; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; key.offset = block_group->length; spin_unlock(&block_group->lock); #ifdef MY_ABC_HERE if (fs_info->block_group_hint_root) { err = btrfs_insert_item(trans, fs_info->block_group_hint_root, &key, &bgi, sizeof(bgi)); if (err) btrfs_warn(fs_info, "Failed to insert block group item %llu-%llu into hint tree, err = %d", key.objectid, key.offset, err); } #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE if (btrfs_syno_block_group_cache_tree_enabled(fs_info)) { ret = btrfs_insert_item(trans, fs_info->block_group_cache_root, &key, &bgi, sizeof(bgi)); if (ret) { btrfs_err(fs_info, "Failed to insert block group item %llu-%llu into cache tree, err = %d", key.objectid, key.offset, ret); return ret; } } #endif /* MY_ABC_HERE */ root = fs_info->extent_root; return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); } void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_block_group *block_group; int ret = 0; #ifdef MY_ABC_HERE struct btrfs_root *block_group_hint_root; #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE bool has_metadata_group = false; #endif /* MY_ABC_HERE */ if (!trans->can_flush_pending_bgs) return; #ifdef MY_ABC_HERE if (btrfs_test_opt(fs_info, BLOCK_GROUP_HINT_TREE) && !fs_info->block_group_hint_root) { mutex_lock(&fs_info->block_group_hint_tree_mutex); if (!fs_info->block_group_hint_root) { block_group_hint_root = btrfs_create_tree(trans, BTRFS_BLOCK_GROUP_HINT_TREE_OBJECTID); if (!IS_ERR(block_group_hint_root)) { fs_info->block_group_hint_root = block_group_hint_root; } else { btrfs_clear_opt(fs_info->mount_opt, BLOCK_GROUP_HINT_TREE); btrfs_warn(fs_info, "Failed to create block group hint tree"); } } mutex_unlock(&fs_info->block_group_hint_tree_mutex); } #endif /* MY_ABC_HERE */ while (!list_empty(&trans->new_bgs)) { int index; block_group = list_first_entry(&trans->new_bgs, struct btrfs_block_group, bg_list); if (ret) goto next; index = btrfs_bg_flags_to_raid_index(block_group->flags); #ifdef MY_ABC_HERE if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) has_metadata_group = true; #endif /* MY_ABC_HERE */ ret = insert_block_group_item(trans, block_group); if (ret) btrfs_abort_transaction(trans, ret); ret = btrfs_finish_chunk_alloc(trans, block_group->start, block_group->length); if (ret) btrfs_abort_transaction(trans, ret); add_block_group_free_space(trans, block_group); /* * If we restriped during balance, we may have added a new raid * type, so now add the sysfs entries when it is safe to do so. * We don't have to worry about locking here as it's handled in * btrfs_sysfs_add_block_group_type. */ if (block_group->space_info->block_group_kobjs[index] == NULL) btrfs_sysfs_add_block_group_type(block_group); /* Already aborted the transaction if it failed. */ next: btrfs_delayed_refs_rsv_release(fs_info, 1); list_del_init(&block_group->bg_list); } btrfs_trans_release_chunk_metadata(trans); #ifdef MY_ABC_HERE if (!ret && has_metadata_group && fs_info->metadata_cache_enable) atomic_inc(&fs_info->syno_metadata_block_group_update_count); #endif /* MY_ABC_HERE */ } int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, u64 type, u64 chunk_offset, u64 size) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_block_group *cache; int ret; btrfs_set_log_full_commit(trans); cache = btrfs_create_block_group_cache(fs_info, chunk_offset); if (!cache) return -ENOMEM; cache->length = size; set_free_space_tree_thresholds(cache); cache->used = bytes_used; cache->flags = type; cache->cached = BTRFS_CACHE_FINISHED; if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) cache->needs_free_space = 1; #ifdef MY_ABC_HERE cache->syno_allocator.space_info = btrfs_find_space_info(fs_info, cache->flags); if (!cache->syno_allocator.space_info) { btrfs_err(fs_info, "No space info for %llu", cache->flags); btrfs_put_block_group(cache); return -EINVAL; } /* avoid null pointer when syno_allocation->btrfs_add_reserved_bytes */ cache->space_info = cache->syno_allocator.space_info; #endif /* MY_ABC_HERE */ ret = exclude_super_stripes(cache); if (ret) { /* We may have excluded something, so call this just in case */ btrfs_free_excluded_extents(cache); btrfs_put_block_group(cache); return ret; } add_new_free_space(cache, chunk_offset, chunk_offset + size); btrfs_free_excluded_extents(cache); #ifdef CONFIG_BTRFS_DEBUG if (btrfs_should_fragment_free_space(cache)) { u64 new_bytes_used = size - bytes_used; bytes_used += new_bytes_used >> 1; fragment_free_space(cache); } #endif /* * Ensure the corresponding space_info object is created and * assigned to our block group. We want our bg to be added to the rbtree * with its ->space_info set. */ cache->space_info = btrfs_find_space_info(fs_info, cache->flags); ASSERT(cache->space_info); ret = btrfs_add_block_group_cache(fs_info, cache); if (ret) { btrfs_remove_free_space_cache(cache); btrfs_put_block_group(cache); return ret; } /* * Now that our block group has its ->space_info set and is inserted in * the rbtree, update the space info's counters. */ trace_btrfs_add_block_group(fs_info, cache, 1); btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, cache->bytes_super, &cache->space_info); btrfs_update_global_block_rsv(fs_info); link_block_group(cache); list_add_tail(&cache->bg_list, &trans->new_bgs); trans->delayed_ref_updates++; btrfs_update_delayed_refs_rsv(trans); set_avail_alloc_bits(fs_info, type); return 0; } /* * Mark one block group RO, can be called several times for the same block * group. * * @cache: the destination block group * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to * ensure we still have some free space after marking this * block group RO. */ int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, bool do_chunk_alloc) { struct btrfs_fs_info *fs_info = cache->fs_info; struct btrfs_trans_handle *trans; u64 alloc_flags; int ret; again: trans = btrfs_join_transaction(fs_info->extent_root); if (IS_ERR(trans)) return PTR_ERR(trans); /* * we're not allowed to set block groups readonly after the dirty * block groups cache has started writing. If it already started, * back off and let this transaction commit */ mutex_lock(&fs_info->ro_block_group_mutex); if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { u64 transid = trans->transid; mutex_unlock(&fs_info->ro_block_group_mutex); btrfs_end_transaction(trans); ret = btrfs_wait_for_commit(fs_info, transid); if (ret) return ret; goto again; } if (do_chunk_alloc) { /* * If we are changing raid levels, try to allocate a * corresponding block group with the new raid level. */ alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); if (alloc_flags != cache->flags) { ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); /* * ENOSPC is allowed here, we may have enough space * already allocated at the new raid level to carry on */ if (ret == -ENOSPC) ret = 0; if (ret < 0) goto out; } } ret = inc_block_group_ro(cache, 0); if (!do_chunk_alloc || ret == -ETXTBSY) goto unlock_out; if (!ret) goto out; alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); if (ret < 0) goto out; ret = inc_block_group_ro(cache, 0); if (ret == -ETXTBSY) goto unlock_out; out: if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); mutex_lock(&fs_info->chunk_mutex); check_system_chunk(trans, alloc_flags); mutex_unlock(&fs_info->chunk_mutex); } unlock_out: mutex_unlock(&fs_info->ro_block_group_mutex); btrfs_end_transaction(trans); return ret; } void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) { struct btrfs_space_info *sinfo = cache->space_info; u64 num_bytes; BUG_ON(!cache->ro); spin_lock(&sinfo->lock); spin_lock(&cache->lock); if (!--cache->ro) { num_bytes = cache->length - cache->reserved - cache->pinned - cache->bytes_super - cache->used; sinfo->bytes_readonly -= num_bytes; list_del_init(&cache->ro_list); } spin_unlock(&cache->lock); spin_unlock(&sinfo->lock); #ifdef MY_ABC_HERE btrfs_syno_allocator_relink_block_group(cache); #endif /* MY_ABC_HERE */ } static int update_block_group_item(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_block_group *cache) { struct btrfs_fs_info *fs_info = trans->fs_info; int ret; struct btrfs_root *root = fs_info->extent_root; unsigned long bi; struct extent_buffer *leaf; struct btrfs_block_group_item bgi; struct btrfs_key key; key.objectid = cache->start; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; key.offset = cache->length; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret) { if (ret > 0) ret = -ENOENT; goto fail; } leaf = path->nodes[0]; bi = btrfs_item_ptr_offset(leaf, path->slots[0]); btrfs_set_stack_block_group_used(&bgi, cache->used); btrfs_set_stack_block_group_chunk_objectid(&bgi, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_stack_block_group_flags(&bgi, cache->flags); write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); btrfs_mark_buffer_dirty(leaf); #ifdef MY_ABC_HERE if (btrfs_syno_block_group_cache_tree_enabled(fs_info)) { btrfs_release_path(path); ret = btrfs_search_slot(trans, fs_info->block_group_cache_root, &key, path, 0, 1); if (ret) { if (ret > 0) ret = -ENOENT; goto fail; } leaf = path->nodes[0]; bi = btrfs_item_ptr_offset(leaf, path->slots[0]); write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); btrfs_mark_buffer_dirty(leaf); } #endif /* MY_ABC_HERE */ fail: btrfs_release_path(path); return ret; } static int cache_save_setup(struct btrfs_block_group *block_group, struct btrfs_trans_handle *trans, struct btrfs_path *path) { struct btrfs_fs_info *fs_info = block_group->fs_info; struct btrfs_root *root = fs_info->tree_root; struct inode *inode = NULL; struct extent_changeset *data_reserved = NULL; u64 alloc_hint = 0; int dcs = BTRFS_DC_ERROR; u64 num_pages = 0; int retries = 0; int ret = 0; if (!btrfs_test_opt(fs_info, SPACE_CACHE)) return 0; /* * If this block group is smaller than 100 megs don't bother caching the * block group. */ if (block_group->length < (100 * SZ_1M)) { spin_lock(&block_group->lock); block_group->disk_cache_state = BTRFS_DC_WRITTEN; spin_unlock(&block_group->lock); return 0; } if (TRANS_ABORTED(trans)) return 0; again: inode = lookup_free_space_inode(block_group, path); if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { ret = PTR_ERR(inode); btrfs_release_path(path); goto out; } if (IS_ERR(inode)) { BUG_ON(retries); retries++; if (block_group->ro) goto out_free; ret = create_free_space_inode(trans, block_group, path); if (ret) goto out_free; goto again; } /* * We want to set the generation to 0, that way if anything goes wrong * from here on out we know not to trust this cache when we load up next * time. */ BTRFS_I(inode)->generation = 0; ret = btrfs_update_inode(trans, root, inode); if (ret) { /* * So theoretically we could recover from this, simply set the * super cache generation to 0 so we know to invalidate the * cache, but then we'd have to keep track of the block groups * that fail this way so we know we _have_ to reset this cache * before the next commit or risk reading stale cache. So to * limit our exposure to horrible edge cases lets just abort the * transaction, this only happens in really bad situations * anyway. */ btrfs_abort_transaction(trans, ret); goto out_put; } WARN_ON(ret); /* We've already setup this transaction, go ahead and exit */ if (block_group->cache_generation == trans->transid && i_size_read(inode)) { dcs = BTRFS_DC_SETUP; goto out_put; } if (i_size_read(inode) > 0) { ret = btrfs_check_trunc_cache_free_space(fs_info, &fs_info->global_block_rsv); if (ret) goto out_put; ret = btrfs_truncate_free_space_cache(trans, NULL, inode); if (ret) goto out_put; } spin_lock(&block_group->lock); if (block_group->cached != BTRFS_CACHE_FINISHED || !btrfs_test_opt(fs_info, SPACE_CACHE)) { /* * don't bother trying to write stuff out _if_ * a) we're not cached, * b) we're with nospace_cache mount option, * c) we're with v2 space_cache (FREE_SPACE_TREE). */ dcs = BTRFS_DC_WRITTEN; spin_unlock(&block_group->lock); goto out_put; } spin_unlock(&block_group->lock); /* * We hit an ENOSPC when setting up the cache in this transaction, just * skip doing the setup, we've already cleared the cache so we're safe. */ if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { ret = -ENOSPC; goto out_put; } /* * Try to preallocate enough space based on how big the block group is. * Keep in mind this has to include any pinned space which could end up * taking up quite a bit since it's not folded into the other space * cache. */ num_pages = div_u64(block_group->length, SZ_256M); if (!num_pages) num_pages = 1; num_pages *= 16; num_pages *= PAGE_SIZE; ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, num_pages); if (ret) goto out_put; ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, num_pages, num_pages, &alloc_hint); /* * Our cache requires contiguous chunks so that we don't modify a bunch * of metadata or split extents when writing the cache out, which means * we can enospc if we are heavily fragmented in addition to just normal * out of space conditions. So if we hit this just skip setting up any * other block groups for this transaction, maybe we'll unpin enough * space the next time around. */ if (!ret) dcs = BTRFS_DC_SETUP; else if (ret == -ENOSPC) set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); out_put: iput(inode); out_free: btrfs_release_path(path); out: spin_lock(&block_group->lock); if (!ret && dcs == BTRFS_DC_SETUP) block_group->cache_generation = trans->transid; block_group->disk_cache_state = dcs; spin_unlock(&block_group->lock); extent_changeset_free(data_reserved); return ret; } int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_block_group *cache, *tmp; struct btrfs_transaction *cur_trans = trans->transaction; struct btrfs_path *path; if (list_empty(&cur_trans->dirty_bgs) || !btrfs_test_opt(fs_info, SPACE_CACHE)) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* Could add new block groups, use _safe just in case */ list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, dirty_list) { if (cache->disk_cache_state == BTRFS_DC_CLEAR) cache_save_setup(cache, trans, path); } btrfs_free_path(path); return 0; } /* * Transaction commit does final block group cache writeback during a critical * section where nothing is allowed to change the FS. This is required in * order for the cache to actually match the block group, but can introduce a * lot of latency into the commit. * * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. * There's a chance we'll have to redo some of it if the block group changes * again during the commit, but it greatly reduces the commit latency by * getting rid of the easy block groups while we're still allowing others to * join the commit. */ int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_block_group *cache; struct btrfs_transaction *cur_trans = trans->transaction; int ret = 0; int should_put; struct btrfs_path *path = NULL; LIST_HEAD(dirty); struct list_head *io = &cur_trans->io_bgs; int num_started = 0; int loops = 0; #ifdef MY_ABC_HERE unsigned long pre_run_delayed_refs_count; #endif /* MY_ABC_HERE */ spin_lock(&cur_trans->dirty_bgs_lock); if (list_empty(&cur_trans->dirty_bgs)) { spin_unlock(&cur_trans->dirty_bgs_lock); return 0; } list_splice_init(&cur_trans->dirty_bgs, &dirty); spin_unlock(&cur_trans->dirty_bgs_lock); again: /* Make sure all the block groups on our dirty list actually exist */ btrfs_create_pending_block_groups(trans); if (!path) { path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } } /* * cache_write_mutex is here only to save us from balance or automatic * removal of empty block groups deleting this block group while we are * writing out the cache */ mutex_lock(&trans->transaction->cache_write_mutex); while (!list_empty(&dirty)) { bool drop_reserve = true; cache = list_first_entry(&dirty, struct btrfs_block_group, dirty_list); /* * This can happen if something re-dirties a block group that * is already under IO. Just wait for it to finish and then do * it all again */ if (!list_empty(&cache->io_list)) { list_del_init(&cache->io_list); btrfs_wait_cache_io(trans, cache, path); btrfs_put_block_group(cache); } /* * btrfs_wait_cache_io uses the cache->dirty_list to decide if * it should update the cache_state. Don't delete until after * we wait. * * Since we're not running in the commit critical section * we need the dirty_bgs_lock to protect from update_block_group */ spin_lock(&cur_trans->dirty_bgs_lock); list_del_init(&cache->dirty_list); spin_unlock(&cur_trans->dirty_bgs_lock); should_put = 1; cache_save_setup(cache, trans, path); if (cache->disk_cache_state == BTRFS_DC_SETUP) { cache->io_ctl.inode = NULL; ret = btrfs_write_out_cache(trans, cache, path); if (ret == 0 && cache->io_ctl.inode) { num_started++; should_put = 0; /* * The cache_write_mutex is protecting the * io_list, also refer to the definition of * btrfs_transaction::io_bgs for more details */ list_add_tail(&cache->io_list, io); } else { /* * If we failed to write the cache, the * generation will be bad and life goes on */ ret = 0; } } if (!ret) { ret = update_block_group_item(trans, path, cache); /* * Our block group might still be attached to the list * of new block groups in the transaction handle of some * other task (struct btrfs_trans_handle->new_bgs). This * means its block group item isn't yet in the extent * tree. If this happens ignore the error, as we will * try again later in the critical section of the * transaction commit. */ if (ret == -ENOENT) { ret = 0; spin_lock(&cur_trans->dirty_bgs_lock); if (list_empty(&cache->dirty_list)) { list_add_tail(&cache->dirty_list, &cur_trans->dirty_bgs); btrfs_get_block_group(cache); drop_reserve = false; } spin_unlock(&cur_trans->dirty_bgs_lock); } else if (ret) { btrfs_abort_transaction(trans, ret); } } /* If it's not on the io list, we need to put the block group */ if (should_put) btrfs_put_block_group(cache); if (drop_reserve) btrfs_delayed_refs_rsv_release(fs_info, 1); /* * Avoid blocking other tasks for too long. It might even save * us from writing caches for block groups that are going to be * removed. */ mutex_unlock(&trans->transaction->cache_write_mutex); if (ret) goto out; mutex_lock(&trans->transaction->cache_write_mutex); } mutex_unlock(&trans->transaction->cache_write_mutex); /* * Go through delayed refs for all the stuff we've just kicked off * and then loop back (just once) */ #ifdef MY_ABC_HERE if (!ret) { pre_run_delayed_refs_count = min_t(unsigned long, atomic_read(&trans->transaction->delayed_refs.num_entries) * 2, 512); ret = btrfs_run_delayed_refs(trans, pre_run_delayed_refs_count); } #else /* MY_ABC_HERE */ if (!ret) ret = btrfs_run_delayed_refs(trans, 0); #endif /* MY_ABC_HERE */ if (!ret && loops == 0) { loops++; spin_lock(&cur_trans->dirty_bgs_lock); list_splice_init(&cur_trans->dirty_bgs, &dirty); /* * dirty_bgs_lock protects us from concurrent block group * deletes too (not just cache_write_mutex). */ if (!list_empty(&dirty)) { spin_unlock(&cur_trans->dirty_bgs_lock); goto again; } spin_unlock(&cur_trans->dirty_bgs_lock); } out: if (ret < 0) { spin_lock(&cur_trans->dirty_bgs_lock); list_splice_init(&dirty, &cur_trans->dirty_bgs); spin_unlock(&cur_trans->dirty_bgs_lock); btrfs_cleanup_dirty_bgs(cur_trans, fs_info); } btrfs_free_path(path); return ret; } int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_block_group *cache; struct btrfs_transaction *cur_trans = trans->transaction; int ret = 0; int should_put; struct btrfs_path *path; struct list_head *io = &cur_trans->io_bgs; int num_started = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* * Even though we are in the critical section of the transaction commit, * we can still have concurrent tasks adding elements to this * transaction's list of dirty block groups. These tasks correspond to * endio free space workers started when writeback finishes for a * space cache, which run inode.c:btrfs_finish_ordered_io(), and can * allocate new block groups as a result of COWing nodes of the root * tree when updating the free space inode. The writeback for the space * caches is triggered by an earlier call to * btrfs_start_dirty_block_groups() and iterations of the following * loop. * Also we want to do the cache_save_setup first and then run the * delayed refs to make sure we have the best chance at doing this all * in one shot. */ spin_lock(&cur_trans->dirty_bgs_lock); while (!list_empty(&cur_trans->dirty_bgs)) { cache = list_first_entry(&cur_trans->dirty_bgs, struct btrfs_block_group, dirty_list); /* * This can happen if cache_save_setup re-dirties a block group * that is already under IO. Just wait for it to finish and * then do it all again */ if (!list_empty(&cache->io_list)) { spin_unlock(&cur_trans->dirty_bgs_lock); list_del_init(&cache->io_list); btrfs_wait_cache_io(trans, cache, path); btrfs_put_block_group(cache); spin_lock(&cur_trans->dirty_bgs_lock); } /* * Don't remove from the dirty list until after we've waited on * any pending IO */ list_del_init(&cache->dirty_list); spin_unlock(&cur_trans->dirty_bgs_lock); should_put = 1; cache_save_setup(cache, trans, path); if (!ret) ret = btrfs_run_delayed_refs(trans, (unsigned long) -1); if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { cache->io_ctl.inode = NULL; ret = btrfs_write_out_cache(trans, cache, path); if (ret == 0 && cache->io_ctl.inode) { num_started++; should_put = 0; list_add_tail(&cache->io_list, io); } else { /* * If we failed to write the cache, the * generation will be bad and life goes on */ ret = 0; } } if (!ret) { ret = update_block_group_item(trans, path, cache); /* * One of the free space endio workers might have * created a new block group while updating a free space * cache's inode (at inode.c:btrfs_finish_ordered_io()) * and hasn't released its transaction handle yet, in * which case the new block group is still attached to * its transaction handle and its creation has not * finished yet (no block group item in the extent tree * yet, etc). If this is the case, wait for all free * space endio workers to finish and retry. This is a * very rare case so no need for a more efficient and * complex approach. */ if (ret == -ENOENT) { wait_event(cur_trans->writer_wait, atomic_read(&cur_trans->num_writers) == 1); ret = update_block_group_item(trans, path, cache); } if (ret) btrfs_abort_transaction(trans, ret); } /* If its not on the io list, we need to put the block group */ if (should_put) btrfs_put_block_group(cache); btrfs_delayed_refs_rsv_release(fs_info, 1); spin_lock(&cur_trans->dirty_bgs_lock); } spin_unlock(&cur_trans->dirty_bgs_lock); /* * Refer to the definition of io_bgs member for details why it's safe * to use it without any locking */ while (!list_empty(io)) { cache = list_first_entry(io, struct btrfs_block_group, io_list); list_del_init(&cache->io_list); btrfs_wait_cache_io(trans, cache, path); btrfs_put_block_group(cache); } btrfs_free_path(path); return ret; } int btrfs_update_block_group(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, int alloc) { struct btrfs_fs_info *info = trans->fs_info; struct btrfs_block_group *cache = NULL; u64 total = num_bytes; u64 old_val; u64 byte_in_group; int factor; int ret = 0; /* Block accounting for super block */ spin_lock(&info->delalloc_root_lock); old_val = btrfs_super_bytes_used(info->super_copy); if (alloc) old_val += num_bytes; else old_val -= num_bytes; btrfs_set_super_bytes_used(info->super_copy, old_val); spin_unlock(&info->delalloc_root_lock); while (total) { cache = btrfs_lookup_block_group(info, bytenr); if (!cache) { ret = -ENOENT; break; } factor = btrfs_bg_type_to_factor(cache->flags); /* * If this block group has free space cache written out, we * need to make sure to load it if we are removing space. This * is because we need the unpinning stage to actually add the * space back to the block group, otherwise we will leak space. */ if (!alloc && !btrfs_block_group_done(cache)) btrfs_cache_block_group(cache, true); byte_in_group = bytenr - cache->start; WARN_ON(byte_in_group > cache->length); spin_lock(&cache->space_info->lock); spin_lock(&cache->lock); if (btrfs_test_opt(info, SPACE_CACHE) && cache->disk_cache_state < BTRFS_DC_CLEAR) cache->disk_cache_state = BTRFS_DC_CLEAR; old_val = cache->used; num_bytes = min(total, cache->length - byte_in_group); if (alloc) { old_val += num_bytes; cache->used = old_val; cache->reserved -= num_bytes; cache->space_info->bytes_reserved -= num_bytes; cache->space_info->bytes_used += num_bytes; cache->space_info->disk_used += num_bytes * factor; spin_unlock(&cache->lock); spin_unlock(&cache->space_info->lock); } else { old_val -= num_bytes; cache->used = old_val; cache->pinned += num_bytes; btrfs_space_info_update_bytes_pinned(info, cache->space_info, num_bytes); cache->space_info->bytes_used -= num_bytes; cache->space_info->disk_used -= num_bytes * factor; spin_unlock(&cache->lock); spin_unlock(&cache->space_info->lock); __btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes); set_extent_dirty(&trans->transaction->pinned_extents, bytenr, bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); } spin_lock(&trans->transaction->dirty_bgs_lock); if (list_empty(&cache->dirty_list)) { list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); trans->delayed_ref_updates++; btrfs_get_block_group(cache); } spin_unlock(&trans->transaction->dirty_bgs_lock); /* * No longer have used bytes in this block group, queue it for * deletion. We do this after adding the block group to the * dirty list to avoid races between cleaner kthread and space * cache writeout. */ if (!alloc && old_val == 0) { if (!btrfs_test_opt(info, DISCARD_ASYNC)) btrfs_mark_bg_unused(cache); } btrfs_put_block_group(cache); total -= num_bytes; bytenr += num_bytes; } /* Modified block groups are accounted for in the delayed_refs_rsv. */ btrfs_update_delayed_refs_rsv(trans); return ret; } /** * btrfs_add_reserved_bytes - update the block_group and space info counters * @cache: The cache we are manipulating * @ram_bytes: The number of bytes of file content, and will be same to * @num_bytes except for the compress path. * @num_bytes: The number of bytes in question * @delalloc: The blocks are allocated for the delalloc write * * This is called by the allocator when it reserves space. If this is a * reservation and the block group has become read only we cannot make the * reservation and return -EAGAIN, otherwise this function always succeeds. */ int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, u64 ram_bytes, u64 num_bytes, int delalloc) { struct btrfs_space_info *space_info = cache->space_info; int ret = 0; spin_lock(&space_info->lock); spin_lock(&cache->lock); if (cache->ro) { ret = -EAGAIN; } else { cache->reserved += num_bytes; space_info->bytes_reserved += num_bytes; trace_btrfs_space_reservation(cache->fs_info, "space_info", space_info->flags, num_bytes, 1); btrfs_space_info_update_bytes_may_use(cache->fs_info, space_info, -ram_bytes); if (delalloc) cache->delalloc_bytes += num_bytes; /* * Compression can use less space than we reserved, so wake * tickets if that happens */ if (num_bytes < ram_bytes) btrfs_try_granting_tickets(cache->fs_info, space_info); } spin_unlock(&cache->lock); spin_unlock(&space_info->lock); return ret; } /** * btrfs_free_reserved_bytes - update the block_group and space info counters * @cache: The cache we are manipulating * @num_bytes: The number of bytes in question * @delalloc: The blocks are allocated for the delalloc write * * This is called by somebody who is freeing space that was never actually used * on disk. For example if you reserve some space for a new leaf in transaction * A and before transaction A commits you free that leaf, you call this with * reserve set to 0 in order to clear the reservation. */ void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes, int delalloc) { struct btrfs_space_info *space_info = cache->space_info; spin_lock(&space_info->lock); spin_lock(&cache->lock); if (cache->ro) space_info->bytes_readonly += num_bytes; cache->reserved -= num_bytes; space_info->bytes_reserved -= num_bytes; space_info->max_extent_size = 0; if (delalloc) cache->delalloc_bytes -= num_bytes; spin_unlock(&cache->lock); btrfs_try_granting_tickets(cache->fs_info, space_info); spin_unlock(&space_info->lock); } #ifdef MY_ABC_HERE #else /* MY_ABC_HERE */ static void force_metadata_allocation(struct btrfs_fs_info *info) { struct list_head *head = &info->space_info; struct btrfs_space_info *found; list_for_each_entry(found, head, list) { if (found->flags & BTRFS_BLOCK_GROUP_METADATA) found->force_alloc = CHUNK_ALLOC_FORCE; } } #endif /* MY_ABC_HERE */ static int should_alloc_chunk(struct btrfs_fs_info *fs_info, struct btrfs_space_info *sinfo, int force) { u64 bytes_used = btrfs_space_info_used(sinfo, false); u64 thresh; if (force == CHUNK_ALLOC_FORCE) return 1; /* * in limited mode, we want to have some free space up to * about 1% of the FS size. */ if (force == CHUNK_ALLOC_LIMITED) { thresh = btrfs_super_total_bytes(fs_info->super_copy); thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); if (sinfo->total_bytes - bytes_used < thresh) return 1; } if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) return 0; #ifdef MY_ABC_HERE if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA && bytes_used + SZ_2M < div_factor_fine(sinfo->total_bytes, 98)) return 0; #endif /* MY_ABC_HERE */ return 1; } int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) { u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); } /* * If force is CHUNK_ALLOC_FORCE: * - return 1 if it successfully allocates a chunk, * - return errors including -ENOSPC otherwise. * If force is NOT CHUNK_ALLOC_FORCE: * - return 0 if it doesn't need to allocate a new chunk, * - return 1 if it successfully allocates a chunk, * - return errors including -ENOSPC otherwise. */ int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, enum btrfs_chunk_alloc_enum force) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_space_info *space_info; bool wait_for_alloc = false; bool should_alloc = false; int ret = 0; #ifdef MY_ABC_HERE const enum btrfs_chunk_alloc_enum orig_force = force; #endif /* MY_ABC_HERE */ /* Don't re-enter if we're already allocating a chunk */ if (trans->allocating_chunk) return -ENOSPC; space_info = btrfs_find_space_info(fs_info, flags); ASSERT(space_info); do { spin_lock(&space_info->lock); if (force < space_info->force_alloc) force = space_info->force_alloc; should_alloc = should_alloc_chunk(fs_info, space_info, force); if (space_info->full) { /* No more free physical space */ if (should_alloc) ret = -ENOSPC; else ret = 0; spin_unlock(&space_info->lock); return ret; } else if (!should_alloc) { spin_unlock(&space_info->lock); return 0; } else if (space_info->chunk_alloc) { /* * Someone is already allocating, so we need to block * until this someone is finished and then loop to * recheck if we should continue with our allocation * attempt. */ wait_for_alloc = true; spin_unlock(&space_info->lock); mutex_lock(&fs_info->chunk_mutex); mutex_unlock(&fs_info->chunk_mutex); #ifdef MY_ABC_HERE force = orig_force; #endif /* MY_ABC_HERE */ } else { /* Proceed with allocation */ space_info->chunk_alloc = 1; wait_for_alloc = false; spin_unlock(&space_info->lock); } cond_resched(); } while (wait_for_alloc); mutex_lock(&fs_info->chunk_mutex); trans->allocating_chunk = true; /* * If we have mixed data/metadata chunks we want to make sure we keep * allocating mixed chunks instead of individual chunks. */ if (btrfs_mixed_space_info(space_info)) flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); #ifdef MY_ABC_HERE #else /* MY_ABC_HERE */ /* * if we're doing a data chunk, go ahead and make sure that * we keep a reasonable number of metadata chunks allocated in the * FS as well. */ if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { fs_info->data_chunk_allocations++; if (!(fs_info->data_chunk_allocations % fs_info->metadata_ratio)) force_metadata_allocation(fs_info); } #endif /* MY_ABC_HERE */ /* * Check if we have enough space in SYSTEM chunk because we may need * to update devices. */ check_system_chunk(trans, flags); ret = btrfs_alloc_chunk(trans, flags); trans->allocating_chunk = false; #ifdef MY_ABC_HERE if (ret == -ENOSPC && (flags & BTRFS_BLOCK_GROUP_METADATA)) btrfs_warn(fs_info, "ENOSPC, cannot alloc new metadata chunk (flags:0x%llx, Total:%llu Used:%llu)", flags, space_info->total_bytes, space_info->bytes_used); #endif /* MY_ABC_HERE */ spin_lock(&space_info->lock); if (ret < 0) { if (ret == -ENOSPC) space_info->full = 1; else goto out; } else { ret = 1; space_info->max_extent_size = 0; } space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; out: space_info->chunk_alloc = 0; spin_unlock(&space_info->lock); mutex_unlock(&fs_info->chunk_mutex); /* * When we allocate a new chunk we reserve space in the chunk block * reserve to make sure we can COW nodes/leafs in the chunk tree or * add new nodes/leafs to it if we end up needing to do it when * inserting the chunk item and updating device items as part of the * second phase of chunk allocation, performed by * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a * large number of new block groups to create in our transaction * handle's new_bgs list to avoid exhausting the chunk block reserve * in extreme cases - like having a single transaction create many new * block groups when starting to write out the free space caches of all * the block groups that were made dirty during the lifetime of the * transaction. */ if (trans->chunk_bytes_reserved >= (u64)SZ_2M) btrfs_create_pending_block_groups(trans); return ret; } static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) { u64 num_dev; num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; if (!num_dev) num_dev = fs_info->fs_devices->rw_devices; return num_dev; } /* * Reserve space in the system space for allocating or removing a chunk */ void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_space_info *info; u64 left; u64 thresh; int ret = 0; u64 num_devs; /* * Needed because we can end up allocating a system chunk and for an * atomic and race free space reservation in the chunk block reserve. */ lockdep_assert_held(&fs_info->chunk_mutex); info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); spin_lock(&info->lock); left = info->total_bytes - btrfs_space_info_used(info, true); spin_unlock(&info->lock); num_devs = get_profile_num_devs(fs_info, type); /* num_devs device items to update and 1 chunk item to add or remove */ thresh = btrfs_calc_metadata_size(fs_info, num_devs) + btrfs_calc_insert_metadata_size(fs_info, 1); if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", left, thresh, type); btrfs_dump_space_info(fs_info, info, 0, 0); } if (left < thresh) { u64 flags = btrfs_system_alloc_profile(fs_info); /* * Ignore failure to create system chunk. We might end up not * needing it, as we might not need to COW all nodes/leafs from * the paths we visit in the chunk tree (they were already COWed * or created in the current transaction for example). */ ret = btrfs_alloc_chunk(trans, flags); } if (!ret) { ret = btrfs_block_rsv_add(fs_info->chunk_root, &fs_info->chunk_block_rsv, thresh, BTRFS_RESERVE_NO_FLUSH); if (!ret) trans->chunk_bytes_reserved += thresh; } } void btrfs_put_block_group_cache(struct btrfs_fs_info *info) { struct btrfs_block_group *block_group; u64 last = 0; while (1) { struct inode *inode; block_group = btrfs_lookup_first_block_group(info, last); while (block_group) { btrfs_wait_block_group_cache_done(block_group); spin_lock(&block_group->lock); if (block_group->iref) break; spin_unlock(&block_group->lock); block_group = btrfs_next_block_group(block_group); } if (!block_group) { if (last == 0) break; last = 0; continue; } inode = block_group->inode; block_group->iref = 0; block_group->inode = NULL; spin_unlock(&block_group->lock); ASSERT(block_group->io_ctl.inode == NULL); iput(inode); last = block_group->start + block_group->length; btrfs_put_block_group(block_group); } } /* * Must be called only after stopping all workers, since we could have block * group caching kthreads running, and therefore they could race with us if we * freed the block groups before stopping them. */ int btrfs_free_block_groups(struct btrfs_fs_info *info) { struct btrfs_block_group *block_group; struct btrfs_space_info *space_info; struct btrfs_caching_control *caching_ctl; struct rb_node *n; spin_lock(&info->block_group_cache_lock); while (!list_empty(&info->caching_block_groups)) { caching_ctl = list_entry(info->caching_block_groups.next, struct btrfs_caching_control, list); list_del(&caching_ctl->list); btrfs_put_caching_control(caching_ctl); } spin_unlock(&info->block_group_cache_lock); spin_lock(&info->unused_bgs_lock); while (!list_empty(&info->unused_bgs)) { block_group = list_first_entry(&info->unused_bgs, struct btrfs_block_group, bg_list); list_del_init(&block_group->bg_list); btrfs_put_block_group(block_group); } spin_unlock(&info->unused_bgs_lock); spin_lock(&info->block_group_cache_lock); while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { block_group = rb_entry(n, struct btrfs_block_group, cache_node); rb_erase(&block_group->cache_node, &info->block_group_cache_tree); RB_CLEAR_NODE(&block_group->cache_node); spin_unlock(&info->block_group_cache_lock); down_write(&block_group->space_info->groups_sem); list_del(&block_group->list); up_write(&block_group->space_info->groups_sem); /* * We haven't cached this block group, which means we could * possibly have excluded extents on this block group. */ if (block_group->cached == BTRFS_CACHE_NO || block_group->cached == BTRFS_CACHE_ERROR) btrfs_free_excluded_extents(block_group); btrfs_remove_free_space_cache(block_group); ASSERT(block_group->cached != BTRFS_CACHE_STARTED); ASSERT(list_empty(&block_group->dirty_list)); ASSERT(list_empty(&block_group->io_list)); ASSERT(list_empty(&block_group->bg_list)); ASSERT(refcount_read(&block_group->refs) == 1); ASSERT(block_group->swap_extents == 0); btrfs_put_block_group(block_group); spin_lock(&info->block_group_cache_lock); } spin_unlock(&info->block_group_cache_lock); btrfs_release_global_block_rsv(info); while (!list_empty(&info->space_info)) { space_info = list_entry(info->space_info.next, struct btrfs_space_info, list); /* * Do not hide this behind enospc_debug, this is actually * important and indicates a real bug if this happens. */ if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_reserved > 0 || space_info->bytes_may_use > 0)) btrfs_dump_space_info(info, space_info, 0, 0); WARN_ON(space_info->reclaim_size > 0); list_del(&space_info->list); btrfs_sysfs_remove_space_info(space_info); } return 0; } void btrfs_freeze_block_group(struct btrfs_block_group *cache) { atomic_inc(&cache->frozen); } void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = block_group->fs_info; struct extent_map_tree *em_tree; struct extent_map *em; bool cleanup; spin_lock(&block_group->lock); cleanup = (atomic_dec_and_test(&block_group->frozen) && block_group->removed); spin_unlock(&block_group->lock); if (cleanup) { em_tree = &fs_info->mapping_tree; write_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, block_group->start, 1); BUG_ON(!em); /* logic error, can't happen */ remove_extent_mapping(em_tree, em); write_unlock(&em_tree->lock); /* once for us and once for the tree */ free_extent_map(em); free_extent_map(em); /* * We may have left one free space entry and other possible * tasks trimming this block group have left 1 entry each one. * Free them if any. */ __btrfs_remove_free_space_cache(block_group->free_space_ctl); } } #ifdef MY_ABC_HERE int btrfs_reserve_log_tree_bg(struct btrfs_root *root, u64 *rsv_start, u64 *rsv_size) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_space_info *space_info = NULL; struct btrfs_block_group *bg = NULL; struct btrfs_block_group *rsv_bg = NULL; struct btrfs_trans_handle *trans = NULL; struct btrfs_free_cluster *cluster = NULL; u64 flags; int index; int ret; flags = btrfs_metadata_alloc_profile(fs_info); space_info = btrfs_find_space_info(fs_info, flags); if (!space_info) { btrfs_err(fs_info, "No space info for %llu", flags); return -ENOSPC; } index = btrfs_bg_flags_to_raid_index(flags); down_read(&space_info->groups_sem); list_for_each_entry(bg, &space_info->block_groups[index], list) { if (unlikely(bg->ro)) continue; spin_lock(&bg->lock); if (bg->cached == BTRFS_CACHE_FINISHED) { struct btrfs_free_space_ctl *ctl = bg->free_space_ctl; spin_lock(&ctl->tree_lock); if (ctl->free_space == bg->length) { rsv_bg = bg; btrfs_get_block_group(rsv_bg); spin_unlock(&ctl->tree_lock); spin_unlock(&bg->lock); up_read(&space_info->groups_sem); goto set_rsv; } spin_unlock(&ctl->tree_lock); } else if (bg->used == 0) { rsv_bg = bg; btrfs_get_block_group(rsv_bg); spin_unlock(&bg->lock); up_read(&space_info->groups_sem); goto set_rsv; } spin_unlock(&bg->lock); } up_read(&space_info->groups_sem); trans = btrfs_join_transaction(root); if (IS_ERR(trans)) return PTR_ERR(trans); mutex_lock(&fs_info->chunk_mutex); trans->allocating_chunk = true; check_system_chunk(trans, flags); ret = btrfs_alloc_chunk_with_info(trans, flags, rsv_start, rsv_size); trans->allocating_chunk = false; btrfs_end_transaction(trans); mutex_unlock(&fs_info->chunk_mutex); if (ret) return ret; rsv_bg = btrfs_lookup_block_group(fs_info, *rsv_start); if (!rsv_bg) return -ENOENT; set_rsv: // Don't want to race with `delete_unused_bgs`, so take the groups_sem. down_read(&space_info->groups_sem); // Check this block group is still available. if (unlikely(rsv_bg->ro)) { up_read(&space_info->groups_sem); btrfs_put_block_group(rsv_bg); return -EAGAIN; } fs_info->log_tree_rsv_start = *rsv_start = rsv_bg->start; fs_info->log_tree_rsv_size = *rsv_size = rsv_bg->length; up_read(&space_info->groups_sem); btrfs_put_block_group(rsv_bg); // Only make sure we will not make cluster from this block group in the future. cluster = &fs_info->meta_alloc_cluster; spin_lock(&cluster->refill_lock); btrfs_return_cluster_to_free_space(rsv_bg, cluster); spin_unlock(&cluster->refill_lock); return 0; } #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE static int clear_block_group_cache_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_path *path; struct btrfs_key key; int ret; int nr = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->leave_spinning = 1; key.objectid = 0; key.offset = 0; key.type = 0; while (1) { ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; nr = btrfs_header_nritems(path->nodes[0]); if (!nr) break; path->slots[0] = 0; ret = btrfs_del_items(trans, root, path, 0, nr); if (ret) goto out; btrfs_release_path(path); } ret = 0; out: btrfs_free_path(path); return ret; } int btrfs_clear_block_group_cache_tree(struct btrfs_fs_info *fs_info) { int ret; struct btrfs_trans_handle *trans; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *block_group_cache_root = fs_info->block_group_cache_root; trans = btrfs_start_transaction(tree_root, 0); if (IS_ERR(trans)) return PTR_ERR(trans); btrfs_clear_fs_compat(fs_info, BLOCK_GROUP_CACHE_TREE); btrfs_clear_fs_compat(fs_info, BLOCK_GROUP_CACHE_TREE_AUTO); clear_bit(BTRFS_FS_BLOCK_GROUP_CACHE_TREE_BROKEN, &fs_info->flags); fs_info->block_group_cache_root = NULL; ret = clear_block_group_cache_tree(trans, block_group_cache_root); if (ret) goto abort; ret = btrfs_del_root(trans, &block_group_cache_root->root_key); if (ret) goto abort; list_del(&block_group_cache_root->dirty_list); btrfs_tree_lock(block_group_cache_root->node); btrfs_clean_tree_block(block_group_cache_root->node); btrfs_tree_unlock(block_group_cache_root->node); btrfs_free_tree_block(trans, block_group_cache_root, block_group_cache_root->node, 0, 1); btrfs_put_root(block_group_cache_root); return btrfs_commit_transaction(trans); abort: btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); return ret; } int btrfs_create_block_group_cache_tree(struct btrfs_fs_info *fs_info) { int ret; struct btrfs_trans_handle *trans; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *block_group_cache_root; struct btrfs_block_group *block_group; struct rb_node *node; struct btrfs_block_group_item bgi; struct btrfs_key key; trans = btrfs_start_transaction(tree_root, 0); if (IS_ERR(trans)) return PTR_ERR(trans); set_bit(BTRFS_FS_CREATING_BLOCK_GROUP_CACHE_TREE, &fs_info->flags); block_group_cache_root = btrfs_create_tree(trans, BTRFS_BLOCK_GROUP_CACHE_TREE_OBJECTID); if (IS_ERR(block_group_cache_root)) { ret = PTR_ERR(block_group_cache_root); goto abort; } fs_info->block_group_cache_root = block_group_cache_root; node = rb_first(&fs_info->block_group_cache_tree); while (node) { block_group = rb_entry(node, struct btrfs_block_group, cache_node); spin_lock(&block_group->lock); btrfs_set_stack_block_group_used(&bgi, block_group->used); btrfs_set_stack_block_group_chunk_objectid(&bgi, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_stack_block_group_flags(&bgi, block_group->flags); key.objectid = block_group->start; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; key.offset = block_group->length; spin_unlock(&block_group->lock); ret = btrfs_insert_item(trans, block_group_cache_root, &key, &bgi, sizeof(bgi)); if (ret) { btrfs_err(fs_info, "Failed to insert block group item %llu-%llu into cache tree, err = %d\n", key.objectid, key.offset, ret); goto abort; } node = rb_next(node); } btrfs_set_fs_compat(fs_info, BLOCK_GROUP_CACHE_TREE); btrfs_set_fs_compat(fs_info, BLOCK_GROUP_CACHE_TREE_AUTO); clear_bit(BTRFS_FS_CREATING_BLOCK_GROUP_CACHE_TREE, &fs_info->flags); return btrfs_commit_transaction(trans); abort: clear_bit(BTRFS_FS_CREATING_BLOCK_GROUP_CACHE_TREE, &fs_info->flags); btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); return ret; } int btrfs_check_syno_block_group_cache_tree(struct btrfs_fs_info *fs_info) { int ret = -1; struct btrfs_path *path = NULL; struct btrfs_key key; struct btrfs_key found_key; struct extent_map_tree *map_tree = &fs_info->mapping_tree; struct extent_map *chunk_em = NULL; struct extent_buffer *leaf; if (!fs_info->block_group_cache_root) { ret = 0; goto out; } if (btrfs_root_generation(&fs_info->block_group_cache_root->root_item) != btrfs_root_generation(&fs_info->extent_root->root_item)) { btrfs_warn(fs_info, "Failed to generation mismatch block group cache tree [%llu], extent tree [%llu]", btrfs_root_generation(&fs_info->block_group_cache_root->root_item), btrfs_root_generation(&fs_info->extent_root->root_item)); ret = -EUCLEAN; goto out; } key.objectid = 0; key.offset = 0; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } path->reada = READA_FORWARD_ALWAYS; while (1) { read_lock(&map_tree->lock); chunk_em = lookup_extent_mapping(map_tree, key.objectid, -1); read_unlock(&map_tree->lock); ret = find_first_block_group(fs_info, path, &key, fs_info->block_group_cache_root); if (ret < 0) { btrfs_warn(fs_info, "Failed to lookup block group from cache tree, ret %d\n", ret); goto out; } /* check whether it's the end */ if (ret > 0 && !chunk_em) break; /* check whether the two sides are inconsistent */ if (ret || !chunk_em) { if (chunk_em) btrfs_warn(fs_info, "Failed to compare chunk em %llu-%llu\n", chunk_em->start, chunk_em->len); if (!ret) { leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); btrfs_warn(fs_info, "Failed to compare cache block group item %llu-%llu\n", found_key.objectid, found_key.offset); } ret = -EUCLEAN; goto out; } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); btrfs_release_path(path); if (chunk_em->start != found_key.objectid || chunk_em->len != found_key.offset) { btrfs_warn(fs_info, "Failed to compare block group item %llu-%llu from cache tree, chunk em %llu-%llu\n", key.objectid, key.offset, chunk_em->start, chunk_em->len); ret = -EUCLEAN; goto out; } free_extent_map(chunk_em); key.objectid = found_key.objectid + found_key.offset; } ret = 0; out: btrfs_free_path(path); free_extent_map(chunk_em); return ret; } #endif /* MY_ABC_HERE */ bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) { bool ret = true; spin_lock(&bg->lock); if (bg->ro) ret = false; else bg->swap_extents++; spin_unlock(&bg->lock); return ret; } void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) { spin_lock(&bg->lock); ASSERT(!bg->ro); ASSERT(bg->swap_extents >= amount); bg->swap_extents -= amount; spin_unlock(&bg->lock); }