#ifndef MY_ABC_HERE #define MY_ABC_HERE #endif // SPDX-License-Identifier: GPL-2.0-only /* * adt7475 - Thermal sensor driver for the ADT7475 chip and derivatives * Copyright (C) 2007-2008, Advanced Micro Devices, Inc. * Copyright (C) 2008 Jordan Crouse * Copyright (C) 2008 Hans de Goede * Copyright (C) 2009 Jean Delvare * * Derived from the lm83 driver by Jean Delvare */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MY_ABC_HERE #include #endif /* MY_ABC_HERE */ /* Indexes for the sysfs hooks */ #define INPUT 0 #define MIN 1 #define MAX 2 #define CONTROL 3 #define OFFSET 3 #define AUTOMIN 4 #define THERM 5 #define HYSTERSIS 6 /* * These are unique identifiers for the sysfs functions - unlike the * numbers above, these are not also indexes into an array */ #define ALARM 9 #define FAULT 10 /* 7475 Common Registers */ #define REG_DEVREV2 0x12 /* ADT7490 only */ #define REG_VTT 0x1E /* ADT7490 only */ #define REG_EXTEND3 0x1F /* ADT7490 only */ #define REG_VOLTAGE_BASE 0x20 #define REG_TEMP_BASE 0x25 #define REG_TACH_BASE 0x28 #define REG_PWM_BASE 0x30 #define REG_PWM_MAX_BASE 0x38 #define REG_DEVID 0x3D #define REG_VENDID 0x3E #define REG_DEVID2 0x3F #define REG_CONFIG1 0x40 #define REG_STATUS1 0x41 #define REG_STATUS2 0x42 #define REG_VID 0x43 /* ADT7476 only */ #define REG_VOLTAGE_MIN_BASE 0x44 #define REG_VOLTAGE_MAX_BASE 0x45 #define REG_TEMP_MIN_BASE 0x4E #define REG_TEMP_MAX_BASE 0x4F #define REG_TACH_MIN_BASE 0x54 #define REG_PWM_CONFIG_BASE 0x5C #define REG_TEMP_TRANGE_BASE 0x5F #define REG_ENHANCE_ACOUSTICS1 0x62 #define REG_ENHANCE_ACOUSTICS2 0x63 #define REG_PWM_MIN_BASE 0x64 #define REG_TEMP_TMIN_BASE 0x67 #define REG_TEMP_THERM_BASE 0x6A #define REG_REMOTE1_HYSTERSIS 0x6D #define REG_REMOTE2_HYSTERSIS 0x6E #define REG_TEMP_OFFSET_BASE 0x70 #ifdef MY_ABC_HERE #define REG_CONFIG1 0x40 /* ADT7490 only */ #define REG_PECI0 0x33 /* ADT7490 only */ #define REG_PECI1_BASE 0x1A /* ADT7490 only */ #define REG_PECI_CONFIG 0x88 /* ADT7490 only */ #define REG_PECI_MIN 0x3B /* ADT7490 only */ #define REG_PECI_RANGE 0x3C /* ADT7490 only */ #define REG_PECI_OFFSET_BASE 0x94 /* ADT7490 only */ #define REG_PECI_LOW_LIMIT 0x34 /* ADT7490 only */ #define REG_PECI_HIGH_LIMIT 0x35 /* ADT7490 only */ #endif /* MY_ABC_HERE */ #define REG_CONFIG2 0x73 #define REG_EXTEND1 0x76 #define REG_EXTEND2 0x77 #define REG_CONFIG3 0x78 #define REG_CONFIG5 0x7C #define REG_CONFIG4 0x7D #define REG_STATUS4 0x81 /* ADT7490 only */ #define REG_VTT_MIN 0x84 /* ADT7490 only */ #define REG_VTT_MAX 0x86 /* ADT7490 only */ #define VID_VIDSEL 0x80 /* ADT7476 only */ #define CONFIG2_ATTN 0x20 #define CONFIG3_SMBALERT 0x01 #define CONFIG3_THERM 0x02 #define CONFIG4_PINFUNC 0x03 #define CONFIG4_MAXDUTY 0x08 #define CONFIG4_ATTN_IN10 0x30 #define CONFIG4_ATTN_IN43 0xC0 #define CONFIG5_TWOSCOMP 0x01 #define CONFIG5_TEMPOFFSET 0x02 #define CONFIG5_VIDGPIO 0x10 /* ADT7476 only */ /* ADT7475 Settings */ #define ADT7475_VOLTAGE_COUNT 5 /* Not counting Vtt */ #define ADT7475_TEMP_COUNT 3 #define ADT7475_TACH_COUNT 4 #define ADT7475_PWM_COUNT 3 #ifdef MY_ABC_HERE #define ADT7490_PECI_COUNT 4 /*ADT7490 only*/ #define SYNO_IS_ADT7490(client) !strcmp(client->name, "adt7490") #endif /* MY_ABC_HERE */ /* Macro to read the registers */ #define adt7475_read(reg) i2c_smbus_read_byte_data(client, (reg)) /* Macros to easily index the registers */ #define TACH_REG(idx) (REG_TACH_BASE + ((idx) * 2)) #define TACH_MIN_REG(idx) (REG_TACH_MIN_BASE + ((idx) * 2)) #define PWM_REG(idx) (REG_PWM_BASE + (idx)) #define PWM_MAX_REG(idx) (REG_PWM_MAX_BASE + (idx)) #define PWM_MIN_REG(idx) (REG_PWM_MIN_BASE + (idx)) #define PWM_CONFIG_REG(idx) (REG_PWM_CONFIG_BASE + (idx)) #define VOLTAGE_REG(idx) (REG_VOLTAGE_BASE + (idx)) #define VOLTAGE_MIN_REG(idx) (REG_VOLTAGE_MIN_BASE + ((idx) * 2)) #define VOLTAGE_MAX_REG(idx) (REG_VOLTAGE_MAX_BASE + ((idx) * 2)) #ifdef MY_ABC_HERE #define PECI_REG(idx) (idx == 0 ? REG_PECI0:REG_PECI1_BASE + (idx-1)) /* ADT7490 only */ #define PECI_OFFSET_REG(idx) (REG_PECI_OFFSET_BASE + (idx)) #endif /* MY_ABC_HERE */ #define TEMP_REG(idx) (REG_TEMP_BASE + (idx)) #define TEMP_MIN_REG(idx) (REG_TEMP_MIN_BASE + ((idx) * 2)) #define TEMP_MAX_REG(idx) (REG_TEMP_MAX_BASE + ((idx) * 2)) #define TEMP_TMIN_REG(idx) (REG_TEMP_TMIN_BASE + (idx)) #define TEMP_THERM_REG(idx) (REG_TEMP_THERM_BASE + (idx)) #define TEMP_OFFSET_REG(idx) (REG_TEMP_OFFSET_BASE + (idx)) #define TEMP_TRANGE_REG(idx) (REG_TEMP_TRANGE_BASE + (idx)) static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; enum chips { adt7473, adt7475, adt7476, adt7490 }; static const struct i2c_device_id adt7475_id[] = { { "adt7473", adt7473 }, { "adt7475", adt7475 }, { "adt7476", adt7476 }, { "adt7490", adt7490 }, { } }; MODULE_DEVICE_TABLE(i2c, adt7475_id); static const struct of_device_id __maybe_unused adt7475_of_match[] = { { .compatible = "adi,adt7473", .data = (void *)adt7473 }, { .compatible = "adi,adt7475", .data = (void *)adt7475 }, { .compatible = "adi,adt7476", .data = (void *)adt7476 }, { .compatible = "adi,adt7490", .data = (void *)adt7490 }, { }, }; MODULE_DEVICE_TABLE(of, adt7475_of_match); struct adt7475_data { struct i2c_client *client; struct mutex lock; unsigned long measure_updated; bool valid; u8 config2; u8 config4; u8 config5; u8 has_voltage; u8 bypass_attn; /* Bypass voltage attenuator */ u8 has_pwm2:1; u8 has_fan4:1; u8 has_vid:1; u32 alarms; u16 voltage[3][6]; u16 temp[7][3]; u16 tach[2][4]; u8 pwm[4][3]; u8 range[3]; u8 pwmctl[3]; u8 pwmchan[3]; u8 enh_acoustics[2]; u8 vid; u8 vrm; const struct attribute_group *groups[9]; #ifdef MY_ABC_HERE u8 pwmsynoctl[4]; u16 peci[7][4]; /* ADT7490 only */ u8 peci_range[4]; #endif /* MY_ABC_HERE */ }; static struct i2c_driver adt7475_driver; static struct adt7475_data *adt7475_update_device(struct device *dev); static void adt7475_read_hystersis(struct i2c_client *client); static void adt7475_read_pwm(struct i2c_client *client, int index); /* Given a temp value, convert it to register value */ static inline u16 temp2reg(struct adt7475_data *data, long val) { u16 ret; if (!(data->config5 & CONFIG5_TWOSCOMP)) { val = clamp_val(val, -64000, 191000); ret = (val + 64500) / 1000; } else { val = clamp_val(val, -128000, 127000); if (val < -500) ret = (256500 + val) / 1000; else ret = (val + 500) / 1000; } return ret << 2; } /* Given a register value, convert it to a real temp value */ static inline int reg2temp(struct adt7475_data *data, u16 reg) { if (data->config5 & CONFIG5_TWOSCOMP) { if (reg >= 512) return (reg - 1024) * 250; else return reg * 250; } else return (reg - 256) * 250; } static inline int tach2rpm(u16 tach) { if (tach == 0 || tach == 0xFFFF) return 0; return (90000 * 60) / tach; } static inline u16 rpm2tach(unsigned long rpm) { if (rpm == 0) return 0; return clamp_val((90000 * 60) / rpm, 1, 0xFFFF); } /* Scaling factors for voltage inputs, taken from the ADT7490 datasheet */ static const int adt7473_in_scaling[ADT7475_VOLTAGE_COUNT + 1][2] = { { 45, 94 }, /* +2.5V */ { 175, 525 }, /* Vccp */ { 68, 71 }, /* Vcc */ { 93, 47 }, /* +5V */ { 120, 20 }, /* +12V */ { 45, 45 }, /* Vtt */ }; static inline int reg2volt(int channel, u16 reg, u8 bypass_attn) { const int *r = adt7473_in_scaling[channel]; if (bypass_attn & (1 << channel)) return DIV_ROUND_CLOSEST(reg * 2250, 1024); return DIV_ROUND_CLOSEST(reg * (r[0] + r[1]) * 2250, r[1] * 1024); } static inline u16 volt2reg(int channel, long volt, u8 bypass_attn) { const int *r = adt7473_in_scaling[channel]; long reg; if (bypass_attn & (1 << channel)) reg = DIV_ROUND_CLOSEST(volt * 1024, 2250); else reg = DIV_ROUND_CLOSEST(volt * r[1] * 1024, (r[0] + r[1]) * 2250); return clamp_val(reg, 0, 1023) & (0xff << 2); } static int adt7475_read_word(struct i2c_client *client, int reg) { int val1, val2; val1 = i2c_smbus_read_byte_data(client, reg); if (val1 < 0) return val1; val2 = i2c_smbus_read_byte_data(client, reg + 1); if (val2 < 0) return val2; return val1 | (val2 << 8); } static void adt7475_write_word(struct i2c_client *client, int reg, u16 val) { i2c_smbus_write_byte_data(client, reg + 1, val >> 8); i2c_smbus_write_byte_data(client, reg, val & 0xFF); } static ssize_t voltage_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); unsigned short val; if (IS_ERR(data)) return PTR_ERR(data); switch (sattr->nr) { case ALARM: return sprintf(buf, "%d\n", (data->alarms >> sattr->index) & 1); default: val = data->voltage[sattr->nr][sattr->index]; return sprintf(buf, "%d\n", reg2volt(sattr->index, val, data->bypass_attn)); } } static ssize_t voltage_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned char reg; long val; if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); data->voltage[sattr->nr][sattr->index] = volt2reg(sattr->index, val, data->bypass_attn); if (sattr->index < ADT7475_VOLTAGE_COUNT) { if (sattr->nr == MIN) reg = VOLTAGE_MIN_REG(sattr->index); else reg = VOLTAGE_MAX_REG(sattr->index); } else { if (sattr->nr == MIN) reg = REG_VTT_MIN; else reg = REG_VTT_MAX; } i2c_smbus_write_byte_data(client, reg, data->voltage[sattr->nr][sattr->index] >> 2); mutex_unlock(&data->lock); return count; } static ssize_t temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int out; if (IS_ERR(data)) return PTR_ERR(data); switch (sattr->nr) { case HYSTERSIS: mutex_lock(&data->lock); out = data->temp[sattr->nr][sattr->index]; if (sattr->index != 1) out = (out >> 4) & 0xF; else out = (out & 0xF); /* * Show the value as an absolute number tied to * THERM */ out = reg2temp(data, data->temp[THERM][sattr->index]) - out * 1000; mutex_unlock(&data->lock); break; case OFFSET: /* * Offset is always 2's complement, regardless of the * setting in CONFIG5 */ mutex_lock(&data->lock); out = (s8)data->temp[sattr->nr][sattr->index]; if (data->config5 & CONFIG5_TEMPOFFSET) out *= 1000; else out *= 500; mutex_unlock(&data->lock); break; case ALARM: out = (data->alarms >> (sattr->index + 4)) & 1; break; case FAULT: /* Note - only for remote1 and remote2 */ out = !!(data->alarms & (sattr->index ? 0x8000 : 0x4000)); break; default: /* All other temp values are in the configured format */ out = reg2temp(data, data->temp[sattr->nr][sattr->index]); } return sprintf(buf, "%d\n", out); } static ssize_t temp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned char reg = 0; u8 out; int temp; long val; if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); /* We need the config register in all cases for temp <-> reg conv. */ data->config5 = adt7475_read(REG_CONFIG5); switch (sattr->nr) { case OFFSET: if (data->config5 & CONFIG5_TEMPOFFSET) { val = clamp_val(val, -63000, 127000); out = data->temp[OFFSET][sattr->index] = val / 1000; } else { val = clamp_val(val, -63000, 64000); out = data->temp[OFFSET][sattr->index] = val / 500; } break; case HYSTERSIS: /* * The value will be given as an absolute value, turn it * into an offset based on THERM */ /* Read fresh THERM and HYSTERSIS values from the chip */ data->temp[THERM][sattr->index] = adt7475_read(TEMP_THERM_REG(sattr->index)) << 2; adt7475_read_hystersis(client); temp = reg2temp(data, data->temp[THERM][sattr->index]); val = clamp_val(val, temp - 15000, temp); val = (temp - val) / 1000; #ifdef MY_ABC_HERE if (sattr->index != 1) { data->temp[HYSTERSIS][sattr->index] &= 0x0F; data->temp[HYSTERSIS][sattr->index] |= (val & 0xF) << 4; } else { data->temp[HYSTERSIS][sattr->index] &= 0xF0; data->temp[HYSTERSIS][sattr->index] |= (val & 0xF); } #else /* MY_ABC_HERE */ if (sattr->index != 1) { data->temp[HYSTERSIS][sattr->index] &= 0xF0; data->temp[HYSTERSIS][sattr->index] |= (val & 0xF) << 4; } else { data->temp[HYSTERSIS][sattr->index] &= 0x0F; data->temp[HYSTERSIS][sattr->index] |= (val & 0xF); } #endif /* MY_ABC_HERE */ out = data->temp[HYSTERSIS][sattr->index]; break; default: data->temp[sattr->nr][sattr->index] = temp2reg(data, val); /* * We maintain an extra 2 digits of precision for simplicity * - shift those back off before writing the value */ out = (u8) (data->temp[sattr->nr][sattr->index] >> 2); } switch (sattr->nr) { case MIN: reg = TEMP_MIN_REG(sattr->index); break; case MAX: reg = TEMP_MAX_REG(sattr->index); break; case OFFSET: reg = TEMP_OFFSET_REG(sattr->index); break; case AUTOMIN: reg = TEMP_TMIN_REG(sattr->index); break; case THERM: reg = TEMP_THERM_REG(sattr->index); break; case HYSTERSIS: if (sattr->index != 2) reg = REG_REMOTE1_HYSTERSIS; else reg = REG_REMOTE2_HYSTERSIS; break; } i2c_smbus_write_byte_data(client, reg, out); mutex_unlock(&data->lock); return count; } /* Assuming CONFIG6[SLOW] is 0 */ static const int ad7475_st_map[] = { 37500, 18800, 12500, 7500, 4700, 3100, 1600, 800, }; static ssize_t temp_st_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); long val; switch (sattr->index) { case 0: val = data->enh_acoustics[0] & 0xf; break; case 1: val = (data->enh_acoustics[1] >> 4) & 0xf; break; case 2: default: val = data->enh_acoustics[1] & 0xf; break; } if (val & 0x8) return sprintf(buf, "%d\n", ad7475_st_map[val & 0x7]); else return sprintf(buf, "0\n"); } static ssize_t temp_st_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned char reg; int shift, idx; ulong val; if (kstrtoul(buf, 10, &val)) return -EINVAL; switch (sattr->index) { case 0: reg = REG_ENHANCE_ACOUSTICS1; shift = 0; idx = 0; break; case 1: reg = REG_ENHANCE_ACOUSTICS2; shift = 0; idx = 1; break; case 2: default: reg = REG_ENHANCE_ACOUSTICS2; shift = 4; idx = 1; break; } if (val > 0) { val = find_closest_descending(val, ad7475_st_map, ARRAY_SIZE(ad7475_st_map)); val |= 0x8; } mutex_lock(&data->lock); data->enh_acoustics[idx] &= ~(0xf << shift); data->enh_acoustics[idx] |= (val << shift); i2c_smbus_write_byte_data(client, reg, data->enh_acoustics[idx]); mutex_unlock(&data->lock); return count; } /* * Table of autorange values - the user will write the value in millidegrees, * and we'll convert it */ static const int autorange_table[] = { 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000, 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000 }; static ssize_t point2_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int out, val; if (IS_ERR(data)) return PTR_ERR(data); mutex_lock(&data->lock); out = (data->range[sattr->index] >> 4) & 0x0F; val = reg2temp(data, data->temp[AUTOMIN][sattr->index]); mutex_unlock(&data->lock); return sprintf(buf, "%d\n", val + autorange_table[out]); } static ssize_t point2_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int temp; long val; if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); /* Get a fresh copy of the needed registers */ data->config5 = adt7475_read(REG_CONFIG5); data->temp[AUTOMIN][sattr->index] = adt7475_read(TEMP_TMIN_REG(sattr->index)) << 2; data->range[sattr->index] = adt7475_read(TEMP_TRANGE_REG(sattr->index)); /* * The user will write an absolute value, so subtract the start point * to figure the range */ temp = reg2temp(data, data->temp[AUTOMIN][sattr->index]); val = clamp_val(val, temp + autorange_table[0], temp + autorange_table[ARRAY_SIZE(autorange_table) - 1]); val -= temp; /* Find the nearest table entry to what the user wrote */ val = find_closest(val, autorange_table, ARRAY_SIZE(autorange_table)); data->range[sattr->index] &= ~0xF0; data->range[sattr->index] |= val << 4; i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index), data->range[sattr->index]); mutex_unlock(&data->lock); return count; } static ssize_t tach_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int out; if (IS_ERR(data)) return PTR_ERR(data); if (sattr->nr == ALARM) out = (data->alarms >> (sattr->index + 10)) & 1; else out = tach2rpm(data->tach[sattr->nr][sattr->index]); return sprintf(buf, "%d\n", out); } static ssize_t tach_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; if (kstrtoul(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); data->tach[MIN][sattr->index] = rpm2tach(val); adt7475_write_word(client, TACH_MIN_REG(sattr->index), data->tach[MIN][sattr->index]); mutex_unlock(&data->lock); return count; } static ssize_t pwm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", data->pwm[sattr->nr][sattr->index]); } static ssize_t pwmchan_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", data->pwmchan[sattr->index]); } static ssize_t pwmctrl_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", data->pwmctl[sattr->index]); } static ssize_t pwm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned char reg = 0; long val; if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); switch (sattr->nr) { case INPUT: /* Get a fresh value for CONTROL */ data->pwm[CONTROL][sattr->index] = adt7475_read(PWM_CONFIG_REG(sattr->index)); /* * If we are not in manual mode, then we shouldn't allow * the user to set the pwm speed */ if (((data->pwm[CONTROL][sattr->index] >> 5) & 7) != 7) { mutex_unlock(&data->lock); return count; } reg = PWM_REG(sattr->index); break; case MIN: reg = PWM_MIN_REG(sattr->index); break; case MAX: reg = PWM_MAX_REG(sattr->index); break; } data->pwm[sattr->nr][sattr->index] = clamp_val(val, 0, 0xFF); i2c_smbus_write_byte_data(client, reg, data->pwm[sattr->nr][sattr->index]); mutex_unlock(&data->lock); return count; } static ssize_t stall_disable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); u8 mask = BIT(5 + sattr->index); return sprintf(buf, "%d\n", !!(data->enh_acoustics[0] & mask)); } static ssize_t stall_disable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; u8 mask = BIT(5 + sattr->index); if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); data->enh_acoustics[0] &= ~mask; if (val) data->enh_acoustics[0] |= mask; i2c_smbus_write_byte_data(client, REG_ENHANCE_ACOUSTICS1, data->enh_acoustics[0]); mutex_unlock(&data->lock); return count; } /* Called by set_pwmctrl and set_pwmchan */ static int hw_set_pwm(struct i2c_client *client, int index, unsigned int pwmctl, unsigned int pwmchan) { struct adt7475_data *data = i2c_get_clientdata(client); long val = 0; switch (pwmctl) { case 0: val = 0x03; /* Run at full speed */ break; case 1: val = 0x07; /* Manual mode */ break; case 2: switch (pwmchan) { case 1: /* Remote1 controls PWM */ val = 0x00; break; case 2: /* local controls PWM */ val = 0x01; break; case 4: /* remote2 controls PWM */ val = 0x02; break; case 6: /* local/remote2 control PWM */ val = 0x05; break; case 7: /* All three control PWM */ val = 0x06; break; default: return -EINVAL; } break; default: return -EINVAL; } data->pwmctl[index] = pwmctl; data->pwmchan[index] = pwmchan; data->pwm[CONTROL][index] &= ~0xE0; data->pwm[CONTROL][index] |= (val & 7) << 5; i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index), data->pwm[CONTROL][index]); return 0; } static ssize_t pwmchan_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int r; long val; if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); /* Read Modify Write PWM values */ adt7475_read_pwm(client, sattr->index); r = hw_set_pwm(client, sattr->index, data->pwmctl[sattr->index], val); if (r) count = r; mutex_unlock(&data->lock); return count; } static ssize_t pwmctrl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int r; long val; if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); /* Read Modify Write PWM values */ adt7475_read_pwm(client, sattr->index); r = hw_set_pwm(client, sattr->index, val, data->pwmchan[sattr->index]); if (r) count = r; mutex_unlock(&data->lock); return count; } /* List of frequencies for the PWM */ static const int pwmfreq_table[] = { 11, 14, 22, 29, 35, 44, 58, 88, 22500 }; static ssize_t pwmfreq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int idx; if (IS_ERR(data)) return PTR_ERR(data); idx = clamp_val(data->range[sattr->index] & 0xf, 0, ARRAY_SIZE(pwmfreq_table) - 1); return sprintf(buf, "%d\n", pwmfreq_table[idx]); } static ssize_t pwmfreq_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int out; long val; if (kstrtol(buf, 10, &val)) return -EINVAL; out = find_closest(val, pwmfreq_table, ARRAY_SIZE(pwmfreq_table)); mutex_lock(&data->lock); data->range[sattr->index] = adt7475_read(TEMP_TRANGE_REG(sattr->index)); data->range[sattr->index] &= ~0xf; data->range[sattr->index] |= out; i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index), data->range[sattr->index]); mutex_unlock(&data->lock); return count; } static ssize_t pwm_use_point2_pwm_at_crit_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", !!(data->config4 & CONFIG4_MAXDUTY)); } static ssize_t pwm_use_point2_pwm_at_crit_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; if (kstrtol(buf, 10, &val)) return -EINVAL; if (val != 0 && val != 1) return -EINVAL; mutex_lock(&data->lock); data->config4 = i2c_smbus_read_byte_data(client, REG_CONFIG4); if (val) data->config4 |= CONFIG4_MAXDUTY; else data->config4 &= ~CONFIG4_MAXDUTY; i2c_smbus_write_byte_data(client, REG_CONFIG4, data->config4); mutex_unlock(&data->lock); return count; } #ifdef MY_ABC_HERE /* set peci */ static ssize_t set_peci(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned char reg = 0; u8 out = 0; long val = 0; long temp = 0; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); /* We need the config register in all cases for temp <-> reg conv. */ data->config5 = adt7475_read(REG_CONFIG5); switch (sattr->nr) { case OFFSET: val = clamp_val(val, -127000, 127000); out = data->peci[OFFSET][sattr->index] = val / 1000; break; case HYSTERSIS: /* The value will be given as an absolute value, turn it into an offset based on THERM */ /* Read fresh THERM and HYSTERSIS values from the chip */ /* in ADT7490 register 0x3D is for PECI Tcontrol*/ data->peci[THERM][sattr->index] = adt7475_read(REG_DEVID) << 2; adt7475_read_hystersis(client); temp = reg2temp(data, data->peci[THERM][sattr->index]); val = clamp_val(val, temp - 15000, temp); val = (temp - val) / 1000; data->peci[HYSTERSIS][sattr->index] &= 0xF0; data->peci[HYSTERSIS][sattr->index] |= (val & 0xF); out = data->peci[HYSTERSIS][sattr->index]; break; default: data->peci[sattr->nr][sattr->index] = temp2reg(data, val); /* We maintain an extra 2 digits of precision for simplicity * - shift those back off before writing the value */ out = (u8) (data->peci[sattr->nr][sattr->index] >> 2); } switch (sattr->nr) { case MIN: reg = REG_PECI_LOW_LIMIT; break; case MAX: reg = REG_PECI_HIGH_LIMIT; break; case OFFSET: reg = PECI_OFFSET_REG(sattr->index); break; case AUTOMIN: reg = REG_PECI_MIN; break; case THERM: reg = REG_DEVID; break; case HYSTERSIS: reg = REG_REMOTE2_HYSTERSIS; break; } i2c_smbus_write_byte_data(client, reg, out); mutex_unlock(&data->lock); return count; } /* * Show temperature from PECI interface */ static ssize_t show_peci(struct device *dev, struct device_attribute *attr, char *buf) { // this function is adt7490 only struct adt7475_data *data = adt7475_update_device(dev); struct i2c_client *client = data->client; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int out = 0; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } switch (sattr->nr) { case OFFSET: mutex_lock(&data->lock); out = (s8)data->peci[sattr->nr][sattr->index] * 1000; mutex_unlock(&data->lock); break; case HYSTERSIS: mutex_lock(&data->lock); out = data->peci[sattr->nr][sattr->index]; out &= 0xF; out = reg2temp(data, data->peci[THERM][sattr->index]) - out * 1000; mutex_unlock(&data->lock); break; default: /* show peci temperature */ mutex_lock(&data->lock); out = reg2temp(data, data->peci[sattr->nr][sattr->index]); mutex_unlock(&data->lock); break; } return sprintf(buf, "%d\n", out); } static ssize_t show_adt_full_duty_cycle(struct device *dev, struct device_attribute *attr, char *buf) { // this function is adt7490 only struct adt7475_data *data = adt7475_update_device(dev); struct i2c_client *client = data->client; u8 config1; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } config1 = adt7475_read(REG_CONFIG1); return sprintf(buf, "%d\n", (config1 & 0x8) > 0 ? 1 : 0); } static ssize_t set_adt_full_duty_cycle(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { // this function is adt7490 only struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u8 config1; long val; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } if (kstrtol(buf, 10, &val)) return -EINVAL; config1 = adt7475_read(REG_CONFIG1); if (val) { config1 |= 0x8; } else { config1 &= ~0x8; } i2c_smbus_write_byte_data(client, REG_CONFIG1, config1); return count; } static ssize_t show_peci_error(struct device *dev, struct device_attribute *attr, char *buf) { // this function is adt7490 only struct adt7475_data *data = adt7475_update_device(dev); struct i2c_client *client = data->client; u8 config; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } config = adt7475_read(REG_VID); return sprintf(buf, "%d\n", config); } static ssize_t show_enh_acou_reg(struct device *dev, struct device_attribute *attr, char *buf) { // this function is adt7490 only struct adt7475_data *data = adt7475_update_device(dev); struct i2c_client *client = data->client; u8 config; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } config = adt7475_read(REG_ENHANCE_ACOUSTICS1); return sprintf(buf, "%d\n", config >> 5); } static ssize_t set_enh_acou_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { // this function is adt7490 only struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u8 config; long val; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } if (kstrtol(buf, 10, &val)) return -EINVAL; config = adt7475_read(REG_ENHANCE_ACOUSTICS1); config &= ~0xE0; config |= (val & 0x7) << 5; i2c_smbus_write_byte_data(client, REG_ENHANCE_ACOUSTICS1, config); return count; } static ssize_t show_adtenable(struct device *dev, struct device_attribute *attr, char *buf) { // this function is adt7490 only struct adt7475_data *data = adt7475_update_device(dev); struct i2c_client *client = data->client; u8 config1; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } config1 = adt7475_read(REG_CONFIG1); return sprintf(buf, "%d\n", config1 & 0x1); } static ssize_t set_adtenable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { // this function is adt7490 only struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u8 config1; long val; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } if (kstrtol(buf, 10, &val)) return -EINVAL; config1 = adt7475_read(REG_CONFIG1); if (val) { config1 |= 0x1; } else { config1 &= ~0x1; } i2c_smbus_write_byte_data(client, REG_CONFIG1, config1); return count; } /* * Show high frequency configure of pwm */ static ssize_t show_pwmHighFreq(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = adt7475_update_device(dev); struct i2c_client *client = data->client; int out; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } mutex_lock(&data->lock); out = (data->range[sattr->index] & 0x8) >> 3; mutex_unlock(&data->lock); return sprintf(buf, "%d\n", out); } /* * Set pwm output as high frequency */ static ssize_t set_pwmHighFreq(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); data->range[sattr->index] = adt7475_read(TEMP_TRANGE_REG(sattr->index)); if (val) { data->range[sattr->index] |= 0x8; } else { data->range[sattr->index] &= ~0x8; } i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index), data->range[sattr->index]); mutex_unlock(&data->lock); return count; } static ssize_t show_peci_point2(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct i2c_client *client = data->client; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int out, val; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } mutex_lock(&data->lock); out = (data->peci_range[sattr->index] >> 4) & 0x0F; val = reg2temp(data, data->peci[AUTOMIN][sattr->index]); mutex_unlock(&data->lock); return sprintf(buf, "%d\n", val + autorange_table[out]); } static ssize_t set_peci_point2(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int temp; long val; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->lock); /* Get a fresh copy of the needed registers */ data->config5 = adt7475_read(REG_CONFIG5); data->peci[AUTOMIN][sattr->index] = adt7475_read(REG_PECI_MIN) << 2; data->peci_range[sattr->index] = adt7475_read(REG_PECI_RANGE); /* The user will write an absolute value, so subtract the start point to figure the range */ temp = reg2temp(data, data->peci[AUTOMIN][sattr->index]); val = clamp_val(val, temp + autorange_table[0], temp + autorange_table[ARRAY_SIZE(autorange_table) - 1]); val -= temp; /* Find the nearest table entry to what the user wrote */ val = find_closest(val, autorange_table, ARRAY_SIZE(autorange_table)); data->peci_range[sattr->index] &= ~0xF0; data->peci_range[sattr->index] |= val << 4; i2c_smbus_write_byte_data(client, REG_PECI_RANGE, data->peci_range[sattr->index]); mutex_unlock(&data->lock); return count; } static ssize_t show_pwm_syno_control(struct device *dev, struct device_attribute *attr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); struct i2c_client *client = data->client; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } mutex_lock(&data->lock); /* Read Modify Write PWM values */ adt7475_read_pwm(client, sattr->index); mutex_unlock(&data->lock); return sprintf(buf, "%d\n", data->pwmsynoctl[sattr->index]); } /* * This function is set the pwm control sensor, * In ADT7490 spec, it could choose many way to control the pwm * we implement all the valid control mapping in this fucntion * * We don't use pwm_enable and pwm_auto_channel to set pwm control source */ static ssize_t set_pwm_syno_control(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); long val = 0; long inputVal = 0; long valt = 0; int index = sattr->index; if (!SYNO_IS_ADT7490(client)) { return -EINVAL; } if (kstrtol(buf, 10, &inputVal)) return -EINVAL; mutex_lock(&data->lock); /* Read Modify Write PWM values */ data->pwm[CONTROL][index] = adt7475_read(PWM_CONFIG_REG(index)); switch (inputVal) { case 1: valt = 0; val = 0x03; /* Run at maximun duty cycle (set by pwmMax) */ break; case 2: valt = 0; val = 0x07; /* Manual mode*/ break; case 3: valt = 1; val = 0x07; /* Source from all peci and all sensor */ break; case 4: valt = 1; val = 0x05; /* Source from all peci */ break; case 5: valt = 1; val = 0x00; /* Source from peci0 */ break; case 6: valt = 1; val = 0x01; /* Source from peci1 */ break; case 7: valt = 1; val = 0x02; /* Source from peci2 */ break; case 8: valt = 1; val = 0x03; /* Source from peci3 */ break; case 9: valt = 0; val = 0x06; /* Source from all sensors */ break; case 10: valt = 0; val = 0x05; /* Source from local and remote2 */ break; case 11: valt = 0; val = 0x00; /* Source from remote1 */ break; case 12: valt = 0; val = 0x01; /* Source from local */ break; case 13: valt = 0; val = 0x02; /* Source from remote2 */ break; default: valt = 0; val = 0x03; /* Run at maximun duty cycle (set by pwmMax) */ break; } data->pwm[CONTROL][index] &= ~0xE8; data->pwm[CONTROL][index] |= (valt & 1) << 3; data->pwm[CONTROL][index] |= (val & 7) << 5; i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index), data->pwm[CONTROL][index]); mutex_unlock(&data->lock); return count; } #endif /* MY_ABC_HERE */ static ssize_t vrm_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct adt7475_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", (int)data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct adt7475_data *data = dev_get_drvdata(dev); long val; if (kstrtol(buf, 10, &val)) return -EINVAL; if (val < 0 || val > 255) return -EINVAL; data->vrm = val; return count; } static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct adt7475_data *data = adt7475_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); } static SENSOR_DEVICE_ATTR_2_RO(in0_input, voltage, INPUT, 0); static SENSOR_DEVICE_ATTR_2_RW(in0_max, voltage, MAX, 0); static SENSOR_DEVICE_ATTR_2_RW(in0_min, voltage, MIN, 0); static SENSOR_DEVICE_ATTR_2_RO(in0_alarm, voltage, ALARM, 0); static SENSOR_DEVICE_ATTR_2_RO(in1_input, voltage, INPUT, 1); static SENSOR_DEVICE_ATTR_2_RW(in1_max, voltage, MAX, 1); static SENSOR_DEVICE_ATTR_2_RW(in1_min, voltage, MIN, 1); static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, voltage, ALARM, 1); static SENSOR_DEVICE_ATTR_2_RO(in2_input, voltage, INPUT, 2); static SENSOR_DEVICE_ATTR_2_RW(in2_max, voltage, MAX, 2); static SENSOR_DEVICE_ATTR_2_RW(in2_min, voltage, MIN, 2); static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, voltage, ALARM, 2); static SENSOR_DEVICE_ATTR_2_RO(in3_input, voltage, INPUT, 3); static SENSOR_DEVICE_ATTR_2_RW(in3_max, voltage, MAX, 3); static SENSOR_DEVICE_ATTR_2_RW(in3_min, voltage, MIN, 3); static SENSOR_DEVICE_ATTR_2_RO(in3_alarm, voltage, ALARM, 3); static SENSOR_DEVICE_ATTR_2_RO(in4_input, voltage, INPUT, 4); static SENSOR_DEVICE_ATTR_2_RW(in4_max, voltage, MAX, 4); static SENSOR_DEVICE_ATTR_2_RW(in4_min, voltage, MIN, 4); static SENSOR_DEVICE_ATTR_2_RO(in4_alarm, voltage, ALARM, 8); static SENSOR_DEVICE_ATTR_2_RO(in5_input, voltage, INPUT, 5); static SENSOR_DEVICE_ATTR_2_RW(in5_max, voltage, MAX, 5); static SENSOR_DEVICE_ATTR_2_RW(in5_min, voltage, MIN, 5); static SENSOR_DEVICE_ATTR_2_RO(in5_alarm, voltage, ALARM, 31); static SENSOR_DEVICE_ATTR_2_RO(temp1_input, temp, INPUT, 0); static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, temp, ALARM, 0); static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, temp, FAULT, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_max, temp, MAX, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_min, temp, MIN, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_offset, temp, OFFSET, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_point1_temp, temp, AUTOMIN, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_point2_temp, point2, 0, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_crit, temp, THERM, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_crit_hyst, temp, HYSTERSIS, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_smoothing, temp_st, 0, 0); static SENSOR_DEVICE_ATTR_2_RO(temp2_input, temp, INPUT, 1); static SENSOR_DEVICE_ATTR_2_RO(temp2_alarm, temp, ALARM, 1); static SENSOR_DEVICE_ATTR_2_RW(temp2_max, temp, MAX, 1); static SENSOR_DEVICE_ATTR_2_RW(temp2_min, temp, MIN, 1); static SENSOR_DEVICE_ATTR_2_RW(temp2_offset, temp, OFFSET, 1); static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_point1_temp, temp, AUTOMIN, 1); static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_point2_temp, point2, 0, 1); static SENSOR_DEVICE_ATTR_2_RW(temp2_crit, temp, THERM, 1); static SENSOR_DEVICE_ATTR_2_RW(temp2_crit_hyst, temp, HYSTERSIS, 1); static SENSOR_DEVICE_ATTR_2_RW(temp2_smoothing, temp_st, 0, 1); static SENSOR_DEVICE_ATTR_2_RO(temp3_input, temp, INPUT, 2); static SENSOR_DEVICE_ATTR_2_RO(temp3_alarm, temp, ALARM, 2); static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, temp, FAULT, 2); static SENSOR_DEVICE_ATTR_2_RW(temp3_max, temp, MAX, 2); static SENSOR_DEVICE_ATTR_2_RW(temp3_min, temp, MIN, 2); static SENSOR_DEVICE_ATTR_2_RW(temp3_offset, temp, OFFSET, 2); static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_point1_temp, temp, AUTOMIN, 2); static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_point2_temp, point2, 0, 2); static SENSOR_DEVICE_ATTR_2_RW(temp3_crit, temp, THERM, 2); static SENSOR_DEVICE_ATTR_2_RW(temp3_crit_hyst, temp, HYSTERSIS, 2); static SENSOR_DEVICE_ATTR_2_RW(temp3_smoothing, temp_st, 0, 2); static SENSOR_DEVICE_ATTR_2_RO(fan1_input, tach, INPUT, 0); static SENSOR_DEVICE_ATTR_2_RW(fan1_min, tach, MIN, 0); static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, tach, ALARM, 0); static SENSOR_DEVICE_ATTR_2_RO(fan2_input, tach, INPUT, 1); static SENSOR_DEVICE_ATTR_2_RW(fan2_min, tach, MIN, 1); static SENSOR_DEVICE_ATTR_2_RO(fan2_alarm, tach, ALARM, 1); static SENSOR_DEVICE_ATTR_2_RO(fan3_input, tach, INPUT, 2); static SENSOR_DEVICE_ATTR_2_RW(fan3_min, tach, MIN, 2); static SENSOR_DEVICE_ATTR_2_RO(fan3_alarm, tach, ALARM, 2); static SENSOR_DEVICE_ATTR_2_RO(fan4_input, tach, INPUT, 3); static SENSOR_DEVICE_ATTR_2_RW(fan4_min, tach, MIN, 3); static SENSOR_DEVICE_ATTR_2_RO(fan4_alarm, tach, ALARM, 3); static SENSOR_DEVICE_ATTR_2_RW(pwm1, pwm, INPUT, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_freq, pwmfreq, INPUT, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_enable, pwmctrl, INPUT, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_channels_temp, pwmchan, INPUT, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_pwm, pwm, MIN, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_pwm, pwm, MAX, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_stall_disable, stall_disable, 0, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm2, pwm, INPUT, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm2_freq, pwmfreq, INPUT, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm2_enable, pwmctrl, INPUT, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_channels_temp, pwmchan, INPUT, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_pwm, pwm, MIN, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_pwm, pwm, MAX, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm2_stall_disable, stall_disable, 0, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm3, pwm, INPUT, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm3_freq, pwmfreq, INPUT, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm3_enable, pwmctrl, INPUT, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_channels_temp, pwmchan, INPUT, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_pwm, pwm, MIN, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_pwm, pwm, MAX, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm3_stall_disable, stall_disable, 0, 2); #ifdef MY_ABC_HERE static SENSOR_DEVICE_ATTR_2(peci0_input, S_IRUGO, show_peci, NULL, INPUT, 0); static SENSOR_DEVICE_ATTR_2(peci0_auto_point1_temp, S_IRUGO | S_IWUSR, show_peci, set_peci, AUTOMIN, 0); static SENSOR_DEVICE_ATTR_2(peci0_auto_point2_temp, S_IRUGO | S_IWUSR, show_peci_point2, set_peci_point2, 0, 0); static SENSOR_DEVICE_ATTR_2(peci0_crit, S_IRUGO | S_IWUSR, show_peci, set_peci, THERM, 0); static SENSOR_DEVICE_ATTR_2(peci0_crit_hyst, S_IRUGO | S_IWUSR, show_peci, set_peci, HYSTERSIS, 0); static SENSOR_DEVICE_ATTR_2(peci0_offset, S_IRUGO | S_IWUSR, show_peci, set_peci, OFFSET, 0); static SENSOR_DEVICE_ATTR_2(peci0_min, S_IRUGO | S_IWUSR, show_peci, set_peci, MIN, 0); static SENSOR_DEVICE_ATTR_2(peci0_max, S_IRUGO | S_IWUSR, show_peci, set_peci, MAX, 0); static SENSOR_DEVICE_ATTR_2(peci1_input, S_IRUGO, show_peci, NULL, INPUT, 1); static SENSOR_DEVICE_ATTR_2(peci1_auto_point1_temp, S_IRUGO | S_IWUSR, show_peci, set_peci, AUTOMIN, 1); static SENSOR_DEVICE_ATTR_2(peci1_auto_point2_temp, S_IRUGO | S_IWUSR, show_peci_point2, set_peci_point2, 0, 1); static SENSOR_DEVICE_ATTR_2(peci1_crit, S_IRUGO | S_IWUSR, show_peci, set_peci, THERM, 1); static SENSOR_DEVICE_ATTR_2(peci1_crit_hyst, S_IRUGO | S_IWUSR, show_peci, set_peci, HYSTERSIS, 1); static SENSOR_DEVICE_ATTR_2(peci1_offset, S_IRUGO | S_IWUSR, show_peci, set_peci, OFFSET, 1); static SENSOR_DEVICE_ATTR_2(peci1_min, S_IRUGO | S_IWUSR, show_peci, set_peci, MIN, 1); static SENSOR_DEVICE_ATTR_2(peci1_max, S_IRUGO | S_IWUSR, show_peci, set_peci, MAX, 1); static SENSOR_DEVICE_ATTR_2(peci2_input, S_IRUGO, show_peci, NULL, INPUT, 2); static SENSOR_DEVICE_ATTR_2(peci2_auto_point1_temp, S_IRUGO | S_IWUSR, show_peci, set_peci, AUTOMIN, 2); static SENSOR_DEVICE_ATTR_2(peci2_auto_point2_temp, S_IRUGO | S_IWUSR, show_peci_point2, set_peci_point2, 0, 2); static SENSOR_DEVICE_ATTR_2(peci2_crit, S_IRUGO | S_IWUSR, show_peci, set_peci, THERM, 2); static SENSOR_DEVICE_ATTR_2(peci2_crit_hyst, S_IRUGO | S_IWUSR, show_peci, set_peci, HYSTERSIS, 2); static SENSOR_DEVICE_ATTR_2(peci2_offset, S_IRUGO | S_IWUSR, show_peci, set_peci, OFFSET, 2); static SENSOR_DEVICE_ATTR_2(peci2_min, S_IRUGO | S_IWUSR, show_peci, set_peci, MIN, 2); static SENSOR_DEVICE_ATTR_2(peci2_max, S_IRUGO | S_IWUSR, show_peci, set_peci, MAX, 2); static SENSOR_DEVICE_ATTR_2(peci3_input, S_IRUGO, show_peci, NULL, INPUT, 3); static SENSOR_DEVICE_ATTR_2(peci3_auto_point1_temp, S_IRUGO | S_IWUSR, show_peci, set_peci, AUTOMIN, 3); static SENSOR_DEVICE_ATTR_2(peci3_auto_point2_temp, S_IRUGO | S_IWUSR, show_peci_point2, set_peci_point2, 0, 3); static SENSOR_DEVICE_ATTR_2(peci3_crit, S_IRUGO | S_IWUSR, show_peci, set_peci, THERM, 3); static SENSOR_DEVICE_ATTR_2(peci3_crit_hyst, S_IRUGO | S_IWUSR, show_peci, set_peci, HYSTERSIS, 3); static SENSOR_DEVICE_ATTR_2(peci3_offset, S_IRUGO | S_IWUSR, show_peci, set_peci, OFFSET, 3); static SENSOR_DEVICE_ATTR_2(peci3_min, S_IRUGO | S_IWUSR, show_peci, set_peci, MIN, 3); static SENSOR_DEVICE_ATTR_2(peci3_max, S_IRUGO | S_IWUSR, show_peci, set_peci, MAX, 3); static SENSOR_DEVICE_ATTR_2(enable, S_IRUGO | S_IWUSR, show_adtenable, set_adtenable, INPUT, 0); static SENSOR_DEVICE_ATTR_2(pwm1_high_freq, S_IWUSR | S_IRUGO, show_pwmHighFreq, set_pwmHighFreq, INPUT, 0); static SENSOR_DEVICE_ATTR_2(pwm2_high_freq, S_IWUSR | S_IRUGO, show_pwmHighFreq, set_pwmHighFreq, INPUT, 1); static SENSOR_DEVICE_ATTR_2(pwm3_high_freq, S_IWUSR | S_IRUGO, show_pwmHighFreq, set_pwmHighFreq, INPUT, 2); static SENSOR_DEVICE_ATTR_2(pwm1_syno_control, S_IRUGO | S_IWUSR, show_pwm_syno_control, set_pwm_syno_control, INPUT, 0); static SENSOR_DEVICE_ATTR_2(pwm2_syno_control, S_IRUGO | S_IWUSR, show_pwm_syno_control, set_pwm_syno_control, INPUT, 1); static SENSOR_DEVICE_ATTR_2(pwm3_syno_control, S_IRUGO | S_IWUSR, show_pwm_syno_control, set_pwm_syno_control, INPUT, 2); static SENSOR_DEVICE_ATTR_2(full_duty_cycle, S_IRUGO | S_IWUSR, show_adt_full_duty_cycle, set_adt_full_duty_cycle, INPUT, 0); static SENSOR_DEVICE_ATTR_2(peci_error, S_IRUGO, show_peci_error, NULL, INPUT, 0); static SENSOR_DEVICE_ATTR_2(enhanced_acoustic_register, S_IWUSR | S_IRUGO, show_enh_acou_reg, set_enh_acou_reg, INPUT, 0); #endif /* MY_ABC_HERE */ /* Non-standard name, might need revisiting */ static DEVICE_ATTR_RW(pwm_use_point2_pwm_at_crit); static DEVICE_ATTR_RW(vrm); static DEVICE_ATTR_RO(cpu0_vid); static struct attribute *adt7475_attrs[] = { &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp1_fault.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_offset.dev_attr.attr, &sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp1_smoothing.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp2_offset.dev_attr.attr, &sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp2_smoothing.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp3_offset.dev_attr.attr, &sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp3_smoothing.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_freq.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_stall_disable.dev_attr.attr, &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm3_freq.dev_attr.attr, &sensor_dev_attr_pwm3_enable.dev_attr.attr, &sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_stall_disable.dev_attr.attr, #ifdef MY_ABC_HERE &sensor_dev_attr_peci0_input.dev_attr.attr, &sensor_dev_attr_peci0_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_peci0_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_peci0_crit.dev_attr.attr, &sensor_dev_attr_peci0_crit_hyst.dev_attr.attr, &sensor_dev_attr_peci0_offset.dev_attr.attr, &sensor_dev_attr_peci0_min.dev_attr.attr, &sensor_dev_attr_peci0_max.dev_attr.attr, &sensor_dev_attr_peci1_input.dev_attr.attr, &sensor_dev_attr_peci1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_peci1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_peci1_crit.dev_attr.attr, &sensor_dev_attr_peci1_crit_hyst.dev_attr.attr, &sensor_dev_attr_peci1_offset.dev_attr.attr, &sensor_dev_attr_peci1_min.dev_attr.attr, &sensor_dev_attr_peci1_max.dev_attr.attr, &sensor_dev_attr_peci2_input.dev_attr.attr, &sensor_dev_attr_peci2_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_peci2_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_peci2_crit.dev_attr.attr, &sensor_dev_attr_peci2_crit_hyst.dev_attr.attr, &sensor_dev_attr_peci2_offset.dev_attr.attr, &sensor_dev_attr_peci2_min.dev_attr.attr, &sensor_dev_attr_peci2_max.dev_attr.attr, &sensor_dev_attr_peci3_input.dev_attr.attr, &sensor_dev_attr_peci3_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_peci3_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_peci3_crit.dev_attr.attr, &sensor_dev_attr_peci3_crit_hyst.dev_attr.attr, &sensor_dev_attr_peci3_offset.dev_attr.attr, &sensor_dev_attr_peci3_min.dev_attr.attr, &sensor_dev_attr_peci3_max.dev_attr.attr, &sensor_dev_attr_enable.dev_attr.attr, &sensor_dev_attr_pwm1_high_freq.dev_attr.attr, &sensor_dev_attr_pwm2_high_freq.dev_attr.attr, &sensor_dev_attr_pwm3_high_freq.dev_attr.attr, &sensor_dev_attr_pwm1_syno_control.dev_attr.attr, &sensor_dev_attr_pwm2_syno_control.dev_attr.attr, &sensor_dev_attr_pwm3_syno_control.dev_attr.attr, &sensor_dev_attr_full_duty_cycle.dev_attr.attr, &sensor_dev_attr_peci_error.dev_attr.attr, &sensor_dev_attr_enhanced_acoustic_register.dev_attr.attr, #endif /* MY_ABC_HERE */ &dev_attr_pwm_use_point2_pwm_at_crit.attr, NULL, }; static struct attribute *fan4_attrs[] = { &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan4_alarm.dev_attr.attr, NULL }; static struct attribute *pwm2_attrs[] = { &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm2_freq.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_stall_disable.dev_attr.attr, NULL }; static struct attribute *in0_attrs[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, NULL }; static struct attribute *in3_attrs[] = { &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, NULL }; static struct attribute *in4_attrs[] = { &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, NULL }; static struct attribute *in5_attrs[] = { &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, NULL }; static struct attribute *vid_attrs[] = { &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, NULL }; static const struct attribute_group adt7475_attr_group = { .attrs = adt7475_attrs }; static const struct attribute_group fan4_attr_group = { .attrs = fan4_attrs }; static const struct attribute_group pwm2_attr_group = { .attrs = pwm2_attrs }; static const struct attribute_group in0_attr_group = { .attrs = in0_attrs }; static const struct attribute_group in3_attr_group = { .attrs = in3_attrs }; static const struct attribute_group in4_attr_group = { .attrs = in4_attrs }; static const struct attribute_group in5_attr_group = { .attrs = in5_attrs }; static const struct attribute_group vid_attr_group = { .attrs = vid_attrs }; static int adt7475_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int vendid, devid, devid2; const char *name; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; vendid = adt7475_read(REG_VENDID); devid2 = adt7475_read(REG_DEVID2); if (vendid != 0x41 || /* Analog Devices */ (devid2 & 0xf8) != 0x68) return -ENODEV; devid = adt7475_read(REG_DEVID); if (devid == 0x73) name = "adt7473"; else if (devid == 0x75 && client->addr == 0x2e) name = "adt7475"; else if (devid == 0x76) name = "adt7476"; else if ((devid2 & 0xfc) == 0x6c) name = "adt7490"; else { dev_dbg(&adapter->dev, "Couldn't detect an ADT7473/75/76/90 part at " "0x%02x\n", (unsigned int)client->addr); return -ENODEV; } strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } static int adt7475_update_limits(struct i2c_client *client) { struct adt7475_data *data = i2c_get_clientdata(client); int i; int ret; ret = adt7475_read(REG_CONFIG4); if (ret < 0) return ret; data->config4 = ret; ret = adt7475_read(REG_CONFIG5); if (ret < 0) return ret; data->config5 = ret; for (i = 0; i < ADT7475_VOLTAGE_COUNT; i++) { if (!(data->has_voltage & (1 << i))) continue; /* Adjust values so they match the input precision */ ret = adt7475_read(VOLTAGE_MIN_REG(i)); if (ret < 0) return ret; data->voltage[MIN][i] = ret << 2; ret = adt7475_read(VOLTAGE_MAX_REG(i)); if (ret < 0) return ret; data->voltage[MAX][i] = ret << 2; } if (data->has_voltage & (1 << 5)) { ret = adt7475_read(REG_VTT_MIN); if (ret < 0) return ret; data->voltage[MIN][5] = ret << 2; ret = adt7475_read(REG_VTT_MAX); if (ret < 0) return ret; data->voltage[MAX][5] = ret << 2; } for (i = 0; i < ADT7475_TEMP_COUNT; i++) { /* Adjust values so they match the input precision */ ret = adt7475_read(TEMP_MIN_REG(i)); if (ret < 0) return ret; data->temp[MIN][i] = ret << 2; ret = adt7475_read(TEMP_MAX_REG(i)); if (ret < 0) return ret; data->temp[MAX][i] = ret << 2; ret = adt7475_read(TEMP_TMIN_REG(i)); if (ret < 0) return ret; data->temp[AUTOMIN][i] = ret << 2; ret = adt7475_read(TEMP_THERM_REG(i)); if (ret < 0) return ret; data->temp[THERM][i] = ret << 2; ret = adt7475_read(TEMP_OFFSET_REG(i)); if (ret < 0) return ret; data->temp[OFFSET][i] = ret; } adt7475_read_hystersis(client); for (i = 0; i < ADT7475_TACH_COUNT; i++) { if (i == 3 && !data->has_fan4) continue; ret = adt7475_read_word(client, TACH_MIN_REG(i)); if (ret < 0) return ret; data->tach[MIN][i] = ret; } for (i = 0; i < ADT7475_PWM_COUNT; i++) { if (i == 1 && !data->has_pwm2) continue; ret = adt7475_read(PWM_MAX_REG(i)); if (ret < 0) return ret; data->pwm[MAX][i] = ret; ret = adt7475_read(PWM_MIN_REG(i)); if (ret < 0) return ret; data->pwm[MIN][i] = ret; /* Set the channel and control information */ adt7475_read_pwm(client, i); } ret = adt7475_read(TEMP_TRANGE_REG(0)); if (ret < 0) return ret; data->range[0] = ret; ret = adt7475_read(TEMP_TRANGE_REG(1)); if (ret < 0) return ret; data->range[1] = ret; ret = adt7475_read(TEMP_TRANGE_REG(2)); if (ret < 0) return ret; data->range[2] = ret; return 0; } static int set_property_bit(const struct i2c_client *client, char *property, u8 *config, u8 bit_index) { u32 prop_value = 0; int ret = of_property_read_u32(client->dev.of_node, property, &prop_value); if (!ret) { if (prop_value) *config |= (1 << bit_index); else *config &= ~(1 << bit_index); } return ret; } static int load_attenuators(const struct i2c_client *client, int chip, struct adt7475_data *data) { int ret; if (chip == adt7476 || chip == adt7490) { set_property_bit(client, "adi,bypass-attenuator-in0", &data->config4, 4); set_property_bit(client, "adi,bypass-attenuator-in1", &data->config4, 5); set_property_bit(client, "adi,bypass-attenuator-in3", &data->config4, 6); set_property_bit(client, "adi,bypass-attenuator-in4", &data->config4, 7); ret = i2c_smbus_write_byte_data(client, REG_CONFIG4, data->config4); if (ret < 0) return ret; } else if (chip == adt7473 || chip == adt7475) { set_property_bit(client, "adi,bypass-attenuator-in1", &data->config2, 5); ret = i2c_smbus_write_byte_data(client, REG_CONFIG2, data->config2); if (ret < 0) return ret; } return 0; } static int adt7475_set_pwm_polarity(struct i2c_client *client) { u32 states[ADT7475_PWM_COUNT]; int ret, i; u8 val; ret = of_property_read_u32_array(client->dev.of_node, "adi,pwm-active-state", states, ARRAY_SIZE(states)); if (ret) return ret; for (i = 0; i < ADT7475_PWM_COUNT; i++) { ret = adt7475_read(PWM_CONFIG_REG(i)); if (ret < 0) return ret; val = ret; if (states[i]) val &= ~BIT(4); else val |= BIT(4); ret = i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(i), val); if (ret) return ret; } return 0; } #ifdef MY_ABC_HERE extern int (*funcSYNOReadAdtFanSpeedRpm)(struct _SYNO_HWMON_SENSOR_TYPE *); extern int (*funcSYNOReadAdtVoltageSensor)(struct _SYNO_HWMON_SENSOR_TYPE *); extern int (*funcSYNOReadAdtThermalSensor)(struct _SYNO_HWMON_SENSOR_TYPE *); extern int (*funcSYNOReadAdtPeci)(struct _SynoCpuTemp *); extern int (*funcSYNOReadAdtFanSpeedRpmByOrder)(struct _SYNO_HWMON_SENSOR_TYPE *, struct _SYNO_HWMON_FAN_ORDER *); static struct i2c_client *syno_find_adt7490_client(void) { struct i2c_client *client, *_n, *ret = NULL; list_for_each_entry_safe(client, _n, &adt7475_driver.clients, detected) { if (SYNO_IS_ADT7490(client)) { ret = client; break; } } return ret; } static int syno_parse_adt_peci_input(struct _SynoCpuTemp *pCpuTemp) { int i, ret = -1; int cpu_count = 1; struct i2c_client *client; struct adt7475_data *data; if (NULL == pCpuTemp) { printk("adt7475: parameter error.\n"); goto RET; } client = syno_find_adt7490_client(); if (NULL == client) { printk("adt7475: client not found.\n"); goto RET; } data = i2c_get_clientdata(client); #ifdef MY_DEF_HERE cpu_count = 2; #endif /* MY_DEF_HERE */ for (i = 0; i < cpu_count; ++i) { pCpuTemp->cpu_temp[i] = reg2temp(data, data->peci[INPUT][i]); } pCpuTemp->cpu_num = cpu_count; ret = 0; RET: return ret; } static int syno_parse_adt_voltage_sensor(struct _SYNO_HWMON_SENSOR_TYPE *SysVoltage) { struct i2c_client *client; struct adt7475_data *data; int i = 0; client = syno_find_adt7490_client(); if (NULL == client || NULL == SysVoltage) { return -ENODEV; } data = i2c_get_clientdata(client); for (i = 0 ; i < SysVoltage->sensor_num ; i++) { snprintf(SysVoltage->sensor[i].value, sizeof(SysVoltage->sensor[i].value), "%d", reg2volt(i, data->voltage[INPUT][i], data->bypass_attn)); } return 0; } static int syno_parse_adt_thermal_sensor(struct _SYNO_HWMON_SENSOR_TYPE *SysThermal) { struct i2c_client *client; struct adt7475_data *data; int i = 0; client = syno_find_adt7490_client(); if (NULL == client || NULL == SysThermal) { return -ENODEV; } data = i2c_get_clientdata(client); for (i = 0 ; i < SysThermal->sensor_num ; i++) { snprintf(SysThermal->sensor[i].value, sizeof(SysThermal->sensor[i].value), "%d", reg2temp(data, data->temp[INPUT][i]) / 1000); } return 0; } static int syno_parse_adt_fan_speed_rpm(struct _SYNO_HWMON_SENSOR_TYPE *FanSpeedRpm) { struct i2c_client *client; struct adt7475_data *data; int i = 0; client = syno_find_adt7490_client(); if (NULL == client || NULL == FanSpeedRpm) { return -ENODEV; } data = i2c_get_clientdata(client); for (i = 0 ; i < FanSpeedRpm->sensor_num ; i++) { snprintf(FanSpeedRpm->sensor[i].value, sizeof(FanSpeedRpm->sensor[i].value), "%d", tach2rpm(data->tach[INPUT][i])); } return 0; } static int syno_parse_adt_fan_speed_rpm_by_order(struct _SYNO_HWMON_SENSOR_TYPE *FanSpeedRpm, struct _SYNO_HWMON_FAN_ORDER *FanOrder) { struct i2c_client *client; struct adt7475_data *data; int i = 0; client = syno_find_adt7490_client(); if (NULL == client || NULL == FanSpeedRpm || NULL == FanOrder) { return -ENODEV; } data = i2c_get_clientdata(client); for (i = 0 ; i < FanSpeedRpm->sensor_num ; i++) { snprintf(FanSpeedRpm->sensor[i].value, sizeof(FanSpeedRpm->sensor[i].value), "%d", tach2rpm(data->tach[INPUT][FanOrder->fan_order_list[i]])); } return 0; } #endif /* MY_ABC_HERE */ #ifdef MY_DEF_HERE extern u8 syno_cpu_tjmax(int, int*); #endif /* MY_DEF_HERE */ static int adt7475_probe(struct i2c_client *client) { enum chips chip; static const char * const names[] = { [adt7473] = "ADT7473", [adt7475] = "ADT7475", [adt7476] = "ADT7476", [adt7490] = "ADT7490", }; #ifdef MY_ABC_HERE u8 config1, configPECI; #endif /* MY_ABC_HERE */ struct adt7475_data *data; struct device *hwmon_dev; int i, ret = 0, revision, group_num = 0; u8 config3; const struct i2c_device_id *id = i2c_match_id(adt7475_id, client); #ifdef MY_DEF_HERE int tjmax; #endif /* MY_DEF_HERE */ data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); if (data == NULL) return -ENOMEM; mutex_init(&data->lock); data->client = client; i2c_set_clientdata(client, data); if (client->dev.of_node) chip = (enum chips)of_device_get_match_data(&client->dev); else chip = id->driver_data; /* Initialize device-specific values */ switch (chip) { case adt7476: data->has_voltage = 0x0e; /* in1 to in3 */ revision = adt7475_read(REG_DEVID2) & 0x07; break; case adt7490: data->has_voltage = 0x3e; /* in1 to in5 */ revision = adt7475_read(REG_DEVID2) & 0x03; if (revision == 0x03) revision += adt7475_read(REG_DEVREV2); break; default: data->has_voltage = 0x06; /* in1, in2 */ revision = adt7475_read(REG_DEVID2) & 0x07; } #ifdef MY_ABC_HERE if (SYNO_IS_ADT7490(client)) { config1 = adt7475_read(REG_CONFIG1); // which means adt7490 is not been told to start if (!(config1 & 0x1)) { // which means adt7490 is ready to go... if (config1 & 0x4) { config1 |= 0x11; i2c_smbus_write_byte_data(client, REG_CONFIG1, config1); } } configPECI = adt7475_read(REG_PECI_CONFIG); #ifdef MY_DEF_HERE // 40h = 01000000b // Bits [7:6], 01: 2 CPUs (PECI0, PECI1) configPECI = 0x40; #else /* MY_DEF_HERE */ configPECI = 0x00; #endif /* MY_DEF_HERE */ i2c_smbus_write_byte_data(client, REG_PECI_CONFIG, configPECI); funcSYNOReadAdtPeci = syno_parse_adt_peci_input; funcSYNOReadAdtFanSpeedRpm = syno_parse_adt_fan_speed_rpm; funcSYNOReadAdtVoltageSensor = syno_parse_adt_voltage_sensor; funcSYNOReadAdtThermalSensor = syno_parse_adt_thermal_sensor; funcSYNOReadAdtFanSpeedRpmByOrder = syno_parse_adt_fan_speed_rpm_by_order; #ifdef MY_DEF_HERE for (i = 0; i < ADT7490_PECI_COUNT; ++i) { if (syno_cpu_tjmax(i, &tjmax) < 0) { continue; } i2c_smbus_write_byte_data(client, PECI_OFFSET_REG(i), (u8)tjmax); } #endif /* MY_DEF_HERE */ } #endif /* MY_ABC_HERE */ config3 = adt7475_read(REG_CONFIG3); /* Pin PWM2 may alternatively be used for ALERT output */ if (!(config3 & CONFIG3_SMBALERT)) data->has_pwm2 = 1; /* Meaning of this bit is inverted for the ADT7473-1 */ if (id->driver_data == adt7473 && revision >= 1) data->has_pwm2 = !data->has_pwm2; data->config4 = adt7475_read(REG_CONFIG4); /* Pin TACH4 may alternatively be used for THERM */ if ((data->config4 & CONFIG4_PINFUNC) == 0x0) data->has_fan4 = 1; /* * THERM configuration is more complex on the ADT7476 and ADT7490, * because 2 different pins (TACH4 and +2.5 Vin) can be used for * this function */ if (id->driver_data == adt7490) { if ((data->config4 & CONFIG4_PINFUNC) == 0x1 && !(config3 & CONFIG3_THERM)) data->has_fan4 = 1; } if (id->driver_data == adt7476 || id->driver_data == adt7490) { if (!(config3 & CONFIG3_THERM) || (data->config4 & CONFIG4_PINFUNC) == 0x1) data->has_voltage |= (1 << 0); /* in0 */ } /* * On the ADT7476, the +12V input pin may instead be used as VID5, * and VID pins may alternatively be used as GPIO */ if (id->driver_data == adt7476) { u8 vid = adt7475_read(REG_VID); if (!(vid & VID_VIDSEL)) data->has_voltage |= (1 << 4); /* in4 */ data->has_vid = !(adt7475_read(REG_CONFIG5) & CONFIG5_VIDGPIO); } /* Voltage attenuators can be bypassed, globally or individually */ data->config2 = adt7475_read(REG_CONFIG2); ret = load_attenuators(client, chip, data); if (ret) dev_warn(&client->dev, "Error configuring attenuator bypass\n"); if (data->config2 & CONFIG2_ATTN) { data->bypass_attn = (0x3 << 3) | 0x3; } else { data->bypass_attn = ((data->config4 & CONFIG4_ATTN_IN10) >> 4) | ((data->config4 & CONFIG4_ATTN_IN43) >> 3); } data->bypass_attn &= data->has_voltage; /* * Call adt7475_read_pwm for all pwm's as this will reprogram any * pwm's which are disabled to manual mode with 0% duty cycle */ for (i = 0; i < ADT7475_PWM_COUNT; i++) adt7475_read_pwm(client, i); ret = adt7475_set_pwm_polarity(client); if (ret && ret != -EINVAL) dev_warn(&client->dev, "Error configuring pwm polarity\n"); /* Start monitoring */ switch (chip) { case adt7475: case adt7476: i2c_smbus_write_byte_data(client, REG_CONFIG1, adt7475_read(REG_CONFIG1) | 0x01); break; default: break; } data->groups[group_num++] = &adt7475_attr_group; /* Features that can be disabled individually */ if (data->has_fan4) { data->groups[group_num++] = &fan4_attr_group; } if (data->has_pwm2) { data->groups[group_num++] = &pwm2_attr_group; } if (data->has_voltage & (1 << 0)) { data->groups[group_num++] = &in0_attr_group; } if (data->has_voltage & (1 << 3)) { data->groups[group_num++] = &in3_attr_group; } if (data->has_voltage & (1 << 4)) { data->groups[group_num++] = &in4_attr_group; } if (data->has_voltage & (1 << 5)) { data->groups[group_num++] = &in5_attr_group; } if (data->has_vid) { data->vrm = vid_which_vrm(); data->groups[group_num] = &vid_attr_group; } /* register device with all the acquired attributes */ hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev, client->name, data, data->groups); if (IS_ERR(hwmon_dev)) { ret = PTR_ERR(hwmon_dev); return ret; } dev_info(&client->dev, "%s device, revision %d\n", names[id->driver_data], revision); if ((data->has_voltage & 0x11) || data->has_fan4 || data->has_pwm2) dev_info(&client->dev, "Optional features:%s%s%s%s%s\n", (data->has_voltage & (1 << 0)) ? " in0" : "", (data->has_voltage & (1 << 4)) ? " in4" : "", data->has_fan4 ? " fan4" : "", data->has_pwm2 ? " pwm2" : "", data->has_vid ? " vid" : ""); if (data->bypass_attn) dev_info(&client->dev, "Bypassing attenuators on:%s%s%s%s\n", (data->bypass_attn & (1 << 0)) ? " in0" : "", (data->bypass_attn & (1 << 1)) ? " in1" : "", (data->bypass_attn & (1 << 3)) ? " in3" : "", (data->bypass_attn & (1 << 4)) ? " in4" : ""); /* Limits and settings, should never change update more than once */ ret = adt7475_update_limits(client); if (ret) return ret; return 0; } static struct i2c_driver adt7475_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adt7475", .of_match_table = of_match_ptr(adt7475_of_match), }, .probe_new = adt7475_probe, .id_table = adt7475_id, .detect = adt7475_detect, .address_list = normal_i2c, }; static void adt7475_read_hystersis(struct i2c_client *client) { struct adt7475_data *data = i2c_get_clientdata(client); data->temp[HYSTERSIS][0] = (u16) adt7475_read(REG_REMOTE1_HYSTERSIS); data->temp[HYSTERSIS][1] = data->temp[HYSTERSIS][0]; data->temp[HYSTERSIS][2] = (u16) adt7475_read(REG_REMOTE2_HYSTERSIS); #ifdef MY_ABC_HERE data->peci[HYSTERSIS][0] = (u16) adt7475_read(REG_REMOTE2_HYSTERSIS); data->peci[HYSTERSIS][1] = (u16) adt7475_read(REG_REMOTE2_HYSTERSIS); data->peci[HYSTERSIS][2] = (u16) adt7475_read(REG_REMOTE2_HYSTERSIS); data->peci[HYSTERSIS][3] = (u16) adt7475_read(REG_REMOTE2_HYSTERSIS); #endif /* MY_ABC_HERE */ } #ifdef MY_ABC_HERE static unsigned int adt7490_pwmctl_read(const unsigned int pwmReg) { unsigned int valt = pwmReg & 0x8; unsigned int pwmSource = (pwmReg >> 5) & 7; unsigned int ret = 1; if (valt) { switch (pwmSource) { case 0x0: ret = 5; break; case 0x1: ret = 6; break; case 0x2: ret = 7; break; case 0x3: ret = 8; break; case 0x5: ret = 4; break; case 0x7: ret = 3; break; default: ret = 0; break; } } else { switch (pwmSource) { case 0x0: ret = 11; break; case 0x1: ret = 12; break; case 0x2: ret = 13; break; case 0x3: ret = 1; break; case 0x5: ret = 10; break; case 0x6: ret = 9; break; case 0x7: ret = 2; break; default: ret = 0; break; } } return ret; } #endif /* MY_ABC_HERE */ static void adt7475_read_pwm(struct i2c_client *client, int index) { struct adt7475_data *data = i2c_get_clientdata(client); unsigned int v; data->pwm[CONTROL][index] = adt7475_read(PWM_CONFIG_REG(index)); /* * Figure out the internal value for pwmctrl and pwmchan * based on the current settings */ v = (data->pwm[CONTROL][index] >> 5) & 7; #ifdef MY_ABC_HERE data->pwmsynoctl[index] = adt7490_pwmctl_read(data->pwm[CONTROL][index]); #endif /* MY_ABC_HERE */ if (v == 3) data->pwmctl[index] = 0; else if (v == 7) data->pwmctl[index] = 1; else if (v == 4) { /* * The fan is disabled - we don't want to * support that, so change to manual mode and * set the duty cycle to 0 instead */ data->pwm[INPUT][index] = 0; data->pwm[CONTROL][index] &= ~0xE0; data->pwm[CONTROL][index] |= (7 << 5); i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index), data->pwm[INPUT][index]); i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index), data->pwm[CONTROL][index]); data->pwmctl[index] = 1; } else { data->pwmctl[index] = 2; switch (v) { case 0: data->pwmchan[index] = 1; break; case 1: data->pwmchan[index] = 2; break; case 2: data->pwmchan[index] = 4; break; case 5: data->pwmchan[index] = 6; break; case 6: data->pwmchan[index] = 7; break; } } } static int adt7475_update_measure(struct device *dev) { struct adt7475_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u16 ext; int i; int ret; ret = adt7475_read(REG_STATUS2); if (ret < 0) return ret; data->alarms = ret << 8; ret = adt7475_read(REG_STATUS1); if (ret < 0) return ret; data->alarms |= ret; ret = adt7475_read(REG_EXTEND2); if (ret < 0) return ret; ext = (ret << 8); ret = adt7475_read(REG_EXTEND1); if (ret < 0) return ret; ext |= ret; for (i = 0; i < ADT7475_VOLTAGE_COUNT; i++) { if (!(data->has_voltage & (1 << i))) continue; ret = adt7475_read(VOLTAGE_REG(i)); if (ret < 0) return ret; data->voltage[INPUT][i] = (ret << 2) | ((ext >> (i * 2)) & 3); } for (i = 0; i < ADT7475_TEMP_COUNT; i++) { ret = adt7475_read(TEMP_REG(i)); if (ret < 0) return ret; data->temp[INPUT][i] = (ret << 2) | ((ext >> ((i + 5) * 2)) & 3); } if (data->has_voltage & (1 << 5)) { ret = adt7475_read(REG_STATUS4); if (ret < 0) return ret; data->alarms |= ret << 24; ret = adt7475_read(REG_EXTEND3); if (ret < 0) return ret; ext = ret; ret = adt7475_read(REG_VTT); if (ret < 0) return ret; data->voltage[INPUT][5] = ret << 2 | ((ext >> 4) & 3); } #ifdef MY_ABC_HERE if (SYNO_IS_ADT7490(client)) { for (i = 0; i < ADT7490_PECI_COUNT; i++) { /* Adjust values so they match the input precision */ data->peci[MIN][i] = adt7475_read(REG_PECI_LOW_LIMIT) << 2; data->peci[MAX][i] = adt7475_read(REG_PECI_HIGH_LIMIT) << 2; data->peci[AUTOMIN][i] = adt7475_read(REG_PECI_MIN) << 2; data->peci[THERM][i] = adt7475_read(REG_DEVID) << 2; data->peci[INPUT][i] = adt7475_read(PECI_REG(i)) << 2; data->peci[OFFSET][i] = adt7475_read(PECI_OFFSET_REG(i)); data->peci_range[i] = adt7475_read(REG_PECI_RANGE); } } #endif /* MY_ABC_HERE */ for (i = 0; i < ADT7475_TACH_COUNT; i++) { if (i == 3 && !data->has_fan4) continue; ret = adt7475_read_word(client, TACH_REG(i)); if (ret < 0) return ret; data->tach[INPUT][i] = ret; } /* Updated by hw when in auto mode */ for (i = 0; i < ADT7475_PWM_COUNT; i++) { if (i == 1 && !data->has_pwm2) continue; ret = adt7475_read(PWM_REG(i)); if (ret < 0) return ret; data->pwm[INPUT][i] = ret; } if (data->has_vid) { ret = adt7475_read(REG_VID); if (ret < 0) return ret; data->vid = ret & 0x3f; } return 0; } static struct adt7475_data *adt7475_update_device(struct device *dev) { struct adt7475_data *data = dev_get_drvdata(dev); int ret; mutex_lock(&data->lock); /* Measurement values update every 2 seconds */ if (time_after(jiffies, data->measure_updated + HZ * 2) || !data->valid) { ret = adt7475_update_measure(dev); if (ret) { data->valid = false; mutex_unlock(&data->lock); return ERR_PTR(ret); } data->measure_updated = jiffies; data->valid = true; } mutex_unlock(&data->lock); return data; } module_i2c_driver(adt7475_driver); MODULE_AUTHOR("Advanced Micro Devices, Inc"); MODULE_DESCRIPTION("adt7475 driver"); MODULE_LICENSE("GPL");