Implement call_cpuidle_s2idle() in analogy with call_cpuidle()
for the s2idle-specific idle state entry and invoke it from
cpuidle_idle_call() to make the s2idle-specific idle entry code
path look more similar to the "regular" idle entry one.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Chen Yu <yu.c.chen@intel.com>
Now that the sched_class descriptors are defined in order via the linker
script vmlinux.lds.h, there's no reason to have a "next" pointer to the
previous priroity structure. The order of the sturctures can be aligned as
an array, and used to index and find the next sched_class descriptor.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191219214558.845353593@goodmis.org
In order to make a micro optimization in pick_next_task(), the order of the
sched class descriptor address must be in the same order as their priority
to each other. That is:
&idle_sched_class < &fair_sched_class < &rt_sched_class <
&dl_sched_class < &stop_sched_class
In order to guarantee this order of the sched class descriptors, add each
one into their own data section and force the order in the linker script.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/157675913272.349305.8936736338884044103.stgit@localhost.localdomain
The idle task and stop task sched_classes return 0 in this function.
The single call site in sched_rr_get_interval() calls
p->sched_class->get_rr_interval() only conditional in case it is
defined. Otherwise time_slice=0 will be used.
The deadline sched class does not define it. Commit a57beec5d4
("sched: Make sched_class::get_rr_interval() optional") introduced
the default time-slice=0 for sched classes which do not provide this
function.
So .get_rr_interval for idle and stop sched_class can be removed to
shrink the code a little.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-4-dietmar.eggemann@arm.com
The recent commit: 90b5363acd ("sched: Clean up scheduler_ipi()")
got smp_call_function_single_async() subtly wrong. Even though it will
return -EBUSY when trying to re-use a csd, that condition is not
atomic and still requires external serialization.
The change in ttwu_queue_remote() got this wrong.
While on first reading ttwu_queue_remote() has an atomic test-and-set
that appears to serialize the use, the matching 'release' is not in
the right place to actually guarantee this serialization.
The actual race is vs the sched_ttwu_pending() call in the idle loop;
that can run the wakeup-list without consuming the CSD.
Instead of trying to chain the lists, merge them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161908.129371594@infradead.org
Just like the ttwu_queue_remote() IPI, make use of _TIF_POLLING_NRFLAG
to avoid sending IPIs to idle CPUs.
[ mingo: Fix UP build bug. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161907.953304789@infradead.org
There is a spelling misake in comments of cpuidle_idle_call. Fix it.
Signed-off-by: Hewenliang <hewenliang4@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20200110025604.34373-1-hewenliang4@huawei.com
- Use nanoseconds (instead of microseconds) as the unit of time in
the cpuidle core and simplify checks for disabled idle states in
the idle loop (Rafael Wysocki).
- Fix and clean up the teo cpuidle governor (Rafael Wysocki).
- Fix the cpuidle registration error code path (Zhenzhong Duan).
- Avoid excessive vmexits in the ACPI cpuidle driver (Yin Fengwei).
- Extend the idle injection infrastructure to be able to measure the
requested duration in nanoseconds and to allow an exit latency
limit for idle states to be specified (Daniel Lezcano).
- Fix cpufreq driver registration and clarify a comment in the
cpufreq core (Viresh Kumar).
- Add NULL checks to the show() and store() methods of sysfs
attributes exposed by cpufreq (Kai Shen).
- Update cpufreq drivers:
* Fix for a plain int as pointer warning from sparse in
intel_pstate (Jamal Shareef).
* Fix for a hardcoded number of CPUs and stack bloat in the
powernv driver (John Hubbard).
* Updates to the ti-cpufreq driver and DT files to support new
platforms and migrate bindings from opp-v1 to opp-v2 (Adam Ford,
H. Nikolaus Schaller).
* Merging of the arm_big_little and vexpress-spc drivers and
related cleanup (Sudeep Holla).
* Fix for imx's default speed grade value (Anson Huang).
* Minor cleanup of the s3c64xx driver (Nathan Chancellor).
* CPU speed bin detection fix for sun50i (Ondrej Jirman).
- Appoint Chanwoo Choi as the new devfreq maintainer.
- Update the devfreq core:
* Check NULL governor in available_governors_show sysfs to prevent
showing wrong governor information and fix a race condition
between devfreq_update_status() and trans_stat_show() (Leonard
Crestez).
* Add new 'interrupt-driven' flag for devfreq governors to allow
interrupt-driven governors to prevent the devfreq core from
polling devices for status (Dmitry Osipenko).
* Improve an error message in devfreq_add_device() (Matthias
Kaehlcke).
- Update devfreq drivers:
* tegra30 driver fixes and cleanups (Dmitry Osipenko).
* Removal of unused property from dt-binding documentation for
the exynos-bus driver (Kamil Konieczny).
* exynos-ppmu cleanup and DT bindings update (Lukasz Luba, Marek
Szyprowski).
- Add new CPU IDs for CometLake Mobile and Desktop to the Intel RAPL
power capping driver (Zhang Rui).
- Allow device initialization in the generic power domains (genpd)
framework to be more straightforward and clean it up (Ulf Hansson).
- Add support for adjusting OPP voltages at run time to the OPP
framework (Stephen Boyd).
- Avoid freeing memory that has never been allocated in the
hibernation core (Andy Whitcroft).
- Clean up function headers in a header file and coding style in the
wakeup IRQs handling code (Ulf Hansson, Xiaofei Tan).
- Clean up the SmartReflex adaptive voltage scaling (AVS) driver for
ARM (Ben Dooks, Geert Uytterhoeven).
- Wrap power management documentation to fit in 80 columns (Bjorn
Helgaas).
- Add pm-graph utility entry to MAINTAINERS (Todd Brandt).
- Update the cpupower utility:
* Fix the handling of set and info subcommands (Abhishek Goel).
* Fix build warnings (Nathan Chancellor).
* Improve mperf_monitor handling (Janakarajan Natarajan).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHGYSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxMcgP/1bMSkxlRHFOXYSRwS4YcvkUjlBHrCSi
3qGRyYwhc+eRLqRc+2tcmQeQEeQRBqUt8etp7/9WxqS3nic/3Vdf6AFuhSpmJzo1
6JTEutHMU5eP8lwQuKoUCJncCNdIfEOkd5T35E12W/ar5PwyJio0UByZJBnJBjD/
p7/713ucq6ZH95OGncmCJ1S1UslFCZrSS2RRigDInu8gpEssnwN9zwaJbzUYrZHj
BmnKpBpT8FdLmkpbOtmmiT7q2ZGpUEHhkaO916Knf/+BFdvydTXoR90FVvXKy8Zr
QpOxaTdQB2ADifUa5zs8klVP6otmZhEO9vz8hVMUWGziqagObykQngzl8tqrKEBh
hLI8eEG1IkEBCv5ThQbLcoaRXNpwriXXfvWPTPB8s84HJxNZ09F6pXsv1SLh96qC
lj8Q5Yy2a3tlpsg4LB58XoJ54gOtlh8bWKkM0FytrFI/IP+HT4TUu/Rxgp1nDbGd
tKzLvpn4Yo2h10seeDbYk3l79mogUYj50RmwjjPn+9RwS/Df4eIpNb6ibllGZUN/
zcPZH5xlVfQRl2LKDufVN0nYSnoMZY/fU05p9XbUiJWd80LHYOb4Em1N6h/FNOyl
alDhVwlxEvc2BQwL/gjYmN6Qxc7SsPTBrSGVwjWYY+FghOYQd/wBDQqQUeM21QKg
ChOE3z/F/26r
=GJvT
-----END PGP SIGNATURE-----
Merge tag 'pm-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These include cpuidle changes to use nanoseconds (instead of
microseconds) as the unit of time and to simplify checks for disabled
idle states in the idle loop, some cpuidle fixes and governor updates,
assorted cpufreq updates (driver updates mostly and a few core fixes
and cleanups), devfreq updates (dominated by the tegra30 driver
changes), new CPU IDs for the RAPL power capping driver, relatively
minor updates of the generic power domains (genpd) and operation
performance points (OPP) frameworks, and assorted fixes and cleanups.
There are also two maintainer information updates: Chanwoo Choi will
be maintaining the devfreq subsystem going forward and Todd Brandt is
going to maintain the pm-graph utility (created by him).
Specifics:
- Use nanoseconds (instead of microseconds) as the unit of time in
the cpuidle core and simplify checks for disabled idle states in
the idle loop (Rafael Wysocki)
- Fix and clean up the teo cpuidle governor (Rafael Wysocki)
- Fix the cpuidle registration error code path (Zhenzhong Duan)
- Avoid excessive vmexits in the ACPI cpuidle driver (Yin Fengwei)
- Extend the idle injection infrastructure to be able to measure the
requested duration in nanoseconds and to allow an exit latency
limit for idle states to be specified (Daniel Lezcano)
- Fix cpufreq driver registration and clarify a comment in the
cpufreq core (Viresh Kumar)
- Add NULL checks to the show() and store() methods of sysfs
attributes exposed by cpufreq (Kai Shen)
- Update cpufreq drivers:
* Fix for a plain int as pointer warning from sparse in
intel_pstate (Jamal Shareef)
* Fix for a hardcoded number of CPUs and stack bloat in the
powernv driver (John Hubbard)
* Updates to the ti-cpufreq driver and DT files to support new
platforms and migrate bindings from opp-v1 to opp-v2 (Adam Ford,
H. Nikolaus Schaller)
* Merging of the arm_big_little and vexpress-spc drivers and
related cleanup (Sudeep Holla)
* Fix for imx's default speed grade value (Anson Huang)
* Minor cleanup of the s3c64xx driver (Nathan Chancellor)
* CPU speed bin detection fix for sun50i (Ondrej Jirman)
- Appoint Chanwoo Choi as the new devfreq maintainer.
- Update the devfreq core:
* Check NULL governor in available_governors_show sysfs to prevent
showing wrong governor information and fix a race condition
between devfreq_update_status() and trans_stat_show() (Leonard
Crestez)
* Add new 'interrupt-driven' flag for devfreq governors to allow
interrupt-driven governors to prevent the devfreq core from
polling devices for status (Dmitry Osipenko)
* Improve an error message in devfreq_add_device() (Matthias
Kaehlcke)
- Update devfreq drivers:
* tegra30 driver fixes and cleanups (Dmitry Osipenko)
* Removal of unused property from dt-binding documentation for the
exynos-bus driver (Kamil Konieczny)
* exynos-ppmu cleanup and DT bindings update (Lukasz Luba, Marek
Szyprowski)
- Add new CPU IDs for CometLake Mobile and Desktop to the Intel RAPL
power capping driver (Zhang Rui)
- Allow device initialization in the generic power domains (genpd)
framework to be more straightforward and clean it up (Ulf Hansson)
- Add support for adjusting OPP voltages at run time to the OPP
framework (Stephen Boyd)
- Avoid freeing memory that has never been allocated in the
hibernation core (Andy Whitcroft)
- Clean up function headers in a header file and coding style in the
wakeup IRQs handling code (Ulf Hansson, Xiaofei Tan)
- Clean up the SmartReflex adaptive voltage scaling (AVS) driver for
ARM (Ben Dooks, Geert Uytterhoeven)
- Wrap power management documentation to fit in 80 columns (Bjorn
Helgaas)
- Add pm-graph utility entry to MAINTAINERS (Todd Brandt)
- Update the cpupower utility:
* Fix the handling of set and info subcommands (Abhishek Goel)
* Fix build warnings (Nathan Chancellor)
* Improve mperf_monitor handling (Janakarajan Natarajan)"
* tag 'pm-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (83 commits)
PM: Wrap documentation to fit in 80 columns
cpuidle: Pass exit latency limit to cpuidle_use_deepest_state()
cpuidle: Allow idle injection to apply exit latency limit
cpuidle: Introduce cpuidle_driver_state_disabled() for driver quirks
cpuidle: teo: Avoid code duplication in conditionals
cpufreq: Register drivers only after CPU devices have been registered
cpuidle: teo: Avoid using "early hits" incorrectly
cpuidle: teo: Exclude cpuidle overhead from computations
PM / Domains: Convert to dev_to_genpd_safe() in genpd_syscore_switch()
mmc: tmio: Avoid boilerplate code in ->runtime_suspend()
PM / Domains: Implement the ->start() callback for genpd
PM / Domains: Introduce dev_pm_domain_start()
ARM: OMAP2+: SmartReflex: add omap_sr_pdata definition
PM / wakeirq: remove unnecessary parentheses
power: avs: smartreflex: Remove superfluous cast in debugfs_create_file() call
cpuidle: Use nanoseconds as the unit of time
PM / OPP: Support adjusting OPP voltages at runtime
PM / core: Clean up some function headers in power.h
cpufreq: Add NULL checks to show() and store() methods of cpufreq
cpufreq: intel_pstate: Fix plain int as pointer warning from sparse
...
* pm-cpuidle:
cpuidle: Pass exit latency limit to cpuidle_use_deepest_state()
cpuidle: Allow idle injection to apply exit latency limit
cpuidle: Introduce cpuidle_driver_state_disabled() for driver quirks
cpuidle: teo: Avoid code duplication in conditionals
cpuidle: teo: Avoid using "early hits" incorrectly
cpuidle: teo: Exclude cpuidle overhead from computations
cpuidle: Use nanoseconds as the unit of time
cpuidle: Consolidate disabled state checks
ACPI: processor_idle: Skip dummy wait if kernel is in guest
cpuidle: Do not unset the driver if it is there already
cpuidle: teo: Fix "early hits" handling for disabled idle states
cpuidle: teo: Consider hits and misses metrics of disabled states
cpuidle: teo: Rename local variable in teo_select()
cpuidle: teo: Ignore disabled idle states that are too deep
Modify cpuidle_use_deepest_state() to take an additional exit latency
limit argument to be passed to find_deepest_idle_state() and make
cpuidle_idle_call() pass dev->forced_idle_latency_limit_ns to it for
forced idle.
Suggested-by: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
[ rjw: Rebase and rearrange code, subject & changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In some cases it may be useful to specify an exit latency limit for
the idle state to be used during CPU idle time injection.
Instead of duplicating the information in struct cpuidle_device
or propagating the latency limit in the call stack, replace the
use_deepest_state field with forced_latency_limit_ns to represent
that limit, so that the deepest idle state with exit latency within
that limit is forced (i.e. no governors) when it is set.
A zero exit latency limit for forced idle means to use governors in
the usual way (analogous to use_deepest_state equal to "false" before
this change).
Additionally, add play_idle_precise() taking two arguments, the
duration of forced idle and the idle state exit latency limit, both
in nanoseconds, and redefine play_idle() as a wrapper around that
new function.
This change is preparatory, no functional impact is expected.
Suggested-by: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
[ rjw: Subject, changelog, cpuidle_use_deepest_state() kerneldoc, whitespace ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently, the cpuidle subsystem uses microseconds as the unit of
time which (among other things) causes the idle loop to incur some
integer division overhead for no clear benefit.
In order to allow cpuidle to measure time in nanoseconds, add two
new fields, exit_latency_ns and target_residency_ns, to represent the
exit latency and target residency of an idle state in nanoseconds,
respectively, to struct cpuidle_state and initialize them with the
help of the corresponding values in microseconds provided by drivers.
Additionally, change cpuidle_governor_latency_req() to return the
idle state exit latency constraint in nanoseconds.
Also meeasure idle state residency (last_residency_ns in struct
cpuidle_device and time_ns in struct cpuidle_driver) in nanoseconds
and update the cpuidle core and governors accordingly.
However, the menu governor still computes typical intervals in
microseconds to avoid integer overflows.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Doug Smythies <dsmythies@telus.net>
Tested-by: Doug Smythies <dsmythies@telus.net>
Ever since we moved the sched_class definitions into their own files,
the constant expression {fair,idle}_sched_class.pick_next_task() is
not in fact a compile time constant anymore and results in an indirect
call (barring LTO).
Fix that by exposing pick_next_task_{fair,idle}() directly, this gets
rid of the indirect call (and RETPOLINE) on the fast path.
Also remove the unlikely() from the idle case, it is in fact /the/ way
we select idle -- and that is a very common thing to do.
Performance for will-it-scale/sched_yield improves by 2% (as reported
by 0-day).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.603037345@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 67692435c4 ("sched: Rework pick_next_task() slow-path")
inadvertly introduced a race because it changed a previously
unexplored dependency between dropping the rq->lock and
sched_class::put_prev_task().
The comments about dropping rq->lock, in for example
newidle_balance(), only mentions the task being current and ->on_cpu
being set. But when we look at the 'change' pattern (in for example
sched_setnuma()):
queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
running = task_current(rq, p); /* rq->curr == p */
if (queued)
dequeue_task(...);
if (running)
put_prev_task(...);
/* change task properties */
if (queued)
enqueue_task(...);
if (running)
set_next_task(...);
It becomes obvious that if we do this after put_prev_task() has
already been called on @p, things go sideways. This is exactly what
the commit in question allows to happen when it does:
prev->sched_class->put_prev_task(rq, prev, rf);
if (!rq->nr_running)
newidle_balance(rq, rf);
The newidle_balance() call will drop rq->lock after we've called
put_prev_task() and that allows the above 'change' pattern to
interleave and mess up the state.
Furthermore, it turns out we lost the RT-pull when we put the last DL
task.
Fix both problems by extracting the balancing from put_prev_task() and
doing a multi-class balance() pass before put_prev_task().
Fixes: 67692435c4 ("sched: Rework pick_next_task() slow-path")
Reported-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Quentin Perret <qperret@google.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Patch series "mm: remove quicklist page table caches".
A while ago Nicholas proposed to remove quicklist page table caches [1].
I've rebased his patch on the curren upstream and switched ia64 and sh to
use generic versions of PTE allocation.
[1] https://lore.kernel.org/linux-mm/20190711030339.20892-1-npiggin@gmail.com
This patch (of 3):
Remove page table allocator "quicklists". These have been around for a
long time, but have not got much traction in the last decade and are only
used on ia64 and sh architectures.
The numbers in the initial commit look interesting but probably don't
apply anymore. If anybody wants to resurrect this it's in the git
history, but it's unhelpful to have this code and divergent allocator
behaviour for minor archs.
Also it might be better to instead make more general improvements to page
allocator if this is still so slow.
Link: http://lkml.kernel.org/r/1565250728-21721-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching
governor for virtualized guests wanting to do guest-side polling
in the idle loop (Marcelo Tosatti, Joao Martins, Wanpeng Li,
Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling
typos in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard
Crestez, MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl2ArZ4SHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxgfYQAK80hs43vWQDmp7XKrN4pQe8+qYULAGO
fBfrFl+NG9y/cnuqnt3NtA8MoyNsMMkMLkpkEDMfSbYqqH5ehEzX5+uGJWiWx8+Y
oH5KU8MH7Tj/utYaalGzDt0AHfHZDIGC0NCUNQJVtE/4mOANFabwsCwscp4MrD5Q
WjFN8U4BrsmWgJdZ/U9QIWcDZ0I+1etCF+rZG2yxSv31FMq2Zk/Qm4YyobqCvQFl
TR9rxl08wqUmIYIz5cDjt/3AKH7NLLDqOTstbCL7cmufM5XPFc1yox69xc89UrIa
4AMgmDp7SMwFG/gdUPof0WQNmx7qxmiRAPleAOYBOZW/8jPNZk2y+RhM5NeF72m7
AFqYiuxqatkSb4IsT8fLzH9IUZOdYr8uSmoMQECw+MHdApaKFjFV8Lb/qx5+AwkD
y7pwys8dZSamAjAf62eUzJDWcEwkNrujIisGrIXrVHb7ISbweskMOmdAYn9p4KgP
dfRzpJBJ45IaMIdbaVXNpg3rP7Apfs7X1X+/ZhG6f+zHH3zYwr8Y81WPqX8WaZJ4
qoVCyxiVWzMYjY2/1lzjaAdqWojPWHQ3or3eBaK52DouyG3jY6hCDTLwU7iuqcCX
jzAtrnqrNIKufvaObEmqcmYlIIOFT7QaJCtGUSRFQLfSon8fsVSR7LLeXoAMUJKT
JWQenuNaJngK
=TBDQ
-----END PGP SIGNATURE-----
Merge tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These include a rework of the main suspend-to-idle code flow (related
to the handling of spurious wakeups), a switch over of several users
of cpufreq notifiers to QoS-based limits, a new devfreq driver for
Tegra20, a new cpuidle driver and governor for virtualized guests, an
extension of the wakeup sources framework to expose wakeup sources as
device objects in sysfs, and more.
Specifics:
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching governor
for virtualized guests wanting to do guest-side polling in the idle
loop (Marcelo Tosatti, Joao Martins, Wanpeng Li, Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel
Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling typos
in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard Crestez,
MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski)"
* tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (126 commits)
cpuidle-haltpoll: Enable kvm guest polling when dedicated physical CPUs are available
cpuidle-haltpoll: do not set an owner to allow modunload
cpuidle-haltpoll: return -ENODEV on modinit failure
cpuidle-haltpoll: set haltpoll as preferred governor
cpuidle: allow governor switch on cpuidle_register_driver()
PM: runtime: Documentation: add runtime_status ABI document
pm-graph: make setVal unbuffered again for python2 and python3
powercap: idle_inject: Use higher resolution for idle injection
cpuidle: play_idle: Increase the resolution to usec
cpuidle-haltpoll: vcpu hotplug support
cpufreq: Add qcs404 to cpufreq-dt-platdev blacklist
cpufreq: qcom: Add support for qcs404 on nvmem driver
cpufreq: qcom: Refactor the driver to make it easier to extend
cpufreq: qcom: Re-organise kryo cpufreq to use it for other nvmem based qcom socs
dt-bindings: opp: Add qcom-opp bindings with properties needed for CPR
dt-bindings: opp: qcom-nvmem: Support pstates provided by a power domain
Documentation: cpufreq: Update policy notifier documentation
cpufreq: Remove CPUFREQ_ADJUST and CPUFREQ_NOTIFY policy notifier events
PM / Domains: Verify PM domain type in dev_pm_genpd_set_performance_state()
PM / Domains: Simplify genpd_lookup_dev()
...
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
The play_idle resolution is 1ms. The intel_powerclamp bases the idle
duration on jiffies. The idle injection API is also using msec based
duration but has no user yet.
Unfortunately, msec based time does not fit well when we want to
inject idle cycle precisely with shallow idle state.
In order to set the scene for the incoming idle injection user, move
the precision up to usec when calling play_idle.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Scheduling-clock interrupts can arrive late in the CPU-offline process,
after idle entry and the subsequent call to cpuhp_report_idle_dead().
Once execution passes the call to rcu_report_dead(), RCU is ignoring
the CPU, which results in lockdep complaints when the interrupt handler
uses RCU:
------------------------------------------------------------------------
=============================
WARNING: suspicious RCU usage
5.2.0-rc1+ #681 Not tainted
-----------------------------
kernel/sched/fair.c:9542 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
RCU used illegally from offline CPU!
rcu_scheduler_active = 2, debug_locks = 1
no locks held by swapper/5/0.
stack backtrace:
CPU: 5 PID: 0 Comm: swapper/5 Not tainted 5.2.0-rc1+ #681
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS Bochs 01/01/2011
Call Trace:
<IRQ>
dump_stack+0x5e/0x8b
trigger_load_balance+0xa8/0x390
? tick_sched_do_timer+0x60/0x60
update_process_times+0x3b/0x50
tick_sched_handle+0x2f/0x40
tick_sched_timer+0x32/0x70
__hrtimer_run_queues+0xd3/0x3b0
hrtimer_interrupt+0x11d/0x270
? sched_clock_local+0xc/0x74
smp_apic_timer_interrupt+0x79/0x200
apic_timer_interrupt+0xf/0x20
</IRQ>
RIP: 0010:delay_tsc+0x22/0x50
Code: ff 0f 1f 80 00 00 00 00 65 44 8b 05 18 a7 11 48 0f ae e8 0f 31 48 89 d6 48 c1 e6 20 48 09 c6 eb 0e f3 90 65 8b 05 fe a6 11 48 <41> 39 c0 75 18 0f ae e8 0f 31 48 c1 e2 20 48 09 c2 48 89 d0 48 29
RSP: 0000:ffff8f92c0157ed0 EFLAGS: 00000212 ORIG_RAX: ffffffffffffff13
RAX: 0000000000000005 RBX: ffff8c861f356400 RCX: ffff8f92c0157e64
RDX: 000000321214c8cc RSI: 00000032120daa7f RDI: 0000000000260f15
RBP: 0000000000000005 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000000 R14: ffff8c861ee18000 R15: ffff8c861ee18000
cpuhp_report_idle_dead+0x31/0x60
do_idle+0x1d5/0x200
? _raw_spin_unlock_irqrestore+0x2d/0x40
cpu_startup_entry+0x14/0x20
start_secondary+0x151/0x170
secondary_startup_64+0xa4/0xb0
------------------------------------------------------------------------
This happens rarely, but can be forced by happen more often by
placing delays in cpuhp_report_idle_dead() following the call to
rcu_report_dead(). With this in place, the following rcutorture
scenario reproduces the problem within a few minutes:
tools/testing/selftests/rcutorture/bin/kvm.sh --cpus 8 --duration 5 --kconfig "CONFIG_DEBUG_LOCK_ALLOC=y CONFIG_PROVE_LOCKING=y" --configs "TREE04"
This commit uses the crude but effective expedient of moving the disabling
of interrupts within the idle loop to precede the cpu_is_offline()
check. It also invokes tick_nohz_idle_stop_tick() instead of
tick_nohz_idle_stop_tick_protected() to shut off the scheduling-clock
interrupt.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
[ paulmck: Revert tick_nohz_idle_stop_tick_protected() removal, new callers. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Avoid the RETRY_TASK case in the pick_next_task() slow path.
By doing the put_prev_task() early, we get the rt/deadline pull done,
and by testing rq->nr_running we know if we need newidle_balance().
This then gives a stable state to pick a task from.
Since the fast-path is fair only; it means the other classes will
always have pick_next_task(.prev=NULL, .rf=NULL) and we can simplify.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/aa34d24b36547139248f32a30138791ac6c02bd6.1559129225.git.vpillai@digitalocean.com
Currently the pick_next_task() loop is convoluted and ugly because of
how it can drop the rq->lock and needs to restart the picking.
For the RT/Deadline classes, it is put_prev_task() where we do
balancing, and we could do this before the picking loop. Make this
possible.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/e4519f6850477ab7f3d257062796e6425ee4ba7c.1559129225.git.vpillai@digitalocean.com
In preparation of further separating pick_next_task() and
set_curr_task() we have to pass the actual task into it, while there,
rename the thing to better pair with put_prev_task().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/a96d1bcdd716db4a4c5da2fece647a1456c0ed78.1559129225.git.vpillai@digitalocean.com
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The following commit:
d7880812b3 ("idle: Add the stack canary init to cpu_startup_entry()")
... added an x86 specific boot_init_stack_canary() call to the generic
cpu_startup_entry() as a temporary hack, with the intention to remove
the #ifdef CONFIG_X86 later.
More than 5 years later let's finally realize that plan! :-)
While implementing stack protector support for PowerPC, we found
that calling boot_init_stack_canary() is also needed for PowerPC
which uses per task (TLS) stack canary like the X86.
However, calling boot_init_stack_canary() would break architectures
using a global stack canary (ARM, SH, MIPS and XTENSA).
Instead of modifying the #ifdef CONFIG_X86 to an even messier:
#if defined(CONFIG_X86) || defined(CONFIG_PPC)
PowerPC implemented the call to boot_init_stack_canary() in the function
calling cpu_startup_entry().
Let's try the same cleanup on the x86 side as well.
On x86 we have two functions calling cpu_startup_entry():
- start_secondary()
- cpu_bringup_and_idle()
start_secondary() already calls boot_init_stack_canary(), so
it's good, and this patch adds the call to boot_init_stack_canary()
in cpu_bringup_and_idle().
I.e. now x86 catches up to the rest of the world and the ugly init
sequence in init/main.c can be removed from cpu_startup_entry().
As a final benefit we can also remove the <linux/stackprotector.h>
dependency from <linux/sched.h>.
[ mingo: Improved the changelog a bit, added language explaining x86 borkage and sched.h change. ]
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181020072649.5B59310483E@pc16082vm.idsi0.si.c-s.fr
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the tick has been stopped already, but the governor has not asked to
stop it (which it can do sometimes), the idle loop should invoke
tick_nohz_idle_stop_tick(), to let tick_nohz_stop_tick() take care
of this case properly.
Fixes: 554c8aa8ec (sched: idle: Select idle state before stopping the tick)
Cc: 4.17+ <stable@vger.kernel.org> # 4.17+
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In order to address the issue with short idle duration predictions
by the idle governor after the scheduler tick has been stopped,
reorder the code in cpuidle_idle_call() so that the governor idle
state selection runs before tick_nohz_idle_go_idle() and use the
"nohz" hint returned by cpuidle_select() to decide whether or not
to stop the tick.
This isn't straightforward, because menu_select() invokes
tick_nohz_get_sleep_length() to get the time to the next timer
event and the number returned by the latter comes from
__tick_nohz_idle_stop_tick(). Fortunately, however, it is possible
to compute that number without actually stopping the tick and with
the help of the existing code.
Namely, tick_nohz_get_sleep_length() can be made call
tick_nohz_next_event(), introduced earlier, to get the time to the
next non-highres timer event. If that happens, tick_nohz_next_event()
need not be called by __tick_nohz_idle_stop_tick() again.
If it turns out that the scheduler tick cannot be stopped going
forward or the next timer event is too close for the tick to be
stopped, tick_nohz_get_sleep_length() can simply return the time to
the next event currently programmed into the corresponding clock
event device.
In addition to knowing the return value of tick_nohz_next_event(),
however, tick_nohz_get_sleep_length() needs to know the time to the
next highres timer event, but with the scheduler tick timer excluded,
which can be computed with the help of hrtimer_get_next_event().
That minimum of that number and the tick_nohz_next_event() return
value is the total time to the next timer event with the assumption
that the tick will be stopped. It can be returned to the idle
governor which can use it for predicting idle duration (under the
assumption that the tick will be stopped) and deciding whether or
not it makes sense to stop the tick before putting the CPU into the
selected idle state.
With the above, the sleep_length field in struct tick_sched is not
necessary any more, so drop it.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199227
Reported-by: Doug Smythies <dsmythies@telus.net>
Reported-by: Thomas Ilsche <thomas.ilsche@tu-dresden.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Add a new pointer argument to cpuidle_select() and to the ->select
cpuidle governor callback to allow a boolean value indicating
whether or not the tick should be stopped before entering the
selected state to be returned from there.
Make the ladder governor ignore that pointer (to preserve its
current behavior) and make the menu governor return 'false" through
it if:
(1) the idle exit latency is constrained at 0, or
(2) the selected state is a polling one, or
(3) the expected idle period duration is within the tick period
range.
In addition to that, the correction factor computations in the menu
governor need to take the possibility that the tick may not be
stopped into account to avoid artificially small correction factor
values. To that end, add a mechanism to record tick wakeups, as
suggested by Peter Zijlstra, and use it to modify the menu_update()
behavior when tick wakeup occurs. Namely, if the CPU is woken up by
the tick and the return value of tick_nohz_get_sleep_length() is not
within the tick boundary, the predicted idle duration is likely too
short, so make menu_update() try to compensate for that by updating
the governor statistics as though the CPU was idle for a long time.
Since the value returned through the new argument pointer of
cpuidle_select() is not used by its caller yet, this change by
itself is not expected to alter the functionality of the code.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Make cpuidle_idle_call() decide whether or not to stop the tick.
First, the cpuidle_enter_s2idle() path deals with the tick (and with
the entire timekeeping for that matter) by itself and it doesn't need
the tick to be stopped beforehand.
Second, to address the issue with short idle duration predictions
by the idle governor after the tick has been stopped, it will be
necessary to change the ordering of cpuidle_select() with respect
to tick_nohz_idle_stop_tick(). To prepare for that, put a
tick_nohz_idle_stop_tick() call in the same branch in which
cpuidle_select() is called.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Push the decision whether or not to stop the tick somewhat deeper
into the idle loop.
Stopping the tick upfront leads to unpleasant outcomes in case the
idle governor doesn't agree with the nohz code on the duration of the
upcoming idle period. Specifically, if the tick has been stopped and
the idle governor predicts short idle, the situation is bad regardless
of whether or not the prediction is accurate. If it is accurate, the
tick has been stopped unnecessarily which means excessive overhead.
If it is not accurate, the CPU is likely to spend too much time in
the (shallow, because short idle has been predicted) idle state
selected by the governor [1].
As the first step towards addressing this problem, change the code
to make the tick stopping decision inside of the loop in do_idle().
In particular, do not stop the tick in the cpu_idle_poll() code path.
Also don't do that in tick_nohz_irq_exit() which doesn't really have
enough information on whether or not to stop the tick.
Link: https://marc.info/?l=linux-pm&m=150116085925208&w=2 # [1]
Link: https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/haec/powernightmares.pdf
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Prepare the scheduler tick code for reworking the idle loop to
avoid stopping the tick in some cases.
The idea is to split the nohz idle entry call to decouple the idle
time stats accounting and preparatory work from the actual tick stop
code, in order to later be able to delay the tick stop once we reach
more power-knowledgeable callers.
Move away the tick_nohz_start_idle() invocation from
__tick_nohz_idle_enter(), rename the latter to
__tick_nohz_idle_stop_tick() and define tick_nohz_idle_stop_tick()
as a wrapper around it for calling it from the outside.
Make tick_nohz_idle_enter() only call tick_nohz_start_idle() instead
of calling the entire __tick_nohz_idle_enter(), add another wrapper
disabling and enabling interrupts around tick_nohz_idle_stop_tick()
and make the current callers of tick_nohz_idle_enter() call it too
to retain their current functionality.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Merge these two small .c modules as they implement two aspects
of idle task handling.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Do the following cleanups and simplifications:
- sched/sched.h already includes <asm/paravirt.h>, so no need to
include it in sched/core.c again.
- order the <linux/sched/*.h> headers alphabetically
- add all <linux/sched/*.h> headers to kernel/sched/sched.h
- remove all unnecessary includes from the .c files that
are already included in kernel/sched/sched.h.
Finally, make all scheduler .c files use a single common header:
#include "sched.h"
... which now contains a union of the relied upon headers.
This makes the various .c files easier to read and easier to handle.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A good number of small style inconsistencies have accumulated
in the scheduler core, so do a pass over them to harmonize
all these details:
- fix speling in comments,
- use curly braces for multi-line statements,
- remove unnecessary parentheses from integer literals,
- capitalize consistently,
- remove stray newlines,
- add comments where necessary,
- remove invalid/unnecessary comments,
- align structure definitions and other data types vertically,
- add missing newlines for increased readability,
- fix vertical tabulation where it's misaligned,
- harmonize preprocessor conditional block labeling
and vertical alignment,
- remove line-breaks where they uglify the code,
- add newline after local variable definitions,
No change in functionality:
md5:
1191fa0a890cfa8132156d2959d7e9e2 built-in.o.before.asm
1191fa0a890cfa8132156d2959d7e9e2 built-in.o.after.asm
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
quiet_vmstat() is an expensive function that only makes sense when we
go into NOHZ.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aubrey.li@linux.intel.com
Cc: cl@linux.com
Cc: fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename the ->enter_freeze cpuidle driver callback to ->enter_s2idle
to make it clear that it is used for entering suspend-to-idle and
rename the related functions, variables and so on accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Rename the freeze_state enum representing the suspend-to-idle state
machine states to s2idle_states and rename the related variables and
functions accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Deferrable vmstat_updater was missing in commit:
c1de45ca83 ("sched/idle: Add support for tasks that inject idle")
Add it back.
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1496803742-38274-1-git-send-email-aubrey.li@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I finally got around to creating trampolines for dynamically allocated
ftrace_ops with using synchronize_rcu_tasks(). For users of the ftrace
function hook callbacks, like perf, that allocate the ftrace_ops
descriptor via kmalloc() and friends, ftrace was not able to optimize
the functions being traced to use a trampoline because they would also
need to be allocated dynamically. The problem is that they cannot be
freed when CONFIG_PREEMPT is set, as there's no way to tell if a task
was preempted on the trampoline. That was before Paul McKenney
implemented synchronize_rcu_tasks() that would make sure all tasks
(except idle) have scheduled out or have entered user space.
While testing this, I triggered this bug:
BUG: unable to handle kernel paging request at ffffffffa0230077
...
RIP: 0010:0xffffffffa0230077
...
Call Trace:
schedule+0x5/0xe0
schedule_preempt_disabled+0x18/0x30
do_idle+0x172/0x220
What happened was that the idle task was preempted on the trampoline.
As synchronize_rcu_tasks() ignores the idle thread, there's nothing
that lets ftrace know that the idle task was preempted on a trampoline.
The idle task shouldn't need to ever enable preemption. The idle task
is simply a loop that calls schedule or places the cpu into idle mode.
In fact, having preemption enabled is inefficient, because it can
happen when idle is just about to call schedule anyway, which would
cause schedule to be called twice. Once for when the interrupt came in
and was returning back to normal context, and then again in the normal
path that the idle loop is running in, which would be pointless, as it
had already scheduled.
The only reason schedule_preempt_disable() enables preemption is to be
able to call sched_submit_work(), which requires preemption enabled. As
this is a nop when the task is in the RUNNING state, and idle is always
in the running state, there's no reason that idle needs to enable
preemption. But that means it cannot use schedule_preempt_disable() as
other callers of that function require calling sched_submit_work().
Adding a new function local to kernel/sched/ that allows idle to call
the scheduler without enabling preemption, fixes the
synchronize_rcu_tasks() issue, as well as removes the pointless spurious
schedule calls caused by interrupts happening in the brief window where
preemption is enabled just before it calls schedule.
Reviewed: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170414084809.3dacde2a@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
We are going to split <linux/sched/idle.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/idle.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Idle injection drivers such as Intel powerclamp and ACPI PAD drivers use
realtime tasks to take control of CPU then inject idle. There are two
issues with this approach:
1. Low efficiency: injected idle task is treated as busy so sched ticks
do not stop during injected idle period, the result of these
unwanted wakeups can be ~20% loss in power savings.
2. Idle accounting: injected idle time is presented to user as busy.
This patch addresses the issues by introducing a new PF_IDLE flag which
allows any given task to be treated as idle task while the flag is set.
Therefore, idle injection tasks can run through the normal flow of NOHZ
idle enter/exit to get the correct accounting as well as tick stop when
possible.
The implication is that idle task is then no longer limited to PID == 0.
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When idle injection is used to cap power, we need to override the
governor's choice of idle states.
For this reason, make it possible the deepest idle state selection to
be enforced by setting a flag on a given CPU to achieve the maximum
potential power draw reduction.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
[ rjw: Subject & changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When doing an nmi backtrace of many cores, most of which are idle, the
output is a little overwhelming and very uninformative. Suppress
messages for cpus that are idling when they are interrupted and just
emit one line, "NMI backtrace for N skipped: idling at pc 0xNNN".
We do this by grouping all the cpuidle code together into a new
.cpuidle.text section, and then checking the address of the interrupted
PC to see if it lies within that section.
This commit suitably tags x86 and tile idle routines, and only adds in
the minimal framework for other architectures.
Link: http://lkml.kernel.org/r/1472487169-14923-5-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Tested-by: Petr Mladek <pmladek@suse.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, smp_processor_id() is used to fetch the current CPU in
cpu_idle_loop(). Every time the idle thread runs, it fetches the
current CPU using smp_processor_id().
Since the idle thread is per CPU, the current CPU is constant, so we
can lift the load out of the loop, saving execution cycles/time in the
loop.
x86-64:
Before patch (execution in loop):
148: 0f ae e8 lfence
14b: 65 8b 04 25 00 00 00 00 mov %gs:0x0,%eax
152: 00
153: 89 c0 mov %eax,%eax
155: 49 0f a3 04 24 bt %rax,(%r12)
After patch (execution in loop):
150: 0f ae e8 lfence
153: 4d 0f a3 34 24 bt %r14,(%r12)
ARM64:
Before patch (execution in loop):
168: d5033d9f dsb ld
16c: b9405661 ldr w1,[x19,#84]
170: 1100fc20 add w0,w1,#0x3f
174: 6b1f003f cmp w1,wzr
178: 1a81b000 csel w0,w0,w1,lt
17c: 130c7000 asr w0,w0,#6
180: 937d7c00 sbfiz x0,x0,#3,#32
184: f8606aa0 ldr x0,[x21,x0]
188: 9ac12401 lsr x1,x0,x1
18c: 36000e61 tbz w1,#0,358
After patch (execution in loop):
1a8: d50339df dsb ld
1ac: f8776ac0 ldr x0,[x22,x23]
ab0: ea18001f tst x0,x24
1b4: 54000ea0 b.eq 388
Further observance on ARM64 for 4 seconds shows that cpu_idle_loop is
called 8672 times. Shifting the code will save instructions executed
in loop and eventually time as well.
Signed-off-by: Gaurav Jindal <gaurav.jindal@spreadtrum.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sanjeev Yadav <sanjeev.yadav@spreadtrum.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160512101330.GA488@gauravjindalubtnb.del.spreadtrum.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>