mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
fd7e9a8834
143 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
b91e1302ad |
mm: optimize PageWaiters bit use for unlock_page()
In commit
|
||
Nicholas Piggin
|
6290602709 |
mm: add PageWaiters indicating tasks are waiting for a page bit
Add a new page flag, PageWaiters, to indicate the page waitqueue has tasks waiting. This can be tested rather than testing waitqueue_active which requires another cacheline load. This bit is always set when the page has tasks on page_waitqueue(page), and is set and cleared under the waitqueue lock. It may be set when there are no tasks on the waitqueue, which will cause a harmless extra wakeup check that will clears the bit. The generic bit-waitqueue infrastructure is no longer used for pages. Instead, waitqueues are used directly with a custom key type. The generic code was not flexible enough to have PageWaiters manipulation under the waitqueue lock (which simplifies concurrency). This improves the performance of page lock intensive microbenchmarks by 2-3%. Putting two bits in the same word opens the opportunity to remove the memory barrier between clearing the lock bit and testing the waiters bit, after some work on the arch primitives (e.g., ensuring memory operand widths match and cover both bits). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Andrew Lutomirski <luto@kernel.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nicholas Piggin
|
6326fec112 |
mm: Use owner_priv bit for PageSwapCache, valid when PageSwapBacked
A page is not added to the swap cache without being swap backed, so PageSwapBacked mappings can use PG_owner_priv_1 for PageSwapCache. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Andrew Lutomirski <luto@kernel.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
e2f0a0db95 |
page-flags: relax policy for PG_mappedtodisk and PG_reclaim
These flags are in use for file THP. Link: http://lkml.kernel.org/r/1466021202-61880-23-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
9a73f61bdb |
thp, mlock: do not mlock PTE-mapped file huge pages
As with anon THP, we only mlock file huge pages if we can prove that the page is not mapped with PTE. This way we can avoid mlock leak into non-mlocked vma on split. We rely on PageDoubleMap() under lock_page() to check if the the page may be PTE mapped. PG_double_map is set by page_add_file_rmap() when the page mapped with PTEs. Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
4949148ad4 |
mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with this helper should finally be freed using free_kmem_pages, otherwise it won't be uncharged. This API suits its current users fine, but it turns out to be impossible to use along with page reference counting, i.e. when an allocation is supposed to be freed with put_page, as it is the case with pipe or unix socket buffers. To overcome this limitation, this patch moves charging/uncharging to generic page allocator paths, i.e. to __alloc_pages_nodemask and free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way, one can use any of the available page allocation functions to get the allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT, just like in case of kmalloc and friends. A charged page will be automatically uncharged on free. To make it possible, we need to mark pages charged to kmemcg somehow. To avoid introducing a new page flag, we make use of page->_mapcount for marking such pages. Since pages charged to kmemcg are not supposed to be mapped to userspace, it should work just fine. There are other (ab)users of page->_mapcount - buddy and balloon pages - but we don't conflict with them. In case kmemcg is compiled out or not used at runtime, this patch introduces no overhead to generic page allocator paths. If kmemcg is used, it will be plus one gfp flags check on alloc and plus one page->_mapcount check on free, which shouldn't hurt performance, because the data accessed are hot. Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
632c0a1aff |
mm: clean up non-standard page->_mapcount users
- Add a proper comment to page->_mapcount. - Introduce a macro for generating helper functions. - Place all special page->_mapcount values next to each other so that readers can see all possible values and so we don't get duplicates. Link: http://lkml.kernel.org/r/502f49000e0b63e6c62e338fac6b420bf34fb526.1464079537.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
bda807d444 |
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yu Zhao
|
d2a1a1f0a9 |
mm: use unsigned long constant for page flags
struct page->flags is unsigned long, so when shifting bits we should use UL suffix to match it. Found this problem after I added 64-bit CPU specific page flags and failed to compile the kernel: mm/page_alloc.c: In function '__free_one_page': mm/page_alloc.c:672:2: error: integer overflow in expression [-Werror=overflow] Link: http://lkml.kernel.org/r/1461971723-16187-1-git-send-email-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
175145748d |
mm, page_alloc: use new PageAnonHead helper in the free page fast path
The PageAnon check always checks for compound_head but this is a relatively expensive check if the caller already knows the page is a head page. This patch creates a helper and uses it in the page free path which only operates on head pages. With this patch and "Only check PageCompound for high-order pages", the performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 vanilla nocompound-v1r20 Min alloc-odr0-1 425.00 ( 0.00%) 417.00 ( 1.88%) Min alloc-odr0-2 313.00 ( 0.00%) 308.00 ( 1.60%) Min alloc-odr0-4 257.00 ( 0.00%) 253.00 ( 1.56%) Min alloc-odr0-8 224.00 ( 0.00%) 221.00 ( 1.34%) Min alloc-odr0-16 208.00 ( 0.00%) 205.00 ( 1.44%) Min alloc-odr0-32 199.00 ( 0.00%) 199.00 ( 0.00%) Min alloc-odr0-64 195.00 ( 0.00%) 193.00 ( 1.03%) Min alloc-odr0-128 192.00 ( 0.00%) 191.00 ( 0.52%) Min alloc-odr0-256 204.00 ( 0.00%) 200.00 ( 1.96%) Min alloc-odr0-512 213.00 ( 0.00%) 212.00 ( 0.47%) Min alloc-odr0-1024 219.00 ( 0.00%) 219.00 ( 0.00%) Min alloc-odr0-2048 225.00 ( 0.00%) 225.00 ( 0.00%) Min alloc-odr0-4096 230.00 ( 0.00%) 231.00 ( -0.43%) Min alloc-odr0-8192 235.00 ( 0.00%) 234.00 ( 0.43%) Min alloc-odr0-16384 235.00 ( 0.00%) 234.00 ( 0.43%) Min free-odr0-1 215.00 ( 0.00%) 191.00 ( 11.16%) Min free-odr0-2 152.00 ( 0.00%) 136.00 ( 10.53%) Min free-odr0-4 119.00 ( 0.00%) 107.00 ( 10.08%) Min free-odr0-8 106.00 ( 0.00%) 96.00 ( 9.43%) Min free-odr0-16 97.00 ( 0.00%) 87.00 ( 10.31%) Min free-odr0-32 91.00 ( 0.00%) 83.00 ( 8.79%) Min free-odr0-64 89.00 ( 0.00%) 81.00 ( 8.99%) Min free-odr0-128 88.00 ( 0.00%) 80.00 ( 9.09%) Min free-odr0-256 106.00 ( 0.00%) 95.00 ( 10.38%) Min free-odr0-512 116.00 ( 0.00%) 111.00 ( 4.31%) Min free-odr0-1024 125.00 ( 0.00%) 118.00 ( 5.60%) Min free-odr0-2048 133.00 ( 0.00%) 126.00 ( 5.26%) Min free-odr0-4096 136.00 ( 0.00%) 130.00 ( 4.41%) Min free-odr0-8192 138.00 ( 0.00%) 130.00 ( 5.80%) Min free-odr0-16384 137.00 ( 0.00%) 130.00 ( 5.11%) There is a sizable boost to the free allocator performance. While there is an apparent boost on the allocation side, it's likely a co-incidence or due to the patches slightly reducing cache footprint. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
127393fbe5 |
mm: thp: kvm: fix memory corruption in KVM with THP enabled
After the THP refcounting change, obtaining a compound pages from get_user_pages() no longer allows us to assume the entire compound page is immediately mappable from a secondary MMU. A secondary MMU doesn't want to call get_user_pages() more than once for each compound page, in order to know if it can map the whole compound page. So a secondary MMU needs to know from a single get_user_pages() invocation when it can map immediately the entire compound page to avoid a flood of unnecessary secondary MMU faults and spurious atomic_inc()/atomic_dec() (pages don't have to be pinned by MMU notifier users). Ideally instead of the page->_mapcount < 1 check, get_user_pages() should return the granularity of the "page" mapping in the "mm" passed to get_user_pages(). However it's non trivial change to pass the "pmd" status belonging to the "mm" walked by get_user_pages up the stack (up to the caller of get_user_pages). So the fix just checks if there is not a single pte mapping on the page returned by get_user_pages, and in turn if the caller can assume that the whole compound page is mapped in the current "mm" (in a pmd_trans_huge()). In such case the entire compound page is safe to map into the secondary MMU without additional get_user_pages() calls on the surrounding tail/head pages. In addition of being faster, not having to run other get_user_pages() calls also reduces the memory footprint of the secondary MMU fault in case the pmd split happened as result of memory pressure. Without this fix after a MADV_DONTNEED (like invoked by QEMU during postcopy live migration or balloning) or after generic swapping (with a failure in split_huge_page() that would only result in pmd splitting and not a physical page split), KVM would map the whole compound page into the shadow pagetables, despite regular faults or userfaults (like UFFDIO_COPY) may map regular pages into the primary MMU as result of the pte faults, leading to the guest mode and userland mode going out of sync and not working on the same memory at all times. Any other secondary MMU notifier manager (KVM is just one of the many MMU notifier users) will need the same information if it doesn't want to run a flood of get_user_pages_fast and it can support multiple granularity in the secondary MMU mappings, so I think it is justified to be exposed not just to KVM. The other option would be to move transparent_hugepage_adjust to mm/huge_memory.c but that currently has all kind of KVM data structures in it, so it's definitely not a cut-and-paste work, so I couldn't do a fix as cleaner as this one for 4.6. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: "Li, Liang Z" <liang.z.li@intel.com> Cc: Amit Shah <amit.shah@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Denys Vlasenko
|
4b0f326163 |
include/linux/page-flags.h: force inlining of selected page flag modifications
Sometimes gcc mysteriously doesn't inline very small functions we expect to be inlined. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66122 With this .config: http://busybox.net/~vda/kernel_config_OPTIMIZE_INLINING_and_Os, the following functions get deinlined many times. Examples of disassembly: <SetPageUptodate> (43 copies, 141 calls): 55 push %rbp 48 89 e5 mov %rsp,%rbp f0 80 0f 08 lock orb $0x8,(%rdi) 5d pop %rbp c3 retq <PagePrivate> (10 copies, 134 calls): 48 8b 07 mov (%rdi),%rax 55 push %rbp 48 89 e5 mov %rsp,%rbp 48 c1 e8 0b shr $0xb,%rax 83 e0 01 and $0x1,%eax 5d pop %rbp c3 retq This patch fixes this via s/inline/__always_inline/. Code size decrease after the patch is ~7k: text data bss dec hex filename 92125002 20826048 36417536 149368586 8e72f0a vmlinux 92118087 20826112 36417536 149361735 8e71447 vmlinux7_pageops_after Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Graf <tgraf@suug.ch> Cc: Peter Zijlstra <peterz@infradead.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
832fc1de01 |
/proc/kpageflags: return KPF_BUDDY for "tail" buddy pages
Currently /proc/kpageflags returns nothing for "tail" buddy pages, which is inconvenient when grasping how free pages are distributed. This patch sets KPF_BUDDY for such pages. With this patch: $ grep MemFree /proc/meminfo ; tools/vm/page-types -b buddy MemFree: 3134992 kB flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000400 779272 3044 __________B_______________________________ buddy 0x0000000000000c00 4385 17 __________BM______________________________ buddy,mmap total 783657 3061 783657 pages is 3134628 kB (roughly consistent with the global counter,) so it's OK. [akpm@linux-foundation.org: update comment, per Naoya] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
53f9263bab |
mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound. It means we need to track mapcount on per small page basis. Straight-forward approach is to use ->_mapcount in all subpages to track how many time this subpage is mapped with PMDs or PTEs combined. But this is rather expensive: mapping or unmapping of a THP page with PMD would require HPAGE_PMD_NR atomic operations instead of single we have now. The idea is to store separately how many times the page was mapped as whole -- compound_mapcount. This frees up ->_mapcount in subpages to track PTE mapcount. We use the same approach as with compound page destructor and compound order to store compound_mapcount: use space in first tail page, ->mapping this time. Any time we map/unmap whole compound page (THP or hugetlb) -- we increment/decrement compound_mapcount. When we map part of compound page with PTE we operate on ->_mapcount of the subpage. page_mapcount() counts both: PTE and PMD mappings of the page. Basically, we have mapcount for a subpage spread over two counters. It makes tricky to detect when last mapcount for a page goes away. We introduced PageDoubleMap() for this. When we split THP PMD for the first time and there's other PMD mapping left we offset up ->_mapcount in all subpages by one and set PG_double_map on the compound page. These additional references go away with last compound_mapcount. This approach provides a way to detect when last mapcount goes away on per small page basis without introducing new overhead for most common cases. [akpm@linux-foundation.org: fix typo in comment] [mhocko@suse.com: ignore partial THP when moving task] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
3ac808fdd2 |
mm, thp: remove compound_lock()
We are going to use migration entries to stabilize page counts. It means we don't need compound_lock() for that. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
685eaade56 |
page-flags: drop __TestClearPage*() helpers
Nobody uses them. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
822cdd1152 |
page-flags: look at head page if the flag is encoded in page->mapping
PageAnon() and PageKsm() look at lower bits of page->mapping to check if the page is Anon or KSM. page->mapping can be overloaded in tail pages. Let's always look at head page to avoid false-positives. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
d2998c4de2 |
page-flags: define PG_uptodate behavior on compound pages
We use PG_uptodate on head pages on transparent huge page. Let's use PF_NO_TAIL. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
b9d418170a |
page-flags: define PG_uncached behavior on compound pages
So far, only IA64 uses PG_uncached and only on non-compound pages. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
e4f87d5d75 |
page-flags: define PG_mlocked behavior on compound pages
Transparent huge pages can be mlocked -- whole compund page at once. Something went wrong if we're trying to mlock() tail page. Let's use PF_NO_TAIL. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
50ea78d676 |
page-flags: define PG_swapcache behavior on compound pages
Swap cannot handle compound pages so far. Transparent huge pages are split on the way to swap. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
da5efc408b |
page-flags: define PG_swapbacked behavior on compound pages
PG_swapbacked is used for transparent huge pages. For head pages only. Let's use PF_NO_TAIL policy. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
de09d31dd3 |
page-flags: define PG_reserved behavior on compound pages
As far as I can see there's no users of PG_reserved on compound pages. Let's use PF_NO_COMPOUND here. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
c13985fa80 |
page-flags: define behavior of Xen-related flags on compound pages
PG_pinned and PG_savepinned are about page table's pages which are never compound. I'm not so sure about PG_foreign, but it seems we shouldn't see compound pages there too. Let's use PF_NO_COMPOUND for all of them. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
dcb351cd09 |
page-flags: define behavior SL*B-related flags on compound pages
SL*B uses compound pages and marks head pages with PG_slab. __SetPageSlab() and __ClearPageSlab() are never called for tail pages. The same situation with PG_slob_free in SLOB allocator. PF_NO_TAIL is appropriate for these flags. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
8cb38fabb6 |
page-flags: define behavior of LRU-related flags on compound pages
Only head pages are ever on LRU. Let's use PF_HEAD policy to avoid any confusion for all LRU-related flags. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
df8c94d13c |
page-flags: define behavior of FS/IO-related flags on compound pages
It seems we don't have compound page on FS/IO path currently. Use PF_NO_COMPOUND to catch if we have. The odd exception is PG_dirty: sound uses compound pages and maps them with PTEs. PF_NO_COMPOUND triggers VM_BUG_ON() in set_page_dirty() on handling shared fault. Let's use PF_HEAD for PG_dirty. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
48c935ad88 |
page-flags: define PG_locked behavior on compound pages
lock_page() must operate on the whole compound page. It doesn't make much sense to lock part of compound page. Change code to use head page's PG_locked, if tail page is passed. This patch also gets rid of custom helper functions -- __set_page_locked() and __clear_page_locked(). They are replaced with helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG. Tail pages to these helper would trigger VM_BUG_ON(). SLUB uses PG_locked as a bit spin locked. IIUC, tail pages should never appear there. VM_BUG_ON() is added to make sure that this assumption is correct. [akpm@linux-foundation.org: fix fs/cifs/file.c] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
95ad97554a |
page-flags: introduce page flags policies wrt compound pages
This patch adds a third argument to macros which create function definitions for page flags. This argument defines how page-flags helpers behave on compound functions. For now we define four policies: - PF_ANY: the helper function operates on the page it gets, regardless if it's non-compound, head or tail. - PF_HEAD: the helper function operates on the head page of the compound page if it gets tail page. - PF_NO_TAIL: only head and non-compond pages are acceptable for this helper function. - PF_NO_COMPOUND: only non-compound pages are acceptable for this helper function. For now we use policy PF_ANY for all helpers, which matches current behaviour. We do not enforce the policy for TESTPAGEFLAG, because we have flags checked for random pages all over the kernel. Noticeable exception to this is PageTransHuge() which triggers VM_BUG_ON() for tail page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
0e6d31a733 |
page-flags: move code around
The preparation patch: we are going to use compound_head(), PageTail() and PageCompound() to define page-flags helpers. Let's define them before macros. We cannot user PageHead() helper in PageCompound() as it's not yet defined -- use test_bit(PG_head, &page->flags) instead. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
d8c1bdeb5d |
page-flags: trivial cleanup for PageTrans* helpers
Use TESTPAGEFLAG_FALSE() to get it a bit cleaner. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
1d798ca3f1 |
mm: make compound_head() robust
Hugh has pointed that compound_head() call can be unsafe in some context. There's one example: CPU0 CPU1 isolate_migratepages_block() page_count() compound_head() !!PageTail() == true put_page() tail->first_page = NULL head = tail->first_page alloc_pages(__GFP_COMP) prep_compound_page() tail->first_page = head __SetPageTail(p); !!PageTail() == true <head == NULL dereferencing> The race is pure theoretical. I don't it's possible to trigger it in practice. But who knows. We can fix the race by changing how encode PageTail() and compound_head() within struct page to be able to update them in one shot. The patch introduces page->compound_head into third double word block in front of compound_dtor and compound_order. Bit 0 encodes PageTail() and the rest bits are pointer to head page if bit zero is set. The patch moves page->pmd_huge_pte out of word, just in case if an architecture defines pgtable_t into something what can have the bit 0 set. hugetlb_cgroup uses page->lru.next in the second tail page to store pointer struct hugetlb_cgroup. The patch switch it to use page->private in the second tail page instead. The space is free since ->first_page is removed from the union. The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER limitation, since there's now space in first tail page to store struct hugetlb_cgroup pointer. But that's out of scope of the patch. That means page->compound_head shares storage space with: - page->lru.next; - page->next; - page->rcu_head.next; That's too long list to be absolutely sure, but looks like nobody uses bit 0 of the word. page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future call_rcu_lazy() is not allowed as it makes use of the bit and we can get false positive PageTail(). [1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vineet Gupta
|
3ca65c19dd |
mm: optimize PageHighMem() check
This came up when implementing HIHGMEM/PAE40 for ARC. The kmap() / kmap_atomic() generated code seemed needlessly bloated due to the way PageHighMem() macro is implemented. It derives the exact zone for page and then does pointer subtraction with first zone to infer the zone_type. The pointer arithmatic in turn generates the code bloat. PageHighMem(page) is_highmem(page_zone(page)) zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones Instead use is_highmem_idx() to work on zone_type available in page flags ----- Before ----- 80756348: mov_s r13,r0 8075634a: ld_s r2,[r13,0] 8075634c: lsr_s r2,r2,30 8075634e: mpy r2,r2,0x2a4 80756352: add_s r2,r2,0x80aef880 80756358: ld_s r3,[r2,28] 8075635a: sub_s r2,r2,r3 8075635c: breq r2,0x2a4,80756378 <kmap+0x48> 80756364: breq r2,0x548,80756378 <kmap+0x48> ----- After ----- 80756330: mov_s r13,r0 80756332: ld_s r2,[r13,0] 80756334: lsr_s r2,r2,30 80756336: sub_s r2,r2,1 80756338: brlo r2,2,80756348 <kmap+0x30> For x86 defconfig build (32 bit only) it saves around 900 bytes. For ARC defconfig with HIGHMEM, it saved around 2K bytes. ---->8------- ./scripts/bloat-o-meter x86/vmlinux-defconfig-pre x86/vmlinux-defconfig-post add/remove: 0/0 grow/shrink: 0/36 up/down: 0/-934 (-934) function old new delta saveable_page 162 154 -8 saveable_highmem_page 154 146 -8 skb_gro_reset_offset 147 131 -16 ... ... __change_page_attr_set_clr 1715 1678 -37 setup_data_read 434 394 -40 mon_bin_event 1967 1927 -40 swsusp_save 1148 1105 -43 _set_pages_array 549 493 -56 ---->8------- e.g. For ARC kmap() Signed-off-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jennifer Herbert <jennifer.herbert@citrix.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
33c3fc71c8 |
mm: introduce idle page tracking
Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
f4c18e6f7b |
mm: check __PG_HWPOISON separately from PAGE_FLAGS_CHECK_AT_*
The race condition addressed in commit |
||
Naoya Horiguchi
|
7e1f049efb |
mm: hugetlb: cleanup using paeg_huge_active()
Now we have an easy access to hugepages' activeness, so existing helpers to get the information can be cleaned up. [akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
e8c6158fef |
mm: consolidate all page-flags helpers in <linux/page-flags.h>
Currently we take a naive approach to page flags on compound pages - we set the flag on the page without consideration if the flag makes sense for tail page or for compound page in general. This patchset try to sort this out by defining per-flag policy on what need to be done if page-flag helper operate on compound page. The last patch in the patchset also sanitizes usege of page->mapping for tail pages. We don't define the meaning of page->mapping for tail pages. Currently it's always NULL, which can be inconsistent with head page and potentially lead to problems. For now I caught one case of illegal usage of page flags or ->mapping: sound subsystem allocates pages with __GFP_COMP and maps them with PTEs. It leads to setting dirty bit on tail pages and access to tail_page's ->mapping. I don't see any bad behaviour caused by this, but worth fixing anyway. This patchset makes more sense if you take my THP refcounting into account: we will see more compound pages mapped with PTEs and we need to define behaviour of flags on compound pages to avoid bugs. This patch (of 16): We have page-flags helper function declarations/definitions spread over several header files. Let's consolidate them in <linux/page-flags.h>. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
b9ea25152e |
page_writeback: clean up mess around cancel_dirty_page()
This patch replaces cancel_dirty_page() with a helper function account_page_cleaned() which only updates counters. It's called from truncate_complete_page() and from try_to_free_buffers() (hack for ext3). Page is locked in both cases, page-lock protects against concurrent dirtiers: see commit |
||
Jennifer Herbert
|
d8ac3dd41a |
mm: add 'foreign' alias for the 'pinned' page flag
The foreign page flag will be used by Xen guests to mark pages that have grant mappings of frames from other (foreign) guests. The foreign flag is an alias for the existing (Xen-specific) pinned flag. This is safe because pinned is only used on pages used for page tables and these cannot also be foreign. Signed-off-by: Jennifer Herbert <jennifer.herbert@citrix.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David Vrabel <david.vrabel@citrix.com> |
||
Johannes Weiner
|
2f3e442ccc |
mm: page-flags: clean up the page flag test, set, clear macros
- PAGEFLAG_FALSE only defines TEST, make it define SET and CLEAR as well, analogous to PAGEFLAG. - Define TESTSETFLAG_FALSE, analogous to TESTSETFLAG. - Define TESTSCFLAG_FALSE, analogous to TESTSCFLAG - Make PG_mlocked accessors the same on both MMU and !MMU setups Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Petr Tesarik
|
b3acc56bfe |
kexec: save PG_head_mask in VMCOREINFO
To allow filtering of huge pages, makedumpfile must be able to identify them in the dump. This can be done by checking the appropriate page flag, so communicate its value to makedumpfile through the VMCOREINFO interface. There's only one small catch. Depending on how many page flags are available on a given architecture, this bit can be called PG_head or PG_compound. I sent a similar patch back in 2012, but Eric Biederman did not like using an #ifdef. So, this time I'm adding a common symbol (PG_head_mask) instead. See https://lkml.org/lkml/2012/11/28/91 for the previous version. Signed-off-by: Petr Tesarik <ptesarik@suse.cz> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Shaohua Li <shli@kernel.org> Cc: Alexey Kardashevskiy <aik@ozlabs.ru> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
f8409abdc5 |
Clean ups and miscellaneous bug fixes, in particular for the new
collapse_range and zero_range fallocate functions. In addition, improve the scalability of adding and remove inodes from the orphan list. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABCAAGBQJTk9x7AAoJENNvdpvBGATwQQ4QAN85xkNWWiq0feLGZjUVTre/ JUgRQWXZYVogAQckQoTDXqJt1qKYxO45A8oIoUMI4uzgcFJm7iJIZJAv3Hjd2ftz 48RVwjWHblmBz6e+CdmETpzJUaJr3KXbnk3EDQzagWg3Q64dBU/yT0c4foBO8wfX FI1MNin70r5NGQv6Mp4xNUfMoU6liCrsMO2RWkyxY2rcmxy6tkpNO/NBAPwhmn0e vwKHvnnqKM08Frrt6Lz3MpXGAJ+rhTSvmL+qSRXQn9BcbphdGa4jy+i3HbviRX4N z77UZMgMbfK1V3YHm8KzmmbIHrmIARXUlCM7jp4HPSnb4qhyERrhVmGCJZ8civ6Q 3Cm9WwA93PQDfRX6Kid3K1tR/ql+ryac55o9SM990osrWp4C0IH+P/CdlSN0GspN 3pJTLHUVVcxF6gSnOD+q/JzM8Iudl87Rxb17wA+6eg3AJRaPoQSPJoqtwZ89ZwOz RiZGuugFp7gDOxqo32lJ53fivO/e1zxXxu0dVHHjOnHBVWX063hlcibTg8kvFWg1 7bBvUkvgT5jR+UuDX81wPZ+c0kkmfk4gxT5sHg6RlMKeCYi3uuLmAYgla3AM4j9G GeNNdVTmilH7wMgYB2wxd0C5HofgKgM5YFLZWc0FVSXMeFs5ST2kbLMXAZqzrKPa szHFEJHIGZByXfkP/jix =C1ZV -----END PGP SIGNATURE----- Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4 Pull ext4 updates from Ted Ts'o: "Clean ups and miscellaneous bug fixes, in particular for the new collapse_range and zero_range fallocate functions. In addition, improve the scalability of adding and remove inodes from the orphan list" * tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (25 commits) ext4: handle symlink properly with inline_data ext4: fix wrong assert in ext4_mb_normalize_request() ext4: fix zeroing of page during writeback ext4: remove unused local variable "stored" from ext4_readdir(...) ext4: fix ZERO_RANGE test failure in data journalling ext4: reduce contention on s_orphan_lock ext4: use sbi in ext4_orphan_{add|del}() ext4: use EXT_MAX_BLOCKS in ext4_es_can_be_merged() ext4: add missing BUFFER_TRACE before ext4_journal_get_write_access ext4: remove unnecessary double parentheses ext4: do not destroy ext4_groupinfo_caches if ext4_mb_init() fails ext4: make local functions static ext4: fix block bitmap validation when bigalloc, ^flex_bg ext4: fix block bitmap initialization under sparse_super2 ext4: find the group descriptors on a 1k-block bigalloc,meta_bg filesystem ext4: avoid unneeded lookup when xattr name is invalid ext4: fix data integrity sync in ordered mode ext4: remove obsoleted check ext4: add a new spinlock i_raw_lock to protect the ext4's raw inode ext4: fix locking for O_APPEND writes ... |
||
Mel Gorman
|
2457aec637 |
mm: non-atomically mark page accessed during page cache allocation where possible
aops->write_begin may allocate a new page and make it visible only to have mark_page_accessed called almost immediately after. Once the page is visible the atomic operations are necessary which is noticable overhead when writing to an in-memory filesystem like tmpfs but should also be noticable with fast storage. The objective of the patch is to initialse the accessed information with non-atomic operations before the page is visible. The bulk of filesystems directly or indirectly use grab_cache_page_write_begin or find_or_create_page for the initial allocation of a page cache page. This patch adds an init_page_accessed() helper which behaves like the first call to mark_page_accessed() but may called before the page is visible and can be done non-atomically. The primary APIs of concern in this care are the following and are used by most filesystems. find_get_page find_lock_page find_or_create_page grab_cache_page_nowait grab_cache_page_write_begin All of them are very similar in detail to the patch creates a core helper pagecache_get_page() which takes a flags parameter that affects its behavior such as whether the page should be marked accessed or not. Then old API is preserved but is basically a thin wrapper around this core function. Each of the filesystems are then updated to avoid calling mark_page_accessed when it is known that the VM interfaces have already done the job. There is a slight snag in that the timing of the mark_page_accessed() has now changed so in rare cases it's possible a page gets to the end of the LRU as PageReferenced where as previously it might have been repromoted. This is expected to be rare but it's worth the filesystem people thinking about it in case they see a problem with the timing change. It is also the case that some filesystems may be marking pages accessed that previously did not but it makes sense that filesystems have consistent behaviour in this regard. The test case used to evaulate this is a simple dd of a large file done multiple times with the file deleted on each iterations. The size of the file is 1/10th physical memory to avoid dirty page balancing. In the async case it will be possible that the workload completes without even hitting the disk and will have variable results but highlight the impact of mark_page_accessed for async IO. The sync results are expected to be more stable. The exception is tmpfs where the normal case is for the "IO" to not hit the disk. The test machine was single socket and UMA to avoid any scheduling or NUMA artifacts. Throughput and wall times are presented for sync IO, only wall times are shown for async as the granularity reported by dd and the variability is unsuitable for comparison. As async results were variable do to writback timings, I'm only reporting the maximum figures. The sync results were stable enough to make the mean and stddev uninteresting. The performance results are reported based on a run with no profiling. Profile data is based on a separate run with oprofile running. async dd 3.15.0-rc3 3.15.0-rc3 vanilla accessed-v2 ext3 Max elapsed 13.9900 ( 0.00%) 11.5900 ( 17.16%) tmpfs Max elapsed 0.5100 ( 0.00%) 0.4900 ( 3.92%) btrfs Max elapsed 12.8100 ( 0.00%) 12.7800 ( 0.23%) ext4 Max elapsed 18.6000 ( 0.00%) 13.3400 ( 28.28%) xfs Max elapsed 12.5600 ( 0.00%) 2.0900 ( 83.36%) The XFS figure is a bit strange as it managed to avoid a worst case by sheer luck but the average figures looked reasonable. samples percentage ext3 86107 0.9783 vmlinux-3.15.0-rc4-vanilla mark_page_accessed ext3 23833 0.2710 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed ext3 5036 0.0573 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed ext4 64566 0.8961 vmlinux-3.15.0-rc4-vanilla mark_page_accessed ext4 5322 0.0713 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed ext4 2869 0.0384 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed xfs 62126 1.7675 vmlinux-3.15.0-rc4-vanilla mark_page_accessed xfs 1904 0.0554 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed xfs 103 0.0030 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed btrfs 10655 0.1338 vmlinux-3.15.0-rc4-vanilla mark_page_accessed btrfs 2020 0.0273 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed btrfs 587 0.0079 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed tmpfs 59562 3.2628 vmlinux-3.15.0-rc4-vanilla mark_page_accessed tmpfs 1210 0.0696 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed tmpfs 94 0.0054 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed [akpm@linux-foundation.org: don't run init_page_accessed() against an uninitialised pointer] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Tested-by: Prabhakar Lad <prabhakar.csengg@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
07a4278843 |
mm: shmem: avoid atomic operation during shmem_getpage_gfp
shmem_getpage_gfp uses an atomic operation to set the SwapBacked field before it's even added to the LRU or visible. This is unnecessary as what could it possible race against? Use an unlocked variant. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Namjae Jeon
|
1c8349a171 |
ext4: fix data integrity sync in ordered mode
When we perform a data integrity sync we tag all the dirty pages with PAGECACHE_TAG_TOWRITE at start of ext4_da_writepages. Later we check for this tag in write_cache_pages_da and creates a struct mpage_da_data containing contiguously indexed pages tagged with this tag and sync these pages with a call to mpage_da_map_and_submit. This process is done in while loop until all the PAGECACHE_TAG_TOWRITE pages are synced. We also do journal start and stop in each iteration. journal_stop could initiate journal commit which would call ext4_writepage which in turn will call ext4_bio_write_page even for delayed OR unwritten buffers. When ext4_bio_write_page is called for such buffers, even though it does not sync them but it clears the PAGECACHE_TAG_TOWRITE of the corresponding page and hence these pages are also not synced by the currently running data integrity sync. We will end up with dirty pages although sync is completed. This could cause a potential data loss when the sync call is followed by a truncate_pagecache call, which is exactly the case in collapse_range. (It will cause generic/127 failure in xfstests) To avoid this issue, we can use set_page_writeback_keepwrite instead of set_page_writeback, which doesn't clear TOWRITE tag. Cc: stable@vger.kernel.org Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Reviewed-by: Jan Kara <jack@suse.cz> |
||
Shaohua Li
|
579f82901f |
swap: add a simple detector for inappropriate swapin readahead
This is a patch to improve swap readahead algorithm. It's from Hugh and I slightly changed it. Hugh's original changelog: swapin readahead does a blind readahead, whether or not the swapin is sequential. This may be ok on harddisk, because large reads have relatively small costs, and if the readahead pages are unneeded they can be reclaimed easily - though, what if their allocation forced reclaim of useful pages? But on SSD devices large reads are more expensive than small ones: if the readahead pages are unneeded, reading them in caused significant overhead. This patch adds very simplistic random read detection. Stealing the PageReadahead technique from Konstantin Khlebnikov's patch, avoiding the vma/anon_vma sophistications of Shaohua Li's patch, swapin_nr_pages() simply looks at readahead's current success rate, and narrows or widens its readahead window accordingly. There is little science to its heuristic: it's about as stupid as can be whilst remaining effective. The table below shows elapsed times (in centiseconds) when running a single repetitive swapping load across a 1000MB mapping in 900MB ram with 1GB swap (the harddisk tests had taken painfully too long when I used mem=500M, but SSD shows similar results for that). Vanilla is the 3.6-rc7 kernel on which I started; Shaohua denotes his Sep 3 patch in mmotm and linux-next; HughOld denotes my Oct 1 patch which Shaohua showed to be defective; HughNew this Nov 14 patch, with page_cluster as usual at default of 3 (8-page reads); HughPC4 this same patch with page_cluster 4 (16-page reads); HughPC0 with page_cluster 0 (1-page reads: no readahead). HDD for swapping to harddisk, SSD for swapping to VertexII SSD. Seq for sequential access to the mapping, cycling five times around; Rand for the same number of random touches. Anon for a MAP_PRIVATE anon mapping; Shmem for a MAP_SHARED anon mapping, equivalent to tmpfs. One weakness of Shaohua's vma/anon_vma approach was that it did not optimize Shmem: seen below. Konstantin's approach was perhaps mistuned, 50% slower on Seq: did not compete and is not shown below. HDD Vanilla Shaohua HughOld HughNew HughPC4 HughPC0 Seq Anon 73921 76210 75611 76904 78191 121542 Seq Shmem 73601 73176 73855 72947 74543 118322 Rand Anon 895392 831243 871569 845197 846496 841680 Rand Shmem 1058375 1053486 827935 764955 764376 756489 SSD Vanilla Shaohua HughOld HughNew HughPC4 HughPC0 Seq Anon 24634 24198 24673 25107 21614 70018 Seq Shmem 24959 24932 25052 25703 22030 69678 Rand Anon 43014 26146 28075 25989 26935 25901 Rand Shmem 45349 45215 28249 24268 24138 24332 These tests are, of course, two extremes of a very simple case: under heavier mixed loads I've not yet observed any consistent improvement or degradation, and wider testing would be welcome. Shaohua Li: Test shows Vanilla is slightly better in sequential workload than Hugh's patch. I observed with Hugh's patch sometimes the readahead size is shrinked too fast (from 8 to 1 immediately) in sequential workload if there is no hit. And in such case, continuing doing readahead is good actually. I don't prepare a sophisticated algorithm for the sequential workload because so far we can't guarantee sequential accessed pages are swap out sequentially. So I slightly change Hugh's heuristic - don't shrink readahead size too fast. Here is my test result (unit second, 3 runs average): Vanilla Hugh New Seq 356 370 360 Random 4525 2447 2444 Attached graph is the swapin/swapout throughput I collected with 'vmstat 2'. The first part is running a random workload (till around 1200 of the x-axis) and the second part is running a sequential workload. swapin and swapout throughput are almost identical in steady state in both workloads. These are expected behavior. while in Vanilla, swapin is much bigger than swapout especially in random workload (because wrong readahead). Original patches by: Shaohua Li and Konstantin Khlebnikov. [fengguang.wu@intel.com: swapin_nr_pages() can be static] Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sasha Levin
|
309381feae |
mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
Most of the VM_BUG_ON assertions are performed on a page. Usually, when one of these assertions fails we'll get a BUG_ON with a call stack and the registers. I've recently noticed based on the requests to add a small piece of code that dumps the page to various VM_BUG_ON sites that the page dump is quite useful to people debugging issues in mm. This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what VM_BUG_ON() does, also dumps the page before executing the actual BUG_ON. [akpm@linux-foundation.org: fix up includes] Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Kardashevskiy
|
8e0861fa3c |
powerpc: Prepare to support kernel handling of IOMMU map/unmap
The current VFIO-on-POWER implementation supports only user mode driven mapping, i.e. QEMU is sending requests to map/unmap pages. However this approach is really slow, so we want to move that to KVM. Since H_PUT_TCE can be extremely performance sensitive (especially with network adapters where each packet needs to be mapped/unmapped) we chose to implement that as a "fast" hypercall directly in "real mode" (processor still in the guest context but MMU off). To be able to do that, we need to provide some facilities to access the struct page count within that real mode environment as things like the sparsemem vmemmap mappings aren't accessible. This adds an API function realmode_pfn_to_page() to get page struct when MMU is off. This adds to MM a new function put_page_unless_one() which drops a page if counter is bigger than 1. It is going to be used when MMU is off (for example, real mode on PPC64) and we want to make sure that page release will not happen in real mode as it may crash the kernel in a horrible way. CONFIG_SPARSEMEM_VMEMMAP and CONFIG_FLATMEM are supported. Cc: linux-mm@kvack.org Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> |
||
Martin Schwidefsky
|
abf09bed3c |
s390/mm: implement software dirty bits
The s390 architecture is unique in respect to dirty page detection,
it uses the change bit in the per-page storage key to track page
modifications. All other architectures track dirty bits by means
of page table entries. This property of s390 has caused numerous
problems in the past, e.g. see git commit
|
||
Christoffer Dall
|
ad4b3fb7ff |
mm: Fix PageHead when !CONFIG_PAGEFLAGS_EXTENDED
Unfortunately with !CONFIG_PAGEFLAGS_EXTENDED, (!PageHead) is false, and
(PageHead) is true, for tail pages. If this is indeed the intended
behavior, which I doubt because it breaks cache cleaning on some ARM
systems, then the nomenclature is highly problematic.
This patch makes sure PageHead is only true for head pages and PageTail
is only true for tail pages, and neither is true for non-compound pages.
[ This buglet seems ancient - seems to have been introduced back in Apr
2008 in commit
|