Now that set_mode also disables crtcs and expects it's new
configuration in the staged output links we need to adjust the load
detect code a bit.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
This seems to be the symptom of a few neat bugs, hence be more
obnoxious when this fails.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Because that's what it is. Unfortunately we can't rip this out because
the fb helper has an incetious relationship with the crtc helper - it
likes to call disable_unused_functions, among other things.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
This requires a few changes
- We still need a noop function for crtc->disable, becuase the fb
helper is a bit too intimate with the crtc helper.
- We need to clear crtc->fb ourselves in intel_crtc_disable now that
we no longer rely on the helper's disable_unused_functions to do
that.
- We need to split out the sare update code, becuase the crtc code
can't call update_dpms any more, it needs to disable the crtc
unconditionally. This is because we now keep onto the encoder ->
crtc mapping of the (still) active output pipe configuration.
- To check that we really disable a crtc that still has encoders,
insert a WARN_ON(!enabled) in the crtc disable function.
- Lastly, we need to walk over all crtcs to update their enabled state
after having called commit_output_state - for all disabled crtcs the
crtc helper code has done that for us previously.
v2: Update connector dpms and encoder->connectors_active after
disabling the crtc, too.
v3: Noop-out intel_encoder_disable. Similarly to the crtc disable
callback used by the crtc helper code we can't simply remove all these
encoder callbacks: The fb helper (which we still use) has a rather
incetious relationship with the crtc helper code ...
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
... using the pipe masks from the previous patch.
Well, not quite:
- We still need to call the disable_unused_functions helper, until
we've moved the call to commit_output_state further down and
adjusted intel_crtc_disable a bit. The next patch will do that.
- Because we don't support (yet) mode changes on more than one crtc at
a time, some of the modeset_pipes checks are a bit hackish - but
that only needs fixing once we incorporate global modeset support.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
This is definetely a bit more generic than currently required, but if
we keep track of all crtcs that need to be disabled/enable (because
they loose an encoder or something similar), crtcs that get completely
disabled and those that we need to do an actual mode change nicely
prepares us for global modeset operations on multiple crtcs.
The only big thing missing here would be a global resource allocation
step (for e.g. pch plls), which would equally frob these bitmasks if
e.g. a crtc only needs a new pll. Or if we need to enable dithering on
an another pipe due to bandwidth constrains somewhere.
These masks aren't yet put to use in this patch, this will follow in the
next one.
v2-v5: Fix up the computations for good (hopefully).
v6: Fixup a confusion reported by Damien Lespiau: I've conserved the
(imo braindead) behaviour of the crtc helper to disable _any_
disconnected outputs if we do a modeset, even when that newly disabled
connector isn't connected to the crtc being changed by the modeset.
The effect of that is that we could disable an arbitrary number of
unrelated crtcs, which I haven't taken into account when writing this
code. Fix this up.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
- Use the check_cloned helper from the previous patch.
- Use encoder->new_crtc to check crtc properties.
v2: Kill the double negation with s/!non_cloned/is_cloned, suggested
by Jesse Barnes.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
The "is this encoder cloned" check will be reused by the lvds encoder,
hence exract it.
v2: Be a bit more careful about that we need to check the new, staged
ouput configuration in the check_non_cloned helper ...
v3: Kill the double negation with s/!non_cloned/is_cloned/, suggested
by Jesse Barnes.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
While at it, adjust a few things:
- Only assigng the new mode to crtc->mode right before calling the
mode_set callbacks - none of the previous callbacks depend upon
this, they all use the mode argument (as they should).
- Check encoder->new_crtc instead of the current crtc to check whether
the encoder will be used. This prepares for moving the staged output
committing further down in the sequence. Follow-on patches will fix
up individual ->mode_fixup callbacks (only tv and lvds are affected
though).
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
It's rather pointless to compute crtc->enabled twice right away ;-)
The only thing we really have to be careful about is that we frob the
dpms state only after a successful modeset and when we've actually
haven't just disabled the crtc.
Hooray for convoluted interfaces ...
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Originally this has been introduced in
commit 6eebd6bb5f
Author: Chris Wilson <chris@chris-wilson.co.uk>
Date: Mon Nov 28 21:10:05 2011 +0000
drm: Fix lack of CRTC disable for drm_crtc_helper_set_config(.fb=NULL)
With the improvements of the output state staging and no longer
overwriting crtc->fb before the hw state is updated we can now handle
crtc disabling as part of the normal modeset sequence.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Passing in the old fb, having overwritten the current fb, leads to
some neatly convoluted code. It's much simpler if we defer the
crtc->fb update to the place that updates the hw, in pipe_set_base.
This way we also don't need to restore anything in case something
fails - we only update crtc->fb once things have succeeded.
The real reason for this change is that now we keep the old fb
assigned to crtc->fb, which allows us to finally move the crtc disable
case into the common low-level set_mode function in the next patch.
Also don't clobber crtc->x and crtc->y, we neatly pass these down the
callchain already. Unfortunately we can't do the same with crtc->mode,
because that one is being used in the mode_set callbacks.
v2: Don't restore the drm_crtc object any more on failed modesets,
since we've lose an fb reference otherwise. Also (and this is the
reason this has been found), this totally confused the modeset state
tracking, since it clobbers crtc->enabled. Issue reported by Paulo
Zanoni.
v3: Rip out the entire crtc saving into struct intel_set_config, not
just the restoring part.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
This is the core of the new modeset logic.
The current code which is based upon the crtc helper code first
updates all the link of the new display pipeline and then calls the
lower-level set_mode function to execute the required callbacks to get
there. The issue with this approach is that for disabling we need to
know the _current_ display pipe state, not the new one.
Hence we need to stage the new state of the display pipe and only
update it once we have disabled the current configuration and before we
start to update the hw registers with the new configuration.
This patch here just prepares the ground by switching the new output
state computation to these staging pointers. To make it clearer,
rename the old update_output_state function to stage_output_state.
A few peculiarities:
- We're also calling the set_mode function at various places to update
properties. Hence after a successfule modeset we need to stage the
current configuration (for otherwise we might fall back again). This
happens automatically because as part of the (successful) modeset we
need to copy the staged state to the real one. But for the hw
readout code we need to make sure that this happens, too.
- Teach the new staged output state computation code the required
smarts to handle the disabling of outputs. The current code handles
this in a special case, but to better handle global modeset changes
covering more than one crtc, we want to do this all in the same
low-level modeset code.
- The actual modeset code is still a bit ugly and wants to know the new
crtc->enabled state a bit early. Follow-on patches will clean that
up, for now we have to apply the staged output configuration early,
outside of the set_mode functions.
- Improve/add comments in stage_output_state.
Essentially all that is left to do now is move the disabling code into
set_mode and then move the staged state update code also into
set_mode, at the right place between disabling things and calling the
mode_set callbacks for the new configuration.
v2: Disabling a crtc works by passing in a NULL mode or fb, userspace
doesn't hand in the list of connectors. We therefore need to detect
this case manually and tear down all the output links.
v3: Properly update the output staging pointers after having read out
the hw state.
v4: Simplify the code, add more DRM_DEBUG_KMS output and check a few
assumptions with WARN_ON. Essentially all things that I've noticed
while debugging issues in other places of the code.
v4: Correctly disable the old set of connectors when enabling an
already enabled crtc on a new set of crtc. Reported by Paulo Zanoni.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
We actually only touch the connector -> encoder and encoder -> crtc
linking. So it's enough to just save/restore that.
While at it, also switch to kcalloc to allocate these arrays (omission
in the commit message spotted by Jesse Barnes).
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Because they all are, the ioctl command never calls us with any of
these violated. Also drop a equally pointless empty debug message (and
also in set_cursor, while we're at it).
With all these changes, intel_crtc_set_config is neatly condensed down
to it's essence, the actual modeset code (or fb update calling code)
v2: The fb helper code is actually stretching ->set_config semantics a bit,
it calls it with set->mode == NULL but set->fb != NULL.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Otherwise we'll set_fb complains pretty loudly if we the crtc is off
and userspace moves the NULL fb around a bit. Yeah, this actually
happens in the wild ...
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Yikes!
But yeah, we have to do this until someone volunteers to clean up the
fb helper and rid it of its incetious relationship with the crtc
helper code.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Note that this function already clobbers the mode config state,
so we have to clean things up if something fails.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
This computes what exactly changed in the modeset configuration, i.e.
whether a full modeset is required or only an update of the
framebuffer base address or no change at all.
In the future we might add more checks for e.g. when only the output
mode changed, so that we could do a minimal modeset for outputs that
support this. Like the lvds/eDP panels where we only need to update
the panel fitter.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
At the end this won't be of much use to us, but meanwhile just extract
it to get a better overview of what exactly set_config does.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
intel_crtc_set_config is an unwidly beast and is in serious need of
some function extraction. To facilitate that, introduce a struct to
keep track of all the state involved. Atm it doesn't do much more than
keep track of all the allocated memory.
v2: Apply some bikeshed to intel_set_config_free, as suggested by
Jesse Barnes.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Many BIOSen forget to turn on the pipe A after resume (because they
actually don't turn on anything), so we have to do that ourselves when
sanitizing the hw state.
I've discovered this due to the recent addition of a pipe WARN that
takes the force quirk into account.
v2: Actually try to enable the pipe with a proper configuration instead
of simpyl switching it on with whatever random state the bios left it
in after resume.
v3: Fixup rebase conflict - the load_detect functions have lost their
encoder argument.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
We now track the connector state in encoder->connectors_active, and
because the DP output can't be cloned, that is sufficient to track the
link state. Hence use this instead of adding yet another modeset state
variable with dubious semantics at driver load and resume time.
Also, connectors_active should only ever be set when the encoder is
linked to a crtc, hence convert that crtc test into a WARN.
v2: Rebase on top of struct intel_dp moving.
v3: The rebase accidentally killed the newly-introduced intel_dp->port
Noticed by Paulo Zanoni.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Afaict this has been used for two things:
- To prevent the crtc enable code from being run twice. We have now
intel_crtc->active to track this in a more precise way.
- To ensure the code copes correctly with the unknown hw state after
boot and resume. Thanks to the hw state readout and sanitize code we
have now a better way to handle this.
The only thing it still does is complicate our modeset state space.
Having outlived its usefullness, let it just die.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Atm we can only check the connector state after a dpms call - while
doing modeset with the copy&pasted crtc helper code things are too
ill-defined for proper checking. But the idea is very much to call
this check from the modeset code, too.
v2: Fix dpms check and don't presume that if the hw isn't on that it
must not be linked up with an encoder (it could simply be switched off
with the dpms state).
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
... instead of resetting a few things and hoping that this will work
out.
To properly disable the output pipelines at the initial modeset after
resume or boot up we need to have an accurate picture of which outputs
are enabled and connected to which crtcs. Otherwise we risk disabling
things at the wrong time, which can lead to hangs (or at least royally
confused panels), both requiring a walk to the reset button to fix.
Hence read out the hw state with the freshly introduce get_hw_state
functions and then sanitize it afterwards.
For a full modeset readout (which would allow us to avoid the initial
modeset at boot up) a few things are still missing:
- Reading out the mode from the pipe, especially the dotclock
computation is quite some fun.
- Reading out the parameters for the stolen memory framebuffer and
wrapping it up.
- Reading out the pch pll connections - luckily the disable code
simply bails out if the crtc doesn't have a pch pll attached (even
for configurations that would need one).
This patch here turned up tons of smelly stuff around resume: We
restore tons of register in seemingly random way (well, not quite, but
we're not too careful either), which leaves the hw in a rather
ill-defined state: E.g. the port registers are sometimes
unconditionally restore (lvds, crt), leaving us with an active
encoder/connector but no active pipe connected to it. Luckily the hw
state sanitizer detects this madness and fixes things up a bit.
v2: When checking whether an encoder with active connectors has a crtc
wire up to it, check for both the crtc _and_ it's active state.
v3:
- Extract intel_sanitize_encoder.
- Manually disable active encoders without an active pipe.
v4: Correclty fix up the pipe<->plane mapping on machines where we
switch pipes/planes. Noticed by Chris Wilson, who also provided the
fixup.
v5: Spelling fix in a comment, noticed by Paulo Zanoni
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Similar to the sdvo code we poke the dvo encoder whether the output is
active. Safe that dvo encoders are not standardized, so this requires
a new callback into the dvo chip driver.
Hence implement that for all 6 dvo drivers.
v2: With the newly added ns2501 we now have 6 dvo drivers instead of
just 5 ...
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
SDVO is the first real special case - we support multiple outputs on
the same encoder and the encoder dpms state isn't the same as when
just disabling the outputs when the encoder is cloned.
Hence we need a real connector get_hw_state function which inquires
the sdvo encoder about its active outputs.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Note that even though this connector is cloneable we still can use the
exact same test to check whether the connector is on or whether the
encoder is enabled - both the dpms code and the encoder disable/enable
frob the exact same hw state.
For dvo/sdvo outputs, this will be different.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Also add some macros to make the pipe computation a bit easier.
v2: I've mixed up the CPT and !CPT PORT_TO_PIPE macro variants ...
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
It is all glorious if we try really hard to only enable/disable an
entire display pipe to ensure that everyting happens in the right
order. But if we don't know the output configuration when the driver
takes over, this will all be for vain because we'll make the hw angry
right on the first modeset - we don't know what outputs/ports are
enabled and hence have to disable everything in a rather ad-hoc way.
Hence we need to be able to read out the current hw state, so that we
can properly tear down the current hw state on the first modeset.
Obviously this is also a nice preparation for the fastboot work, where
we try to avoid the modeset on driver load if it matches what the hw
is currently using.
Furthermore we'll be using these functions to cross-check the actual
hw state with what we think it should be, to ensure that the modeset
state machine actually works as advertised.
This patch only contains the interface definitions and a little helper
for the simple case where we have a 1:1 encoder to connector mapping.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
This is the first tiny step towards cross-checking the entire modeset
state machine with WARNs. A crtc can only be enabled when it's
actually in use, i.e. crtc->active imlies crtc->enabled.
Unfortunately we can't (yet) check this when disabling the crtc,
because the crtc helpers are a bit slopy with updating state and
unconditionally update crtc->enabled before changing the hw state.
Fixing that requires quite some more work.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Instead of going through the crtc helper function tables.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
With the new infrastructure we're doing this when enabling/disabling
the entire display pipe.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
- We don't have the ->get_crtc callback.
- Call intel_encoder->disable directly.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Together with the static helper functions drm_crtc_prepare_encoders
and drm_encoder_disable (which will be simplified in the next patch,
but for now are 1:1 copies). Again, no changes beside new names for
these functions.
Also call our new set_mode instead of the crtc helper one now in all
the places we've done so far.
v2: Call the function just intel_set_mode to better differentia it
from intel_crtc_mode_set which really only does the ->mode_set step of
the entire modeset sequence on one crtc. Whereas this function does
the global change.
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Also kill the error-path, we have a fixed connector->encoder mapping.
Unfortunately we can't rip out all the ->best_encoder callbacks, these
are all still used by the fb_helper. Neat helper layering violation there.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
And the following static functions required by it:
drm_encoder_crtc_ok, drm_crtc_helper_disable
No changes safe for the s/drm/intel prefix change.
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
We no longer need them. And now that all encoders are converted, we
can finally move the cpt modeset check to the right place - at the end
of the crtc_enable function.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
All encoders are now converted so there's no need for these checks any
more.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Yeah, big patch but I couldn't come up with a neat idea of how to
split it up further, that wouldn't break dpms on cloned configs
somehow. But the changes in dvo/sdvo/crt are all pretty much
orthonogal, so it's not too bad a patch.
These are the only encoders that support cloning, which requires a few
special changes compared to the previous patches.
- Compute the desired state of the display pipe by walking all
connected encoders and checking whether any has active connectors.
To make this clearer, drop the old mode parameter to the crtc dpms
function and rename it to intel_crtc_update_dpms.
- There's the curious case of intel_crtc->dpms_mode. With the previous
patches to remove the overlay pipe A code and to rework the load
detect pipe code, the big users are gone. We still keep it to avoid
enabling the pipe twice, but we duplicate this logic with
crtc->active, too. Still, leave this for now and just push a fake
dpms mode into it that reflects the state of the display pipe.
Changes in the encoder dpms functions:
- We clamp the dpms state to the supported range right away. This is
escpecially important for the VGA outputs, where only older hw
supports the intermediate states. This (and the crt->adpa_reg patch)
allows us to unify the crt dpms code again between all variants
(gmch, vlv and pch).
- We only enable/disable the output for dvo/sdvo and leave the encoder
running. The encoder will be disabled/enabled when we switch the
state of the entire output pipeline (which will happen right away
for non-cloned setups). This way the duplication is reduced and
strange interaction when disabling output ports at the wrong time
avoided.
The dpms code for all three types of connectors contains a bit of
duplicated logic, but I think keeping these special cases separate is
simpler: CRT is the only one that hanldes intermediate dpms state
(which requires extra logic to enable/disable things in the right
order), and introducing some abstraction just to share the code
between dvo and sdvo smells like overkill. We can do that once someone
bothers to implement cloning for the more modern outputs. But I doubt
that this will ever happen.
v2: s/crtc/crt/_set_dpms, noticed by Paulo Zanoni.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Similar to crt, this doesn't convert the dpms functions.
Also similar to crt, we don't switch of the display pipe
for the intermediate modes, only DPMS_OFF is truely off.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
CRT is the first output which can be cloned, hence we cannot (yet)
move the dpms handling over to disable/enable. This requires some more
smarts in intel_crtc_dpms first to set the display pipe status
depening upon encoder->connectors_active of all connected encoders.
Because that will happen in a separate step, don't touch the dpms
functions, yet.
v2: Be careful about clearing the _DISABLE flags for intermediate dpms
modes - otherwise we might clobber the crt state when another (cloned)
connector gets enabled.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
DP is the first encoder which isn't simple. As
commit d240f20f54
Author: Jesse Barnes <jbarnes@virtuousgeek.org>
Date: Fri Aug 13 15:43:26 2010 -0700
drm/i915: make sure eDP PLL is enabled at the right time
discovered, we need to enable the eDP PLL for the cpu port _before_ we
enable the pipes and planes. After a few more commits the current
solution is to enable the PLL in the dp mode_set function (because
this is the only encoder callback the crtc helper code calls before it
calls the crtc's commit function).
Now I suspect that we actually should enable/disable the entire cpu
eDP port before/after planes, but thanks to how the crtc helper code
assumes that you can disable an encoder without disabling it's crtc
right away, this won't work.
The result is that the current prepare/commit hooks don't touch the
eDP PLL, but instead it get's frobbed in dp_mode_set and in the dp
dpms function. Hence we need to keep things (at least for now)
bug-for-bug compatible by using our own special dp dpms function and
keep everything else more-or-less as-is (just using our own
infrastrucutre now).
This mess can only be cleaned up once we control the entire modeset
sequence and can move things around freely.
v2: Squash unsupported dpms modes to OFF at the beginning of the DP
dpms function.
v3: Need to set the dpms state to off in dp_disable, otherwise this
breaks the newly added WARNs ...
v4: Rebased against edp panel off sequence changes in 3.6-rc2
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
With the previous patch LVDS is also a simple case. Treat it
accordingly.
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-Off-by: Daniel Vetter <daniel.vetter@ffwll.ch>