Commit Graph

29654 Commits

Author SHA1 Message Date
Linus Torvalds
b2096a5e07 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 store buffer fixes from Thomas Gleixner:
 "Two fixes for the SSBD mitigation code:

   - expose SSBD properly to guests. This got broken when the CPU
     feature flags got reshuffled.

   - simplify the CPU detection logic to avoid duplicate entries in the
     tables"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation: Simplify the CPU bug detection logic
  KVM/VMX: Expose SSBD properly to guests
2018-05-26 13:24:16 -07:00
Linus Torvalds
ec30dcf7f4 KVM fixes for v4.17-rc7
PPC:
  - Close a hole which could possibly lead to the host timebase getting
    out of sync.
 
  - Three fixes relating to PTEs and TLB entries for radix guests.
 
  - Fix a bug which could lead to an interrupt never getting delivered
    to the guest, if it is pending for a guest vCPU when the vCPU gets
    offlined.
 
 s390:
  - Fix false negatives in VSIE validity check (Cc stable)
 
 x86:
  - Fix time drift of VMX preemption timer when a guest uses LAPIC timer
    in periodic mode (Cc stable)
 
  - Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow
    migration from hosts that don't need retpoline mitigation (Cc stable)
 
  - Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and
    CPUID.OSXSAVE (Cc stable)
 
  - Report correct RIP after Hyper-V hypercall #UD (introduced in -rc6)
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJbCXxHAAoJEED/6hsPKofon5oIAKTwpbpBi0UKIyYcHQ2pwIoP
 +qITTZUGGhEaIfe+aDkzE4vxVIA2ywYCbaC2+OSy4gNVThnytRL8WuhLyV8WLmlC
 sDVSQ87RWaN8mW6hEJ95qXMS7FS0TsDJdytaw+c8OpODrsykw1XMSyV2rMLb0sMT
 SmfioO2kuDx5JQGyiAPKFFXKHjAnnkH+OtffNemAEHGoPpenJ4qLRuXvrjQU8XT6
 tVARIBZsutee5ITIsBKVDmI2n98mUoIe9na21M7N2QaJ98IF+qRz5CxZyL1CgvFk
 tHqG8PZ/bqhnmuIIR5Di919UmhamOC3MODsKUVeciBLDS6LHlhado+HEpj6B8mI=
 =ygB7
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Radim Krčmář:
 "PPC:

   - Close a hole which could possibly lead to the host timebase getting
     out of sync.

   - Three fixes relating to PTEs and TLB entries for radix guests.

   - Fix a bug which could lead to an interrupt never getting delivered
     to the guest, if it is pending for a guest vCPU when the vCPU gets
     offlined.

  s390:

   - Fix false negatives in VSIE validity check (Cc stable)

  x86:

   - Fix time drift of VMX preemption timer when a guest uses LAPIC
     timer in periodic mode (Cc stable)

   - Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow
     migration from hosts that don't need retpoline mitigation (Cc
     stable)

   - Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and
     CPUID.OSXSAVE (Cc stable)

   - Report correct RIP after Hyper-V hypercall #UD (introduced in
     -rc6)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: fix #UD address of failed Hyper-V hypercalls
  kvm: x86: IA32_ARCH_CAPABILITIES is always supported
  KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed
  x86/kvm: fix LAPIC timer drift when guest uses periodic mode
  KVM: s390: vsie: fix < 8k check for the itdba
  KVM: PPC: Book 3S HV: Do ptesync in radix guest exit path
  KVM: PPC: Book3S HV: XIVE: Resend re-routed interrupts on CPU priority change
  KVM: PPC: Book3S HV: Make radix clear pte when unmapping
  KVM: PPC: Book3S HV: Make radix use correct tlbie sequence in kvmppc_radix_tlbie_page
  KVM: PPC: Book3S HV: Snapshot timebase offset on guest entry
2018-05-26 10:46:57 -07:00
Radim Krčmář
696ca779a9 KVM: x86: fix #UD address of failed Hyper-V hypercalls
If the hypercall was called from userspace or real mode, KVM injects #UD
and then advances RIP, so it looks like #UD was caused by the following
instruction.  This probably won't cause more than confusion, but could
give an unexpected access to guest OS' instruction emulator.

Also, refactor the code to count hv hypercalls that were handled by the
virt userspace.

Fixes: 6356ee0c96 ("x86: Delay skip of emulated hypercall instruction")
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-25 21:33:31 +02:00
Jim Mattson
1eaafe91a0 kvm: x86: IA32_ARCH_CAPABILITIES is always supported
If there is a possibility that a VM may migrate to a Skylake host,
then the hypervisor should report IA32_ARCH_CAPABILITIES.RSBA[bit 2]
as being set (future work, of course). This implies that
CPUID.(EAX=7,ECX=0):EDX.ARCH_CAPABILITIES[bit 29] should be
set. Therefore, kvm should report this CPUID bit as being supported
whether or not the host supports it.  Userspace is still free to clear
the bit if it chooses.

For more information on RSBA, see Intel's white paper, "Retpoline: A
Branch Target Injection Mitigation" (Document Number 337131-001),
currently available at https://bugzilla.kernel.org/show_bug.cgi?id=199511.

Since the IA32_ARCH_CAPABILITIES MSR is emulated in kvm, there is no
dependency on hardware support for this feature.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Fixes: 28c1c9fabf ("KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES")
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 18:38:34 +02:00
Wei Huang
c4d2188206 KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed
The CPUID bits of OSXSAVE (function=0x1) and OSPKE (func=0x7, leaf=0x0)
allows user apps to detect if OS has set CR4.OSXSAVE or CR4.PKE. KVM is
supposed to update these CPUID bits when CR4 is updated. Current KVM
code doesn't handle some special cases when updates come from emulator.
Here is one example:

  Step 1: guest boots
  Step 2: guest OS enables XSAVE ==> CR4.OSXSAVE=1 and CPUID.OSXSAVE=1
  Step 3: guest hot reboot ==> QEMU reset CR4 to 0, but CPUID.OSXAVE==1
  Step 4: guest os checks CPUID.OSXAVE, detects 1, then executes xgetbv

Step 4 above will cause an #UD and guest crash because guest OS hasn't
turned on OSXAVE yet. This patch solves the problem by comparing the the
old_cr4 with cr4. If the related bits have been changed,
kvm_update_cpuid() needs to be called.

Signed-off-by: Wei Huang <wei@redhat.com>
Reviewed-by: Bandan Das <bsd@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 17:57:18 +02:00
David Vrabel
d8f2f498d9 x86/kvm: fix LAPIC timer drift when guest uses periodic mode
Since 4.10, commit 8003c9ae20 (KVM: LAPIC: add APIC Timer
periodic/oneshot mode VMX preemption timer support), guests using
periodic LAPIC timers (such as FreeBSD 8.4) would see their timers
drift significantly over time.

Differences in the underlying clocks and numerical errors means the
periods of the two timers (hv and sw) are not the same. This
difference will accumulate with every expiry resulting in a large
error between the hv and sw timer.

This means the sw timer may be running slow when compared to the hv
timer. When the timer is switched from hv to sw, the now active sw
timer will expire late. The guest VCPU is reentered and it switches to
using the hv timer. This timer catches up, injecting multiple IRQs
into the guest (of which the guest only sees one as it does not get to
run until the hv timer has caught up) and thus the guest's timer rate
is low (and becomes increasing slower over time as the sw timer lags
further and further behind).

I believe a similar problem would occur if the hv timer is the slower
one, but I have not observed this.

Fix this by synchronizing the deadlines for both timers to the same
time source on every tick. This prevents the errors from accumulating.

Fixes: 8003c9ae20
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: David Vrabel <david.vrabel@nutanix.com>
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 16:48:55 +02:00
Dominik Brodowski
8ecc4979b1 x86/speculation: Simplify the CPU bug detection logic
Only CPUs which speculate can speculate. Therefore, it seems prudent
to test for cpu_no_speculation first and only then determine whether
a specific speculating CPU is susceptible to store bypass speculation.
This is underlined by all CPUs currently listed in cpu_no_speculation
were present in cpu_no_spec_store_bypass as well.

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: konrad.wilk@oracle.com
Link: https://lkml.kernel.org/r/20180522090539.GA24668@light.dominikbrodowski.net
2018-05-23 10:55:52 +02:00
Konrad Rzeszutek Wilk
0aa48468d0 KVM/VMX: Expose SSBD properly to guests
The X86_FEATURE_SSBD is an synthetic CPU feature - that is
it bit location has no relevance to the real CPUID 0x7.EBX[31]
bit position. For that we need the new CPU feature name.

Fixes: 52817587e7 ("x86/cpufeatures: Disentangle SSBD enumeration")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lkml.kernel.org/r/20180521215449.26423-2-konrad.wilk@oracle.com
2018-05-23 10:55:52 +02:00
Linus Torvalds
3b78ce4a34 Merge branch 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge speculative store buffer bypass fixes from Thomas Gleixner:

 - rework of the SPEC_CTRL MSR management to accomodate the new fancy
   SSBD (Speculative Store Bypass Disable) bit handling.

 - the CPU bug and sysfs infrastructure for the exciting new Speculative
   Store Bypass 'feature'.

 - support for disabling SSB via LS_CFG MSR on AMD CPUs including
   Hyperthread synchronization on ZEN.

 - PRCTL support for dynamic runtime control of SSB

 - SECCOMP integration to automatically disable SSB for sandboxed
   processes with a filter flag for opt-out.

 - KVM integration to allow guests fiddling with SSBD including the new
   software MSR VIRT_SPEC_CTRL to handle the LS_CFG based oddities on
   AMD.

 - BPF protection against SSB

.. this is just the core and x86 side, other architecture support will
come separately.

* 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
  bpf: Prevent memory disambiguation attack
  x86/bugs: Rename SSBD_NO to SSB_NO
  KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
  x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFG
  x86/bugs: Rework spec_ctrl base and mask logic
  x86/bugs: Remove x86_spec_ctrl_set()
  x86/bugs: Expose x86_spec_ctrl_base directly
  x86/bugs: Unify x86_spec_ctrl_{set_guest,restore_host}
  x86/speculation: Rework speculative_store_bypass_update()
  x86/speculation: Add virtualized speculative store bypass disable support
  x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL
  x86/speculation: Handle HT correctly on AMD
  x86/cpufeatures: Add FEATURE_ZEN
  x86/cpufeatures: Disentangle SSBD enumeration
  x86/cpufeatures: Disentangle MSR_SPEC_CTRL enumeration from IBRS
  x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP
  KVM: SVM: Move spec control call after restore of GS
  x86/cpu: Make alternative_msr_write work for 32-bit code
  x86/bugs: Fix the parameters alignment and missing void
  x86/bugs: Make cpu_show_common() static
  ...
2018-05-21 11:23:26 -07:00
Linus Torvalds
8a6bd2f40e Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
 "An unfortunately larger set of fixes, but a large portion is
  selftests:

   - Fix the missing clusterid initializaiton for x2apic cluster
     management which caused boot failures due to IPIs being sent to the
     wrong cluster

   - Drop TX_COMPAT when a 64bit executable is exec()'ed from a compat
     task

   - Wrap access to __supported_pte_mask in __startup_64() where clang
     compile fails due to a non PC relative access being generated.

   - Two fixes for 5 level paging fallout in the decompressor:

      - Handle GOT correctly for paging_prepare() and
        cleanup_trampoline()

      - Fix the page table handling in cleanup_trampoline() to avoid
        page table corruption.

   - Stop special casing protection key 0 as this is inconsistent with
     the manpage and also inconsistent with the allocation map handling.

   - Override the protection key wen moving away from PROT_EXEC to
     prevent inaccessible memory.

   - Fix and update the protection key selftests to address breakage and
     to cover the above issue

   - Add a MOV SS self test"

[ Part of the x86 fixes were in the earlier core pull due to dependencies ]

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
  x86/mm: Drop TS_COMPAT on 64-bit exec() syscall
  x86/apic/x2apic: Initialize cluster ID properly
  x86/boot/compressed/64: Fix moving page table out of trampoline memory
  x86/boot/compressed/64: Set up GOT for paging_prepare() and cleanup_trampoline()
  x86/pkeys: Do not special case protection key 0
  x86/pkeys/selftests: Add a test for pkey 0
  x86/pkeys/selftests: Save off 'prot' for allocations
  x86/pkeys/selftests: Fix pointer math
  x86/pkeys: Override pkey when moving away from PROT_EXEC
  x86/pkeys/selftests: Fix pkey exhaustion test off-by-one
  x86/pkeys/selftests: Add PROT_EXEC test
  x86/pkeys/selftests: Factor out "instruction page"
  x86/pkeys/selftests: Allow faults on unknown keys
  x86/pkeys/selftests: Avoid printf-in-signal deadlocks
  x86/pkeys/selftests: Remove dead debugging code, fix dprint_in_signal
  x86/pkeys/selftests: Stop using assert()
  x86/pkeys/selftests: Give better unexpected fault error messages
  x86/selftests: Add mov_to_ss test
  x86/mpx/selftests: Adjust the self-test to fresh distros that export the MPX ABI
  x86/pkeys/selftests: Adjust the self-test to fresh distros that export the pkeys ABI
  ...
2018-05-20 11:28:32 -07:00
Linus Torvalds
74cce52f9f Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS fix from Thomas Gleixner:
 "Fix a regression in the new AMD SMCA code which issues an SMP function
  call from the early interrupt disabled region of CPU hotplug. To avoid
  that, use cached block addresses which can be used directly"

* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/MCE/AMD: Cache SMCA MISC block addresses
2018-05-20 11:20:40 -07:00
Linus Torvalds
056ad121c2 Merge branch 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI fixes from Thomas Gleixner:

 - Use explicitely sized type for the romimage pointer in the 32bit EFI
   protocol struct so a 64bit kernel does not expand it to 64bit. Ditto
   for the 64bit struct to avoid the reverse issue on 32bit kernels.

 - Handle randomized tex offset correctly in the ARM64 EFI stub to avoid
   unaligned data resulting in stack corruption and other hard to
   diagnose wreckage.

* 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  efi/libstub/arm64: Handle randomized TEXT_OFFSET
  efi: Avoid potential crashes, fix the 'struct efi_pci_io_protocol_32' definition for mixed mode
2018-05-20 10:36:52 -07:00
Linus Torvalds
583dbad340 Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core fixes from Thomas Gleixner:

 - Unbreak the BPF compilation which got broken by the unconditional
   requirement of asm-goto, which is not supported by clang.

 - Prevent probing on exception masking instructions in uprobes and
   kprobes to avoid the issues of the delayed exceptions instead of
   having an ugly workaround.

 - Prevent a double free_page() in the error path of do_kexec_load()

 - A set of objtool updates addressing various issues mostly related to
   switch tables and the noreturn detection for recursive sibling calls

 - Header sync for tools.

* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  objtool: Detect RIP-relative switch table references, part 2
  objtool: Detect RIP-relative switch table references
  objtool: Support GCC 8 switch tables
  objtool: Support GCC 8's cold subfunctions
  objtool: Fix "noreturn" detection for recursive sibling calls
  objtool, kprobes/x86: Sync the latest <asm/insn.h> header with tools/objtool/arch/x86/include/asm/insn.h
  x86/cpufeature: Guard asm_volatile_goto usage for BPF compilation
  uprobes/x86: Prohibit probing on MOV SS instruction
  kprobes/x86: Prohibit probing on exception masking instructions
  x86/kexec: Avoid double free_page() upon do_kexec_load() failure
2018-05-20 10:01:38 -07:00
Borislav Petkov
78ce241099 x86/MCE/AMD: Cache SMCA MISC block addresses
... into a global, two-dimensional array and service subsequent reads from
that cache to avoid rdmsr_on_cpu() calls during CPU hotplug (IPIs with IRQs
disabled).

In addition, this fixes a KASAN slab-out-of-bounds read due to wrong usage
of the bank->blocks pointer.

Fixes: 27bd595027 ("x86/mce/AMD: Get address from already initialized block")
Reported-by: Johannes Hirte <johannes.hirte@datenkhaos.de>
Tested-by: Johannes Hirte <johannes.hirte@datenkhaos.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20180414004230.GA2033@probook
2018-05-19 15:19:30 +02:00
Dmitry Safonov
acf4602001 x86/mm: Drop TS_COMPAT on 64-bit exec() syscall
The x86 mmap() code selects the mmap base for an allocation depending on
the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and
for 32bit mm->mmap_compat_base.

exec() calls mmap() which in turn uses in_compat_syscall() to check whether
the mapping is for a 32bit or a 64bit task. The decision is made on the
following criteria:

  ia32    child->thread.status & TS_COMPAT
   x32    child->pt_regs.orig_ax & __X32_SYSCALL_BIT
  ia64    !ia32 && !x32

__set_personality_x32() was dropping TS_COMPAT flag, but
set_personality_64bit() has kept compat syscall flag making
in_compat_syscall() return true during the first exec() syscall.

Which in result has user-visible effects, mentioned by Alexey:
1) It breaks ASAN
$ gcc -fsanitize=address wrap.c -o wrap-asan
$ ./wrap32 ./wrap-asan true
==1217==Shadow memory range interleaves with an existing memory mapping. ASan cannot proceed correctly. ABORTING.
==1217==ASan shadow was supposed to be located in the [0x00007fff7000-0x10007fff7fff] range.
==1217==Process memory map follows:
        0x000000400000-0x000000401000   /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
        0x000000600000-0x000000601000   /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
        0x000000601000-0x000000602000   /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
        0x0000f7dbd000-0x0000f7de2000   /lib64/ld-2.27.so
        0x0000f7fe2000-0x0000f7fe3000   /lib64/ld-2.27.so
        0x0000f7fe3000-0x0000f7fe4000   /lib64/ld-2.27.so
        0x0000f7fe4000-0x0000f7fe5000
        0x7fed9abff000-0x7fed9af54000
        0x7fed9af54000-0x7fed9af6b000   /lib64/libgcc_s.so.1
[snip]

2) It doesn't seem to be great for security if an attacker always knows
that ld.so is going to be mapped into the first 4GB in this case
(the same thing happens for PIEs as well).

The testcase:
$ cat wrap.c

int main(int argc, char *argv[]) {
  execvp(argv[1], &argv[1]);
  return 127;
}

$ gcc wrap.c -o wrap
$ LD_SHOW_AUXV=1 ./wrap ./wrap true |& grep AT_BASE
AT_BASE:         0x7f63b8309000
AT_BASE:         0x7faec143c000
AT_BASE:         0x7fbdb25fa000

$ gcc -m32 wrap.c -o wrap32
$ LD_SHOW_AUXV=1 ./wrap32 ./wrap true |& grep AT_BASE
AT_BASE:         0xf7eff000
AT_BASE:         0xf7cee000
AT_BASE:         0x7f8b9774e000

Fixes: 1b028f784e ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()")
Fixes: ada26481df ("x86/mm: Make in_compat_syscall() work during exec")
Reported-by: Alexey Izbyshev <izbyshev@ispras.ru>
Bisected-by: Alexander Monakov <amonakov@ispras.ru>
Investigated-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Alexander Monakov <amonakov@ispras.ru>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: stable@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20180517233510.24996-1-dima@arista.com
2018-05-19 12:31:05 +02:00
Konrad Rzeszutek Wilk
240da953fc x86/bugs: Rename SSBD_NO to SSB_NO
The "336996 Speculative Execution Side Channel Mitigations" from
May defines this as SSB_NO, hence lets sync-up.

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-18 11:17:30 +02:00
Linus Torvalds
3acf4e3952 k10temp fixes
Fix race condition when accessing System Management Network registers
 Fix reading critical temperatures on F15h M60h and M70h
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJa+0BbAAoJEMsfJm/On5mBo3EQAJxtFC7pA7JzY0yZsXvaA+50
 ObN9EtG5mhVMZQfcOThcN6ZGzV12rpJltsCp6Poy0g8n7rgLiB5y2IJvinM7ETil
 6zbw5onfv2So/WyvXWBylEI0J4WjtGc8n17S1+nlT+Ppy4ID6PQPv1pGfr7YVI0o
 0T2sLSfDQD7vgtvpHi7A+4q2hbsI0HjS3LKI8CAy4UboZ8yltxJBsgV7gJ3fbv4Z
 tX9DOH05bGsCR/9vwoA3rRVbUKbvPnwTY36DCAyT53QuYRIBwREXi/xkxCkKdSsn
 X3o78TPkvE/qTyK1ZjuJ5yxDdLmesibiKOtyPBeaPaTQ+jcayfSr+rQrAvsZ2Ogp
 8pjZ5he3LR4/8wdmBhZBBcDXDdBMar8SRMSpPrBRyWONpn5fSLuszUkintKTND4c
 dH1zlXmYjRFsQBW2O+/b6k1Hq/p654mwD4hBbxHN7FVBnrWDWzUgd2xSpQLxSqkz
 sfyd6wsvrVeUCGHAsgVY9sXYlbrTjI1WWkOX4EAJC2YKvWDYTB/kQXg0I5vICN4m
 9tLyoC8tvKothIe8J1U5VUeGgpP5QES+yf7YNF9gc02D8l5xlsWuUAVrBI1XBOdS
 0MXFFFxM68Y6ufhIiahSXPM7vocSFi6CuuYbuz6Z09a2L9cahG4C5+Qe9E9h6PjM
 N4uOoFJGKckctQYJB0rO
 =SujR
 -----END PGP SIGNATURE-----

Merge tag 'hwmon-for-linus-v4.17-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging

Pull hwmon fixes from Guenter Roeck:
 "Two k10temp fixes:

   - fix race condition when accessing System Management Network
     registers

   - fix reading critical temperatures on F15h M60h and M70h

  Also add PCI ID's for the AMD Raven Ridge root bridge"

* tag 'hwmon-for-linus-v4.17-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging:
  hwmon: (k10temp) Use API function to access System Management Network
  x86/amd_nb: Add support for Raven Ridge CPUs
  hwmon: (k10temp) Fix reading critical temperature register
2018-05-17 15:58:12 -07:00
Thomas Gleixner
fed71f7d98 x86/apic/x2apic: Initialize cluster ID properly
Rick bisected a regression on large systems which use the x2apic cluster
mode for interrupt delivery to the commit wich reworked the cluster
management.

The problem is caused by a missing initialization of the clusterid field
in the shared cluster data structures. So all structures end up with
cluster ID 0 which only allows sharing between all CPUs which belong to
cluster 0. All other CPUs with a cluster ID > 0 cannot share the data
structure because they cannot find existing data with their cluster
ID. This causes malfunction with IPIs because IPIs are sent to the wrong
cluster and the caller waits for ever that the target CPU handles the IPI.

Add the missing initialization when a upcoming CPU is the first in a
cluster so that the later booting CPUs can find the data and share it for
proper operation.

Fixes: 023a611748 ("x86/apic/x2apic: Simplify cluster management")
Reported-by: Rick Warner <rick@microway.com>
Bisected-by: Rick Warner <rick@microway.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Rick Warner <rick@microway.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805171418210.1947@nanos.tec.linutronix.de
2018-05-17 21:00:12 +02:00
Linus Torvalds
58ddfe6c3a * ARM/ARM64 locking fixes
* x86 fixes: PCID, UMIP, locking
 * Improved support for recent Windows version that have a 2048 Hz
 APIC timer.
 * Rename KVM_HINTS_DEDICATED CPUID bit to KVM_HINTS_REALTIME
 * Better behaved selftests.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJa/bkTAAoJEL/70l94x66Dzf8IAJ1GqtXi0CNbq8MvU4QIqw0L
 HLIRoe/QgkTeTUa2fwirEuu5I+/wUyPvy5sAIsn/F5eiZM7nciLm+fYzw6F2uPIm
 lSCqKpVwmh8dPl1SBaqPnTcB1HPVwcCgc2SF9Ph7yZCUwFUtoeUuPj8v6Qy6y21g
 jfobHFZa3MrFgi7kPxOXSrC1qxuNJL9yLB5mwCvCK/K7jj2nrGJkLLDuzgReCqvz
 isOdpof3hz8whXDQG5cTtybBgE9veym4YqJY8R5ANXBKqbFlhaNF1T3xXrdPMISZ
 7bsGgkhYEOqeQsPrFwzAIiFxe2DogFwkn1BcvJ1B+duXrayt5CBnDPRB6Yxg00M=
 =H0d0
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - ARM/ARM64 locking fixes

 - x86 fixes: PCID, UMIP, locking

 - improved support for recent Windows version that have a 2048 Hz APIC
   timer

 - rename KVM_HINTS_DEDICATED CPUID bit to KVM_HINTS_REALTIME

 - better behaved selftests

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  kvm: rename KVM_HINTS_DEDICATED to KVM_HINTS_REALTIME
  KVM: arm/arm64: VGIC/ITS save/restore: protect kvm_read_guest() calls
  KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock
  KVM: arm/arm64: VGIC/ITS: Promote irq_lock() in update_affinity
  KVM: arm/arm64: Properly protect VGIC locks from IRQs
  KVM: X86: Lower the default timer frequency limit to 200us
  KVM: vmx: update sec exec controls for UMIP iff emulating UMIP
  kvm: x86: Suppress CR3_PCID_INVD bit only when PCIDs are enabled
  KVM: selftests: exit with 0 status code when tests cannot be run
  KVM: hyperv: idr_find needs RCU protection
  x86: Delay skip of emulated hypercall instruction
  KVM: Extend MAX_IRQ_ROUTES to 4096 for all archs
2018-05-17 10:23:36 -07:00
Michael S. Tsirkin
633711e828 kvm: rename KVM_HINTS_DEDICATED to KVM_HINTS_REALTIME
KVM_HINTS_DEDICATED seems to be somewhat confusing:

Guest doesn't really care whether it's the only task running on a host
CPU as long as it's not preempted.

And there are more reasons for Guest to be preempted than host CPU
sharing, for example, with memory overcommit it can get preempted on a
memory access, post copy migration can cause preemption, etc.

Let's call it KVM_HINTS_REALTIME which seems to better
match what guests expect.

Also, the flag most be set on all vCPUs - current guests assume this.
Note so in the documentation.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-17 19:12:13 +02:00
Tom Lendacky
bc226f07dc KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using
speculative store bypass disable (SSBD) under SVM.  This will allow guests
to use SSBD on hardware that uses non-architectural mechanisms for enabling
SSBD.

[ tglx: Folded the migration fixup from Paolo Bonzini ]

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-17 17:09:21 +02:00
Thomas Gleixner
47c61b3955 x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFG
Add the necessary logic for supporting the emulated VIRT_SPEC_CTRL MSR to
x86_virt_spec_ctrl().  If either X86_FEATURE_LS_CFG_SSBD or
X86_FEATURE_VIRT_SPEC_CTRL is set then use the new guest_virt_spec_ctrl
argument to check whether the state must be modified on the host. The
update reuses speculative_store_bypass_update() so the ZEN-specific sibling
coordination can be reused.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-17 17:09:21 +02:00
Thomas Gleixner
be6fcb5478 x86/bugs: Rework spec_ctrl base and mask logic
x86_spec_ctrL_mask is intended to mask out bits from a MSR_SPEC_CTRL value
which are not to be modified. However the implementation is not really used
and the bitmask was inverted to make a check easier, which was removed in
"x86/bugs: Remove x86_spec_ctrl_set()"

Aside of that it is missing the STIBP bit if it is supported by the
platform, so if the mask would be used in x86_virt_spec_ctrl() then it
would prevent a guest from setting STIBP.

Add the STIBP bit if supported and use the mask in x86_virt_spec_ctrl() to
sanitize the value which is supplied by the guest.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
2018-05-17 17:09:20 +02:00
Thomas Gleixner
4b59bdb569 x86/bugs: Remove x86_spec_ctrl_set()
x86_spec_ctrl_set() is only used in bugs.c and the extra mask checks there
provide no real value as both call sites can just write x86_spec_ctrl_base
to MSR_SPEC_CTRL. x86_spec_ctrl_base is valid and does not need any extra
masking or checking.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:20 +02:00
Thomas Gleixner
fa8ac49882 x86/bugs: Expose x86_spec_ctrl_base directly
x86_spec_ctrl_base is the system wide default value for the SPEC_CTRL MSR.
x86_spec_ctrl_get_default() returns x86_spec_ctrl_base and was intended to
prevent modification to that variable. Though the variable is read only
after init and globaly visible already.

Remove the function and export the variable instead.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:19 +02:00
Borislav Petkov
cc69b34989 x86/bugs: Unify x86_spec_ctrl_{set_guest,restore_host}
Function bodies are very similar and are going to grow more almost
identical code. Add a bool arg to determine whether SPEC_CTRL is being set
for the guest or restored to the host.

No functional changes.

Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:19 +02:00
Thomas Gleixner
0270be3e34 x86/speculation: Rework speculative_store_bypass_update()
The upcoming support for the virtual SPEC_CTRL MSR on AMD needs to reuse
speculative_store_bypass_update() to avoid code duplication. Add an
argument for supplying a thread info (TIF) value and create a wrapper
speculative_store_bypass_update_current() which is used at the existing
call site.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:19 +02:00
Tom Lendacky
11fb068349 x86/speculation: Add virtualized speculative store bypass disable support
Some AMD processors only support a non-architectural means of enabling
speculative store bypass disable (SSBD).  To allow a simplified view of
this to a guest, an architectural definition has been created through a new
CPUID bit, 0x80000008_EBX[25], and a new MSR, 0xc001011f.  With this, a
hypervisor can virtualize the existence of this definition and provide an
architectural method for using SSBD to a guest.

Add the new CPUID feature, the new MSR and update the existing SSBD
support to use this MSR when present.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
2018-05-17 17:09:18 +02:00
Thomas Gleixner
ccbcd26744 x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL
AMD is proposing a VIRT_SPEC_CTRL MSR to handle the Speculative Store
Bypass Disable via MSR_AMD64_LS_CFG so that guests do not have to care
about the bit position of the SSBD bit and thus facilitate migration.
Also, the sibling coordination on Family 17H CPUs can only be done on
the host.

Extend x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() with an
extra argument for the VIRT_SPEC_CTRL MSR.

Hand in 0 from VMX and in SVM add a new virt_spec_ctrl member to the CPU
data structure which is going to be used in later patches for the actual
implementation.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:18 +02:00
Thomas Gleixner
1f50ddb4f4 x86/speculation: Handle HT correctly on AMD
The AMD64_LS_CFG MSR is a per core MSR on Family 17H CPUs. That means when
hyperthreading is enabled the SSBD bit toggle needs to take both cores into
account. Otherwise the following situation can happen:

CPU0		CPU1

disable SSB
		disable SSB
		enable  SSB <- Enables it for the Core, i.e. for CPU0 as well

So after the SSB enable on CPU1 the task on CPU0 runs with SSB enabled
again.

On Intel the SSBD control is per core as well, but the synchronization
logic is implemented behind the per thread SPEC_CTRL MSR. It works like
this:

  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL

i.e. if one of the threads enables a mitigation then this affects both and
the mitigation is only disabled in the core when both threads disabled it.

Add the necessary synchronization logic for AMD family 17H. Unfortunately
that requires a spinlock to serialize the access to the MSR, but the locks
are only shared between siblings.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:18 +02:00
Thomas Gleixner
d1035d9718 x86/cpufeatures: Add FEATURE_ZEN
Add a ZEN feature bit so family-dependent static_cpu_has() optimizations
can be built for ZEN.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:18 +02:00
Thomas Gleixner
52817587e7 x86/cpufeatures: Disentangle SSBD enumeration
The SSBD enumeration is similarly to the other bits magically shared
between Intel and AMD though the mechanisms are different.

Make X86_FEATURE_SSBD synthetic and set it depending on the vendor specific
features or family dependent setup.

Change the Intel bit to X86_FEATURE_SPEC_CTRL_SSBD to denote that SSBD is
controlled via MSR_SPEC_CTRL and fix up the usage sites.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:17 +02:00
Thomas Gleixner
7eb8956a7f x86/cpufeatures: Disentangle MSR_SPEC_CTRL enumeration from IBRS
The availability of the SPEC_CTRL MSR is enumerated by a CPUID bit on
Intel and implied by IBRS or STIBP support on AMD. That's just confusing
and in case an AMD CPU has IBRS not supported because the underlying
problem has been fixed but has another bit valid in the SPEC_CTRL MSR,
the thing falls apart.

Add a synthetic feature bit X86_FEATURE_MSR_SPEC_CTRL to denote the
availability on both Intel and AMD.

While at it replace the boot_cpu_has() checks with static_cpu_has() where
possible. This prevents late microcode loading from exposing SPEC_CTRL, but
late loading is already very limited as it does not reevaluate the
mitigation options and other bits and pieces. Having static_cpu_has() is
the simplest and least fragile solution.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:17 +02:00
Borislav Petkov
e7c587da12 x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP
Intel and AMD have different CPUID bits hence for those use synthetic bits
which get set on the respective vendor's in init_speculation_control(). So
that debacles like what the commit message of

  c65732e4f7 ("x86/cpu: Restore CPUID_8000_0008_EBX reload")

talks about don't happen anymore.

Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20180504161815.GG9257@pd.tnic
2018-05-17 17:09:16 +02:00
Thomas Gleixner
15e6c22fd8 KVM: SVM: Move spec control call after restore of GS
svm_vcpu_run() invokes x86_spec_ctrl_restore_host() after VMEXIT, but
before the host GS is restored. x86_spec_ctrl_restore_host() uses 'current'
to determine the host SSBD state of the thread. 'current' is GS based, but
host GS is not yet restored and the access causes a triple fault.

Move the call after the host GS restore.

Fixes: 885f82bfbc x86/process: Allow runtime control of Speculative Store Bypass
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-17 17:09:16 +02:00
Linus Torvalds
e6506eb241 Some of the ftrace internal events use a zero for a data size of
a field event. This is increasingly important for the histogram trigger
 work that is being extended.
 
 While auditing trace events, I found that a couple of the xen events
 were used as just marking that a function was called, by creating
 a static array of size zero. This can play havoc with the tracing
 features if these events are used, because a zero size of a static
 array is denoted as a special nul terminated dynamic array (this is
 what the trace_marker code uses). But since the xen events have no
 size, they are not nul terminated, and unexpected results may occur.
 
 As trace events were never intended on being a marker to denote
 that a function was hit or not, especially since function tracing
 and kprobes can trivially do the same, the best course of action is
 to simply remove these events.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCWvtgDhQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qtY0AQC2HSSRkP5GVL1/c1Xoxl202O1tQ9Dp
 G08oci4bfcRCIAEA8ATc+1LZPGQUvd0ucrD4FiJnfpYUHrCTvvRsz4d9LQQ=
 =HUQR
 -----END PGP SIGNATURE-----

Merge tag 'trace-v4.17-rc4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing fix from Steven Rostedt:
 "Some of the ftrace internal events use a zero for a data size of a
  field event. This is increasingly important for the histogram trigger
  work that is being extended.

  While auditing trace events, I found that a couple of the xen events
  were used as just marking that a function was called, by creating a
  static array of size zero. This can play havoc with the tracing
  features if these events are used, because a zero size of a static
  array is denoted as a special nul terminated dynamic array (this is
  what the trace_marker code uses). But since the xen events have no
  size, they are not nul terminated, and unexpected results may occur.

  As trace events were never intended on being a marker to denote that a
  function was hit or not, especially since function tracing and kprobes
  can trivially do the same, the best course of action is to simply
  remove these events"

* tag 'trace-v4.17-rc4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
  tracing/x86/xen: Remove zero data size trace events trace_xen_mmu_flush_tlb{_all}
2018-05-16 16:45:23 -07:00
Kirill A. Shutemov
589bb62be3 x86/boot/compressed/64: Fix moving page table out of trampoline memory
cleanup_trampoline() relocates the top-level page table out of
trampoline memory. We use 'top_pgtable' as our new top-level page table.

But if the 'top_pgtable' would be referenced from C in a usual way,
the address of the table will be calculated relative to RIP.
After kernel gets relocated, the address will be in the middle of
decompression buffer and the page table may get overwritten.
This leads to a crash.

We calculate the address of other page tables relative to the relocation
address. It makes them safe. We should do the same for 'top_pgtable'.

Calculate the address of 'top_pgtable' in assembly and pass down to
cleanup_trampoline().

Move the page table to .pgtable section where the rest of page tables
are. The section is @nobits so we save 4k in kernel image.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: e9d0e6330e ("x86/boot/compressed/64: Prepare new top-level page table for trampoline")
Link: http://lkml.kernel.org/r/20180516080131.27913-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16 12:15:13 +02:00
Kirill A. Shutemov
5c9b0b1c49 x86/boot/compressed/64: Set up GOT for paging_prepare() and cleanup_trampoline()
Eric and Hugh have reported instant reboot due to my recent changes in
decompression code.

The root cause is that I didn't realize that we need to adjust GOT to be
able to run C code that early.

The problem is only visible with an older toolchain. Binutils >= 2.24 is
able to eliminate GOT references by replacing them with RIP-relative
address loads:

  https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commitdiff;h=80d873266dec

We need to adjust GOT two times:

 - before calling paging_prepare() using the initial load address
 - before calling C code from the relocated kernel

Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: 194a9749c7 ("x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G")
Link: http://lkml.kernel.org/r/20180516080131.27913-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16 12:15:13 +02:00
Wanpeng Li
4c27625b7a KVM: X86: Lower the default timer frequency limit to 200us
Anthoine reported:
 The period used by Windows change over time but it can be 1
 milliseconds or less. I saw the limit_periodic_timer_frequency
 print so 500 microseconds is sometimes reached.

As suggested by Paolo, lower the default timer frequency limit to a
smaller interval of 200 us (5000 Hz) to leave some headroom. This
is required due to Windows 10 changing the scheduler tick limit
from 1024 Hz to 2048 Hz.

Reported-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
Cc: Darren Kenny <darren.kenny@oracle.com>
Cc: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-15 11:56:21 +02:00
Steven Rostedt (VMware)
45dd9b0666 tracing/x86/xen: Remove zero data size trace events trace_xen_mmu_flush_tlb{_all}
Doing an audit of trace events, I discovered two trace events in the xen
subsystem that use a hack to create zero data size trace events. This is not
what trace events are for. Trace events add memory footprint overhead, and
if all you need to do is see if a function is hit or not, simply make that
function noinline and use function tracer filtering.

Worse yet, the hack used was:

 __array(char, x, 0)

Which creates a static string of zero in length. There's assumptions about
such constructs in ftrace that this is a dynamic string that is nul
terminated. This is not the case with these tracepoints and can cause
problems in various parts of ftrace.

Nuke the trace events!

Link: http://lkml.kernel.org/r/20180509144605.5a220327@gandalf.local.home

Cc: stable@vger.kernel.org
Fixes: 95a7d76897 ("xen/mmu: Use Xen specific TLB flush instead of the generic one.")
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-05-14 17:02:30 -04:00
Dave Hansen
2fa9d1cfaf x86/pkeys: Do not special case protection key 0
mm_pkey_is_allocated() treats pkey 0 as unallocated.  That is
inconsistent with the manpages, and also inconsistent with
mm->context.pkey_allocation_map.  Stop special casing it and only
disallow values that are actually bad (< 0).

The end-user visible effect of this is that you can now use
mprotect_pkey() to set pkey=0.

This is a bit nicer than what Ram proposed[1] because it is simpler
and removes special-casing for pkey 0.  On the other hand, it does
allow applications to pkey_free() pkey-0, but that's just a silly
thing to do, so we are not going to protect against it.

The scenario that could happen is similar to what happens if you free
any other pkey that is in use: it might get reallocated later and used
to protect some other data.  The most likely scenario is that pkey-0
comes back from pkey_alloc(), an access-disable or write-disable bit
is set in PKRU for it, and the next stack access will SIGSEGV.  It's
not horribly different from if you mprotect()'d your stack or heap to
be unreadable or unwritable, which is generally very foolish, but also
not explicitly prevented by the kernel.

1. http://lkml.kernel.org/r/1522112702-27853-1-git-send-email-linuxram@us.ibm.com

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>p
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellermen <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org
Fixes: 58ab9a088d ("x86/pkeys: Check against max pkey to avoid overflows")
Link: http://lkml.kernel.org/r/20180509171358.47FD785E@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-14 11:14:45 +02:00
Dave Hansen
0a0b152083 x86/pkeys: Override pkey when moving away from PROT_EXEC
I got a bug report that the following code (roughly) was
causing a SIGSEGV:

	mprotect(ptr, size, PROT_EXEC);
	mprotect(ptr, size, PROT_NONE);
	mprotect(ptr, size, PROT_READ);
	*ptr = 100;

The problem is hit when the mprotect(PROT_EXEC)
is implicitly assigned a protection key to the VMA, and made
that key ACCESS_DENY|WRITE_DENY.  The PROT_NONE mprotect()
failed to remove the protection key, and the PROT_NONE->
PROT_READ left the PTE usable, but the pkey still in place
and left the memory inaccessible.

To fix this, we ensure that we always "override" the pkee
at mprotect() if the VMA does not have execute-only
permissions, but the VMA has the execute-only pkey.

We had a check for PROT_READ/WRITE, but it did not work
for PROT_NONE.  This entirely removes the PROT_* checks,
which ensures that PROT_NONE now works.

Reported-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellermen <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org
Fixes: 62b5f7d013 ("mm/core, x86/mm/pkeys: Add execute-only protection keys support")
Link: http://lkml.kernel.org/r/20180509171351.084C5A71@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-14 11:14:45 +02:00
Alexander Potapenko
4a09f0210c x86/boot/64/clang: Use fixup_pointer() to access '__supported_pte_mask'
Clang builds with defconfig started crashing after the following
commit:

  fb43d6cb91 ("x86/mm: Do not auto-massage page protections")

This was caused by introducing a new global access in __startup_64().

Code in __startup_64() can be relocated during execution, but the compiler
doesn't have to generate PC-relative relocations when accessing globals
from that function. Clang actually does not generate them, which leads
to boot-time crashes. To work around this problem, every global pointer
must be adjusted using fixup_pointer().

Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dvyukov@google.com
Cc: kirill.shutemov@linux.intel.com
Cc: linux-mm@kvack.org
Cc: md@google.com
Cc: mka@chromium.org
Fixes: fb43d6cb91 ("x86/mm: Do not auto-massage page protections")
Link: http://lkml.kernel.org/r/20180509091822.191810-1-glider@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-14 11:14:30 +02:00
Jim Mattson
5f2b745f5e x86/cpu: Make alternative_msr_write work for 32-bit code
Cast val and (val >> 32) to (u32), so that they fit in a
general-purpose register in both 32-bit and 64-bit code.

[ tglx: Made it u32 instead of uintptr_t ]

Fixes: c65732e4f7 ("x86/cpu: Restore CPUID_8000_0008_EBX reload")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-14 10:34:28 +02:00
Ard Biesheuvel
0b3225ab94 efi: Avoid potential crashes, fix the 'struct efi_pci_io_protocol_32' definition for mixed mode
Mixed mode allows a kernel built for x86_64 to interact with 32-bit
EFI firmware, but requires us to define all struct definitions carefully
when it comes to pointer sizes.

'struct efi_pci_io_protocol_32' currently uses a 'void *' for the
'romimage' field, which will be interpreted as a 64-bit field
on such kernels, potentially resulting in bogus memory references
and subsequent crashes.

Tested-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20180504060003.19618-13-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-14 08:56:29 +02:00
Alexei Starovoitov
b1ae32dbab x86/cpufeature: Guard asm_volatile_goto usage for BPF compilation
Workaround for the sake of BPF compilation which utilizes kernel
headers, but clang does not support ASM GOTO and fails the build.

Fixes: d0266046ad ("x86: Remove FAST_FEATURE_TESTS")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel@iogearbox.net
Cc: peterz@infradead.org
Cc: netdev@vger.kernel.org
Cc: bp@alien8.de
Cc: yhs@fb.com
Cc: kernel-team@fb.com
Cc: torvalds@linux-foundation.org
Cc: davem@davemloft.net
Link: https://lkml.kernel.org/r/20180513193222.1997938-1-ast@kernel.org
2018-05-13 21:49:14 +02:00
Linus Torvalds
66e1c94db3 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/pti updates from Thomas Gleixner:
 "A mixed bag of fixes and updates for the ghosts which are hunting us.

  The scheduler fixes have been pulled into that branch to avoid
  conflicts.

   - A set of fixes to address a khread_parkme() race which caused lost
     wakeups and loss of state.

   - A deadlock fix for stop_machine() solved by moving the wakeups
     outside of the stopper_lock held region.

   - A set of Spectre V1 array access restrictions. The possible
     problematic spots were discuvered by Dan Carpenters new checks in
     smatch.

   - Removal of an unused file which was forgotten when the rest of that
     functionality was removed"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/vdso: Remove unused file
  perf/x86/cstate: Fix possible Spectre-v1 indexing for pkg_msr
  perf/x86/msr: Fix possible Spectre-v1 indexing in the MSR driver
  perf/x86: Fix possible Spectre-v1 indexing for x86_pmu::event_map()
  perf/x86: Fix possible Spectre-v1 indexing for hw_perf_event cache_*
  perf/core: Fix possible Spectre-v1 indexing for ->aux_pages[]
  sched/autogroup: Fix possible Spectre-v1 indexing for sched_prio_to_weight[]
  sched/core: Fix possible Spectre-v1 indexing for sched_prio_to_weight[]
  sched/core: Introduce set_special_state()
  kthread, sched/wait: Fix kthread_parkme() completion issue
  kthread, sched/wait: Fix kthread_parkme() wait-loop
  sched/fair: Fix the update of blocked load when newly idle
  stop_machine, sched: Fix migrate_swap() vs. active_balance() deadlock
2018-05-13 10:53:08 -07:00
Masami Hiramatsu
13ebe18c94 uprobes/x86: Prohibit probing on MOV SS instruction
Since MOV SS and POP SS instructions will delay the exceptions until the
next instruction is executed, single-stepping on it by uprobes must be
prohibited.

uprobe already rejects probing on POP SS (0x1f), but allows probing on MOV
SS (0x8e and reg == 2).  This checks the target instruction and if it is
MOV SS or POP SS, returns -ENOTSUPP to reject probing.

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Francis Deslauriers <francis.deslauriers@efficios.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S . Miller" <davem@davemloft.net>
Link: https://lkml.kernel.org/r/152587072544.17316.5950935243917346341.stgit@devbox
2018-05-13 19:52:56 +02:00
Masami Hiramatsu
ee6a7354a3 kprobes/x86: Prohibit probing on exception masking instructions
Since MOV SS and POP SS instructions will delay the exceptions until the
next instruction is executed, single-stepping on it by kprobes must be
prohibited.

However, kprobes usually executes those instructions directly on trampoline
buffer (a.k.a. kprobe-booster), except for the kprobes which has
post_handler. Thus if kprobe user probes MOV SS with post_handler, it will
do single-stepping on the MOV SS.

This means it is safe that if it is used via ftrace or perf/bpf since those
don't use the post_handler.

Anyway, since the stack switching is a rare case, it is safer just
rejecting kprobes on such instructions.

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Francis Deslauriers <francis.deslauriers@efficios.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S . Miller" <davem@davemloft.net>
Link: https://lkml.kernel.org/r/152587069574.17316.3311695234863248641.stgit@devbox
2018-05-13 19:52:55 +02:00
Tetsuo Handa
a466ef76b8 x86/kexec: Avoid double free_page() upon do_kexec_load() failure
>From ff82bedd3e12f0d3353282054ae48c3bd8c72012 Mon Sep 17 00:00:00 2001
From: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Date: Wed, 9 May 2018 12:12:39 +0900
Subject: [PATCH v3] x86/kexec: avoid double free_page() upon do_kexec_load() failure.

syzbot is reporting crashes after memory allocation failure inside
do_kexec_load() [1]. This is because free_transition_pgtable() is called
by both init_transition_pgtable() and machine_kexec_cleanup() when memory
allocation failed inside init_transition_pgtable().

Regarding 32bit code, machine_kexec_free_page_tables() is called by both
machine_kexec_alloc_page_tables() and machine_kexec_cleanup() when memory
allocation failed inside machine_kexec_alloc_page_tables().

Fix this by leaving the error handling to machine_kexec_cleanup()
(and optionally setting NULL after free_page()).

[1] https://syzkaller.appspot.com/bug?id=91e52396168cf2bdd572fe1e1bc0bc645c1c6b40

Fixes: f5deb79679 ("x86: kexec: Use one page table in x86_64 machine_kexec")
Fixes: 92be3d6bdf ("kexec/i386: allocate page table pages dynamically")
Reported-by: syzbot <syzbot+d96f60296ef613fe1d69@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: prudo@linux.vnet.ibm.com
Cc: Huang Ying <ying.huang@intel.com>
Cc: syzkaller-bugs@googlegroups.com
Cc: takahiro.akashi@linaro.org
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: akpm@linux-foundation.org
Cc: dyoung@redhat.com
Cc: kirill.shutemov@linux.intel.com
Link: https://lkml.kernel.org/r/201805091942.DGG12448.tMFVFSJFQOOLHO@I-love.SAKURA.ne.jp
2018-05-13 19:50:06 +02:00