A previous commit moved the clearing of rq->rq_flags later,
but we may have already set RQF_MQ_INFLIGHT when that happens.
Ensure that we correctly initialize rq->rq_flags to the
right value.
This is based on an original fix by Ming, just rewritten to not
require a conditional.
Fixes: 7c3fb70f03 ("block: rearrange a few request fields for better cache layout")
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Looking at debug output, we see:
./000000009ddfa913/requeue_list:000000009646711c {.op=READ, .state=idle, gen=0x1
18, abort_gen=0x0, .cmd_flags=, .rq_flags=SORTED|1|SOFTBARRIER|IO_STAT, complete
=0, .tag=-1, .internal_tag=217}
Note the '1' between SORTED and SOFTBARRIER - that's because no name
as defined for RQF_STARTED. Fixed that.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The previous patch assigns interrupt vectors to all possible CPUs, so
now hctx can be mapped to possible CPUs, this patch applies this fact
to simplify queue mapping & schedule so that we don't need to handle
CPU hotplug for dealing with physical CPU plug & unplug. With this
simplication, we can work well on physical CPU plug & unplug, which
is a normal use case for VM at least.
Make sure we allocate blk_mq_ctx structures for all possible CPUs, and
set hctx->numa_node for possible CPUs which are mapped to this hctx. And
only choose the online CPUs for schedule.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Fixes: 4b855ad371 ("blk-mq: Create hctx for each present CPU")
(merged the three into one because any single one may not work, and fix
selecting online CPUs for scheduler)
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch does not change any functionality but makes the
blk_mq_mark_tag_wait() code slightly easier to read.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After the first few months, the message has not led to many bug reports.
It's been almost five years now, and in practice the main source of
it seems to be MTIOCGET that someone is using to detect tape devices.
While we could whitelist it just like CDROM_GET_CAPABILITY, this patch
just removes the message altogether.
The patch also removes the "safe but not very useful" ioctl whitelist,
as suggested by Christoph. I doubt anything is using most of those
ioctls _in general_, let alone on a partition.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Move completion related items (like the call single data) near the
end of the struct, instead of mixing them in with the initial
queueing related fields.
Move queuelist below the bio structures. Then we have all
queueing related bits in the first cache line.
This yields a 1.5-2% increase in IOPS for a null_blk test, both for
sync and for high thread count access. Sync test goes form 975K to
992K, 32-thread case from 20.8M to 21.2M IOPS.
Reviewed-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We only have one atomic flag left. Instead of using an entire
unsigned long for that, steal the bottom bit of the deadline
field that we already reserved.
Remove ->atomic_flags, since it's now unused.
Reviewed-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We reduce the resolution of request expiry, but since we're already
using jiffies for this where resolution depends on the kernel
configuration and since the timeout resolution is coarse anyway,
that should be fine.
Reviewed-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We don't need this to be an atomic flag, it can be a regular
flag. We either end up on the same CPU for the polling, in which
case the state is sane, or we did the sleep which would imply
the needed barrier to ensure we see the right state.
Reviewed-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It is nontrivial to derive from the blk-mq source code when
blk_mq_tags.active_queues is decremented. Hence add a comment that
explains this.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
UFS partitions from newer versions of FreeBSD 10 and 11 use relative
addressing for their subpartitions. But older versions of FreeBSD still
use absolute addressing just like OpenBSD and NetBSD.
Instead of simply testing for a FreeBSD partition, the code needs to
also test if the starting offset of the C subpartition is zero.
https://bugzilla.kernel.org/show_bug.cgi?id=197733
Signed-off-by: Richard Narron <comet.berkeley@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit '7b9e93616399' ("blk-mq-sched: unify request finished methods")
changed the old name of current bfq_finish_request method, but left it
unchanged elsewhere in the code (related comments, part of function
name bfq_put_rq_priv_body).
This commit fixes all occurrences of the old name of this method by
changing them into the current name.
Fixes: 7b9e936163 ("blk-mq-sched: unify request finished methods")
Reviewed-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Federico Motta <federico@willer.it>
Signed-off-by: Chiara Bruschi <bruschi.chiara@outlook.it>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit a2d37968d7.
If max segment size isn't 512-aligned, this patch won't work well.
Also once multipage bvec is enabled, adjacent bvecs won't be physically
contiguous if page is added via bio_add_page(), so we don't need this
kind of complicated logic.
Reported-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It's not available if we don't have group io scheduling set, and
there's no need to call it.
Fixes: 0d52af5905 ("block, bfq: release oom-queue ref to root group on exit")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 3a025e1d1c ("Add optional check for bad kernel-doc comments")
causes W=1 the kernel-doc script to be run and thereby causes several
new warnings to appear when building the kernel with W=1. Fix the
block layer kernel-doc headers such that the block layer again builds
cleanly with W=1.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Cc: Martin K. Petersen <martin.petersen@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Change "nedeing" into "needing" and "caes" into "cases".
Fixes: commit f906a6a0f4 ("blk-mq: improve tag waiting setup for non-shared tags")
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In some stupider versions of gcc, it complains:
block/blk-mq.c: In function ‘blk_mq_complete_request’:
./include/linux/srcu.h:175:2: warning: ‘srcu_idx’ may be used uninitialized in this function [-Wmaybe-uninitialized]
__srcu_read_unlock(sp, idx);
^
block/blk-mq.c:620:6: note: ‘srcu_idx’ was declared here
int srcu_idx;
^
which is completely bogus, since we only use srcu_idx when
hctx->flags & BLK_MQ_F_BLOCKING is set, and that's the case where
hctx_lock() has initialized it.
Just set it to '0' in the normal path in hctx_lock() to silence
this annoying warning.
Fixes: 04ced159ce ("blk-mq: move hctx lock/unlock into a helper")
Fixes: 5197c05e16 ("blk-mq: protect completion path with RCU")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The RCU protection has been expanded to cover both queueing and
completion paths making ->queue_rq_srcu a misnomer. Rename it to
->srcu as suggested by Bart.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After the recent updates to use generation number and state based
synchronization, we can easily replace REQ_ATOM_STARTED usages by
adding an extra state to distinguish completed but not yet freed
state.
Add MQ_RQ_COMPLETE and replace REQ_ATOM_STARTED usages with
blk_mq_rq_state() tests. REQ_ATOM_STARTED no longer has any users
left and is removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After the recent updates to use generation number and state based
synchronization, blk-mq no longer depends on REQ_ATOM_COMPLETE except
to avoid firing the same timeout multiple times.
Remove all REQ_ATOM_COMPLETE usages and use a new rq_flags flag
RQF_MQ_TIMEOUT_EXPIRED to avoid firing the same timeout multiple
times. This removes atomic bitops from hot paths too.
v2: Removed blk_clear_rq_complete() from blk_mq_rq_timed_out().
v3: Added RQF_MQ_TIMEOUT_EXPIRED flag.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
With issue/complete and timeout paths now using the generation number
and state based synchronization, blk_abort_request() is the only one
which depends on REQ_ATOM_COMPLETE for arbitrating completion.
There's no reason for blk_abort_request() to be a completely separate
path. This patch makes blk_abort_request() piggyback on the timeout
path instead of trying to terminate the request directly.
This removes the last dependency on REQ_ATOM_COMPLETE in blk-mq.
Note that this makes blk_abort_request() asynchronous - it initiates
abortion but the actual termination will happen after a short while,
even when the caller owns the request. AFAICS, SCSI and ATA should be
fine with that and I think mtip32xx and dasd should be safe but not
completely sure. It'd be great if people who know the drivers take a
look.
v2: - Add comment explaining the lack of synchronization around
->deadline update as requested by Bart.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Asai Thambi SP <asamymuthupa@micron.com>
Cc: Stefan Haberland <sth@linux.vnet.ibm.com>
Cc: Jan Hoeppner <hoeppner@linux.vnet.ibm.com>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
blk_mq_check_inflight() and blk_mq_poll_hybrid_sleep() test
REQ_ATOM_COMPLETE to determine the request state. Both uses are
speculative and we can test REQ_ATOM_STARTED and blk_mq_rq_state() for
equivalent results. Replace the tests. This will allow removing
REQ_ATOM_COMPLETE usages from blk-mq.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently, blk-mq timeout path synchronizes against the usual
issue/completion path using a complex scheme involving atomic
bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence
rules. Unfortunately, it contains quite a few holes.
There's a complex dancing around REQ_ATOM_STARTED and
REQ_ATOM_COMPLETE between issue/completion and timeout paths; however,
they don't have a synchronization point across request recycle
instances and it isn't clear what the barriers add.
blk_mq_check_expired() can easily read STARTED from N-2'th iteration,
deadline from N-1'th, blk_mark_rq_complete() against Nth instance.
In fact, it's pretty easy to make blk_mq_check_expired() terminate a
later instance of a request. If we induce 5 sec delay before
time_after_eq() test in blk_mq_check_expired(), shorten the timeout to
2s, and issue back-to-back large IOs, blk-mq starts timing out
requests spuriously pretty quickly. Nothing actually timed out. It
just made the call on a recycle instance of a request and then
terminated a later instance long after the original instance finished.
The scenario isn't theoretical either.
This patch replaces the broken synchronization mechanism with a RCU
and generation number based one.
1. Each request has a u64 generation + state value, which can be
updated only by the request owner. Whenever a request becomes
in-flight, the generation number gets bumped up too. This provides
the basis for the timeout path to distinguish different recycle
instances of the request.
Also, marking a request in-flight and setting its deadline are
protected with a seqcount so that the timeout path can fetch both
values coherently.
2. The timeout path fetches the generation, state and deadline. If
the verdict is timeout, it records the generation into a dedicated
request abortion field and does RCU wait.
3. The completion path is also protected by RCU (from the previous
patch) and checks whether the current generation number and state
match the abortion field. If so, it skips completion.
4. The timeout path, after RCU wait, scans requests again and
terminates the ones whose generation and state still match the ones
requested for abortion.
By now, the timeout path knows that either the generation number
and state changed if it lost the race or the completion will yield
to it and can safely timeout the request.
While it's more lines of code, it's conceptually simpler, doesn't
depend on direct use of subtle memory ordering or coherence, and
hopefully doesn't terminate the wrong instance.
While this change makes REQ_ATOM_COMPLETE synchronization unnecessary
between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't
removed yet as it's still used in other places. Future patches will
move all state tracking to the new mechanism and remove all bitops in
the hot paths.
Note that this patch adds a comment explaining a race condition in
BLK_EH_RESET_TIMER path. The race has always been there and this
patch doesn't change it. It's just documenting the existing race.
v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao.
- s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter.
- READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter.
v3: - Fixed possible extended seqcount / u64_stats_sync read looping
spotted by Peter.
- MQ_RQ_IDLE was incorrectly being set in complete_request instead
of free_request. Fixed.
v4: - Rebased on top of hctx_lock() refactoring patch.
- Added comment explaining the use of hctx_lock() in completion path.
v5: - Added comments requested by Bart.
- Note the addition of BLK_EH_RESET_TIMER race condition in the
commit message.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently, blk-mq protects only the issue path with RCU. This patch
puts the completion path under the same RCU protection. This will be
used to synchronize issue/completion against timeout by later patches,
which will also add the comments.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Move the RCU vs SRCU logic into lock/unlock helpers, which makes
the actual functional bits within the locked region much easier
to read.
tj: Reordered in front of timeout revamp patches and added the missing
blk_mq_run_hw_queue() conversion.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
On scheduler init, a reference to the root group, and a reference to
its corresponding blkg are taken for the oom queue. Yet these
references are not released on scheduler exit, which prevents these
objects from be freed. This commit adds the missing reference
releases.
Reported-by: Davide Ferrari <davideferrari8@gmail.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For each pair [device for which bfq is selected as I/O scheduler,
group in blkio/io], bfq maintains a corresponding bfq group. Each such
bfq group contains a set of async queues, with each async queue
created on demand, i.e., when some I/O request arrives for it. On
creation, an async queue gets an extra reference, to make sure that
the queue is not freed as long as its bfq group exists. Accordingly,
to allow the queue to be freed after the group exited, this extra
reference must released on group exit.
The above holds also for a bfq root group, i.e., for the bfq group
corresponding to the root blkio/io root for a given device. Yet, by
mistake, the references to the existing async queues of a root group
are not released when the latter exits. This causes a memory leak when
the instance of bfq for a given device exits. In a similar vein,
bfqg_stats_xfer_dead is not executed for a root group.
This commit fixes bfq_pd_offline so that the latter executes the above
missing operations for a root group too.
Reported-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reported-by: Guoqing Jiang <gqjiang@suse.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Davide Ferrari <davideferrari8@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In both elevator_switch_mq() and blk_mq_update_nr_hw_queues(), sched tags
can be allocated, and q->nr_hw_queue is used, and race is inevitable, for
example: blk_mq_init_sched() may trigger use-after-free on hctx, which is
freed in blk_mq_realloc_hw_ctxs() when nr_hw_queues is decreased.
This patch fixes the race be holding q->sysfs_lock.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reported-by: Yi Zhang <yi.zhang@redhat.com>
Tested-by: Yi Zhang <yi.zhang@redhat.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Dispatch may still be in-progress after queue is frozen, so we have to
quiesce queue before switching IO scheduler and updating nr_requests.
Also when switching io schedulers, blk_mq_run_hw_queue() may still be
called somewhere(such as from nvme_reset_work()), and io scheduler's
per-hctx data may not be setup yet, so cause oops even inside
blk_mq_hctx_has_pending(), such as it can be run just between:
ret = e->ops.mq.init_sched(q, e);
AND
ret = e->ops.mq.init_hctx(hctx, i)
inside blk_mq_init_sched().
This reverts commit 7a148c2fcff8330(block: don't call blk_mq_quiesce_queue()
after queue is frozen) basically, and makes sure blk_mq_hctx_has_pending
won't be called if queue is quiesced.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Fixes: 7a148c2fcff83309(block: don't call blk_mq_quiesce_queue() after queue is frozen)
Reported-by: Yi Zhang <yi.zhang@redhat.com>
Tested-by: Yi Zhang <yi.zhang@redhat.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Don't pass in the hardware queue to __dd_dispatch_request(), since it
leads the reader to believe that we are returning a request for that
specific hardware queue. That's not how mq-deadline works, the state
for determining which request to serve next is shared across all
hardware queues for a device.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In this case, 'sectors' can't be zero at all, so remove the check
and let the bio be split.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When merging one bvec into segment, if the bvec is too big
to merge, current policy is to move the whole bvec into another
new segment.
This patchset changes the policy into trying to maximize size of
front segments, that means in above situation, part of bvec
is merged into current segment, and the remainder is put
into next segment.
This patch prepares for support multipage bvec because
it can be quite common to see this case and we should try
to make front segments in full size.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It is enough to check and compute bio->bi_seg_front_size just
after the 1st segment is found, but current code checks that
for each bvec, which is inefficient.
This patch follows the way in __blk_recalc_rq_segments()
for computing bio->bi_seg_front_size, and it is more efficient
and code becomes more readable too.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bcache is the only user of bio_alloc_pages(), so move this function into
bcache, and avoid it being misused in the future.
Also rename it to bch_bio_allo_pages() since it is bcache only.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Firstly this patch introduces BVEC_ITER_ALL_INIT for iterating one bio
from start to end.
As we need to support multipage bvecs, don't access bio->bi_io_vec
in copy_to_high_bio_irq(), and just use the standard iterator for that.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We will support multipage bvecs in the future, so change to iterator way
for getting bv_page of bvec from original bio.
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit a33801e8b4 ("block, bfq: move debug blkio stats behind
CONFIG_DEBUG_BLK_CGROUP") introduced two batches of confusing ifdefs:
one reported in [1], plus a similar one in another function. This
commit removes both batches, in the way suggested in [1].
[1] https://www.spinics.net/lists/linux-block/msg20043.html
Fixes: a33801e8b4 ("block, bfq: move debug blkio stats behind CONFIG_DEBUG_BLK_CGROUP")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Tested-by: Luca Miccio <lucmiccio@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
BFQ privileges the I/O of soft real-time applications, such as video
players, to guarantee to these application a high bandwidth and a low
latency. In this respect, it is not easy to correctly detect when an
application is soft real-time. A particularly nasty false positive is
that of an I/O-bound application that occasionally happens to meet all
requirements to be deemed as soft real-time. After being detected as
soft real-time, such an application monopolizes the device. Fortunately,
BFQ will realize soon that the application is actually not soft
real-time and suspend every privilege. Yet, the application may happen
again to be wrongly detected as soft real-time, and so on.
As highlighted by our tests, this problem causes BFQ to occasionally
fail to guarantee a high responsiveness, in the presence of heavy
background I/O workloads. The reason is that the background workload
happens to be detected as soft real-time, more or less frequently,
during the execution of the interactive task under test. To give an
idea, because of this problem, Libreoffice Writer occasionally takes 8
seconds, instead of 3, to start up, if there are sequential reads and
writes in the background, on a Kingston SSDNow V300.
This commit addresses this issue by leveraging the following facts.
The reason why some applications are detected as soft real-time despite
all BFQ checks to avoid false positives, is simply that, during high
CPU or storage-device load, I/O-bound applications may happen to do
I/O slowly enough to meet all soft real-time requirements, and pass
all BFQ extra checks. Yet, this happens only for limited time periods:
slow-speed time intervals are usually interspersed between other time
intervals during which these applications do I/O at a very high speed.
To exploit these facts, this commit introduces a little change, in the
detection of soft real-time behavior, to systematically consider also
the recent past: the higher the speed was in the recent past, the
later next I/O should arrive for the application to be considered as
soft real-time. At the beginning of a slow-speed interval, the minimum
arrival time allowed for the next I/O usually happens to still be so
high, to fall *after* the end of the slow-speed period itself. As a
consequence, the application does not risk to be deemed as soft
real-time during the slow-speed interval. Then, during the next
high-speed interval, the application cannot, evidently, be deemed as
soft real-time (exactly because of its speed), and so on.
This extra filtering proved to be rather effective: in the above test,
the frequency of false positives became so low that the start-up time
was 3 seconds in all iterations (apart from occasional outliers,
caused by page-cache-management issues, which are out of the scope of
this commit, and cannot be solved by an I/O scheduler).
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When two or more processes do I/O in a way that the their requests are
sequential in respect to one another, BFQ merges the bfq_queues associated
with the processes. This way the overall I/O pattern becomes sequential,
and thus there is a boost in througput.
These cooperating processes usually start or restart to do I/O shortly
after each other. So, in order to avoid merging non-cooperating processes,
BFQ ensures that none of these queues has been in weight raising for too
long.
In this respect, from commit "block, bfq-sq, bfq-mq: let a queue be merged
only shortly after being created", BFQ checks whether any queue (and not
only weight-raised ones) is doing I/O continuously from too long to be
merged.
This new additional check makes the first one useless: a queue doing
I/O from long enough, if being weight-raised, is also a queue in
weight raising for too long to be merged. Accordingly, this commit
removes the first check.
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In BFQ and CFQ, two processes are said to be cooperating if they do
I/O in such a way that the union of their I/O requests yields a
sequential I/O pattern. To get such a sequential I/O pattern out of
the non-sequential pattern of each cooperating process, BFQ and CFQ
merge the queues associated with these processes. In more detail,
cooperating processes, and thus their associated queues, usually
start, or restart, to do I/O shortly after each other. This is the
case, e.g., for the I/O threads of KVM/QEMU and of the dump
utility. Basing on this assumption, this commit allows a bfq_queue to
be merged only during a short time interval (100ms) after it starts,
or re-starts, to do I/O. This filtering provides two important
benefits.
First, it greatly reduces the probability that two non-cooperating
processes have their queues merged by mistake, if they just happen to
do I/O close to each other for a short time interval. These spurious
merges cause loss of service guarantees. A low-weight bfq_queue may
unjustly get more than its expected share of the throughput: if such a
low-weight queue is merged with a high-weight queue, then the I/O for
the low-weight queue is served as if the queue had a high weight. This
may damage other high-weight queues unexpectedly. For instance,
because of this issue, lxterminal occasionally took 7.5 seconds to
start, instead of 6.5 seconds, when some sequential readers and
writers did I/O in the background on a FUJITSU MHX2300BT HDD. The
reason is that the bfq_queues associated with some of the readers or
the writers were merged with the high-weight queues of some processes
that had to do some urgent but little I/O. The readers then exploited
the inherited high weight for all or most of their I/O, during the
start-up of terminal. The filtering introduced by this commit
eliminated any outlier caused by spurious queue merges in our start-up
time tests.
This filtering also provides a little boost of the throughput
sustainable by BFQ: 3-4%, depending on the CPU. The reason is that,
once a bfq_queue cannot be merged any longer, this commit makes BFQ
stop updating the data needed to handle merging for the queue.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A just-created bfq_queue will certainly be deemed as interactive on
the arrival of its first I/O request, if the low_latency flag is
set. Yet, if the queue is merged with another queue on the arrival of
its first I/O request, it will not have the chance to be flagged as
interactive. Nevertheless, if the queue is then split soon enough, it
has to be flagged as interactive after the split.
To handle this early-merge scenario correctly, BFQ saves the state of
the queue, on the merge, as if the latter had already been deemed
interactive. So, if the queue is split soon, it will get
weight-raised, because the previous state of the queue is resumed on
the split.
Unfortunately, in the act of saving the state of the newly-created
queue, BFQ doesn't check whether the low_latency flag is set, and this
causes early-merged queues to be then weight-raised, on queue splits,
even if low_latency is off. This commit addresses this problem by
adding the missing check.
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If two processes do I/O close to each other, then BFQ merges the
bfq_queues associated with these processes, to get a more sequential
I/O, and thus a higher throughput. In this respect, to detect whether
two processes are doing I/O close to each other, BFQ keeps a list of
the head-of-line I/O requests of all active bfq_queues. The list is
ordered by initial sectors, and implemented through a red-black tree
(rq_pos_tree).
Unfortunately, the update of the rq_pos_tree was incomplete, because
the tree was not updated on the removal of the head-of-line I/O
request of a bfq_queue, in case the queue did not remain empty. This
commit adds the missing update.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If two processes do I/O close to each other, i.e., are cooperating
processes in BFQ (and CFQ'S) nomenclature, then BFQ merges their
associated bfq_queues, so as to get sequential I/O from the union of
the I/O requests of the processes, and thus reach a higher
throughput. A merged queue is then split if its I/O stops being
sequential. In this respect, BFQ deems the I/O of a bfq_queue as
(mostly) sequential only if less than 4 I/O requests are random, out
of the last 32 requests inserted into the queue.
Unfortunately, extensive testing (with the interleaved_io benchmark of
the S suite [1], and with real applications spawning cooperating
processes) has clearly shown that, with such a low threshold, only a
rather low I/O throughput may be reached when several cooperating
processes do I/O. In particular, the outcome of each test run was
bimodal: if queue merging occurred and was stable during the test,
then the throughput was close to the peak rate of the storage device,
otherwise the throughput was arbitrarily low (usually around 1/10 of
the peak rate with a rotational device). The probability to get the
unlucky outcomes grew with the number of cooperating processes: it was
already significant with 5 processes, and close to one with 7 or more
processes.
The cause of the low throughput in the unlucky runs was that the
merged queues containing the I/O of these cooperating processes were
soon split, because they contained more random I/O requests than those
tolerated by the 4/32 threshold, but
- that I/O would have however allowed the storage device to reach
peak throughput or almost peak throughput;
- in contrast, the I/O of these processes, if served individually
(from separate queues) yielded a rather low throughput.
So we repeated our tests with increasing values of the threshold,
until we found the minimum value (19) for which we obtained maximum
throughput, reliably, with at least up to 9 cooperating
processes. Then we checked that the use of that higher threshold value
did not cause any regression for any other benchmark in the suite [1].
This commit raises the threshold to such a higher value.
[1] https://github.com/Algodev-github/S
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Introduce zone write locking to avoid write request reordering with
zoned block devices. This is achieved using a finer selection of the
next request to dispatch:
1) Any non-write request is always allowed to proceed.
2) Any write to a conventional zone is always allowed to proceed.
3) For a write to a sequential zone, the zone lock is first checked.
a) If the zone is not locked, the write is allowed to proceed after
its target zone is locked.
b) If the zone is locked, the write request is skipped and the next
request in the dispatch queue tested (back to step 1).
For a write request that has locked its target zone, the zone is
unlocked either when the request completes and the method
deadline_request_completed() is called, or when the request is requeued
using the method deadline_add_request().
Requests targeting a locked zone are always left in the scheduler queue
to preserve the initial write order. If no write request can be
dispatched, allow reads to be dispatched even if the write batch is not
done.
If the device used is not a zoned block device, or if zoned block device
support is disabled, this patch does not modify deadline behavior.
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Avoid directly referencing the next_rq and fifo_list arrays using the
helper functions deadline_next_request() and deadline_fifo_request() to
facilitate changes in the dispatch request selection in
deadline_dispatch_requests() for zoned block devices.
While at it, also remove the unnecessary forward declaration of the
function deadline_move_request().
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>