Commit Graph

382 Commits

Author SHA1 Message Date
Darrick J. Wong
1638045c36 mm: set S_SWAPFILE on blockdev swap devices
Set S_SWAPFILE on block device inodes so that they have the same
protections as a swap flie.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2019-08-20 07:55:16 -07:00
Aaron Lu
4efaceb1c5 mm, swap: use rbtree for swap_extent
swap_extent is used to map swap page offset to backing device's block
offset.  For a continuous block range, one swap_extent is used and all
these swap_extents are managed in a linked list.

These swap_extents are used by map_swap_entry() during swap's read and
write path.  To find out the backing device's block offset for a page
offset, the swap_extent list will be traversed linearly, with
curr_swap_extent being used as a cache to speed up the search.

This works well as long as swap_extents are not huge or when the number
of processes that access swap device are few, but when the swap device
has many extents and there are a number of processes accessing the swap
device concurrently, it can be a problem.  On one of our servers, the
disk's remaining size is tight:

  $df -h
  Filesystem      Size  Used Avail Use% Mounted on
  ... ...
  /dev/nvme0n1p1  1.8T  1.3T  504G  72% /home/t4

When creating a 80G swapfile there, there are as many as 84656 swap
extents.  The end result is, kernel spends abou 30% time in
map_swap_entry() and swap throughput is only 70MB/s.

As a comparison, when I used smaller sized swapfile, like 4G whose
swap_extent dropped to 2000, swap throughput is back to 400-500MB/s and
map_swap_entry() is about 3%.

One downside of using rbtree for swap_extent is, 'struct rbtree' takes
24 bytes while 'struct list_head' takes 16 bytes, that's 8 bytes more
for each swap_extent.  For a swapfile that has 80k swap_extents, that
means 625KiB more memory consumed.

Test:

Since it's not possible to reboot that server, I can not test this patch
diretly there.  Instead, I tested it on another server with NVMe disk.

I created a 20G swapfile on an NVMe backed XFS fs.  By default, the
filesystem is quite clean and the created swapfile has only 2 extents.
Testing vanilla and this patch shows no obvious performance difference
when swapfile is not fragmented.

To see the patch's effects, I used some tweaks to manually fragment the
swapfile by breaking the extent at 1M boundary.  This made the swapfile
have 20K extents.

  nr_task=4
  kernel   swapout(KB/s) map_swap_entry(perf)  swapin(KB/s) map_swap_entry(perf)
  vanilla  165191           90.77%             171798          90.21%
  patched  858993 +420%      2.16%             715827 +317%     0.77%

  nr_task=8
  kernel   swapout(KB/s) map_swap_entry(perf)  swapin(KB/s) map_swap_entry(perf)
  vanilla  306783           92.19%             318145          87.76%
  patched  954437 +211%      2.35%            1073741 +237%     1.57%

swapout: the throughput of swap out, in KB/s, higher is better 1st
map_swap_entry: cpu cycles percent sampled by perf swapin: the
throughput of swap in, in KB/s, higher is better.  2nd map_swap_entry:
cpu cycles percent sampled by perf

nr_task=1 doesn't show any difference, this is due to the curr_swap_extent
can be effectively used to cache the correct swap extent for single task
workload.

[akpm@linux-foundation.org: s/BUG_ON(1)/BUG()/]
Link: http://lkml.kernel.org/r/20190523142404.GA181@aaronlu
Signed-off-by: Aaron Lu <ziqian.lzq@antfin.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Huang Ying
eb085574a7 mm, swap: fix race between swapoff and some swap operations
When swapin is performed, after getting the swap entry information from
the page table, system will swap in the swap entry, without any lock held
to prevent the swap device from being swapoff.  This may cause the race
like below,

CPU 1				CPU 2
-----				-----
				do_swap_page
				  swapin_readahead
				    __read_swap_cache_async
swapoff				      swapcache_prepare
  p->swap_map = NULL		        __swap_duplicate
					  p->swap_map[?] /* !!! NULL pointer access */

Because swapoff is usually done when system shutdown only, the race may
not hit many people in practice.  But it is still a race need to be fixed.

To fix the race, get_swap_device() is added to check whether the specified
swap entry is valid in its swap device.  If so, it will keep the swap
entry valid via preventing the swap device from being swapoff, until
put_swap_device() is called.

Because swapoff() is very rare code path, to make the normal path runs as
fast as possible, rcu_read_lock/unlock() and synchronize_rcu() instead of
reference count is used to implement get/put_swap_device().  >From
get_swap_device() to put_swap_device(), RCU reader side is locked, so
synchronize_rcu() in swapoff() will wait until put_swap_device() is
called.

In addition to swap_map, cluster_info, etc.  data structure in the struct
swap_info_struct, the swap cache radix tree will be freed after swapoff,
so this patch fixes the race between swap cache looking up and swapoff
too.

Races between some other swap cache usages and swapoff are fixed too via
calling synchronize_rcu() between clearing PageSwapCache() and freeing
swap cache data structure.

Another possible method to fix this is to use preempt_off() +
stop_machine() to prevent the swap device from being swapoff when its data
structure is being accessed.  The overhead in hot-path of both methods is
similar.  The advantages of RCU based method are,

1. stop_machine() may disturb the normal execution code path on other
   CPUs.

2. File cache uses RCU to protect its radix tree.  If the similar
   mechanism is used for swap cache too, it is easier to share code
   between them.

3. RCU is used to protect swap cache in total_swapcache_pages() and
   exit_swap_address_space() already.  The two mechanisms can be
   merged to simplify the logic.

Link: http://lkml.kernel.org/r/20190522015423.14418-1-ying.huang@intel.com
Fixes: 235b621767 ("mm/swap: add cluster lock")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Not-nacked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Thomas Gleixner
457c899653 treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which:

 - Have no license information of any form

 - Have EXPORT_.*_SYMBOL_GPL inside which was used in the
   initial scan/conversion to ignore the file

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:45 +02:00
Hugh Dickins
af53d3e9e0 mm: swapoff: shmem_unuse() stop eviction without igrab()
The igrab() in shmem_unuse() looks good, but we forgot that it gives no
protection against concurrent unmounting: a point made by Konstantin
Khlebnikov eight years ago, and then fixed in 2.6.39 by 778dd893ae
("tmpfs: fix race between umount and swapoff").  The current 5.1-rc
swapoff is liable to hit "VFS: Busy inodes after unmount of tmpfs.
Self-destruct in 5 seconds.  Have a nice day..." followed by GPF.

Once again, give up on using igrab(); but don't go back to making such
heavy-handed use of shmem_swaplist_mutex as last time: that would spoil
the new design, and I expect could deadlock inside shmem_swapin_page().

Instead, shmem_unuse() just raise a "stop_eviction" count in the shmem-
specific inode, and shmem_evict_inode() wait for that to go down to 0.
Call it "stop_eviction" rather than "swapoff_busy" because it can be put
to use for others later (huge tmpfs patches expect to use it).

That simplifies shmem_unuse(), protecting it from both unlink and
unmount; and in practice lets it locate all the swap in its first try.
But do not rely on that: there's still a theoretical case, when
shmem_writepage() might have been preempted after its get_swap_page(),
before making the swap entry visible to swapoff.

[hughd@google.com: remove incorrect list_del()]
  Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904091133570.1898@eggly.anvils
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081259400.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-19 09:46:04 -07:00
Hugh Dickins
64165b1aff mm: swapoff: take notice of completion sooner
The old try_to_unuse() implementation was driven by find_next_to_unuse(),
which terminated as soon as all the swap had been freed.

Add inuse_pages checks now (alongside signal_pending()) to stop scanning
mms and swap_map once finished.

The same ought to be done in shmem_unuse() too, but never was before,
and needs a different interface: so leave it as is for now.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081258200.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-19 09:46:04 -07:00
Hugh Dickins
dd862deb15 mm: swapoff: remove too limiting SWAP_UNUSE_MAX_TRIES
SWAP_UNUSE_MAX_TRIES 3 appeared to work well in earlier testing, but
further testing has proved it to be a source of unnecessary swapoff
EBUSY failures (which can then be followed by unmount EBUSY failures).

When mmget_not_zero() or shmem's igrab() fails, there is an mm exiting
or inode being evicted, freeing up swap independent of try_to_unuse().
Those typically completed much sooner than the old quadratic swapoff,
but now it's more common that swapoff may need to wait for them.

It's possible to move those cases from init_mm.mmlist and shmem_swaplist
to separate "exiting" swaplists, and try_to_unuse() then wait for those
lists to be emptied; but we've not bothered with that in the past, and
don't want to risk missing some other forgotten case.  So just revert to
cycling around until the swap is gone, without any retries limit.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081256170.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-19 09:46:04 -07:00
Gustavo A. R. Silva
960087445c mm/swapfile.c: use struct_size() in kvzalloc()
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array.  For example:

  struct foo {
      int stuff;
      struct boo entry[];
  };

  size = sizeof(struct foo) + count * sizeof(struct boo);
  instance = kvzalloc(size, GFP_KERNEL);

Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:

  instance = kvzalloc(struct_size(instance, entry, count), GFP_KERNEL);

Notice that, in this case, variable size is not necessary, hence it is
removed.

This code was detected with the help of Coccinelle.

Link: http://lkml.kernel.org/r/20190221154622.GA19599@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Alexey Dobriyan
b9726c26dc numa: make "nr_node_ids" unsigned int
Number of NUMA nodes can't be negative.

This saves a few bytes on x86_64:

	add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238)
	Function                                     old     new   delta
	hv_synic_alloc.cold                           88     110     +22
	prealloc_shrinker                            260     262      +2
	bootstrap                                    249     251      +2
	sched_init_numa                             1566    1567      +1
	show_slab_objects                            778     777      -1
	s_show                                      1201    1200      -1
	kmem_cache_init                              346     345      -1
	__alloc_workqueue_key                       1146    1145      -1
	mem_cgroup_css_alloc                        1614    1612      -2
	__do_sys_swapon                             4702    4699      -3
	__list_lru_init                              655     651      -4
	nic_probe                                   2379    2374      -5
	store_user_store                             118     111      -7
	red_zone_store                               106      99      -7
	poison_store                                 106      99      -7
	wq_numa_init                                 348     338     -10
	__kmem_cache_empty                            75      65     -10
	task_numa_free                               186     173     -13
	merge_across_nodes_store                     351     336     -15
	irq_create_affinity_masks                   1261    1246     -15
	do_numa_crng_init                            343     321     -22
	task_numa_fault                             4760    4737     -23
	swapfile_init                                179     156     -23
	hv_synic_alloc                               536     492     -44
	apply_wqattrs_prepare                        746     695     -51

Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Daniel Jordan
c10d38cc8d mm, swap: bounds check swap_info array accesses to avoid NULL derefs
Dan Carpenter reports a potential NULL dereference in
get_swap_page_of_type:

  Smatch complains that the NULL checks on "si" aren't consistent.  This
  seems like a real bug because we have not ensured that the type is
  valid and so "si" can be NULL.

Add the missing check for NULL, taking care to use a read barrier to
ensure CPU1 observes CPU0's updates in the correct order:

     CPU0                           CPU1
     alloc_swap_info()              if (type >= nr_swapfiles)
       swap_info[type] = p              /* handle invalid entry */
       smp_wmb()                    smp_rmb()
       ++nr_swapfiles               p = swap_info[type]

Without smp_rmb, CPU1 might observe CPU0's write to nr_swapfiles before
CPU0's write to swap_info[type] and read NULL from swap_info[type].

Ying Huang noticed other places in swapfile.c don't order these reads
properly.  Introduce swap_type_to_swap_info to encourage correct usage.

Use READ_ONCE and WRITE_ONCE to follow the Linux Kernel Memory Model
(see tools/memory-model/Documentation/explanation.txt).

This ordering need not be enforced in places where swap_lock is held
(e.g.  si_swapinfo) because swap_lock serializes updates to nr_swapfiles
and the swap_info array.

Link: http://lkml.kernel.org/r/20190131024410.29859-1-daniel.m.jordan@oracle.com
Fixes: ec8acf20af ("swap: add per-partition lock for swapfile")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Suggested-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Vineeth Remanan Pillai
b56a2d8af9 mm: rid swapoff of quadratic complexity
This patch was initially posted by Kelley Nielsen.  Reposting the patch
with all review comments addressed and with minor modifications and
optimizations.  Also, folding in the fixes offered by Hugh Dickins and
Huang Ying.  Tests were rerun and commit message updated with new
results.

try_to_unuse() is of quadratic complexity, with a lot of wasted effort.
It unuses swap entries one by one, potentially iterating over all the
page tables for all the processes in the system for each one.

This new proposed implementation of try_to_unuse simplifies its
complexity to linear.  It iterates over the system's mms once, unusing
all the affected entries as it walks each set of page tables.  It also
makes similar changes to shmem_unuse.

Improvement

swapoff was called on a swap partition containing about 6G of data, in a
VM(8cpu, 16G RAM), and calls to unuse_pte_range() were counted.

Present implementation....about 1200M calls(8min, avg 80% cpu util).
Prototype.................about  9.0K calls(3min, avg 5% cpu util).

Details

In shmem_unuse(), iterate over the shmem_swaplist and, for each
shmem_inode_info that contains a swap entry, pass it to
shmem_unuse_inode(), along with the swap type.  In shmem_unuse_inode(),
iterate over its associated xarray, and store the index and value of
each swap entry in an array for passing to shmem_swapin_page() outside
of the RCU critical section.

In try_to_unuse(), instead of iterating over the entries in the type and
unusing them one by one, perhaps walking all the page tables for all the
processes for each one, iterate over the mmlist, making one pass.  Pass
each mm to unuse_mm() to begin its page table walk, and during the walk,
unuse all the ptes that have backing store in the swap type received by
try_to_unuse().  After the walk, check the type for orphaned swap
entries with find_next_to_unuse(), and remove them from the swap cache.
If find_next_to_unuse() starts over at the beginning of the type, repeat
the check of the shmem_swaplist and the walk a maximum of three times.

Change unuse_mm() and the intervening walk functions down to
unuse_pte_range() to take the type as a parameter, and to iterate over
their entire range, calling the next function down on every iteration.
In unuse_pte_range(), make a swap entry from each pte in the range using
the passed in type.  If it has backing store in the type, call
swapin_readahead() to retrieve the page and pass it to unuse_pte().

Pass the count of pages_to_unuse down the page table walks in
try_to_unuse(), and return from the walk when the desired number of
pages has been swapped back in.

Link: http://lkml.kernel.org/r/20190114153129.4852-2-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Huang Ying
7af7a8e19f mm, swap: fix swapoff with KSM pages
KSM pages may be mapped to the multiple VMAs that cannot be reached from
one anon_vma.  So during swapin, a new copy of the page need to be
generated if a different anon_vma is needed, please refer to comments of
ksm_might_need_to_copy() for details.

During swapoff, unuse_vma() uses anon_vma (if available) to locate VMA and
virtual address mapped to the page, so not all mappings to a swapped out
KSM page could be found.  So in try_to_unuse(), even if the swap count of
a swap entry isn't zero, the page needs to be deleted from swap cache, so
that, in the next round a new page could be allocated and swapin for the
other mappings of the swapped out KSM page.

But this contradicts with the THP swap support.  Where the THP could be
deleted from swap cache only after the swap count of every swap entry in
the huge swap cluster backing the THP has reach 0.  So try_to_unuse() is
changed in commit e07098294a ("mm, THP, swap: support to reclaim swap
space for THP swapped out") to check that before delete a page from swap
cache, but this has broken KSM swapoff too.

Fortunately, KSM is for the normal pages only, so the original behavior
for KSM pages could be restored easily via checking PageTransCompound().
That is how this patch works.

The bug is introduced by e07098294a ("mm, THP, swap: support to reclaim
swap space for THP swapped out"), which is merged by v4.14-rc1.  So I
think we should backport the fix to from 4.14 on.  But Hugh thinks it may
be rare for the KSM pages being in the swap device when swapoff, so nobody
reports the bug so far.

Link: http://lkml.kernel.org/r/20181226051522.28442-1-ying.huang@intel.com
Fixes: e07098294a ("mm, THP, swap: support to reclaim swap space for THP swapped out")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: Hugh Dickins <hughd@google.com>
Tested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:52 -08:00
Aaron Lu
66f71da9dd mm/swap: use nr_node_ids for avail_lists in swap_info_struct
Since a2468cc9bf ("swap: choose swap device according to numa node"),
avail_lists field of swap_info_struct is changed to an array with
MAX_NUMNODES elements.  This made swap_info_struct size increased to 40KiB
and needs an order-4 page to hold it.

This is not optimal in that:
1 Most systems have way less than MAX_NUMNODES(1024) nodes so it
  is a waste of memory;
2 It could cause swapon failure if the swap device is swapped on
  after system has been running for a while, due to no order-4
  page is available as pointed out by Vasily Averin.

Solve the above two issues by using nr_node_ids(which is the actual
possible node number the running system has) for avail_lists instead of
MAX_NUMNODES.

nr_node_ids is unknown at compile time so can't be directly used when
declaring this array.  What I did here is to declare avail_lists as zero
element array and allocate space for it when allocating space for
swap_info_struct.  The reason why keep using array but not pointer is
plist_for_each_entry needs the field to be part of the struct, so pointer
will not work.

This patch is on top of Vasily Averin's fix commit.  I think the use of
kvzalloc for swap_info_struct is still needed in case nr_node_ids is
really big on some systems.

Link: http://lkml.kernel.org/r/20181115083847.GA11129@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:47 -08:00
Vasily Averin
873d7bcfd0 mm/swapfile.c: use kvzalloc for swap_info_struct allocation
Commit a2468cc9bf ("swap: choose swap device according to numa node")
changed 'avail_lists' field of 'struct swap_info_struct' to an array.
In popular linux distros it increased size of swap_info_struct up to 40
Kbytes and now swap_info_struct allocation requires order-4 page.
Switch to kvzmalloc allows to avoid unexpected allocation failures.

Link: http://lkml.kernel.org/r/fc23172d-3c75-21e2-d551-8b1808cbe593@virtuozzo.com
Fixes: a2468cc9bf ("swap: choose swap device according to numa node")
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-18 10:15:09 -08:00
Omar Sandoval
aa8aa8a331 mm: export add_swap_extent()
Btrfs currently does not support swap files because swap's use of bmap
does not work with copy-on-write and multiple devices.  See 35054394c4
("Btrfs: stop providing a bmap operation to avoid swapfile corruptions").

However, the swap code has a mechanism for the filesystem to manually add
swap extents using add_swap_extent() from the ->swap_activate() aop.
iomap has done this since 67482129cd ("iomap: add a swapfile activation
function").  Btrfs will do the same in a later patch, so export
add_swap_extent().

Link: http://lkml.kernel.org/r/bb1208575e02829aae51b538709476964f97b1ea.1536704650.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Sterba <dsterba@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:15 -07:00
Omar Sandoval
bc4ae27d81 mm: split SWP_FILE into SWP_ACTIVATED and SWP_FS
The SWP_FILE flag serves two purposes: to make swap_{read,write}page() go
through the filesystem, and to make swapoff() call ->swap_deactivate().
For Btrfs, we want the latter but not the former, so split this flag into
two.  This makes us always call ->swap_deactivate() if ->swap_activate()
succeeded, not just if it didn't add any swap extents itself.

This also resolves the issue of the very misleading name of SWP_FILE,
which is only used for swap files over NFS.

Link: http://lkml.kernel.org/r/6d63d8668c4287a4f6d203d65696e96f80abdfc7.1536704650.git.osandov@fb.com
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:15 -07:00
Huang Ying
979aafa591 mm/swapfile.c: clear si->swap_map[] in swap_free_cluster()
si->swap_map[] of the swap entries in cluster needs to be cleared during
freeing.  Previously, this is done in the caller of swap_free_cluster().
This may cause code duplication (one user now, will add more users later)
and lock/unlock cluster unnecessarily.  In this patch, the clearing code
is moved to swap_free_cluster() to avoid the downside.

Link: http://lkml.kernel.org/r/20180827075535.17406-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Huang Ying
10e364da10 mm/swapfile.c: call free_swap_slot() in __swap_entry_free()
This is a code cleanup patch without functionality change.

Originally, when __swap_entry_free() is called, and its return value is 0,
free_swap_slot() will always be called to free the swap entry to the
per-CPU pool.  So move the call to free_swap_slot() to __swap_entry_free()
to simplify the code.

Link: http://lkml.kernel.org/r/20180827075535.17406-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Huang Ying
bcd49e8671 mm/swapfile.c: use __try_to_reclaim_swap() in free_swap_and_cache()
The code path to reclaim the swap entry in free_swap_and_cache() is
almost same as that of __try_to_reclaim_swap().  The largest
difference is just coding style.  So the support to the additional
requirement of free_swap_and_cache() is added into
__try_to_reclaim_swap().  free_swap_and_cache() is changed to call
__try_to_reclaim_swap(), and delete the duplicated code.  This will
improve code readability and reduce the potential bugs.

There are 2 functionality differences between __try_to_reclaim_swap()
and swap entry reclaim code of free_swap_and_cache().

- free_swap_and_cache() only reclaims the swap entry if the page is
  unmapped or swap is getting full.  The support has been added into
  __try_to_reclaim_swap().

- try_to_free_swap() (called by __try_to_reclaim_swap()) checks
  pm_suspended_storage(), while free_swap_and_cache() not.  I think
  this is OK.  Because the page and the swap entry can be reclaimed
  later eventually.

Link: http://lkml.kernel.org/r/20180827075535.17406-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Huang Ying
c2343d2761 mm/swapfile.c: put_swap_page: share more between huge/normal code path
In this patch, locking related code is shared between huge/normal code
path in put_swap_page() to reduce code duplication. The `free_entries == 0`
case is merged into the more general `free_entries != SWAPFILE_CLUSTER`
case, because the new locking method makes it easy.

The added lines is same as the removed lines.  But the code size is
increased when CONFIG_TRANSPARENT_HUGEPAGE=n.

		text	   data	    bss	    dec	    hex	filename
base:	       24123	   2004	    340	  26467	   6763	mm/swapfile.o
unified:       24485	   2004	    340	  26829	   68cd	mm/swapfile.o

Dig on step deeper with `size -A mm/swapfile.o` for base and unified
kernel and compare the result, yields,

  -.text                                17723      0
  +.text                                17835      0
  -.orc_unwind_ip                        1380      0
  +.orc_unwind_ip                        1480      0
  -.orc_unwind                           2070      0
  +.orc_unwind                           2220      0
  -Total                                26686
  +Total                                27048

The total difference is the same.  The text segment difference is much
smaller: 112.  More difference comes from the ORC unwinder segments:
(1480 + 2220) - (1380 + 2070) = 250.  If the frame pointer unwinder is
used, this costs nothing.

Link: http://lkml.kernel.org/r/20180720071845.17920-9-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Huang Ying
b32d5f32b9 mm/swapfile.c: add __swap_entry_free_locked()
The part of __swap_entry_free() with lock held is separated into a new
function __swap_entry_free_locked().  Because we want to reuse that
piece of code in some other places.

Just mechanical code refactoring, there is no any functional change in
this function.

Link: http://lkml.kernel.org/r/20180720071845.17920-8-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Huang Ying
5d5e8f1954 mm, swap, get_swap_pages: use entry_size instead of cluster in parameter
As suggested by Matthew Wilcox, it is better to use "int entry_size"
instead of "bool cluster" as parameter to specify whether to operate for
huge or normal swap entries.  Because this improve the flexibility to
support other swap entry size.  And Dave Hansen thinks that this
improves code readability too.

So in this patch, the "bool cluster" parameter of get_swap_pages() is
replaced by "int entry_size".

And nr_swap_entries() trick is used to reduce the binary size when
!CONFIG_TRANSPARENT_HUGE_PAGE.

       text	   data	    bss	    dec	    hex	filename
base  24215	   2028	    340	  26583	   67d7	mm/swapfile.o
head  24123	   2004	    340	  26467	   6763	mm/swapfile.o

Link: http://lkml.kernel.org/r/20180720071845.17920-7-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Huang Ying
a448f2d07f mm/swapfile.c: unify normal/huge code path in put_swap_page()
In this patch, the normal/huge code path in put_swap_page() and several
helper functions are unified to avoid duplicated code, bugs, etc.  and
make it easier to review the code.

The removed lines are more than added lines.  And the binary size is
kept exactly same when CONFIG_TRANSPARENT_HUGEPAGE=n.

Link: http://lkml.kernel.org/r/20180720071845.17920-6-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Huang Ying
33ee011e56 mm/swapfile.c: unify normal/huge code path in swap_page_trans_huge_swapped()
As suggested by Dave, we should unify the code path for normal and huge
swap support if possible to avoid duplicated code, bugs, etc.  and make
it easier to review code.

In this patch, the normal/huge code path in
swap_page_trans_huge_swapped() is unified, the added and removed lines
are same.  And the binary size is kept almost same when
CONFIG_TRANSPARENT_HUGEPAGE=n.

		 text	   data	    bss	    dec	    hex	filename
base:		24179	   2028	    340	  26547	   67b3	mm/swapfile.o
unified:	24215	   2028	    340	  26583	   67d7	mm/swapfile.o

Link: http://lkml.kernel.org/r/20180720071845.17920-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-and-acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:43 -07:00
Huang Ying
afa4711ef1 mm/swapfile.c: use swap_count() in swap_page_trans_huge_swapped()
In swap_page_trans_huge_swapped(), to identify whether there's any page
table mapping for a 4k sized swap entry, "si->swap_map[i] !=
SWAP_HAS_CACHE" is used.  This works correctly now, because all users of
the function will only call it after checking SWAP_HAS_CACHE.  But as
pointed out by Daniel, it is better to use "swap_count(map[i])" here,
because it works for "map[i] == 0" case too.

And this makes the implementation more consistent between normal and
huge swap entry.

Link: http://lkml.kernel.org/r/20180720071845.17920-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-and-reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:43 -07:00
Huang Ying
fe5266d5d5 mm/swapfile.c: replace some #ifdef with IS_ENABLED()
In mm/swapfile.c, THP (Transparent Huge Page) swap specific code is
enclosed by #ifdef CONFIG_THP_SWAP/#endif to avoid code dilating when
THP isn't enabled.  But #ifdef/#endif in .c file hurt the code
readability, so Dave suggested to use IS_ENABLED(CONFIG_THP_SWAP)
instead and let compiler to do the dirty job for us.  This has potential
to remove some duplicated code too.  From output of `size`,

		text	   data	    bss	    dec	    hex	filename
THP=y:         26269	   2076	    340	  28685	   700d	mm/swapfile.o
ifdef/endif:   24115	   2028	    340	  26483	   6773	mm/swapfile.o
IS_ENABLED:    24179	   2028	    340	  26547	   67b3	mm/swapfile.o

IS_ENABLED() based solution works quite well, almost as good as that of
#ifdef/#endif.  And from the diffstat, the removed lines are more than
added lines.

One #ifdef for split_swap_cluster() is kept.  Because it is a public
function with a stub implementation for CONFIG_THP_SWAP=n in swap.h.

Link: http://lkml.kernel.org/r/20180720071845.17920-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-and-acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:43 -07:00
Huang Ying
59d98bf3c2 mm: swap: add comments to lock_cluster_or_swap_info()
Patch series "swap: THP optimizing refactoring", v4.

Now the THP (Transparent Huge Page) swap optimizing is implemented in the
way like below,

  #ifdef CONFIG_THP_SWAP
  huge_function(...)
  {
  }
  #else
  normal_function(...)
  {
  }
  #endif

  general_function(...)
  {
  	if (huge)
  		return thp_function(...);
	else
  		return normal_function(...);
  }

As pointed out by Dave Hansen, this will,

1. Create a new, wholly untested code path for huge page
2. Create two places to patch bugs
3. Are not reusing code when possible

This patchset is to address these problems via merging huge/normal code
path/functions if possible.

One concern is that this may cause code size to dilate when
!CONFIG_TRANSPARENT_HUGEPAGE.  The data shows that most refactoring will
only cause quite slight code size increase.

This patch (of 8):

To improve code readability.

Link: http://lkml.kernel.org/r/20180720071845.17920-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-and-acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:43 -07:00
Linus Torvalds
73ba2fb33c for-4.19/block-20180812
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAltwvasQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpv65EACTq5gSLnJBI6ZPr1RAHruVDnjfzO2Veitl
 tUtjm0XfWmnEiwQ3dYvnyhy99xbyaG3900d9BClCTlH6xaUdSiQkDpcKG/R2F36J
 5mZitYukQcpFAQJWF8YKsTTE7JPl4VglCIDqYiC4+C3rOSVi8lrKn2qp4J4MMCFn
 thRg3jCcq7c5s9Eigsop1pXWQSasubkXfk55Krcp4oybKYpYRKXXf74Mj14QAbwJ
 QHN3VisyAUWoBRg7UQZo1Npe2oPk6bbnJypnjf8M0M2EnlvddEkIlHob91sodka8
 6p4APOEu5cbyXOBCAQsw/koff14mb8aEadqeQA68WvXfIdX9ZjfxCX0OoC3sBEXk
 yqJhZ0C980AM13zIBD8ejv4uasGcPca8W+47mE5P8sRiI++5kBsFWDZPCtUBna0X
 2Kh24NsmEya9XRR5vsB84dsIPQ3tLMkxg/IgQRVDaSnfJz0c/+zm54xDyKRaFT4l
 5iERk2WSkm9+8jNfVmWG0edrv6nRAXjpGwFfOCPh6/LCSCi4xQRULYN7sVzsX8ZK
 FRjt24HftBI8mJbh4BtweJvg+ppVe1gAk3IO3HvxAQhv29Hz+uvFYe9kL+3N8LJA
 Qosr9n9O4+wKYizJcDnw+5iPqCHfAwOm9th4pyedR+R7SmNcP3yNC8AbbheNBiF5
 Zolos5H+JA==
 =b9ib
 -----END PGP SIGNATURE-----

Merge tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:
 "First pull request for this merge window, there will also be a
  followup request with some stragglers.

  This pull request contains:

   - Fix for a thundering heard issue in the wbt block code (Anchal
     Agarwal)

   - A few NVMe pull requests:
      * Improved tracepoints (Keith)
      * Larger inline data support for RDMA (Steve Wise)
      * RDMA setup/teardown fixes (Sagi)
      * Effects log suppor for NVMe target (Chaitanya Kulkarni)
      * Buffered IO suppor for NVMe target (Chaitanya Kulkarni)
      * TP4004 (ANA) support (Christoph)
      * Various NVMe fixes

   - Block io-latency controller support. Much needed support for
     properly containing block devices. (Josef)

   - Series improving how we handle sense information on the stack
     (Kees)

   - Lightnvm fixes and updates/improvements (Mathias/Javier et al)

   - Zoned device support for null_blk (Matias)

   - AIX partition fixes (Mauricio Faria de Oliveira)

   - DIF checksum code made generic (Max Gurtovoy)

   - Add support for discard in iostats (Michael Callahan / Tejun)

   - Set of updates for BFQ (Paolo)

   - Removal of async write support for bsg (Christoph)

   - Bio page dirtying and clone fixups (Christoph)

   - Set of bcache fix/changes (via Coly)

   - Series improving blk-mq queue setup/teardown speed (Ming)

   - Series improving merging performance on blk-mq (Ming)

   - Lots of other fixes and cleanups from a slew of folks"

* tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block: (190 commits)
  blkcg: Make blkg_root_lookup() work for queues in bypass mode
  bcache: fix error setting writeback_rate through sysfs interface
  null_blk: add lock drop/acquire annotation
  Blk-throttle: reduce tail io latency when iops limit is enforced
  block: paride: pd: mark expected switch fall-throughs
  block: Ensure that a request queue is dissociated from the cgroup controller
  block: Introduce blk_exit_queue()
  blkcg: Introduce blkg_root_lookup()
  block: Remove two superfluous #include directives
  blk-mq: count the hctx as active before allocating tag
  block: bvec_nr_vecs() returns value for wrong slab
  bcache: trivial - remove tailing backslash in macro BTREE_FLAG
  bcache: make the pr_err statement used for ENOENT only in sysfs_attatch section
  bcache: set max writeback rate when I/O request is idle
  bcache: add code comments for bset.c
  bcache: fix mistaken comments in request.c
  bcache: fix mistaken code comments in bcache.h
  bcache: add a comment in super.c
  bcache: avoid unncessary cache prefetch bch_btree_node_get()
  bcache: display rate debug parameters to 0 when writeback is not running
  ...
2018-08-14 10:23:25 -07:00
Tejun Heo
2cf855837b memcontrol: schedule throttling if we are congested
Memory allocations can induce swapping via kswapd or direct reclaim.  If
we are having IO done for us by kswapd and don't actually go into direct
reclaim we may never get scheduled for throttling.  So instead check to
see if our cgroup is congested, and if so schedule the throttling.
Before we return to user space the throttling stuff will only throttle
if we actually required it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-09 09:07:54 -06:00
Andi Kleen
377eeaa8e1 x86/speculation/l1tf: Limit swap file size to MAX_PA/2
For the L1TF workaround its necessary to limit the swap file size to below
MAX_PA/2, so that the higher bits of the swap offset inverted never point
to valid memory.

Add a mechanism for the architecture to override the swap file size check
in swapfile.c and add a x86 specific max swapfile check function that
enforces that limit.

The check is only enabled if the CPU is vulnerable to L1TF.

In VMs with 42bit MAX_PA the typical limit is 2TB now, on a native system
with 46bit PA it is 32TB. The limit is only per individual swap file, so
it's always possible to exceed these limits with multiple swap files or
partitions.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20 19:10:01 +02:00
Daniel Jordan
955c97f085 mm/swapfile.c: fix swap_count comment about nonexistent SWAP_HAS_CONT
Commit 570a335b8e ("swap_info: swap count continuations") introduces
COUNT_CONTINUED but refers to it incorrectly as SWAP_HAS_CONT in a
comment in swap_count.  Fix it.

Link: http://lkml.kernel.org/r/20180612175919.30413-1-daniel.m.jordan@oracle.com
Fixes: 570a335b8e ("swap_info: swap count continuations")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:23 +09:00
Kees Cook
778e1cdd81 treewide: kvzalloc() -> kvcalloc()
The kvzalloc() function has a 2-factor argument form, kvcalloc(). This
patch replaces cases of:

        kvzalloc(a * b, gfp)

with:
        kvcalloc(a * b, gfp)

as well as handling cases of:

        kvzalloc(a * b * c, gfp)

with:

        kvzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kvcalloc(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kvzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kvzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kvzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kvzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kvzalloc
+ kvcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kvzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kvzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kvzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kvzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kvzalloc(C1 * C2 * C3, ...)
|
  kvzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kvzalloc(sizeof(THING) * C2, ...)
|
  kvzalloc(sizeof(TYPE) * C2, ...)
|
  kvzalloc(C1 * C2 * C3, ...)
|
  kvzalloc(C1 * C2, ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Omar Sandoval
7cbf319234 mm: fix nr_rotate_swap leak in swapon() error case
If swapon() fails after incrementing nr_rotate_swap, we don't decrement
it and thus effectively leak it.  Make sure we decrement it if we
incremented it.

Link: http://lkml.kernel.org/r/b6fe6b879f17fa68eee6cbd876f459f6e5e33495.1526491581.git.osandov@fb.com
Fixes: 81a0298bdf ("mm, swap: don't use VMA based swap readahead if HDD is used as swap")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-25 18:12:10 -07:00
Colin Ian King
bfc6b1cabc mm/swapfile.c: make pointer swap_avail_heads static
The pointer swap_avail_heads is local to the source and does not need to
be in global scope, so make it static.

Cleans up sparse warning:

  mm/swapfile.c:88:19: warning: symbol 'swap_avail_heads' was not declared. Should it be static?

Link: http://lkml.kernel.org/r/20180206215836.12366-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Tom Abraham
a06ad633a3 swap: divide-by-zero when zero length swap file on ssd
Calling swapon() on a zero length swap file on SSD can lead to a
divide-by-zero.

Although creating such files isn't possible with mkswap and they woud be
considered invalid, it would be better for the swapon code to be more
robust and handle this condition gracefully (return -EINVAL).
Especially since the fix is small and straightforward.

To help with wear leveling on SSD, the swapon syscall calculates a
random position in the swap file using modulo p->highest_bit, which is
set to maxpages - 1 in read_swap_header.

If the swap file is zero length, read_swap_header sets maxpages=1 and
last_page=0, resulting in p->highest_bit=0 and we divide-by-zero when we
modulo p->highest_bit in swapon syscall.

This can be prevented by having read_swap_header return zero if
last_page is zero.

Link: http://lkml.kernel.org/r/5AC747C1020000A7001FA82C@prv-mh.provo.novell.com
Signed-off-by: Thomas Abraham <tabraham@suse.com>
Reported-by: <Mark.Landis@Teradata.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:31 -07:00
Linus Torvalds
a9a08845e9 vfs: do bulk POLL* -> EPOLL* replacement
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:

    for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
        L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
        for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
    done

with de-mangling cleanups yet to come.

NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do.  But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.

The next patch from Al will sort out the final differences, and we
should be all done.

Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-11 14:34:03 -08:00
Al Viro
9dd957485d ipc, kernel, mm: annotate ->poll() instances
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-11-27 16:20:05 -05:00
Minchan Kim
aa8d22a11d mm: swap: SWP_SYNCHRONOUS_IO: skip swapcache only if swapped page has no other reference
When SWP_SYNCHRONOUS_IO swapped-in pages are shared by several
processes, it can cause unnecessary memory wastage by skipping swap
cache.  Because, with swapin fault by read, they could share a page if
the page were in swap cache.  Thus, it avoids allocating same content
new pages.

This patch makes the swapcache skipping work only if the swap pte is
non-sharable.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1507620825-5537-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:02 -08:00
Minchan Kim
0bcac06f27 mm, swap: skip swapcache for swapin of synchronous device
With fast swap storage, the platforms want to use swap more aggressively
and swap-in is crucial to application latency.

The rw_page() based synchronous devices like zram, pmem and btt are such
fast storage.  When I profile swapin performance with zram lz4
decompress test, S/W overhead is more than 70%.  Maybe, it would be
bigger in nvdimm.

This patch aims to reduce swap-in latency by skipping swapcache if the
swap device is synchronous device like rw_page based device.  It
enhances 45% my swapin test(5G sequential swapin, no readahead, from
2.41sec to 1.64sec).

Link: http://lkml.kernel.org/r/1505886205-9671-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:02 -08:00
Minchan Kim
539a6fea7f mm, swap: introduce SWP_SYNCHRONOUS_IO
If rw-page based fast storage is used for swap devices, we need to
detect it to enhance swap IO operations.  This patch is preparation for
optimizing of swap-in operation with next patch.

Link: http://lkml.kernel.org/r/1505886205-9671-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:02 -08:00
Huang Ying
2628bd6fc0 mm, swap: fix race between swap count continuation operations
One page may store a set of entries of the sis->swap_map
(swap_info_struct->swap_map) in multiple swap clusters.

If some of the entries has sis->swap_map[offset] > SWAP_MAP_MAX,
multiple pages will be used to store the set of entries of the
sis->swap_map.  And the pages are linked with page->lru.  This is called
swap count continuation.  To access the pages which store the set of
entries of the sis->swap_map simultaneously, previously, sis->lock is
used.  But to improve the scalability of __swap_duplicate(), swap
cluster lock may be used in swap_count_continued() now.  This may race
with add_swap_count_continuation() which operates on a nearby swap
cluster, in which the sis->swap_map entries are stored in the same page.

The race can cause wrong swap count in practice, thus cause unfreeable
swap entries or software lockup, etc.

To fix the race, a new spin lock called cont_lock is added to struct
swap_info_struct to protect the swap count continuation page list.  This
is a lock at the swap device level, so the scalability isn't very well.
But it is still much better than the original sis->lock, because it is
only acquired/released when swap count continuation is used.  Which is
considered rare in practice.  If it turns out that the scalability
becomes an issue for some workloads, we can split the lock into some
more fine grained locks.

Link: http://lkml.kernel.org/r/20171017081320.28133-1-ying.huang@intel.com
Fixes: 235b621767 ("mm/swap: add cluster lock")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>	[4.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-03 07:39:19 -07:00
David Rientjes
b6b1fd2a6b mm/swapfile.c: fix swapon frontswap_map memory leak on error
Free frontswap_map if an error is encountered before enable_swap_info().

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>	[4.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:47 -07:00
Darrick J. Wong
8606a1a94d mm: kvfree the swap cluster info if the swap file is unsatisfactory
If initializing a small swap file fails because the swap file has a
problem (holes, etc.) then we need to free the cluster info as part of
cleanup.  Unfortunately a previous patch changed the code to use kvzalloc
but did not change all the vfree calls to use kvfree.

Found by running generic/357 from xfstests.

Link: http://lkml.kernel.org/r/20170831233515.GR3775@magnolia
Fixes: 54f180d3c1 ("mm, swap: use kvzalloc to allocate some swap data structures")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>	[4.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:47 -07:00
Aaron Lu
a2468cc9bf swap: choose swap device according to numa node
If the system has more than one swap device and swap device has the node
information, we can make use of this information to decide which swap
device to use in get_swap_pages() to get better performance.

The current code uses a priority based list, swap_avail_list, to decide
which swap device to use and if multiple swap devices share the same
priority, they are used round robin.  This patch changes the previous
single global swap_avail_list into a per-numa-node list, i.e.  for each
numa node, it sees its own priority based list of available swap
devices.  Swap device's priority can be promoted on its matching node's
swap_avail_list.

The current swap device's priority is set as: user can set a >=0 value,
or the system will pick one starting from -1 then downwards.  The
priority value in the swap_avail_list is the negated value of the swap
device's due to plist being sorted from low to high.  The new policy
doesn't change the semantics for priority >=0 cases, the previous
starting from -1 then downwards now becomes starting from -2 then
downwards and -1 is reserved as the promoted value.

Take 4-node EX machine as an example, suppose 4 swap devices are
available, each sit on a different node:
swapA on node 0
swapB on node 1
swapC on node 2
swapD on node 3

After they are all swapped on in the sequence of ABCD.

Current behaviour:
their priorities will be:
swapA: -1
swapB: -2
swapC: -3
swapD: -4
And their position in the global swap_avail_list will be:
swapA   -> swapB   -> swapC   -> swapD
prio:1     prio:2     prio:3     prio:4

New behaviour:
their priorities will be(note that -1 is skipped):
swapA: -2
swapB: -3
swapC: -4
swapD: -5
And their positions in the 4 swap_avail_lists[nid] will be:
swap_avail_lists[0]: /* node 0's available swap device list */
swapA   -> swapB   -> swapC   -> swapD
prio:1     prio:3     prio:4     prio:5
swap_avali_lists[1]: /* node 1's available swap device list */
swapB   -> swapA   -> swapC   -> swapD
prio:1     prio:2     prio:4     prio:5
swap_avail_lists[2]: /* node 2's available swap device list */
swapC   -> swapA   -> swapB   -> swapD
prio:1     prio:2     prio:3     prio:5
swap_avail_lists[3]: /* node 3's available swap device list */
swapD   -> swapA   -> swapB   -> swapC
prio:1     prio:2     prio:3     prio:4

To see the effect of the patch, a test that starts N process, each mmap
a region of anonymous memory and then continually write to it at random
position to trigger both swap in and out is used.

On a 2 node Skylake EP machine with 64GiB memory, two 170GB SSD drives
are used as swap devices with each attached to a different node, the
result is:

runtime=30m/processes=32/total test size=128G/each process mmap region=4G
kernel         throughput
vanilla        13306
auto-binding   15169 +14%

runtime=30m/processes=64/total test size=128G/each process mmap region=2G
kernel         throughput
vanilla        11885
auto-binding   14879 +25%

[aaron.lu@intel.com: v2]
  Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com
  Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com
[akpm@linux-foundation.org: use kmalloc_array()]
Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com
Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Huang Ying
81a0298bdf mm, swap: don't use VMA based swap readahead if HDD is used as swap
VMA based swap readahead will readahead the virtual pages that is
continuous in the virtual address space.  While the original swap
readahead will readahead the swap slots that is continuous in the swap
device.  Although VMA based swap readahead is more correct for the swap
slots to be readahead, it will trigger more small random readings, which
may cause the performance of HDD (hard disk) to degrade heavily, and may
finally exceed the benefit.

To avoid the issue, in this patch, if the HDD is used as swap, the VMA
based swap readahead will be disabled, and the original swap readahead
will be used instead.

Link: http://lkml.kernel.org/r/20170807054038.1843-6-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Huang Ying
59807685a7 mm, THP, swap: support splitting THP for THP swap out
After adding swapping out support for THP (Transparent Huge Page), it is
possible that a THP in swap cache (partly swapped out) need to be split.
To split such a THP, the swap cluster backing the THP need to be split
too, that is, the CLUSTER_FLAG_HUGE flag need to be cleared for the swap
cluster.  The patch implemented this.

And because the THP swap writing needs the THP keeps as huge page during
writing.  The PageWriteback flag is checked before splitting.

Link: http://lkml.kernel.org/r/20170724051840.2309-8-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying
f0eea189e8 mm, THP, swap: don't allocate huge cluster for file backed swap device
It's hard to write a whole transparent huge page (THP) to a file backed
swap device during swapping out and the file backed swap device isn't
very popular.  So the huge cluster allocation for the file backed swap
device is disabled.

Link: http://lkml.kernel.org/r/20170724051840.2309-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Huang Ying
ba3c4ce6de mm, THP, swap: make reuse_swap_page() works for THP swapped out
After supporting to delay THP (Transparent Huge Page) splitting after
swapped out, it is possible that some page table mappings of the THP are
turned into swap entries.  So reuse_swap_page() need to check the swap
count in addition to the map count as before.  This patch done that.

In the huge PMD write protect fault handler, in addition to the page map
count, the swap count need to be checked too, so the page lock need to
be acquired too when calling reuse_swap_page() in addition to the page
table lock.

[ying.huang@intel.com: silence a compiler warning]
  Link: http://lkml.kernel.org/r/87bmnzizjy.fsf@yhuang-dev.intel.com
Link: http://lkml.kernel.org/r/20170724051840.2309-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Huang Ying
e07098294a mm, THP, swap: support to reclaim swap space for THP swapped out
The normal swap slot reclaiming can be done when the swap count reaches
SWAP_HAS_CACHE.  But for the swap slot which is backing a THP, all swap
slots backing one THP must be reclaimed together, because the swap slot
may be used again when the THP is swapped out again later.  So the swap
slots backing one THP can be reclaimed together when the swap count for
all swap slots for the THP reached SWAP_HAS_CACHE.  In the patch, the
functions to check whether the swap count for all swap slots backing one
THP reached SWAP_HAS_CACHE are implemented and used when checking
whether a swap slot can be reclaimed.

To make it easier to determine whether a swap slot is backing a THP, a
new swap cluster flag named CLUSTER_FLAG_HUGE is added to mark a swap
cluster which is backing a THP (Transparent Huge Page).  Because THP
swap in as a whole isn't supported now.  After deleting the THP from the
swap cache (for example, swapping out finished), the CLUSTER_FLAG_HUGE
flag will be cleared.  So that, the normal pages inside THP can be
swapped in individually.

[ying.huang@intel.com: fix swap_page_trans_huge_swapped on HDD]
  Link: http://lkml.kernel.org/r/874ltsm0bi.fsf@yhuang-dev.intel.com
Link: http://lkml.kernel.org/r/20170724051840.2309-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Huang Ying
a3aea839e4 mm, THP, swap: support to clear swap cache flag for THP swapped out
Patch series "mm, THP, swap: Delay splitting THP after swapped out", v3.

This is the second step of THP (Transparent Huge Page) swap
optimization.  In the first step, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache.  In the second
step, the splitting is delayed further to after the swapping out
finished.  The plan is to delay splitting THP step by step, finally
avoid splitting THP for the THP swapping out and swap out/in the THP as
a whole.

In the patchset, more operations for the anonymous THP reclaiming, such
as TLB flushing, writing the THP to the swap device, removing the THP
from the swap cache are batched.  So that the performance of anonymous
THP swapping out are improved.

During the development, the following scenarios/code paths have been
checked,

 - swap out/in
 - swap off
 - write protect page fault
 - madvise_free
 - process exit
 - split huge page

With the patchset, the swap out throughput improves 42% (from about
5.81GB/s to about 8.25GB/s) in the vm-scalability swap-w-seq test case
with 16 processes.  At the same time, the IPI (reflect TLB flushing)
reduced about 78.9%.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

Below is the part of the cover letter for the first step patchset of THP
swap optimization which applies to all steps.

=========================

Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine.  Because the
performance of the storage device improved faster than that of single
logical CPU.  And it seems that the trend will not change in the near
future.  On the other hand, the THP becomes more and more popular
because of increased memory size.  So it becomes necessary to optimize
THP swap performance.

The advantages of the THP swap support include:

 - Batch the swap operations for the THP to reduce TLB flushing and lock
   acquiring/releasing, including allocating/freeing the swap space,
   adding/deleting to/from the swap cache, and writing/reading the swap
   space, etc. This will help improve the performance of the THP swap.

 - The THP swap space read/write will be 2M sequential IO. It is
   particularly helpful for the swap read, which are usually 4k random
   IO. This will improve the performance of the THP swap too.

 - It will help the memory fragmentation, especially when the THP is
   heavily used by the applications. The 2M continuous pages will be
   free up after THP swapping out.

 - It will improve the THP utilization on the system with the swap
   turned on. Because the speed for khugepaged to collapse the normal
   pages into the THP is quite slow. After the THP is split during the
   swapping out, it will take quite long time for the normal pages to
   collapse back into the THP after being swapped in. The high THP
   utilization helps the efficiency of the page based memory management
   too.

There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device.  To deal with that, the THP swap in should be turned
on only when necessary.

For example, it can be selected via "always/never/madvise" logic, to be
turned on globally, turned off globally, or turned on only for VMA with
MADV_HUGEPAGE, etc.

This patch (of 12):

Previously, swapcache_free_cluster() is used only in the error path of
shrink_page_list() to free the swap cluster just allocated if the THP
(Transparent Huge Page) is failed to be split.  In this patch, it is
enhanced to clear the swap cache flag (SWAP_HAS_CACHE) for the swap
cluster that holds the contents of THP swapped out.

This will be used in delaying splitting THP after swapping out support.
Because there is no THP swapping in as a whole support yet, after
clearing the swap cache flag, the swap cluster backing the THP swapped
out will be split.  So that the swap slots in the swap cluster can be
swapped in as normal pages later.

Link: http://lkml.kernel.org/r/20170724051840.2309-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Shaohua Li
23955622ff swap: add block io poll in swapin path
For fast flash disk, async IO could introduce overhead because of
context switch.  block-mq now supports IO poll, which improves
performance and latency a lot.  swapin is a good place to use this
technique, because the task is waiting for the swapin page to continue
execution.

In my virtual machine, directly read 4k data from a NVMe with iopoll is
about 60% better than that without poll.  With iopoll support in swapin
patch, my microbenchmark (a task does random memory write) is about
10%~25% faster.  CPU utilization increases a lot though, 2x and even 3x
CPU utilization.  This will depend on disk speed.

While iopoll in swapin isn't intended for all usage cases, it's a win
for latency sensistive workloads with high speed swap disk.  block layer
has knob to control poll in runtime.  If poll isn't enabled in block
layer, there should be no noticeable change in swapin.

I got a chance to run the same test in a NVMe with DRAM as the media.
In simple fio IO test, blkpoll boosts 50% performance in single thread
test and ~20% in 8 threads test.  So this is the base line.  In above
swap test, blkpoll boosts ~27% performance in single thread test.
blkpoll uses 2x CPU time though.

If we enable hybid polling, the performance gain has very slight drop
but CPU time is only 50% worse than that without blkpoll.  Also we can
adjust parameter of hybid poll, with it, the CPU time penality is
reduced further.  In 8 threads test, blkpoll doesn't help though.  The
performance is similar to that without blkpoll, but cpu utilization is
similar too.  There is lock contention in swap path.  The cpu time
spending on blkpoll isn't high.  So overall, blkpoll swapin isn't worse
than that without it.

The swapin readahead might read several pages in in the same time and
form a big IO request.  Since the IO will take longer time, it doesn't
make sense to do poll, so the patch only does iopoll for single page
swapin.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/070c3c3e40b711e7b1390002c991e86a-b5408f0@7511894063d3764ff01ea8111f5a004d7dd700ed078797c204a24e620ddb965c
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Huang Ying
155b5f88e7 mm/swapfile.c: sort swap entries before free
To reduce the lock contention of swap_info_struct->lock when freeing
swap entry.  The freed swap entries will be collected in a per-CPU
buffer firstly, and be really freed later in batch.  During the batch
freeing, if the consecutive swap entries in the per-CPU buffer belongs
to same swap device, the swap_info_struct->lock needs to be
acquired/released only once, so that the lock contention could be
reduced greatly.  But if there are multiple swap devices, it is possible
that the lock may be unnecessarily released/acquired because the swap
entries belong to the same swap device are non-consecutive in the
per-CPU buffer.

To solve the issue, the per-CPU buffer is sorted according to the swap
device before freeing the swap entries.

With the patch, the memory (some swapped out) free time reduced 11.6%
(from 2.65s to 2.35s) in the vm-scalability swap-w-rand test case with
16 processes.  The test is done on a Xeon E5 v3 system.  The swap device
used is a RAM simulated PMEM (persistent memory) device.  To test
swapping, the test case creates 16 processes, which allocate and write
to the anonymous pages until the RAM and part of the swap device is used
up, finally the memory (some swapped out) is freed before exit.

[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/20170525005916.25249-1-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Minchan Kim
75f6d6d29a mm, THP, swap: unify swap slot free functions to put_swap_page
Now, get_swap_page takes struct page and allocates swap space according
to page size(ie, normal or THP) so it would be more cleaner to introduce
put_swap_page which is a counter function of get_swap_page.  Then, it
calls right swap slot free function depending on page's size.

[ying.huang@intel.com: minor cleanup and fix]
Link: http://lkml.kernel.org/r/20170515112522.32457-3-ying.huang@intel.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Huang Ying
38d8b4e6bd mm, THP, swap: delay splitting THP during swap out
Patch series "THP swap: Delay splitting THP during swapping out", v11.

This patchset is to optimize the performance of Transparent Huge Page
(THP) swap.

Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine.  Because the
performance of the storage device improved faster than that of single
logical CPU.  And it seems that the trend will not change in the near
future.  On the other hand, the THP becomes more and more popular
because of increased memory size.  So it becomes necessary to optimize
THP swap performance.

The advantages of the THP swap support include:

 - Batch the swap operations for the THP to reduce lock
   acquiring/releasing, including allocating/freeing the swap space,
   adding/deleting to/from the swap cache, and writing/reading the swap
   space, etc. This will help improve the performance of the THP swap.

 - The THP swap space read/write will be 2M sequential IO. It is
   particularly helpful for the swap read, which are usually 4k random
   IO. This will improve the performance of the THP swap too.

 - It will help the memory fragmentation, especially when the THP is
   heavily used by the applications. The 2M continuous pages will be
   free up after THP swapping out.

 - It will improve the THP utilization on the system with the swap
   turned on. Because the speed for khugepaged to collapse the normal
   pages into the THP is quite slow. After the THP is split during the
   swapping out, it will take quite long time for the normal pages to
   collapse back into the THP after being swapped in. The high THP
   utilization helps the efficiency of the page based memory management
   too.

There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device.  To deal with that, the THP swap in should be turned
on only when necessary.  For example, it can be selected via
"always/never/madvise" logic, to be turned on globally, turned off
globally, or turned on only for VMA with MADV_HUGEPAGE, etc.

This patchset is the first step for the THP swap support.  The plan is
to delay splitting THP step by step, finally avoid splitting THP during
the THP swapping out and swap out/in the THP as a whole.

As the first step, in this patchset, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache.  This will
reduce lock acquiring/releasing for the locks used for the swap cache
management.

With the patchset, the swap out throughput improves 15.5% (from about
3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

This patch (of 5):

In this patch, splitting huge page is delayed from almost the first step
of swapping out to after allocating the swap space for the THP
(Transparent Huge Page) and adding the THP into the swap cache.  This
will batch the corresponding operation, thus improve THP swap out
throughput.

This is the first step for the THP swap optimization.  The plan is to
delay splitting the THP step by step and avoid splitting the THP
finally.

In this patch, one swap cluster is used to hold the contents of each THP
swapped out.  So, the size of the swap cluster is changed to that of the
THP (Transparent Huge Page) on x86_64 architecture (512).  For other
architectures which want such THP swap optimization,
ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for
the architecture.  In effect, this will enlarge swap cluster size by 2
times on x86_64.  Which may make it harder to find a free cluster when
the swap space becomes fragmented.  So that, this may reduce the
continuous swap space allocation and sequential write in theory.  The
performance test in 0day shows no regressions caused by this.

In the future of THP swap optimization, some information of the swapped
out THP (such as compound map count) will be recorded in the
swap_cluster_info data structure.

The mem cgroup swap accounting functions are enhanced to support charge
or uncharge a swap cluster backing a THP as a whole.

The swap cluster allocate/free functions are added to allocate/free a
swap cluster for a THP.  A fair simple algorithm is used for swap
cluster allocation, that is, only the first swap device in priority list
will be tried to allocate the swap cluster.  The function will fail if
the trying is not successful, and the caller will fallback to allocate a
single swap slot instead.  This works good enough for normal cases.  If
the difference of the number of the free swap clusters among multiple
swap devices is significant, it is possible that some THPs are split
earlier than necessary.  For example, this could be caused by big size
difference among multiple swap devices.

The swap cache functions is enhanced to support add/delete THP to/from
the swap cache as a set of (HPAGE_PMD_NR) sub-pages.  This may be
enhanced in the future with multi-order radix tree.  But because we will
split the THP soon during swapping out, that optimization doesn't make
much sense for this first step.

The THP splitting functions are enhanced to support to split THP in swap
cache during swapping out.  The page lock will be held during allocating
the swap cluster, adding the THP into the swap cache and splitting the
THP.  So in the code path other than swapping out, if the THP need to be
split, the PageSwapCache(THP) will be always false.

The swap cluster is only available for SSD, so the THP swap optimization
in this patchset has no effect for HDD.

[ying.huang@intel.com: fix two issues in THP optimize patch]
  Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com
[hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size]
Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option]
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Huang Ying
54f180d3c1 mm, swap: use kvzalloc to allocate some swap data structures
Now vzalloc() is used in swap code to allocate various data structures,
such as swap cache, swap slots cache, cluster info, etc.  Because the
size may be too large on some system, so that normal kzalloc() may fail.
But using kzalloc() has some advantages, for example, less memory
fragmentation, less TLB pressure, etc.  So change the data structure
allocation in swap code to use kvzalloc() which will try kzalloc()
firstly, and fallback to vzalloc() if kzalloc() failed.

In general, although kmalloc() will reduce the number of high-order
pages in short term, vmalloc() will cause more pain for memory
fragmentation in the long term.  And the swap data structure allocation
that is changed in this patch is expected to be long term allocation.

From Dave Hansen:
 "for example, we have a two-page data structure. vmalloc() takes two
  effectively random order-0 pages, probably from two different 2M pages
  and pins them. That "kills" two 2M pages. kmalloc(), allocating two
  *contiguous* pages, will not cross a 2M boundary. That means it will
  only "kill" the possibility of a single 2M page. More 2M pages == less
  fragmentation.

The allocation in this patch occurs during swap on time, which is
usually done during system boot, so usually we have high opportunity to
allocate the contiguous pages successfully.

The allocation for swap_map[] in struct swap_info_struct is not changed,
because that is usually quite large and vmalloc_to_page() is used for
it.  That makes it a little harder to change.

Link: http://lkml.kernel.org/r/20170407064911.25447-1-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Huang Ying
0ccfece6ed mm/swapfile.c: fix swap space leak in error path of swap_free_entries()
In swapcache_free_entries(), if swap_info_get_cont() returns NULL,
something wrong occurs for the swap entry.  But we should still continue
to free the following swap entries in the array instead of skip them to
avoid swap space leak.  This is just problem in error path, where system
may be in an inconsistent state, but it is still good to fix it.

Link: http://lkml.kernel.org/r/20170421124739.24534-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:12 -07:00
Huang Ying
2872bb2d0a mm, swap: avoid lock swap_avail_lock when held cluster lock
Cluster lock is used to protect the swap_cluster_info and corresponding
elements in swap_info_struct->swap_map[].  But it is found that now in
scan_swap_map_slots(), swap_avail_lock may be acquired when cluster lock
is held.  This does no good except making the locking more complex and
improving the potential locking contention, because the
swap_info_struct->lock is used to protect the data structure operated in
the code already.  Fix this via moving the corresponding operations in
scan_swap_map_slots() out of cluster lock.

Link: http://lkml.kernel.org/r/20170317064635.12792-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Huang Ying
0ef017d117 mm, swap: improve readability via make spin_lock/unlock balanced
This is just a cleanup patch, no functionality change.

In cluster_list_add_tail(), spin_lock_nested() is used to lock the
cluster, while unlock_cluster() is used to unlock the cluster.  To
improve the code readability, use spin_unlock() directly to unlock the
cluster.

Link: http://lkml.kernel.org/r/20170317064635.12792-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Huang Ying
322b8afe4a mm, swap: Fix a race in free_swap_and_cache()
Before using cluster lock in free_swap_and_cache(), the
swap_info_struct->lock will be held during freeing the swap entry and
acquiring page lock, so the page swap count will not change when testing
page information later.  But after using cluster lock, the cluster lock
(or swap_info_struct->lock) will be held only during freeing the swap
entry.  So before acquiring the page lock, the page swap count may be
changed in another thread.  If the page swap count is not 0, we should
not delete the page from the swap cache.  This is fixed via checking
page swap count again after acquiring the page lock.

I found the race when I review the code, so I didn't trigger the race
via a test program.  If the race occurs for an anonymous page shared by
multiple processes via fork, multiple pages will be allocated and
swapped in from the swap device for the previously shared one page.
That is, the user-visible runtime effect is more memory will be used and
the access latency for the page will be higher, that is, the performance
regression.

Link: http://lkml.kernel.org/r/20170301143905.12846-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00
Kirill A. Shutemov
c2febafc67 mm: convert generic code to 5-level paging
Convert all non-architecture-specific code to 5-level paging.

It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 11:48:47 -08:00
Ingo Molnar
299300258d sched/headers: Prepare for new header dependencies before moving code to <linux/sched/task.h>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:35 +01:00
Ingo Molnar
6e84f31522 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

The APIs that are going to be moved first are:

   mm_alloc()
   __mmdrop()
   mmdrop()
   mmdrop_async_fn()
   mmdrop_async()
   mmget_not_zero()
   mmput()
   mmput_async()
   get_task_mm()
   mm_access()
   mm_release()

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:28 +01:00
Vegard Nossum
388f793455 mm: use mmget_not_zero() helper
We already have the helper, we can convert the rest of the kernel
mechanically using:

  git grep -l 'atomic_inc_not_zero.*mm_users' | xargs sed -i 's/atomic_inc_not_zero(&\(.*\)->mm_users)/mmget_not_zero\(\1\)/'

This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.

Link: http://lkml.kernel.org/r/20161218123229.22952-3-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-27 18:43:48 -08:00
Vegard Nossum
3fce371bfa mm: add new mmget() helper
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:

  git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_users);/mmget\(\1\);/'
  git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_users);/mmget\(\&\1\);/'

This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.

(Michal Hocko provided most of the kerneldoc comment.)

Link: http://lkml.kernel.org/r/20161218123229.22952-2-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-27 18:43:48 -08:00
Tim Chen
039939a650 mm/swap: enable swap slots cache usage
Initialize swap slots cache and enable it on swap on.  Drain all swap
slots on swap off.

Link: http://lkml.kernel.org/r/07cbc94882fa95d4ac3cfc50b8dce0b1ec231b93.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Tim Chen
67afa38e01 mm/swap: add cache for swap slots allocation
We add per cpu caches for swap slots that can be allocated and freed
quickly without the need to touch the swap info lock.

Two separate caches are maintained for swap slots allocated and swap
slots returned.  This is to allow the swap slots to be returned to the
global pool in a batch so they will have a chance to be coaelesced with
other slots in a cluster.  We do not reuse the slots that are returned
right away, as it may increase fragmentation of the slots.

The swap allocation cache is protected by a mutex as we may sleep when
searching for empty slots in cache.  The swap free cache is protected by
a spin lock as we cannot sleep in the free path.

We refill the swap slots cache when we run out of slots, and we disable
the swap slots cache and drain the slots if the global number of slots
fall below a low watermark threshold.  We re-enable the cache agian when
the slots available are above a high watermark.

[ying.huang@intel.com: use raw_cpu_ptr over this_cpu_ptr for swap slots access]
[tim.c.chen@linux.intel.com: add comments on locks in swap_slots.h]
  Link: http://lkml.kernel.org/r/20170118180327.GA24225@linux.intel.com
Link: http://lkml.kernel.org/r/35de301a4eaa8daa2977de6e987f2c154385eb66.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Tim Chen
7c00bafee8 mm/swap: free swap slots in batch
Add new functions that free unused swap slots in batches without the
need to reacquire swap info lock.  This improves scalability and reduce
lock contention.

Link: http://lkml.kernel.org/r/c25e0fcdfd237ec4ca7db91631d3b9f6ed23824e.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Tim Chen
36005bae20 mm/swap: allocate swap slots in batches
Currently, the swap slots are allocated one page at a time, causing
contention to the swap_info lock protecting the swap partition on every
page being swapped.

This patch adds new functions get_swap_pages and scan_swap_map_slots to
request multiple swap slots at once.  This will reduces the lock
contention on the swap_info lock.  Also scan_swap_map_slots can operate
more efficiently as swap slots often occurs in clusters close to each
other on a swap device and it is quicker to allocate them together.

Link: http://lkml.kernel.org/r/9fec2845544371f62c3763d43510045e33d286a6.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Tim Chen
e8c26ab605 mm/swap: skip readahead for unreferenced swap slots
We can avoid needlessly allocating page for swap slots that are not used
by anyone.  No pages have to be read in for these slots.

Link: http://lkml.kernel.org/r/0784b3f20b9bd3aa5552219624cb78dc4ae710c9.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Huang, Ying
4b3ef9daa4 mm/swap: split swap cache into 64MB trunks
The patch is to improve the scalability of the swap out/in via using
fine grained locks for the swap cache.  In current kernel, one address
space will be used for each swap device.  And in the common
configuration, the number of the swap device is very small (one is
typical).  This causes the heavy lock contention on the radix tree of
the address space if multiple tasks swap out/in concurrently.

But in fact, there is no dependency between pages in the swap cache.  So
that, we can split the one shared address space for each swap device
into several address spaces to reduce the lock contention.  In the
patch, the shared address space is split into 64MB trunks.  64MB is
chosen to balance the memory space usage and effect of lock contention
reduction.

The size of struct address_space on x86_64 architecture is 408B, so with
the patch, 6528B more memory will be used for every 1GB swap space on
x86_64 architecture.

One address space is still shared for the swap entries in the same 64M
trunks.  To avoid lock contention for the first round of swap space
allocation, the order of the swap clusters in the initial free clusters
list is changed.  The swap space distance between the consecutive swap
clusters in the free cluster list is at least 64M.  After the first
round of allocation, the swap clusters are expected to be freed
randomly, so the lock contention should be reduced effectively.

Link: http://lkml.kernel.org/r/735bab895e64c930581ffb0a05b661e01da82bc5.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Huang, Ying
235b621767 mm/swap: add cluster lock
This patch is to reduce the lock contention of swap_info_struct->lock
via using a more fine grained lock in swap_cluster_info for some swap
operations.  swap_info_struct->lock is heavily contended if multiple
processes reclaim pages simultaneously.  Because there is only one lock
for each swap device.  While in common configuration, there is only one
or several swap devices in the system.  The lock protects almost all
swap related operations.

In fact, many swap operations only access one element of
swap_info_struct->swap_map array.  And there is no dependency between
different elements of swap_info_struct->swap_map.  So a fine grained
lock can be used to allow parallel access to the different elements of
swap_info_struct->swap_map.

In this patch, a spinlock is added to swap_cluster_info to protect the
elements of swap_info_struct->swap_map in the swap cluster and the
fields of swap_cluster_info.  This reduced locking contention for
swap_info_struct->swap_map access greatly.

Because of the added spinlock, the size of swap_cluster_info increases
from 4 bytes to 8 bytes on the 64 bit and 32 bit system.  This will use
additional 4k RAM for every 1G swap space.

Because the size of swap_cluster_info is much smaller than the size of
the cache line (8 vs 64 on x86_64 architecture), there may be false
cache line sharing between spinlocks in swap_cluster_info.  To avoid the
false sharing in the first round of the swap cluster allocation, the
order of the swap clusters in the free clusters list is changed.  So
that, the swap_cluster_info sharing the same cache line will be placed
as far as possible.  After the first round of allocation, the order of
the clusters in free clusters list is expected to be random.  So the
false sharing should be not serious.

Compared with a previous implementation using bit_spin_lock, the
sequential swap out throughput improved about 3.2%.  Test was done on a
Xeon E5 v3 system.  The swap device used is a RAM simulated PMEM
(persistent memory) device.  To test the sequential swapping out, the
test case created 32 processes, which sequentially allocate and write to
the anonymous pages until the RAM and part of the swap device is used.

[ying.huang@intel.com: v5]
  Link: http://lkml.kernel.org/r/878tqeuuic.fsf_-_@yhuang-dev.intel.com
[minchan@kernel.org: initialize spinlock for swap_cluster_info]
  Link: http://lkml.kernel.org/r/1486434945-29753-1-git-send-email-minchan@kernel.org
[hughd@google.com: annotate nested locking for cluster lock]
  Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1702161050540.21773@eggly.anvils
Link: http://lkml.kernel.org/r/dbb860bbd825b1aaba18988015e8963f263c3f0d.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Huang, Ying
6a991fc72d mm/swap: fix kernel message in swap_info_get()
Patch series "mm/swap: Regular page swap optimizations", v5.

Times have changed.  Coming generation of Solid state Block device
latencies are getting down to sub 100 usec, which is within an order of
magnitude of DRAM, and their performance is orders of magnitude higher
than the single- spindle rotational media we've swapped to historically.

This could benefit many usage scenearios.  For example cloud providers
who overcommit their memory (as VM don't use all the memory
provisioned).  Having a fast swap will allow them to be more aggressive
in memory overcommit and fit more VMs to a platform.

In our testing [see footnote], the median latency that the kernel adds
to a page fault is 15 usec, which comes quite close to the amount that
will be contributed by the underlying I/O devices.

The software latency comes mostly from contentions on the locks
protecting the radix tree of the swap cache and also the locks
protecting the individual swap devices.  The lock contentions already
consumed 35% of cpu cycles in our test.  In the very near future,
software latency will become the bottleneck to swap performnace as block
device I/O latency gets within the shouting distance of DRAM speed.

This patch set, reduced the median page fault latency from 15 usec to 4
usec (375% reduction) for DRAM based pmem block device.

This patch (of 9):

swap_info_get() is used not only in swap free code path but also in
page_swapcount(), etc.  So the original kernel message in swap_info_get()
is not correct now.  Fix it via replacing "swap_free" to "swap_info_get"
in the message.

Link: http://lkml.kernel.org/r/9b5f8bd6266f9da978c373f2384c8044df5e262c.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Minchan Kim
f05714293a mm: support anonymous stable page
During developemnt for zram-swap asynchronous writeback, I found strange
corruption of compressed page, resulting in:

  Modules linked in: zram(E)
  CPU: 3 PID: 1520 Comm: zramd-1 Tainted: G            E   4.8.0-mm1-00320-ge0d4894c9c38-dirty #3274
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  task: ffff88007620b840 task.stack: ffff880078090000
  RIP: set_freeobj.part.43+0x1c/0x1f
  RSP: 0018:ffff880078093ca8  EFLAGS: 00010246
  RAX: 0000000000000018 RBX: ffff880076798d88 RCX: ffffffff81c408c8
  RDX: 0000000000000018 RSI: 0000000000000000 RDI: 0000000000000246
  RBP: ffff880078093cb0 R08: 0000000000000000 R09: 0000000000000000
  R10: ffff88005bc43030 R11: 0000000000001df3 R12: ffff880076798d88
  R13: 000000000005bc43 R14: ffff88007819d1b8 R15: 0000000000000001
  FS:  0000000000000000(0000) GS:ffff88007e380000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fc934048f20 CR3: 0000000077b01000 CR4: 00000000000406e0
  Call Trace:
    obj_malloc+0x22b/0x260
    zs_malloc+0x1e4/0x580
    zram_bvec_rw+0x4cd/0x830 [zram]
    page_requests_rw+0x9c/0x130 [zram]
    zram_thread+0xe6/0x173 [zram]
    kthread+0xca/0xe0
    ret_from_fork+0x25/0x30

With investigation, it reveals currently stable page doesn't support
anonymous page.  IOW, reuse_swap_page can reuse the page without waiting
writeback completion so it can overwrite page zram is compressing.

Unfortunately, zram has used per-cpu stream feature from v4.7.
It aims for increasing cache hit ratio of scratch buffer for
compressing. Downside of that approach is that zram should ask
memory space for compressed page in per-cpu context which requires
stricted gfp flag which could be failed. If so, it retries to
allocate memory space out of per-cpu context so it could get memory
this time and compress the data again, copies it to the memory space.

In this scenario, zram assumes the data should never be changed
but it is not true unless stable page supports. So, If the data is
changed under us, zram can make buffer overrun because second
compression size could be bigger than one we got in previous trial
and blindly, copy bigger size object to smaller buffer which is
buffer overrun. The overrun breaks zsmalloc free object chaining
so system goes crash like above.

I think below is same problem.
https://bugzilla.suse.com/show_bug.cgi?id=997574

Unfortunately, reuse_swap_page should be atomic so that we cannot wait on
writeback in there so the approach in this patch is simply return false if
we found it needs stable page.  Although it increases memory footprint
temporarily, it happens rarely and it should be reclaimed easily althoug
it happened.  Also, It would be better than waiting of IO completion,
which is critial path for application latency.

Fixes: da9556a236 ("zram: user per-cpu compression streams")
Link: http://lkml.kernel.org/r/20161120233015.GA14113@bbox
Link: http://lkml.kernel.org/r/1482366980-3782-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Hyeoncheol Lee <cheol.lee@lge.com>
Cc: <yjay.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: <stable@vger.kernel.org> [4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:55 -08:00
Hugh Dickins
dc644a0737 mm: add three more cond_resched() in swapoff
Add a cond_resched() in the unuse_pmd_range() loop (so as to call it
even when pmd none or trans_huge, like zap_pmd_range() does); and in the
unuse_mm() loop (since that might skip over many vmas).  shmem_unuse()
and radix_tree_locate_item() look good enough already.

Those were the obvious places, but in fact the stalls came from
find_next_to_unuse(), which sometimes scans through many unused entries.
Apply scan_swap_map()'s LATENCY_LIMIT of 256 there too; and only go off
to test frontswap_map when a used entry is found.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052155140.13021@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Eric Dumazet <edumazet@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Jann Horn
dd111be691 swapfile: fix memory corruption via malformed swapfile
When root activates a swap partition whose header has the wrong
endianness, nr_badpages elements of badpages are swabbed before
nr_badpages has been checked, leading to a buffer overrun of up to 8GB.

This normally is not a security issue because it can only be exploited
by root (more specifically, a process with CAP_SYS_ADMIN or the ability
to modify a swap file/partition), and such a process can already e.g.
modify swapped-out memory of any other userspace process on the system.

Link: http://lkml.kernel.org/r/1477949533-2509-1-git-send-email-jann@thejh.net
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-11 08:12:37 -08:00
Huang Ying
f6ab1f7f6b mm, swap: use offset of swap entry as key of swap cache
This patch is to improve the performance of swap cache operations when
the type of the swap device is not 0.  Originally, the whole swap entry
value is used as the key of the swap cache, even though there is one
radix tree for each swap device.  If the type of the swap device is not
0, the height of the radix tree of the swap cache will be increased
unnecessary, especially on 64bit architecture.  For example, for a 1GB
swap device on the x86_64 architecture, the height of the radix tree of
the swap cache is 11.  But if the offset of the swap entry is used as
the key of the swap cache, the height of the radix tree of the swap
cache is 4.  The increased height causes unnecessary radix tree
descending and increased cache footprint.

This patch reduces the height of the radix tree of the swap cache via
using the offset of the swap entry instead of the whole swap entry value
as the key of the swap cache.  In 32 processes sequential swap out test
case on a Xeon E5 v3 system with RAM disk as swap, the lock contention
for the spinlock of the swap cache is reduced from 20.15% to 12.19%,
when the type of the swap device is 1.

Use the whole swap entry as key,

  perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 10.37,
  perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 9.78,

Use the swap offset as key,

  perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 6.25,
  perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 5.94,

Link: http://lkml.kernel.org/r/1473270649-27229-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Huang Ying
6b53491598 mm, swap: add swap_cluster_list
This is a code clean up patch without functionality changes.  The
swap_cluster_list data structure and its operations are introduced to
provide some better encapsulation for the free cluster and discard
cluster list operations.  This avoid some code duplication, improved the
code readability, and reduced the total line number.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1472067356-16004-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Santosh Shilimkar
c8de641b1e mm: fix the page_swap_info() BUG_ON check
Commit 62c230bc17 ("mm: add support for a filesystem to activate
swap files and use direct_IO for writing swap pages") replaced the
swap_aops dirty hook from __set_page_dirty_no_writeback() with
swap_set_page_dirty().

For normal cases without these special SWP flags code path falls back to
__set_page_dirty_no_writeback() so the behaviour is expected to be the
same as before.

But swap_set_page_dirty() makes use of the page_swap_info() helper to
get the swap_info_struct to check for the flags like SWP_FILE,
SWP_BLKDEV etc as desired for those features.  This helper has
BUG_ON(!PageSwapCache(page)) which is racy and safe only for the
set_page_dirty_lock() path.

For the set_page_dirty() path which is often needed for cases to be
called from irq context, kswapd() can toggle the flag behind the back
while the call is getting executed when system is low on memory and
heavy swapping is ongoing.

This ends up with undesired kernel panic.

This patch just moves the check outside the helper to its users
appropriately to fix kernel panic for the described path.  Couple of
users of helpers already take care of SwapCache condition so I skipped
them.

Link: http://lkml.kernel.org/r/1473460718-31013-1-git-send-email-santosh.shilimkar@oracle.com
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joe Perches <joe@perches.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jens Axboe <axboe@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>	[4.7.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-19 15:36:17 -07:00
Vlastimil Babka
8ea1d2a198 mm, frontswap: convert frontswap_enabled to static key
I have noticed that frontswap.h first declares "frontswap_enabled" as
extern bool variable, and then overrides it with "#define
frontswap_enabled (1)" for CONFIG_FRONTSWAP=Y or (0) when disabled.  The
bool variable isn't actually instantiated anywhere.

This all looks like an unfinished attempt to make frontswap_enabled
reflect whether a backend is instantiated.  But in the current state,
all frontswap hooks call unconditionally into frontswap.c just to check
if frontswap_ops is non-NULL.  This should at least be checked inline,
but we can further eliminate the overhead when CONFIG_FRONTSWAP is
enabled and no backend registered, using a static key that is initially
disabled, and gets enabled only upon first backend registration.

Thus, checks for "frontswap_enabled" are replaced with
"frontswap_enabled()" wrapping the static key check.  There are two
exceptions:

- xen's selfballoon_process() was testing frontswap_enabled in code guarded
  by #ifdef CONFIG_FRONTSWAP, which was effectively always true when reachable.
  The patch just removes this check. Using frontswap_enabled() does not sound
  correct here, as this can be true even without xen's own backend being
  registered.

- in SYSCALL_DEFINE2(swapon), change the check to IS_ENABLED(CONFIG_FRONTSWAP)
  as it seems the bitmap allocation cannot currently be postponed until a
  backend is registered. This means that frontswap will still have some
  memory overhead by being configured, but without a backend.

After the patch, we can expect that some functions in frontswap.c are
called only when frontswap_ops is non-NULL.  Change the checks there to
VM_BUG_ONs.  While at it, convert other BUG_ONs to VM_BUG_ONs as
frontswap has been stable for some time.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1463152235-9717-1-git-send-email-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Andrea Arcangeli
6d0a07edd1 mm: thp: calculate the mapcount correctly for THP pages during WP faults
This will provide fully accuracy to the mapcount calculation in the
write protect faults, so page pinning will not get broken by false
positive copy-on-writes.

total_mapcount() isn't the right calculation needed in
reuse_swap_page(), so this introduces a page_trans_huge_mapcount()
that is effectively the full accurate return value for page_mapcount()
if dealing with Transparent Hugepages, however we only use the
page_trans_huge_mapcount() during COW faults where it strictly needed,
due to its higher runtime cost.

This also provide at practical zero cost the total_mapcount
information which is needed to know if we can still relocate the page
anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we
can reuse the page no matter if it's a pte or a pmd_trans_huge
triggering the fault, but we can only relocate the page anon_vma to
the local vma->anon_vma if we're sure it's only this "vma" mapping the
whole THP physical range.

Kirill A. Shutemov discovered the problem with moving the page
anon_vma to the local vma->anon_vma in a previous version of this
patch and another problem in the way page_move_anon_rmap() was called.

Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a
previous version, because reuse_swap_page must be a macro to call
page_trans_huge_mapcount from swap.h, so this uses a macro again
instead of an inline function. With this change at least it's a less
dangerous usage than it was before, because "page" is used only once
now, while with the previous code reuse_swap_page(page++) would have
called page_mapcount on page+1 and it would have increased page twice
instead of just once.

Dean Luick noticed an uninitialized variable that could result in a
rmap inefficiency for the non-THP case in a previous version.

Mike Marciniszyn said:

: Our RDMA tests are seeing an issue with memory locking that bisects to
: commit 61f5d698cc ("mm: re-enable THP")
:
: The test program registers two rather large MRs (512M) and RDMA
: writes data to a passive peer using the first and RDMA reads it back
: into the second MR and compares that data.  The sizes are chosen randomly
: between 0 and 1024 bytes.
:
: The test will get through a few (<= 4 iterations) and then gets a
: compare error.
:
: Tracing indicates the kernel logical addresses associated with the individual
: pages at registration ARE correct , the data in the "RDMA read response only"
: packets ARE correct.
:
: The "corruption" occurs when the packet crosse two pages that are not physically
: contiguous.   The second page reads back as zero in the program.
:
: It looks like the user VA at the point of the compare error no longer points to
: the same physical address as was registered.
:
: This patch totally resolves the issue!

Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Reviewed-by: Dean Luick <dean.luick@intel.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Tested-by: Josh Collier <josh.d.collier@intel.com>
Cc: Marc Haber <mh+linux-kernel@zugschlus.de>
Cc: <stable@vger.kernel.org>	[4.5]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-12 15:52:50 -07:00
Kirill A. Shutemov
09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Linus Torvalds
266c73b777 Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
 "This is the main drm pull request for 4.6 kernel.

  Overall the coolest thing here for me is the nouveau maxwell signed
  firmware support from NVidia, it's taken a long while to extract this
  from them.

  I also wish the ARM vendors just designed one set of display IP, ARM
  display block proliferation is definitely increasing.

  Core:
     - drm_event cleanups
     - Internal API cleanup making mode_fixup optional.
     - Apple GMUX vga switcheroo support.
     - DP AUX testing interface

  Panel:
     - Refactoring of DSI core for use over more transports.

  New driver:
     - ARM hdlcd driver

  i915:
     - FBC/PSR (framebuffer compression, panel self refresh) enabled by default.
     - Ongoing atomic display support work
     - Ongoing runtime PM work
     - Pixel clock limit checks
     - VBT DSI description support
     - GEM fixes
     - GuC firmware scheduler enhancements

  amdkfd:
     - Deferred probing fixes to avoid make file or link ordering.

  amdgpu/radeon:
     - ACP support for i2s audio support.
     - Command Submission/GPU scheduler/GPUVM optimisations
     - Initial GPU reset support for amdgpu

  vmwgfx:
     - Support for DX10 gen mipmaps
     - Pageflipping and other fixes.

  exynos:
     - Exynos5420 SoC support for FIMD
     - Exynos5422 SoC support for MIPI-DSI

  nouveau:
     - GM20x secure boot support - adds acceleration for Maxwell GPUs.
     - GM200 support
     - GM20B clock driver support
     - Power sensors work

  etnaviv:
     - Correctness fixes for GPU cache flushing
     - Better support for i.MX6 systems.

  imx-drm:
     - VBlank IRQ support
     - Fence support
     - OF endpoint support

  msm:
     - HDMI support for 8996 (snapdragon 820)
     - Adreno 430 support
     - Timestamp queries support

  virtio-gpu:
     - Fixes for Android support.

  rockchip:
     - Add support for Innosilicion HDMI

  rcar-du:
     - Support for 4 crtcs
     - R8A7795 support
     - RCar Gen 3 support

  omapdrm:
     - HDMI interlace output support
     - dma-buf import support
     - Refactoring to remove a lot of legacy code.

  tilcdc:
     - Rewrite of pageflipping code
     - dma-buf support
     - pinctrl support

  vc4:
     - HDMI modesetting bug fixes
     - Significant 3D performance improvement.

  fsl-dcu (FreeScale):
     - Lots of fixes

  tegra:
     - Two small fixes

  sti:
     - Atomic support for planes
     - Improved HDMI support"

* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (1063 commits)
  drm/amdgpu: release_pages requires linux/pagemap.h
  drm/sti: restore mode_fixup callback
  drm/amdgpu/gfx7: add MTYPE definition
  drm/amdgpu: removing BO_VAs shouldn't be interruptible
  drm/amd/powerplay: show uvd/vce power gate enablement for tonga.
  drm/amd/powerplay: show uvd/vce power gate info for fiji
  drm/amdgpu: use sched fence if possible
  drm/amdgpu: move ib.fence to job.fence
  drm/amdgpu: give a fence param to ib_free
  drm/amdgpu: include the right version of gmc header files for iceland
  drm/radeon: fix indentation.
  drm/amd/powerplay: add uvd/vce dpm enabling flag to fix the performance issue for CZ
  drm/amdgpu: switch back to 32bit hw fences v2
  drm/amdgpu: remove amdgpu_fence_is_signaled
  drm/amdgpu: drop the extra fence range check v2
  drm/amdgpu: signal fences directly in amdgpu_fence_process
  drm/amdgpu: cleanup amdgpu_fence_wait_empty v2
  drm/amdgpu: keep all fences in an RCU protected array v2
  drm/amdgpu: add number of hardware submissions to amdgpu_fence_driver_init_ring
  drm/amdgpu: RCU protected amd_sched_fence_release
  ...
2016-03-21 13:48:00 -07:00
Joe Perches
756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Dave Airlie
b039d6d025 Merge tag 'drm-intel-next-2016-01-24' of git://anongit.freedesktop.org/drm-intel into drm-next
- support for v3 vbt dsi blocks (Jani)
- improve mmio debug checks (Mika Kuoppala)
- reorg the ddi port translation table entries and related code (Ville)
- reorg gen8 interrupt handling for future platforms (Tvrtko)
- refactor tile width/height computations for framebuffers (Ville)
- kerneldoc integration for intel_pm.c (Jani)
- move default context from engines to device-global dev_priv (Dave Gordon)
- make seqno/irq ordering coherent with execlist (Chris)
- decouple internal engine number from UABI (Chris&Tvrtko)
- tons of small fixes all over, as usual

* tag 'drm-intel-next-2016-01-24' of git://anongit.freedesktop.org/drm-intel: (148 commits)
  drm/i915: Update DRIVER_DATE to 20160124
  drm/i915: Seal busy-ioctl uABI and prevent leaking of internal ids
  drm/i915: Decouple execbuf uAPI from internal implementation
  drm/i915: Use ordered seqno write interrupt generation on gen8+ execlists
  drm/i915: Limit the auto arming of mmio debugs on vlv/chv
  drm/i915: Tune down "GT register while GT waking disabled" message
  drm/i915: tidy up a few leftovers
  drm/i915: abolish separate per-ring default_context pointers
  drm/i915: simplify allocation of driver-internal requests
  drm/i915: Fix NULL plane->fb oops on SKL
  drm/i915: Do not put big intel_crtc_state on the stack
  Revert "drm/i915: Add two-stage ILK-style watermark programming (v10)"
  drm/i915: add DOC: headline to RC6 kernel-doc
  drm/i915: turn some bogus kernel-doc comments to normal comments
  drm/i915/sdvo: revert bogus kernel-doc comments to normal comments
  drm/i915/gen9: Correct max save/restore register count during gpu reset with GuC
  drm/i915: Demote user facing DMC firmware load failure message
  drm/i915: use hlist_for_each_entry
  drm/i915: skl_update_scaler() wants a rotation bitmask instead of bit number
  drm/i915: Don't reject primary plane windowing with color keying enabled on SKL+
  ...
2016-02-09 10:27:41 +10:00
Al Viro
5955102c99 wrappers for ->i_mutex access
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).

Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-22 18:04:28 -05:00
Vladimir Davydov
5ccc5abaaf mm: free swap cache aggressively if memcg swap is full
Swap cache pages are freed aggressively if swap is nearly full (>50%
currently), because otherwise we are likely to stop scanning anonymous
when we near the swap limit even if there is plenty of freeable swap cache
pages.  We should follow the same trend in case of memory cgroup, which
has its own swap limit.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
37e8435119 mm: memcontrol: charge swap to cgroup2
This patchset introduces swap accounting to cgroup2.

This patch (of 7):

In the legacy hierarchy we charge memsw, which is dubious, because:

 - memsw.limit must be >= memory.limit, so it is impossible to limit
   swap usage less than memory usage. Taking into account the fact that
   the primary limiting mechanism in the unified hierarchy is
   memory.high while memory.limit is either left unset or set to a very
   large value, moving memsw.limit knob to the unified hierarchy would
   effectively make it impossible to limit swap usage according to the
   user preference.

 - memsw.usage != memory.usage + swap.usage, because a page occupying
   both swap entry and a swap cache page is charged only once to memsw
   counter. As a result, it is possible to effectively eat up to
   memory.limit of memory pages *and* memsw.limit of swap entries, which
   looks unexpected.

That said, we should provide a different swap limiting mechanism for
cgroup2.

This patch adds mem_cgroup->swap counter, which charges the actual number
of swap entries used by a cgroup.  It is only charged in the unified
hierarchy, while the legacy hierarchy memsw logic is left intact.

The swap usage can be monitored using new memory.swap.current file and
limited using memory.swap.max.

Note, to charge swap resource properly in the unified hierarchy, we have
to make swap_entry_free uncharge swap only when ->usage reaches zero, not
just ->count, i.e.  when all references to a swap entry, including the one
taken by swap cache, are gone.  This is necessary, because otherwise
swap-in could result in uncharging swap even if the page is still in swap
cache and hence still occupies a swap entry.  At the same time, this
shouldn't break memsw counter logic, where a page is never charged twice
for using both memory and swap, because in case of legacy hierarchy we
uncharge swap on commit (see mem_cgroup_commit_charge).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Hugh Dickins
9f8bdb3f3d mm: make swapoff more robust against soft dirty
Both s390 and powerpc have hit the issue of swapoff hanging, when
CONFIG_HAVE_ARCH_SOFT_DIRTY and CONFIG_MEM_SOFT_DIRTY ifdefs were not
quite as x86_64 had them.  I think it would be much clearer if
HAVE_ARCH_SOFT_DIRTY was just a Kconfig option set by architectures to
determine whether the MEM_SOFT_DIRTY option should be offered, and the
actual code depend upon CONFIG_MEM_SOFT_DIRTY alone.

But won't embark on that change myself: instead make swapoff more
robust, by using pte_swp_clear_soft_dirty() on each pte it encounters,
without an explicit #ifdef CONFIG_MEM_SOFT_DIRTY.  That being a no-op,
whether the bit in question is defined as 0 or the asm-generic fallback
is used, unless soft dirty is fully turned on.

Why "maybe" in maybe_same_pte()? Rename it pte_same_as_swp().

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
1f25fe20a7 mm, thp: adjust conditions when we can reuse the page on WP fault
With new refcounting we will be able map the same compound page with
PTEs and PMDs.  It requires adjustment to conditions when we can reuse
the page on write-protection fault.

For PTE fault we can't reuse the page if it's part of huge page.

For PMD we can only reuse the page if nobody else maps the huge page or
it's part.  We can do it by checking page_mapcount() on each sub-page,
but it's expensive.

The cheaper way is to check page_count() to be equal 1: every mapcount
takes page reference, so this way we can guarantee, that the PMD is the
only mapping.

This approach can give false negative if somebody pinned the page, but
that doesn't affect correctness.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
f627c2f537 memcg: adjust to support new THP refcounting
As with rmap, with new refcounting we cannot rely on PageTransHuge() to
check if we need to charge size of huge page form the cgroup.  We need
to get information from caller to know whether it was mapped with PMD or
PTE.

We do uncharge when last reference on the page gone.  At that point if
we see PageTransHuge() it means we need to unchange whole huge page.

The tricky part is partial unmap -- when we try to unmap part of huge
page.  We don't do a special handing of this situation, meaning we don't
uncharge the part of huge page unless last user is gone or
split_huge_page() is triggered.  In case of cgroup memory pressure
happens the partial unmapped page will be split through shrinker.  This
should be good enough.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
d281ee6145 rmap: add argument to charge compound page
We're going to allow mapping of individual 4k pages of THP compound
page.  It means we cannot rely on PageTransHuge() check to decide if
map/unmap small page or THP.

The patch adds new argument to rmap functions to indicate whether we
want to operate on whole compound page or only the small page.

[n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Geliang Tang
0d576d20cc mm/swapfile.c: use list_for_each_entry_safe in free_swap_count_continuations
Use list_for_each_entry_safe() instead of list_for_each_safe() to
simplify the code.

Signed-off-by: Geliang Tang <geliangtang@163.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Geliang Tang
a8ae499170 mm/swapfile.c: use list_{next,first}_entry
To make the intention clearer, use list_{next,first}_entry instead of
list_entry().

Signed-off-by: Geliang Tang <geliangtang@163.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Chris Wilson
fb0fec501f mm: Export nr_swap_pages
Some modules, like i915.ko, use swappable objects and may try to swap
them out under memory pressure (via the shrinker). Before doing so, they
want to check using get_nr_swap_pages() to see if any swap space is
available as otherwise they will waste time purging the object from the
device without recovering any memory for the system. This requires the
nr_swap_pages counter to be exported to the modules.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: "Goel, Akash" <akash.goel@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: linux-mm@kvack.org
Link: http://patchwork.freedesktop.org/patch/msgid/1449244734-25733-1-git-send-email-chris@chris-wilson.co.uk
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2016-01-05 11:02:18 +01:00
Minchan Kim
8334b96221 mm: /proc/pid/smaps:: show proportional swap share of the mapping
We want to know per-process workingset size for smart memory management
on userland and we use swap(ex, zram) heavily to maximize memory
efficiency so workingset includes swap as well as RSS.

On such system, if there are lots of shared anonymous pages, it's really
hard to figure out exactly how many each process consumes memory(ie, rss
+ wap) if the system has lots of shared anonymous memory(e.g, android).

This patch introduces SwapPss field on /proc/<pid>/smaps so we can get
more exact workingset size per process.

Bongkyu tested it. Result is below.

1. 50M used swap
SwapTotal: 461976 kB
SwapFree: 411192 kB

$ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}';
48236
$ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}';
141184

2. 240M used swap
SwapTotal: 461976 kB
SwapFree: 216808 kB

$ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}';
230315
$ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}';
1387744

[akpm@linux-foundation.org: simplify kunmap_atomic() call]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Bongkyu Kim <bongkyu.kim@lge.com>
Tested-by: Bongkyu Kim <bongkyu.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Hugh Dickins
6f179af88f mm: fix potential data race in SyS_swapon
While running KernelThreadSanitizer (ktsan) on upstream kernel with
trinity, we got a few reports from SyS_swapon, here is one of them:

Read of size 8 by thread T307 (K7621):
 [<     inlined    >] SyS_swapon+0x3c0/0x1850 SYSC_swapon mm/swapfile.c:2395
 [<ffffffff812242c0>] SyS_swapon+0x3c0/0x1850 mm/swapfile.c:2345
 [<ffffffff81e97c8a>] ia32_do_call+0x1b/0x25

Looks like the swap_lock should be taken when iterating through the
swap_info array on lines 2392 - 2401: q->swap_file may be reset to
NULL by another thread before it is dereferenced for f_mapping.

But why is that iteration needed at all?  Doesn't the claim_swapfile()
which follows do all that is needed to check for a duplicate entry -
FMODE_EXCL on a bdev, testing IS_SWAPFILE under i_mutex on a regfile?

Well, not quite: bd_may_claim() allows the same "holder" to claim the
bdev again, so we do need to use a different holder than "sys_swapon";
and we should not replace appropriate -EBUSY by inappropriate -EINVAL.

Index i was reused in a cpu loop further down: renamed cpu there.

Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-08-21 02:33:07 -04:00
Miklos Szeredi
2726d56620 vfs: add seq_file_path() helper
Turn
	seq_path(..., &file->f_path, ...);
into
	seq_file_path(..., file, ...);

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-06-23 18:01:07 -04:00
Jason Low
4db0c3c298 mm: remove rest of ACCESS_ONCE() usages
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.

This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses.  This makes things cleaner, instead
of using separate/multiple sets of APIs.

Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Johannes Weiner
5d1ea48bdd mm: page_cgroup: rename file to mm/swap_cgroup.c
Now that the external page_cgroup data structure and its lookup is gone,
the only code remaining in there is swap slot accounting.

Rename it and move the conditional compilation into mm/Makefile.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:09 -08:00
Johannes Weiner
0a31bc97c8 mm: memcontrol: rewrite uncharge API
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.

Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages.  However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:

- Charging, uncharging, page migration, and charge migration all need
  to take a per-page bit spinlock as they could race with uncharging.

- Swap cache truncation happens during both swap-in and swap-out, and
  possibly repeatedly before the page is actually freed.  This means
  that the memcg swapout code is called from many contexts that make
  no sense and it has to figure out the direction from page state to
  make sure memory and memory+swap are always correctly charged.

- On page migration, the old page might be unmapped but then reused,
  so memcg code has to prevent untimely uncharging in that case.
  Because this code - which should be a simple charge transfer - is so
  special-cased, it is not reusable for replace_page_cache().

But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.

For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped.  Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge.  The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.

mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache().  However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration.  Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.

Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.

Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration.  Remove the very costly page_cgroup
lock and set pc->flags non-atomically.

[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00