Otherwise we are risking a hard error where nonlazy restart would be the right
thing to do; it's a very narrow race with mount --move and most of the time it
ends up being completely harmless, but it's possible to construct a case when
we'll get a bogus hard error instead of falling back to non-lazy walk...
For one thing, when crossing _into_ overmount of parent we need to check for
mount_lock bumps when we get NULL from __lookup_mnt() as well.
For another, and less exotically, we need to make sure that the data fetched
in follow_up_rcu() had been consistent. ->mnt_mountpoint is pinned for as
long as it is a mountpoint, but we need to check mount_lock after fetching
to verify that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
touch_atime is not RCU-safe, and so cannot be called on an RCU walk.
However, in situations where RCU-walk makes a difference, the symlink
will likely to accessed much more often than it is useful to update
the atime.
So split out the test of "Does the atime actually need to be updated"
into atime_needs_update(), and have get_link() unlazy if it finds that
it will need to do that update.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We are almost done - primitives for leaving RCU mode are aware of nd->stack
now, a new primitive for going to non-RCU mode when we have a symlink on hands
added.
The thing we are heavily relying upon is that *any* unlazy failure will be
shortly followed by terminate_walk(), with no access to nameidata in between.
So it's enough to leave the things in a state terminate_walk() would cope with.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We *can't* call that audit garbage in RCU mode - it's doing a weird
mix of allocations (GFP_NOFS, immediately followed by GFP_KERNEL)
and I'm not touching that... thing again.
So if this security sclero^Whardening feature gets triggered when
we are in RCU mode, tough - we'll fail with -ECHILD and have
everything restarted in non-RCU mode. Only to hit the same test
and fail, this time with EACCES and with (oh, rapture) an audit spew
produced.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
very simple - just make path_put() conditional on !RCU.
Note that right now it doesn't get called in RCU mode -
we leave it before getting anything into stack.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
inode_follow_link now takes an inode and rcu flag as well as the
dentry.
inode is used in preference to d_backing_inode(dentry), particularly
in RCU-walk mode.
selinux_inode_follow_link() gets dentry_has_perm() and
inode_has_perm() open-coded into it so that it can call
avc_has_perm_flags() in way that is safe if LOOKUP_RCU is set.
Calling avc_has_perm_flags() with rcu_read_lock() held means
that when avc_has_perm_noaudit calls avc_compute_av(), the attempt
to rcu_read_unlock() before calling security_compute_av() will not
actually drop the RCU read-lock.
However as security_compute_av() is completely in a read_lock()ed
region, it should be safe with the RCU read-lock held.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make use of d_backing_inode() in pathwalk to gain access to an
inode or dentry that's on a lower layer.
Signed-off-by: David Howells <dhowells@redhat.com>
Lift it from link_path_walk(), trailing_symlink(), lookup_last(),
mountpoint_last(), complete_walk() and do_last(). A _lot_ of
those suckers merge.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make trailing_symlink() return the pathname to traverse or ERR_PTR(-E...).
A subtle point is that for "magic" symlinks it returns "" now - that
leads to link_path_walk("", nd), which is immediately returning 0 and
we are back to the treatment of the last component, at whereever the
damn thing has left us.
Reduces the stack footprint - link_path_walk() called on more shallow
stack now.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* lift link_path_walk() into callers; moving it down into path_init()
had been a mistake. Stack footprint, among other things...
* do _not_ call path_cleanup() after path_init() failure; on all failure
exits out of it we have nothing for path_cleanup() to do
* have path_init() return pathname or ERR_PTR(-E...)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
we can do fdput() under rcu_read_lock() just fine; all we need to take
care of is fetching nd->inode value first.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Makes the situation much more regular - we avoid a strange state
when the element just after the top of stack is used to store
struct path of symlink, but isn't counted in nd->depth. This
is much more regular, so the normal failure exits, etc., work
fine.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Just store it in nd->stack[nd->depth].link right in pick_link().
Now that we make sure of stack expansion in pick_link(), we can
do so...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and don't open-code unlazy_walk() in there - the only reason
for that is to avoid verfication of cached nd->root, which is
trivially avoided by discarding said cached nd->root first.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
rather than letting the callers handle the jump-to-root part of
semantics, do it right in get_link() and return the rest of the
body for the caller to deal with - at that point it's treated
the same way as relative symlinks would be. And return NULL
when there's no "rest of the body" - those are treated the same
as pure jump symlink would be.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of saving name and branching to OK:, where we'll immediately restore
it, and call walk_component() with WALK_PUT|WALK_GET and nd->last_type being
LAST_BIND, which is equivalent to put_link(nd), err = 0, we can just treat
that the same way we'd treat procfs-style "jump" symlinks - do put_link(nd)
and move on.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
when cookie is NULL, put_link() is equivalent to path_put(), so
as soon as we'd set last->cookie to NULL, we can bump nd->depth and
let the normal logics in terminate_walk() to take care of cleanups.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
now that it gets nameidata, no reason to have setting LOOKUP_JUMPED on
mountpoint crossing and calling path_put_conditional() on failures
done in every caller.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
task_struct currently contains two ad-hoc members for use by the VFS:
link_count and total_link_count. These are only interesting to fs/namei.c,
so exposing them explicitly is poor layering. Incidentally, link_count
isn't used anymore, so it can just die.
This patches replaces those with a single pointer to 'struct nameidata'.
This structure represents the current filename lookup of which
there can only be one per process, and is a natural place to
store total_link_count.
This will allow the current "nameidata" argument to all
follow_link operations to be removed as current->nameidata
can be used instead in the _very_ few instances that care about
it at all.
As there are occasional circumstances where pathname lookup can
recurse, such as through kern_path_locked, we always save and old
current->nameidata (if there is one) when setting a new value, and
make sure any active link_counts are preserved.
follow_mount and follow_automount now get a 'struct nameidata *'
rather than 'int flags' so that they can directly access
total_link_count, rather than going through 'current'.
Suggested-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
instead of a single flag (!= 0 => we want to follow symlinks) pass
two bits - WALK_GET (want to follow symlinks) and WALK_PUT (put_link()
once we are done looking at the name). The latter matters only for
success exits - on failure the caller will discard everything anyway.
Suggestions for better variant are welcome; what this thing aims for
is making sure that pending put_link() is done *before* walk_component()
decides to pick a symlink up, rather than between picking it up and
acting upon it. See the next commit for payoff.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
All callers of terminate_walk() are followed by more or less
open-coded eqiuvalent of "do put_link() on everything left
in nd->stack". Better done in terminate_walk() itself, and
when we go for RCU symlink traversal we'll have to do it
there anyway.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
rationale: we'll need to have terminate_walk() do put_link() on
everything, which will mean that in some cases ..._last() will do
put_link() anyway. Easier to have them do it in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
follow_dotdot_rcu() does an equivalent of terminate_walk() on failure;
shifting it into callers makes for simpler rules and those callers
already have terminate_walk() on other failure exits.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only reason why we needed one more was that purely nested
MAXSYMLINKS symlinks could lead to path_init() using that many
entries in addition to nd->stack[0] which it left unused.
That can't happen now - path_init() starts with entry 0 (and
trailing_symlink() is called only when we'd already encountered
one symlink, so no more than MAXSYMLINKS-1 are left).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
get rid of orig_depth - we only use it on error exit to tell whether
to stop doing put_link() when depth reaches 0 (call from path_init())
or when it reaches 1 (call from trailing_symlink()). However, in
the latter case the caller would immediately follow with one more
put_link(). Just keep doing it until the depth reaches zero (and
simplify trailing_symlink() as the result).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Get rid of orig_depth checks in OK: logics. If nd->depth is
zero, we had been called from path_init() and we are done.
If it is greater than 1, we are not done, whether we'd been
called from path_init() or trailing_symlink(). And in
case when it's 1, we might have been called from path_init()
and reached the end of nested symlink (in which case
nd->stack[0].name will point to the rest of pathname and
we are not done) or from trailing_symlink(), in which case
we are done.
Just have trailing_symlink() leave NULL in nd->stack[0].name
and use that to discriminate between those cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make link_path_walk() work with any value of nd->depth on entry -
memorize it and use it in tests instead of comparing with 1.
Don't bother with increment/decrement in path_init().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
move increment of ->depth to the point where we'd discovered
that get_link() has not returned an error, adjust exits
accordingly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
nd->stack[0] is unused until the handling of trailing symlinks and
we want to get rid of that. Having fucked that transformation up
several times, I went for bloody pedantic series of provably equivalent
transformations. Sorry.
Step 1: keep nd->depth higher by one in link_path_walk() - increment upon
entry, decrement on exits, adjust the arithmetics inside and surround the
calls of functions that care about nd->depth value (nd_alloc_stack(),
get_link(), put_link()) with decrement/increment pairs.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only restriction is that on the total amount of symlinks
crossed; how they are nested does not matter
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Array of MAX_NESTED_LINKS + 1 elements put into nameidata;
what used to be a local array in link_path_walk() occupies
entries 1 .. MAX_NESTED_LINKS in it, link and cookie from
the trailing symlink handling loops - entry 0.
This is _not_ the final arrangement; just an easily verified
incremental step.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Deal with skipping leading slashes before what used to be the
recursive call. That way we can get rid of that goto completely.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
absolutely straightforward now - the only variables we need to preserve
across the recursive call are name, link and cookie, and recursion depth
is limited (and can is equal to nd->depth). So arrange an array of
triples to hold instances of those and be done with that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
reduce the number of returns in there - turn all places
where it returns zero into goto OK and places where it
returns non-zero into goto Err. The only non-trivial
detail is that all breaks in the loop are guaranteed
to be with non-zero err.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
What we do after the second walk_component() + put_link() + depth
decrement in there is exactly equivalent to what's done right
after the first walk_component(). Easy to verify and not at all
surprising, seeing that there we have just walked the last
component of nested symlink.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull the block after the if-else in the end of what used to be do-while
body into all branches there. We are almost done with the massage...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If we get ERR_PTR() from get_link(), we are guaranteed to get err != 0
when we break out of do-while, so we are going to hit if (err) return err;
shortly after it. Pull that into the if (IS_ERR(s)) body.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and strip __always_inline from follow_link() - remaining callers
don't need that.
Now link_path_walk() recursion is a direct one.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
shares space with nameidata->next, walk_component() et.al. store
the struct path of symlink instead of returning it into a variable
passed by caller.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Split a piece of fs/namei.c:follow_link() that does obtaining the link
body into a separate function. follow_link() itself is converted to
calling get_link() and then doing the body traversal (if any).
The next step will expand follow_link() call in link_path_walk()
and this helps to keep the size down...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
a) instead of storing the symlink body (via nd_set_link()) and returning
an opaque pointer later passed to ->put_link(), ->follow_link() _stores_
that opaque pointer (into void * passed by address by caller) and returns
the symlink body. Returning ERR_PTR() on error, NULL on jump (procfs magic
symlinks) and pointer to symlink body for normal symlinks. Stored pointer
is ignored in all cases except the last one.
Storing NULL for opaque pointer (or not storing it at all) means no call
of ->put_link().
b) the body used to be passed to ->put_link() implicitly (via nameidata).
Now only the opaque pointer is. In the cases when we used the symlink body
to free stuff, ->follow_link() now should store it as opaque pointer in addition
to returning it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
when we go for on-demand allocation of saved state in
link_path_walk(), we'll want nameidata to stay around
for all 3 calls of path_mountpoint().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
that avoids having nameidata on stack during the calls of
->rmdir()/->unlink() and *two* of those during the calls
of ->rename().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
it's a convenient helper, but we'll want to shift nameidata
down the call chain, so it won't be available there...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With LOOKUP_FOLLOW we unlazy and return 1; without it we either
fail with ELOOP or, for O_PATH opens, succeed. No need to mix
those cases...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When O_PATH is present, O_CREAT isn't, so symlink_ok is always equal to
(open_flags & O_PATH) && !(nd->flags & LOOKUP_FOLLOW).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
No ->inode_follow_link() methods use the nameidata arg, and
it is about to become private to namei.c.
So remove from all inode_follow_link() functions.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
path_openat() jumps to the wrong place after do_tmpfile() - it has
already done path_cleanup() (as part of path_lookupat() called by
do_tmpfile()), so doing that again can lead to double fput().
Cc: stable@vger.kernel.org # v3.11+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Fetching ->d_inode, verifying ->d_seq and finding d_is_negative() to
be true does *not* mean that inode we'd fetched had been NULL - that
holds only while ->d_seq is still unchanged.
Shift d_is_negative() checks into lookup_fast() prior to ->d_seq
verification.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Calling unlazy_walk() in walk_component() and do_last() when we find
a symlink that needs to be followed doesn't acquire a reference to vfsmount.
That's fine when the symlink is on the same vfsmount as the parent directory
(which is almost always the case), but it's not always true - one _can_
manage to bind a symlink on top of something. And in such cases we end up
with excessive mntput().
Cc: stable@vger.kernel.org # since 2.6.39
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make pathwalk use d_is_reg() rather than S_ISREG() to determine whether to
honour O_TRUNC. Since this occurs after complete_walk(), the dentry type
field cannot change and the inode pointer cannot change as we hold a ref on
the dentry, so this should be safe.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Where we have:
if (!dentry->d_inode || d_is_negative(dentry)) {
type constructions in pathwalk we should be able to eliminate the check of
d_inode and rely solely on the result of d_is_negative() or d_is_positive().
What we do have to take care to do is to read d_inode after calling a
d_is_xxx() typecheck function to get the barriering right.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
just make const char iname[] the last member and compare name->name with
name->iname instead of checking name->separate
We need to make sure that out-of-line name doesn't end up allocated adjacent
to struct filename refering to it; fortunately, it's easy to achieve - just
allocate that struct filename with one byte in ->iname[], so that ->iname[0]
will be inside the same object and thus have an address different from that
of out-of-line name [spotted by Boqun Feng <boqun.feng@gmail.com>]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert the following where appropriate:
(1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).
(2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).
(3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more
complicated than it appears as some calls should be converted to
d_can_lookup() instead. The difference is whether the directory in
question is a real dir with a ->lookup op or whether it's a fake dir with
a ->d_automount op.
In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).
Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer. In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.
However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.
There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was
intended for special directory entry types that don't have attached inodes.
The following perl+coccinelle script was used:
use strict;
my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
print "No matches\n";
exit(0);
}
my @cocci = (
'@@',
'expression E;',
'@@',
'',
'- S_ISLNK(E->d_inode->i_mode)',
'+ d_is_symlink(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISDIR(E->d_inode->i_mode)',
'+ d_is_dir(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISREG(E->d_inode->i_mode)',
'+ d_is_reg(E)' );
my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);
foreach my $file (@callers) {
chomp $file;
print "Processing ", $file, "\n";
system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
die "spatch failed";
}
[AV: overlayfs parts skipped]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In order to ensure that filenames are not released before the audit
subsystem is done with the strings there are a number of hacks built
into the fs and audit subsystems around getname() and putname(). To
say these hacks are "ugly" would be kind.
This patch removes the filename hackery in favor of a more
conventional reference count based approach. The diffstat below tells
most of the story; lots of audit/fs specific code is replaced with a
traditional reference count based approach that is easily understood,
even by those not familiar with the audit and/or fs subsystems.
CC: viro@zeniv.linux.org.uk
CC: linux-fsdevel@vger.kernel.org
Signed-off-by: Paul Moore <pmoore@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Enable recording of filenames in getname_kernel() and remove the
kludgy workaround in __audit_inode() now that we have proper filename
logging for kernel users.
CC: viro@zeniv.linux.org.uk
CC: linux-fsdevel@vger.kernel.org
Signed-off-by: Paul Moore <pmoore@redhat.com>
Reviewed-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
a) make it accept ERR_PTR() as filename (and return its PTR_ERR() in that case)
b) make it putname() the sucker in the end otherwise
simplifies life for callers...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There are several areas in the kernel that create temporary filename
objects using the following pattern:
int func(const char *name)
{
struct filename *file = { .name = name };
...
return 0;
}
... which for the most part works okay, but it causes havoc within the
audit subsystem as the filename object does not persist beyond the
lifetime of the function. This patch converts all of these temporary
filename objects into proper filename objects using getname_kernel()
and putname() which ensure that the filename object persists until the
audit subsystem is finished with it.
Also, a special thanks to Al Viro, Guenter Roeck, and Sabrina Dubroca
for helping resolve a difficult kernel panic on boot related to a
use-after-free problem in kern_path_create(); the thread can be seen
at the link below:
* https://lkml.org/lkml/2015/1/20/710
This patch includes code that was either based on, or directly written
by Al in the above thread.
CC: viro@zeniv.linux.org.uk
CC: linux@roeck-us.net
CC: sd@queasysnail.net
CC: linux-fsdevel@vger.kernel.org
Signed-off-by: Paul Moore <pmoore@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In preparation for expanded use in the kernel, make getname_kernel()
more useful by allowing it to handle any legal filename length.
Thanks to Guenter Roeck for his suggestion to substitute memcpy() for
strlcpy().
CC: linux@roeck-us.net
CC: viro@zeniv.linux.org.uk
CC: linux-fsdevel@vger.kernel.org
Signed-off-by: Paul Moore <pmoore@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs pile #2 from Al Viro:
"Next pile (and there'll be one or two more).
The large piece in this one is getting rid of /proc/*/ns/* weirdness;
among other things, it allows to (finally) make nameidata completely
opaque outside of fs/namei.c, making for easier further cleanups in
there"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
coda_venus_readdir(): use file_inode()
fs/namei.c: fold link_path_walk() call into path_init()
path_init(): don't bother with LOOKUP_PARENT in argument
fs/namei.c: new helper (path_cleanup())
path_init(): store the "base" pointer to file in nameidata itself
make default ->i_fop have ->open() fail with ENXIO
make nameidata completely opaque outside of fs/namei.c
kill proc_ns completely
take the targets of /proc/*/ns/* symlinks to separate fs
bury struct proc_ns in fs/proc
copy address of proc_ns_ops into ns_common
new helpers: ns_alloc_inum/ns_free_inum
make proc_ns_operations work with struct ns_common * instead of void *
switch the rest of proc_ns_operations to working with &...->ns
netns: switch ->get()/->put()/->install()/->inum() to working with &net->ns
make mntns ->get()/->put()/->install()/->inum() work with &mnt_ns->ns
common object embedded into various struct ....ns
This patchset adds execveat(2) for x86, and is derived from Meredydd
Luff's patch from Sept 2012 (https://lkml.org/lkml/2012/9/11/528).
The primary aim of adding an execveat syscall is to allow an
implementation of fexecve(3) that does not rely on the /proc filesystem,
at least for executables (rather than scripts). The current glibc version
of fexecve(3) is implemented via /proc, which causes problems in sandboxed
or otherwise restricted environments.
Given the desire for a /proc-free fexecve() implementation, HPA suggested
(https://lkml.org/lkml/2006/7/11/556) that an execveat(2) syscall would be
an appropriate generalization.
Also, having a new syscall means that it can take a flags argument without
back-compatibility concerns. The current implementation just defines the
AT_EMPTY_PATH and AT_SYMLINK_NOFOLLOW flags, but other flags could be
added in future -- for example, flags for new namespaces (as suggested at
https://lkml.org/lkml/2006/7/11/474).
Related history:
- https://lkml.org/lkml/2006/12/27/123 is an example of someone
realizing that fexecve() is likely to fail in a chroot environment.
- http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=514043 covered
documenting the /proc requirement of fexecve(3) in its manpage, to
"prevent other people from wasting their time".
- https://bugzilla.redhat.com/show_bug.cgi?id=241609 described a
problem where a process that did setuid() could not fexecve()
because it no longer had access to /proc/self/fd; this has since
been fixed.
This patch (of 4):
Add a new execveat(2) system call. execveat() is to execve() as openat()
is to open(): it takes a file descriptor that refers to a directory, and
resolves the filename relative to that.
In addition, if the filename is empty and AT_EMPTY_PATH is specified,
execveat() executes the file to which the file descriptor refers. This
replicates the functionality of fexecve(), which is a system call in other
UNIXen, but in Linux glibc it depends on opening "/proc/self/fd/<fd>" (and
so relies on /proc being mounted).
The filename fed to the executed program as argv[0] (or the name of the
script fed to a script interpreter) will be of the form "/dev/fd/<fd>"
(for an empty filename) or "/dev/fd/<fd>/<filename>", effectively
reflecting how the executable was found. This does however mean that
execution of a script in a /proc-less environment won't work; also, script
execution via an O_CLOEXEC file descriptor fails (as the file will not be
accessible after exec).
Based on patches by Meredydd Luff.
Signed-off-by: David Drysdale <drysdale@google.com>
Cc: Meredydd Luff <meredydd@senatehouse.org>
Cc: Shuah Khan <shuah.kh@samsung.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rich Felker <dalias@aerifal.cx>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers of path_init() proceed to do the identical cleanup when
they are done with nameidata. Don't open-code it...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull VFS fixes from Al Viro:
"A bunch of assorted fixes, most of them followups to overlayfs merge"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
ovl: initialize ->is_cursor
Return short read or 0 at end of a raw device, not EIO
isofs: don't bother with ->d_op for normal case
isofs_cmp(): we'll never see a dentry for . or ..
overlayfs: fix lockdep misannotation
ovl: fix check for cursor
overlayfs: barriers for opening upper-layer directory
rcu: Provide counterpart to rcu_dereference() for non-RCU situations
staging: android: logger: Fix log corruption regression
The man page for open(2) indicates that when O_CREAT is specified, the
'mode' argument applies only to future accesses to the file:
Note that this mode applies only to future accesses of the newly
created file; the open() call that creates a read-only file
may well return a read/write file descriptor.
The man page for open(2) implies that 'mode' is treated identically by
O_CREAT and O_TMPFILE.
O_TMPFILE, however, behaves differently:
int fd = open("/tmp", O_TMPFILE | O_RDWR, 0);
assert(fd == -1);
assert(errno == EACCES);
int fd = open("/tmp", O_TMPFILE | O_RDWR, 0600);
assert(fd > 0);
For O_CREAT, do_last() sets acc_mode to MAY_OPEN only:
if (*opened & FILE_CREATED) {
/* Don't check for write permission, don't truncate */
open_flag &= ~O_TRUNC;
will_truncate = false;
acc_mode = MAY_OPEN;
path_to_nameidata(path, nd);
goto finish_open_created;
}
But for O_TMPFILE, do_tmpfile() passes the full op->acc_mode to
may_open().
This patch lines up the behavior of O_TMPFILE with O_CREAT. After the
inode is created, may_open() is called with acc_mode = MAY_OPEN, in
do_tmpfile().
A different, but related glibc bug revealed the discrepancy:
https://sourceware.org/bugzilla/show_bug.cgi?id=17523
The glibc lazily loads the 'mode' argument of open() and openat() using
va_arg() only if O_CREAT is present in 'flags' (to support both the 2
argument and the 3 argument forms of open; same idea for openat()).
However, the glibc ignores the 'mode' argument if O_TMPFILE is in
'flags'.
On x86_64, for open(), it magically works anyway, as 'mode' is in
RDX when entering open(), and is still in RDX on SYSCALL, which is where
the kernel looks for the 3rd argument of a syscall.
But openat() is not quite so lucky: 'mode' is in RCX when entering the
glibc wrapper for openat(), while the kernel looks for the 4th argument
of a syscall in R10. Indeed, the syscall calling convention differs from
the regular calling convention in this respect on x86_64. So the kernel
sees mode = 0 when trying to use glibc openat() with O_TMPFILE, and
fails with EACCES.
Signed-off-by: Eric Rannaud <e@nanocritical.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In an overlay directory that shadows an empty lower directory, say
/mnt/a/empty102, do:
touch /mnt/a/empty102/x
unlink /mnt/a/empty102/x
rmdir /mnt/a/empty102
It's actually harmless, but needs another level of nesting between
I_MUTEX_CHILD and I_MUTEX_NORMAL.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Tested-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This adds a new RENAME_WHITEOUT flag. This flag makes rename() create a
whiteout of source. The whiteout creation is atomic relative to the
rename.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Whiteout isn't actually a new file type, but is represented as a char
device (Linus's idea) with 0/0 device number.
This has several advantages compared to introducing a new whiteout file
type:
- no userspace API changes (e.g. trivial to make backups of upper layer
filesystem, without losing whiteouts)
- no fs image format changes (you can boot an old kernel/fsck without
whiteout support and things won't break)
- implementation is trivial
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
It's already duplicated in btrfs and about to be used in overlayfs too.
Move the sticky bit check to an inline helper and call the out-of-line
helper only in the unlikly case of the sticky bit being set.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
We need to be able to check inode permissions (but not filesystem implied
permissions) for stackable filesystems. Expose this interface for overlayfs.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Add a new inode operation i_op->dentry_open(). This is for stacked filesystems
that want to return a struct file from a different filesystem.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Pull vfs updates from Al Viro:
"The big thing in this pile is Eric's unmount-on-rmdir series; we
finally have everything we need for that. The final piece of prereqs
is delayed mntput() - now filesystem shutdown always happens on
shallow stack.
Other than that, we have several new primitives for iov_iter (Matt
Wilcox, culled from his XIP-related series) pushing the conversion to
->read_iter()/ ->write_iter() a bit more, a bunch of fs/dcache.c
cleanups and fixes (including the external name refcounting, which
gives consistent behaviour of d_move() wrt procfs symlinks for long
and short names alike) and assorted cleanups and fixes all over the
place.
This is just the first pile; there's a lot of stuff from various
people that ought to go in this window. Starting with
unionmount/overlayfs mess... ;-/"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (60 commits)
fs/file_table.c: Update alloc_file() comment
vfs: Deduplicate code shared by xattr system calls operating on paths
reiserfs: remove pointless forward declaration of struct nameidata
don't need that forward declaration of struct nameidata in dcache.h anymore
take dname_external() into fs/dcache.c
let path_init() failures treated the same way as subsequent link_path_walk()
fix misuses of f_count() in ppp and netlink
ncpfs: use list_for_each_entry() for d_subdirs walk
vfs: move getname() from callers to do_mount()
gfs2_atomic_open(): skip lookups on hashed dentry
[infiniband] remove pointless assignments
gadgetfs: saner API for gadgetfs_create_file()
f_fs: saner API for ffs_sb_create_file()
jfs: don't hash direct inode
[s390] remove pointless assignment of ->f_op in vmlogrdr ->open()
ecryptfs: ->f_op is never NULL
android: ->f_op is never NULL
nouveau: __iomem misannotations
missing annotation in fs/file.c
fs: namespace: suppress 'may be used uninitialized' warnings
...
As it is, path_lookupat() and path_mounpoint() might end up leaking struct file
reference in some cases.
Spotted-by: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull security subsystem updates from James Morris.
Mostly ima, selinux, smack and key handling updates.
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (65 commits)
integrity: do zero padding of the key id
KEYS: output last portion of fingerprint in /proc/keys
KEYS: strip 'id:' from ca_keyid
KEYS: use swapped SKID for performing partial matching
KEYS: Restore partial ID matching functionality for asymmetric keys
X.509: If available, use the raw subjKeyId to form the key description
KEYS: handle error code encoded in pointer
selinux: normalize audit log formatting
selinux: cleanup error reporting in selinux_nlmsg_perm()
KEYS: Check hex2bin()'s return when generating an asymmetric key ID
ima: detect violations for mmaped files
ima: fix race condition on ima_rdwr_violation_check and process_measurement
ima: added ima_policy_flag variable
ima: return an error code from ima_add_boot_aggregate()
ima: provide 'ima_appraise=log' kernel option
ima: move keyring initialization to ima_init()
PKCS#7: Handle PKCS#7 messages that contain no X.509 certs
PKCS#7: Better handling of unsupported crypto
KEYS: Overhaul key identification when searching for asymmetric keys
KEYS: Implement binary asymmetric key ID handling
...
Now that d_invalidate can no longer fail, stop returning a useless
return code. For the few callers that checked the return code update
remove the handling of d_invalidate failure.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With the introduction of mount namespaces and bind mounts it became
possible to access files and directories that on some paths are mount
points but are not mount points on other paths. It is very confusing
when rm -rf somedir returns -EBUSY simply because somedir is mounted
somewhere else. With the addition of user namespaces allowing
unprivileged mounts this condition has gone from annoying to allowing
a DOS attack on other users in the system.
The possibility for mischief is removed by updating the vfs to support
rename, unlink and rmdir on a dentry that is a mountpoint and by
lazily unmounting mountpoints on deleted dentries.
In particular this change allows rename, unlink and rmdir system calls
on a dentry without a mountpoint in the current mount namespace to
succeed, and it allows rename, unlink, and rmdir performed on a
distributed filesystem to update the vfs cache even if when there is a
mount in some namespace on the original dentry.
There are two common patterns of maintaining mounts: Mounts on trusted
paths with the parent directory of the mount point and all ancestory
directories up to / owned by root and modifiable only by root
(i.e. /media/xxx, /dev, /dev/pts, /proc, /sys, /sys/fs/cgroup/{cpu,
cpuacct, ...}, /usr, /usr/local). Mounts on unprivileged directories
maintained by fusermount.
In the case of mounts in trusted directories owned by root and
modifiable only by root the current parent directory permissions are
sufficient to ensure a mount point on a trusted path is not removed
or renamed by anyone other than root, even if there is a context
where the there are no mount points to prevent this.
In the case of mounts in directories owned by less privileged users
races with users modifying the path of a mount point are already a
danger. fusermount already uses a combination of chdir,
/proc/<pid>/fd/NNN, and UMOUNT_NOFOLLOW to prevent these races. The
removable of global rename, unlink, and rmdir protection really adds
nothing new to consider only a widening of the attack window, and
fusermount is already safe against unprivileged users modifying the
directory simultaneously.
In principle for perfect userspace programs returning -EBUSY for
unlink, rmdir, and rename of dentires that have mounts in the local
namespace is actually unnecessary. Unfortunately not all userspace
programs are perfect so retaining -EBUSY for unlink, rmdir and rename
of dentries that have mounts in the current mount namespace plays an
important role of maintaining consistency with historical behavior and
making imperfect userspace applications hard to exploit.
v2: Remove spurious old_dentry.
v3: Optimized shrink_submounts_and_drop
Removed unsued afs label
v4: Simplified the changes to check_submounts_and_drop
Do not rename check_submounts_and_drop shrink_submounts_and_drop
Document what why we need atomicity in check_submounts_and_drop
Rely on the parent inode mutex to make d_revalidate and d_invalidate
an atomic unit.
v5: Refcount the mountpoint to detach in case of simultaneous
renames.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In preparation for allowing mountpoints to be renamed and unlinked
in remote filesystems and in other mount namespaces test if on a dentry
there is a mount in the local mount namespace before allowing it to
be renamed or unlinked.
The primary motivation here are old versions of fusermount unmount
which is not safe if the a path can be renamed or unlinked while it is
verifying the mount is safe to unmount. More recent versions are simpler
and safer by simply using UMOUNT_NOFOLLOW when unmounting a mount
in a directory owned by an arbitrary user.
Miklos Szeredi <miklos@szeredi.hu> reports this is approach is good
enough to remove concerns about new kernels mixed with old versions
of fusermount.
A secondary motivation for restrictions here is that it removing empty
directories that have non-empty mount points on them appears to
violate the rule that rmdir can not remove empty directories. As
Linus Torvalds pointed out this is useful for programs (like git) that
test if a directory is empty with rmdir.
Therefore this patch arranges to enforce the existing mount point
semantics for local mount namespace.
v2: Rewrote the test to be a drop in replacement for d_mountpoint
v3: Use bool instead of int as the return type of is_local_mountpoint
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Commit d6bb3e9075 ("vfs: simplify and shrink stack frame of
link_path_walk()") introduced build problems with GCC versions older
than 4.6 due to the initialisation of a member of an anonymous union in
struct qstr without enclosing braces.
This hits GCC bug 10676 [1] (which was fixed in GCC 4.6 by [2]), and
causes the following build error:
fs/namei.c: In function 'link_path_walk':
fs/namei.c:1778: error: unknown field 'hash_len' specified in initializer
This is worked around by adding explicit braces.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=10676
[2] https://gcc.gnu.org/viewcvs/gcc?view=revision&revision=159206
Fixes: d6bb3e9075 (vfs: simplify and shrink stack frame of link_path_walk())
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-metag@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9226b5b440 ("vfs: avoid non-forwarding large load after small
store in path lookup") made link_path_walk() always access the
"hash_len" field as a single 64-bit entity, in order to avoid mixed size
accesses to the members.
However, what I didn't notice was that that effectively means that the
whole "struct qstr this" is now basically redundant. We already
explicitly track the "const char *name", and if we just use "u64
hash_len" instead of "long len", there is nothing else left of the
"struct qstr".
We do end up wanting the "struct qstr" if we have a filesystem with a
"d_hash()" function, but that's a rare case, and we might as well then
just squirrell away the name and hash_len at that point.
End result: fewer live variables in the loop, a smaller stack frame, and
better code generation. And we don't need to pass in pointers variables
to helper functions any more, because the return value contains all the
relevant information. So this removes more lines than it adds, and the
source code is clearer too.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs fixes from Al Viro:
"double iput() on failure exit in lustre, racy removal of spliced
dentries from ->s_anon in __d_materialise_dentry() plus a bunch of
assorted RCU pathwalk fixes"
The RCU pathwalk fixes end up fixing a couple of cases where we
incorrectly dropped out of RCU walking, due to incorrect initialization
and testing of the sequence locks in some corner cases. Since dropping
out of RCU walk mode forces the slow locked accesses, those corner cases
slowed down quite dramatically.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
be careful with nd->inode in path_init() and follow_dotdot_rcu()
don't bugger nd->seq on set_root_rcu() from follow_dotdot_rcu()
fix bogus read_seqretry() checks introduced in b37199e
move the call of __d_drop(anon) into __d_materialise_unique(dentry, anon)
[fix] lustre: d_make_root() does iput() on dentry allocation failure
The performance regression that Josef Bacik reported in the pathname
lookup (see commit 99d263d4c5 "vfs: fix bad hashing of dentries") made
me look at performance stability of the dcache code, just to verify that
the problem was actually fixed. That turned up a few other problems in
this area.
There are a few cases where we exit RCU lookup mode and go to the slow
serializing case when we shouldn't, Al has fixed those and they'll come
in with the next VFS pull.
But my performance verification also shows that link_path_walk() turns
out to have a very unfortunate 32-bit store of the length and hash of
the name we look up, followed by a 64-bit read of the combined hash_len
field. That screws up the processor store to load forwarding, causing
an unnecessary hickup in this critical routine.
It's caused by the ugly calling convention for the "hash_name()"
function, and easily fixed by just making hash_name() fill in the whole
'struct qstr' rather than passing it a pointer to just the hash value.
With that, the profile for this function looks much smoother.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
in the former we simply check if dentry is still valid after picking
its ->d_inode; in the latter we fetch ->d_inode in the same places
where we fetch dentry and its ->d_seq, under the same checks.
Cc: stable@vger.kernel.org # 2.6.38+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
return the value instead, and have path_init() do the assignment. Broken by
"vfs: Fix absolute RCU path walk failures due to uninitialized seq number",
which was Cc-stable with 2.6.38+ as destination. This one should go where
it went.
To avoid dummy value returned in case when root is already set (it would do
no harm, actually, since the only caller that doesn't ignore the return value
is guaranteed to have nd->root *not* set, but it's more obvious that way),
lift the check into callers. And do the same to set_root(), to keep them
in sync.
Cc: stable@vger.kernel.org # 2.6.38+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Josef Bacik found a performance regression between 3.2 and 3.10 and
narrowed it down to commit bfcfaa77bd ("vfs: use 'unsigned long'
accesses for dcache name comparison and hashing"). He reports:
"The test case is essentially
for (i = 0; i < 1000000; i++)
mkdir("a$i");
On xfs on a fio card this goes at about 20k dir/sec with 3.2, and 12k
dir/sec with 3.10. This is because we spend waaaaay more time in
__d_lookup on 3.10 than in 3.2.
The new hashing function for strings is suboptimal for <
sizeof(unsigned long) string names (and hell even > sizeof(unsigned
long) string names that I've tested). I broke out the old hashing
function and the new one into a userspace helper to get real numbers
and this is what I'm getting:
Old hash table had 1000000 entries, 0 dupes, 0 max dupes
New hash table had 12628 entries, 987372 dupes, 900 max dupes
We had 11400 buckets with a p50 of 30 dupes, p90 of 240 dupes, p99 of 567 dupes for the new hash
My test does the hash, and then does the d_hash into a integer pointer
array the same size as the dentry hash table on my system, and then
just increments the value at the address we got to see how many
entries we overlap with.
As you can see the old hash function ended up with all 1 million
entries in their own bucket, whereas the new one they are only
distributed among ~12.5k buckets, which is why we're using so much
more CPU in __d_lookup".
The reason for this hash regression is two-fold:
- On 64-bit architectures the down-mixing of the original 64-bit
word-at-a-time hash into the final 32-bit hash value is very
simplistic and suboptimal, and just adds the two 32-bit parts
together.
In particular, because there is no bit shuffling and the mixing
boundary is also a byte boundary, similar character patterns in the
low and high word easily end up just canceling each other out.
- the old byte-at-a-time hash mixed each byte into the final hash as it
hashed the path component name, resulting in the low bits of the hash
generally being a good source of hash data. That is not true for the
word-at-a-time case, and the hash data is distributed among all the
bits.
The fix is the same in both cases: do a better job of mixing the bits up
and using as much of the hash data as possible. We already have the
"hash_32|64()" functions to do that.
Reported-by: Josef Bacik <jbacik@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Empty files and missing xattrs do not guarantee that a file was
just created. This patch passes FILE_CREATED flag to IMA to
reliably identify new files.
Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> 3.14+
Looks like the directory loop check is actually done in renameat?
Whatever, leave this out rather than trying to keep it up to date with
the code.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In REF-walk mode, ->d_manage can return -EISDIR to indicate
that the dentry is not really a mount trap (or even a mount point)
and that any mounts or any DCACHE_NEED_AUTOMOUNT flag should be
ignored.
RCU-walk mode doesn't currently support this, so if there is a dentry
with DCACHE_NEED_AUTOMOUNT set but which shouldn't be a mount-trap,
lookup_fast() will always drop in REF-walk mode.
With this patch, an -EISDIR from ->d_manage will always cause mounts
and automounts to be ignored, both in REF-walk and RCU-walk.
Bug-fixed-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ian Kent <raven@themaw.net>
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Christoph Hellwig suggests:
1) make vfs_rename call ->rename2 if it exists instead of ->rename
2) switch all filesystems that you're adding NOREPLACE support for to
use ->rename2
3) see how many ->rename instances we'll have left after a few
iterations of 2.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently umount on symlink blocks following umount:
/vz is separate mount
# ls /vz/ -al | grep test
drwxr-xr-x. 2 root root 4096 Jul 19 01:14 testdir
lrwxrwxrwx. 1 root root 11 Jul 19 01:16 testlink -> /vz/testdir
# umount -l /vz/testlink
umount: /vz/testlink: not mounted (expected)
# lsof /vz
# umount /vz
umount: /vz: device is busy. (unexpected)
In this case mountpoint_last() gets an extra refcount on path->mnt
Signed-off-by: Vasily Averin <vvs@openvz.org>
Acked-by: Ian Kent <raven@themaw.net>
Acked-by: Jeff Layton <jlayton@primarydata.com>
Cc: stable@vger.kernel.org
Signed-off-by: Christoph Hellwig <hch@lst.de>
The kernel has no concept of capabilities with respect to inodes; inodes
exist independently of namespaces. For example, inode_capable(inode,
CAP_LINUX_IMMUTABLE) would be nonsense.
This patch changes inode_capable to check for uid and gid mappings and
renames it to capable_wrt_inode_uidgid, which should make it more
obvious what it does.
Fixes CVE-2014-4014.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Serge Hallyn <serge.hallyn@ubuntu.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: stable@vger.kernel.org
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
in non-lazy walk we need to be careful about dentry switching from
negative to positive - both ->d_flags and ->d_inode are updated,
and in some places we might see only one store. The cases where
dentry has been obtained by dcache lookup with ->i_mutex held on
parent are safe - ->d_lock and ->i_mutex provide all the barriers
we need. However, there are several places where we run into
trouble:
* do_last() fetches ->d_inode, then checks ->d_flags and
assumes that inode won't be NULL unless d_is_negative() is true.
Race with e.g. creat() - we might have fetched the old value of
->d_inode (still NULL) and new value of ->d_flags (already not
DCACHE_MISS_TYPE). Lin Ming has observed and reported the resulting
oops.
* a bunch of places checks ->d_inode for being non-NULL,
then checks ->d_flags for "is it a symlink". Race with symlink(2)
in case if our CPU sees ->d_inode update first - we see non-NULL
there, but ->d_flags still contains DCACHE_MISS_TYPE instead of
DCACHE_SYMLINK_TYPE. Result: false negative on "should we follow
link here?", with subsequent unpleasantness.
Cc: stable@vger.kernel.org # 3.13 and 3.14 need that one
Reported-and-tested-by: Lin Ming <minggr@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs updates from Al Viro:
"The first vfs pile, with deep apologies for being very late in this
window.
Assorted cleanups and fixes, plus a large preparatory part of iov_iter
work. There's a lot more of that, but it'll probably go into the next
merge window - it *does* shape up nicely, removes a lot of
boilerplate, gets rid of locking inconsistencie between aio_write and
splice_write and I hope to get Kent's direct-io rewrite merged into
the same queue, but some of the stuff after this point is having
(mostly trivial) conflicts with the things already merged into
mainline and with some I want more testing.
This one passes LTP and xfstests without regressions, in addition to
usual beating. BTW, readahead02 in ltp syscalls testsuite has started
giving failures since "mm/readahead.c: fix readahead failure for
memoryless NUMA nodes and limit readahead pages" - might be a false
positive, might be a real regression..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
missing bits of "splice: fix racy pipe->buffers uses"
cifs: fix the race in cifs_writev()
ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure
kill generic_file_buffered_write()
ocfs2_file_aio_write(): switch to generic_perform_write()
ceph_aio_write(): switch to generic_perform_write()
xfs_file_buffered_aio_write(): switch to generic_perform_write()
export generic_perform_write(), start getting rid of generic_file_buffer_write()
generic_file_direct_write(): get rid of ppos argument
btrfs_file_aio_write(): get rid of ppos
kill the 5th argument of generic_file_buffered_write()
kill the 4th argument of __generic_file_aio_write()
lustre: don't open-code kernel_recvmsg()
ocfs2: don't open-code kernel_recvmsg()
drbd: don't open-code kernel_recvmsg()
constify blk_rq_map_user_iov() and friends
lustre: switch to kernel_sendmsg()
ocfs2: don't open-code kernel_sendmsg()
take iov_iter stuff to mm/iov_iter.c
process_vm_access: tidy up a bit
...
Pull file locking updates from Jeff Layton:
"Highlights:
- maintainership change for fs/locks.c. Willy's not interested in
maintaining it these days, and is OK with Bruce and I taking it.
- fix for open vs setlease race that Al ID'ed
- cleanup and consolidation of file locking code
- eliminate unneeded BUG() call
- merge of file-private lock implementation"
* 'locks-3.15' of git://git.samba.org/jlayton/linux:
locks: make locks_mandatory_area check for file-private locks
locks: fix locks_mandatory_locked to respect file-private locks
locks: require that flock->l_pid be set to 0 for file-private locks
locks: add new fcntl cmd values for handling file private locks
locks: skip deadlock detection on FL_FILE_PVT locks
locks: pass the cmd value to fcntl_getlk/getlk64
locks: report l_pid as -1 for FL_FILE_PVT locks
locks: make /proc/locks show IS_FILE_PVT locks as type "FLPVT"
locks: rename locks_remove_flock to locks_remove_file
locks: consolidate checks for compatible filp->f_mode values in setlk handlers
locks: fix posix lock range overflow handling
locks: eliminate BUG() call when there's an unexpected lock on file close
locks: add __acquires and __releases annotations to locks_start and locks_stop
locks: remove "inline" qualifier from fl_link manipulation functions
locks: clean up comment typo
locks: close potential race between setlease and open
MAINTAINERS: update entry for fs/locks.c
If flags contain RENAME_EXCHANGE then exchange source and destination files.
There's no restriction on the type of the files; e.g. a directory can be
exchanged with a symlink.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: J. Bruce Fields <bfields@redhat.com>
Add flags to security_path_rename() and security_inode_rename() hooks.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reviewed-by: J. Bruce Fields <bfields@redhat.com>
If this flag is specified and the target of the rename exists then the
rename syscall fails with EEXIST.
The VFS does the existence checking, so it is trivial to enable for most
local filesystems. This patch only enables it in ext4.
For network filesystems the VFS check is not enough as there may be a race
between a remote create and the rename, so these filesystems need to handle
this flag in their ->rename() implementations to ensure atomicity.
Andy writes about why this is useful:
"The trivial answer: to eliminate the race condition from 'mv -i'.
Another answer: there's a common pattern to atomically create a file
with contents: open a temporary file, write to it, optionally fsync
it, close it, then link(2) it to the final name, then unlink the
temporary file.
The reason to use link(2) is because it won't silently clobber the destination.
This is annoying:
- It requires an extra system call that shouldn't be necessary.
- It doesn't work on (IMO sensible) filesystems that don't support
hard links (e.g. vfat).
- It's not atomic -- there's an intermediate state where both files exist.
- It's ugly.
The new rename flag will make this totally sensible.
To be fair, on new enough kernels, you can also use O_TMPFILE and
linkat to achieve the same thing even more cleanly."
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reviewed-by: J. Bruce Fields <bfields@redhat.com>
Add new renameat2 syscall, which is the same as renameat with an added
flags argument.
Pass flags to vfs_rename() and to i_op->rename() as well.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reviewed-by: J. Bruce Fields <bfields@redhat.com>
There's actually very little difference between vfs_rename_dir() and
vfs_rename_other() so move both inline into vfs_rename() which still stays
reasonably readable.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reviewed-by: J. Bruce Fields <bfields@redhat.com>
Move the d_move() in vfs_rename_dir() up, similarly to how it's done in
vfs_rename_other(). The next patch will consolidate these two functions
and this is the only structural difference between them.
I'm not sure if doing the d_move() after the dput is even valid. But there
may be a logical explanation for that. But moving the d_move() before the
dput() (and the mutex_unlock()) should definitely not hurt.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reviewed-by: J. Bruce Fields <bfields@redhat.com>
Add d_is_dir(dentry) helper which is analogous to S_ISDIR().
To avoid confusion, rename d_is_directory() to d_can_lookup().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reviewed-by: J. Bruce Fields <bfields@redhat.com>
As Trond pointed out, you can currently deadlock yourself by setting a
file-private lock on a file that requires mandatory locking and then
trying to do I/O on it.
Avoid this problem by plumbing some knowledge of file-private locks into
the mandatory locking code. In order to do this, we must pass down
information about the struct file that's being used to
locks_verify_locked.
Reported-by: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Acked-by: J. Bruce Fields <bfields@redhat.com>
We can get false negative from __lookup_mnt() if an unrelated vfsmount
gets moved. In that case legitimize_mnt() is guaranteed to fail,
and we will fall back to non-RCU walk... unless we end up running
into a hard error on a filesystem object we wouldn't have reached
if not for that false negative. IOW, delaying that check until
the end of pathname resolution is wrong - we should recheck right
after we attempt to cross the mountpoint. We don't need to recheck
unless we see d_mountpoint() being true - in that case even if
we have just raced with mount/umount, we can simply go on as if
we'd come at the moment when the sucker wasn't a mountpoint; if we
run into a hard error as the result, it was a legitimate outcome.
__lookup_mnt() returning NULL is different in that respect, since
it might've happened due to operation on completely unrelated
mountpoint.
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Our write() system call has always been atomic in the sense that you get
the expected thread-safe contiguous write, but we haven't actually
guaranteed that concurrent writes are serialized wrt f_pos accesses, so
threads (or processes) that share a file descriptor and use "write()"
concurrently would quite likely overwrite each others data.
This violates POSIX.1-2008/SUSv4 Section XSI 2.9.7 that says:
"2.9.7 Thread Interactions with Regular File Operations
All of the following functions shall be atomic with respect to each
other in the effects specified in POSIX.1-2008 when they operate on
regular files or symbolic links: [...]"
and one of the effects is the file position update.
This unprotected file position behavior is not new behavior, and nobody
has ever cared. Until now. Yongzhi Pan reported unexpected behavior to
Michael Kerrisk that was due to this.
This resolves the issue with a f_pos-specific lock that is taken by
read/write/lseek on file descriptors that may be shared across threads
or processes.
Reported-by: Yongzhi Pan <panyongzhi@gmail.com>
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This changes 'do_execve()' to get the executable name as a 'struct
filename', and to free it when it is done. This is what the normal
users want, and it simplifies and streamlines their error handling.
The controlled lifetime of the executable name also fixes a
use-after-free problem with the trace_sched_process_exec tracepoint: the
lifetime of the passed-in string for kernel users was not at all
obvious, and the user-mode helper code used UMH_WAIT_EXEC to serialize
the pathname allocation lifetime with the execve() having finished,
which in turn meant that the trace point that happened after
mm_release() of the old process VM ended up using already free'd memory.
To solve the kernel string lifetime issue, this simply introduces
"getname_kernel()" that works like the normal user-space getname()
function, except with the source coming from kernel memory.
As Oleg points out, this also means that we could drop the tcomm[] array
from 'struct linux_binprm', since the pathname lifetime now covers
setup_new_exec(). That would be a separate cleanup.
Reported-by: Igor Zhbanov <i.zhbanov@samsung.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recent changes to retry on ESTALE in linkat
(commit 442e31ca5a)
introduced a mountpoint reference leak and a small memory
leak in case a filesystem link operation returns ESTALE
which is pretty normal for distributed filesystems like
lustre, nfs and so on.
Free old_path in such a case.
[AV: there was another missing path_put() nearby - on the previous
goto retry]
Signed-off-by: Oleg Drokin: <green@linuxhacker.ru>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Leaving getname() exported when putname() isn't is a bad idea.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Factor out the code to get an ACL either from the inode or disk from
check_acl, so that it can be used elsewhere later on.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When explicitly hashing the end of a string with the word-at-a-time
interface, we have to be careful which end of the word we pick up.
On big-endian CPUs, the upper-bits will contain the data we're after, so
ensure we generate our masks accordingly (and avoid hashing whatever
random junk may have been sitting after the string).
This patch adds a new dcache helper, bytemask_from_count, which creates
a mask appropriate for the CPU endianness.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Failure to grab reference to parent dentry should go through the
same cleanup as nd->seq mismatch. As it is, we might end up with
caller thinking it needs to path_put() nd->root, with obvious
nasty results once we'd hit that bug enough times to drive the
refcount of root dentry all the way to zero...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull audit updates from Eric Paris:
"Nothing amazing. Formatting, small bug fixes, couple of fixes where
we didn't get records due to some old VFS changes, and a change to how
we collect execve info..."
Fixed conflict in fs/exec.c as per Eric and linux-next.
* git://git.infradead.org/users/eparis/audit: (28 commits)
audit: fix type of sessionid in audit_set_loginuid()
audit: call audit_bprm() only once to add AUDIT_EXECVE information
audit: move audit_aux_data_execve contents into audit_context union
audit: remove unused envc member of audit_aux_data_execve
audit: Kill the unused struct audit_aux_data_capset
audit: do not reject all AUDIT_INODE filter types
audit: suppress stock memalloc failure warnings since already managed
audit: log the audit_names record type
audit: add child record before the create to handle case where create fails
audit: use given values in tty_audit enable api
audit: use nlmsg_len() to get message payload length
audit: use memset instead of trying to initialize field by field
audit: fix info leak in AUDIT_GET requests
audit: update AUDIT_INODE filter rule to comparator function
audit: audit feature to set loginuid immutable
audit: audit feature to only allow unsetting the loginuid
audit: allow unsetting the loginuid (with priv)
audit: remove CONFIG_AUDIT_LOGINUID_IMMUTABLE
audit: loginuid functions coding style
selinux: apply selinux checks on new audit message types
...
Pull vfs updates from Al Viro:
"All kinds of stuff this time around; some more notable parts:
- RCU'd vfsmounts handling
- new primitives for coredump handling
- files_lock is gone
- Bruce's delegations handling series
- exportfs fixes
plus misc stuff all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (101 commits)
ecryptfs: ->f_op is never NULL
locks: break delegations on any attribute modification
locks: break delegations on link
locks: break delegations on rename
locks: helper functions for delegation breaking
locks: break delegations on unlink
namei: minor vfs_unlink cleanup
locks: implement delegations
locks: introduce new FL_DELEG lock flag
vfs: take i_mutex on renamed file
vfs: rename I_MUTEX_QUOTA now that it's not used for quotas
vfs: don't use PARENT/CHILD lock classes for non-directories
vfs: pull ext4's double-i_mutex-locking into common code
exportfs: fix quadratic behavior in filehandle lookup
exportfs: better variable name
exportfs: move most of reconnect_path to helper function
exportfs: eliminate unused "noprogress" counter
exportfs: stop retrying once we race with rename/remove
exportfs: clear DISCONNECTED on all parents sooner
exportfs: more detailed comment for path_reconnect
...
Cc: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We'll need the same logic for rename and link.
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We need to break delegations on any operation that changes the set of
links pointing to an inode. Start with unlink.
Such operations also hold the i_mutex on a parent directory. Breaking a
delegation may require waiting for a timeout (by default 90 seconds) in
the case of a unresponsive NFS client. To avoid blocking all directory
operations, we therefore drop locks before waiting for the delegation.
The logic then looks like:
acquire locks
...
test for delegation; if found:
take reference on inode
release locks
wait for delegation break
drop reference on inode
retry
It is possible this could never terminate. (Even if we take precautions
to prevent another delegation being acquired on the same inode, we could
get a different inode on each retry.) But this seems very unlikely.
The initial test for a delegation happens after the lock on the target
inode is acquired, but the directory inode may have been acquired
further up the call stack. We therefore add a "struct inode **"
argument to any intervening functions, which we use to pass the inode
back up to the caller in the case it needs a delegation synchronously
broken.
Cc: David Howells <dhowells@redhat.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Dustin Kirkland <dustin.kirkland@gazzang.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We'll be using dentry->d_inode in one more place.
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
A read delegation is used by NFSv4 as a guarantee that a client can
perform local read opens without informing the server.
The open operation takes the last component of the pathname as an
argument, thus is also a lookup operation, and giving the client the
above guarantee means informing the client before we allow anything that
would change the set of names pointing to the inode.
Therefore, we need to break delegations on rename, link, and unlink.
We also need to prevent new delegations from being acquired while one of
these operations is in progress.
We could add some completely new locking for that purpose, but it's
simpler to use the i_mutex, since that's already taken by all the
operations we care about.
The single exception is rename. So, modify rename to take the i_mutex
on the file that is being renamed.
Also fix up lockdep and Documentation/filesystems/directory-locking to
reflect the change.
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The DCACHE_NEED_LOOKUP case referred to here was removed with
39e3c9553f "vfs: remove
DCACHE_NEED_LOOKUP".
There are only four real_lookup() callers and all of them pass in an
unhashed dentry just returned from d_alloc.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Put a type field into struct dentry::d_flags to indicate if the dentry is one
of the following types that relate particularly to pathwalk:
Miss (negative dentry)
Directory
"Automount" directory (defective - no i_op->lookup())
Symlink
Other (regular, socket, fifo, device)
The type field is set to one of the first five types on a dentry by calls to
__d_instantiate() and d_obtain_alias() from information in the inode (if one is
given).
The type is cleared by dentry_unlink_inode() when it reconstitutes an existing
dentry as a negative dentry.
Accessors provided are:
d_set_type(dentry, type)
d_is_directory(dentry)
d_is_autodir(dentry)
d_is_symlink(dentry)
d_is_file(dentry)
d_is_negative(dentry)
d_is_positive(dentry)
A bunch of checks in pathname resolution switched to those.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* RCU-delayed freeing of vfsmounts
* vfsmount_lock replaced with a seqlock (mount_lock)
* sequence number from mount_lock is stored in nameidata->m_seq and
used when we exit RCU mode
* new vfsmount flag - MNT_SYNC_UMOUNT. Set by umount_tree() when its
caller knows that vfsmount will have no surviving references.
* synchronize_rcu() done between unlocking namespace_sem in namespace_unlock()
and doing pending mntput().
* new helper: legitimize_mnt(mnt, seq). Checks the mount_lock sequence
number against seq, then grabs reference to mnt. Then it rechecks mount_lock
again to close the race and either returns success or drops the reference it
has acquired. The subtle point is that in case of MNT_SYNC_UMOUNT we can
simply decrement the refcount and sod off - aforementioned synchronize_rcu()
makes sure that final mntput() won't come until we leave RCU mode. We need
that, since we don't want to end up with some lazy pathwalk racing with
umount() and stealing the final mntput() from it - caller of umount() may
expect it to return only once the fs is shut down and we don't want to break
that. In other cases (i.e. with MNT_SYNC_UMOUNT absent) we have to do
full-blown mntput() in case of mount_lock sequence number mismatch happening
just as we'd grabbed the reference, but in those cases we won't be stealing
the final mntput() from anything that would care.
* mntput_no_expire() doesn't lock anything on the fast path now. Incidentally,
SMP and UP cases are handled the same way - no ifdefs there.
* normal pathname resolution does *not* do any writes to mount_lock. It does,
of course, bump the refcounts of vfsmount and dentry in the very end, but that's
it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Historically, when a syscall that creates a dentry fails, you get an audit
record that looks something like this (when trying to create a file named
"new" in "/tmp/tmp.SxiLnCcv63"):
type=PATH msg=audit(1366128956.279:965): item=0 name="/tmp/tmp.SxiLnCcv63/new" inode=2138308 dev=fd:02 mode=040700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmp_t:s15:c0.c1023
This record makes no sense since it's associating the inode information for
"/tmp/tmp.SxiLnCcv63" with the path "/tmp/tmp.SxiLnCcv63/new". The recent
patch I posted to fix the audit_inode call in do_last fixes this, by making it
look more like this:
type=PATH msg=audit(1366128765.989:13875): item=0 name="/tmp/tmp.DJ1O8V3e4f/" inode=141 dev=fd:02 mode=040700 ouid=0 ogid=0 rdev=00:00 obj=staff_u:object_r:user_tmp_t:s15:c0.c1023
While this is more correct, if the creation of the file fails, then we
have no record of the filename that the user tried to create.
This patch adds a call to audit_inode_child to may_create. This creates
an AUDIT_TYPE_CHILD_CREATE record that will sit in place until the
create succeeds. When and if the create does succeed, then this record
will be updated with the correct inode info from the create.
This fixes what was broken in commit bfcec708.
Commit 79f6530c should also be backported to stable v3.7+.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Instead of passing the direction as argument (and checking it on every
step through the hash chain), just have separate __lookup_mnt() and
__lookup_mnt_last(). And use the standard iterators...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add @path parameter to fix kernel-doc warning.
Also fix a spello/typo.
Warning(fs/namei.c:2304): No description found for parameter 'path'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If O_CREAT|O_EXCL are passed to open, then we know that either
- the file is successfully created, or
- the operation fails in some way.
So previously we set FILE_CREATED before calling ->atomic_open() so the
filesystem doesn't have to. This, however, led to bugs in the
implementation that went unnoticed when the filesystem didn't check for
existence, yet returned success. To prevent this kind of bug, require
filesystems to always explicitly set FILE_CREATED on O_CREAT|O_EXCL and
verify this in the VFS.
Also added a couple more verifications for the result of atomic_open():
- Warn if filesystem set FILE_CREATED despite the lack of O_CREAT.
- Warn if filesystem set FILE_CREATED but gave a negative dentry.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For a long time no filesystem has been using vfs_follow_link, and as seen
by recent filesystem submissions any new use is accidental as well.
Remove vfs_follow_link, document the replacement in
Documentation/filesystems/porting and also rename __vfs_follow_link
to match its only caller better.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs pile 3 (of many) from Al Viro:
"Waiman's conversion of d_path() and bits related to it,
kern_path_mountpoint(), several cleanups and fixes (exportfs
one is -stable fodder, IMO).
There definitely will be more... ;-/"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
split read_seqretry_or_unlock(), convert d_walk() to resulting primitives
dcache: Translating dentry into pathname without taking rename_lock
autofs4 - fix device ioctl mount lookup
introduce kern_path_mountpoint()
rename user_path_umountat() to user_path_mountpoint_at()
take unlazy_walk() into umount_lookup_last()
Kill indirect include of file.h from eventfd.h, use fdget() in cgroup.c
prune_super(): sb->s_op is never NULL
exportfs: don't assume that ->iterate() won't feed us too long entries
afs: get rid of redundant ->d_name.len checks
When I moved the RCU walk termination into unlazy_walk(), I didn't copy
quite all of it: for the successful RCU termination we properly add the
necessary reference counts to our temporary copy of the root path, but
for the failure case we need to make sure that any temporary root path
information is cleared out (since it does _not_ have the proper
reference counts from the RCU lookup).
We could clean up this mess by just always dropping the temporary root
information, but Al points out that that would mean that a single lookup
through symlinks could see multiple different root entries if it races
with another thread doing chroot. Not that I think we should really
care (we had that before too, back before we had a copy of the root path
in the nameidata).
Al says he has a cunning plan. In the meantime, this is the minimal fix
for the problem, even if it's not all that pretty.
Reported-by: Mace Moneta <moneta.mace@gmail.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the fix that the last two commits indirectly led up to - making
sure that we don't call dput() in a bad context on the dentries we've
looked up in RCU mode after the sequence count validation fails.
This basically expands d_rcu_to_refcount() into the callers, and then
fixes the callers to delay the dput() in the failure case until _after_
we've dropped all locks and are no longer in an RCU-locked region.
The case of 'complete_walk()' was trivial, since its failure case did
the unlock_rcu_walk() directly after the call to d_rcu_to_refcount(),
and as such that is just a pure expansion of the function with a trivial
movement of the resulting dput() to after 'unlock_rcu_walk()'.
In contrast, the unlazy_walk() case was much more complicated, because
not only does convert two different dentries from RCU to be reference
counted, but it used to not call unlock_rcu_walk() at all, and instead
just returned an error and let the caller clean everything up in
"terminate_walk()".
Happily, one of the dentries in question (called "parent" inside
unlazy_walk()) is the dentry of "nd->path", which terminate_walk() wants
a refcount to anyway for the non-RCU case.
So what the new and improved unlazy_walk() does is to first turn that
dentry into a refcounted one, and once that is set up, the error cases
can continue to use the terminate_walk() helper for cleanup, but for the
non-RCU case. Which makes it possible to drop out of RCU mode if we
actually hit the sequence number failure case.
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This simplifies the RCU to refcounting code in particular.
I was originally intending to leave this for later, but walking through
all the dput() logic (see previous commit), I realized that the dput()
"might_sleep()" check was misleadingly weak. And I removed it as
misleading, both for performance profiling and for debugging.
However, the might_sleep() debugging case is actually true: the final
dput() can indeed sleep, if the inode of the dentry that you are
releasing ends up sleeping at iput time (see dentry_iput()). So the
problem with the might_sleep() in dput() wasn't that it wasn't true, it
was that it wasn't actually testing and triggering on the interesting
case.
In particular, just about *any* dput() can indeed sleep, if you happen
to race with another thread deleting the file in question, and you then
lose the race to the be the last dput() for that file. But because it's
a very rare race, the debugging code would never trigger it in practice.
Why is this problematic? The new d_rcu_to_refcount() (see commit
15570086b5: "vfs: reimplement d_rcu_to_refcount() using
lockref_get_or_lock()") does a dput() for the failure case, and it does
it under the RCU lock. So potentially sleeping really is a bug.
But there's no way I'm going to fix this with the previous complicated
"lockref_get_or_lock()" interface. And rather than revert to the old
and crufty nested dentry locking code (which did get this right by
delaying the reference count updates until they were verified to be
safe), let's make forward progress.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs pile 1 from Al Viro:
"Unfortunately, this merge window it'll have a be a lot of small piles -
my fault, actually, for not keeping #for-next in anything that would
resemble a sane shape ;-/
This pile: assorted fixes (the first 3 are -stable fodder, IMO) and
cleanups + %pd/%pD formats (dentry/file pathname, up to 4 last
components) + several long-standing patches from various folks.
There definitely will be a lot more (starting with Miklos'
check_submount_and_drop() series)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits)
direct-io: Handle O_(D)SYNC AIO
direct-io: Implement generic deferred AIO completions
add formats for dentry/file pathnames
kvm eventfd: switch to fdget
powerpc kvm: use fdget
switch fchmod() to fdget
switch epoll_ctl() to fdget
switch copy_module_from_fd() to fdget
git simplify nilfs check for busy subtree
ibmasmfs: don't bother passing superblock when not needed
don't pass superblock to hypfs_{mkdir,create*}
don't pass superblock to hypfs_diag_create_files
don't pass superblock to hypfs_vm_create_files()
oprofile: get rid of pointless forward declarations of struct super_block
oprofilefs_create_...() do not need superblock argument
oprofilefs_mkdir() doesn't need superblock argument
don't bother with passing superblock to oprofile_create_stats_files()
oprofile: don't bother with passing superblock to ->create_files()
don't bother passing sb to oprofile_create_files()
coh901318: don't open-code simple_read_from_buffer()
...
Christopher reported a regression where he was unable to unmount a NFS
filesystem where the root had gone stale. The problem is that
d_revalidate handles the root of the filesystem differently from other
dentries, but d_weak_revalidate does not. We could simply fix this by
making d_weak_revalidate return success on IS_ROOT dentries, but there
are cases where we do want to revalidate the root of the fs.
A umount is really a special case. We generally aren't interested in
anything but the dentry and vfsmount that's attached at that point. If
the inode turns out to be stale we just don't care since the intent is
to stop using it anyway.
Try to handle this situation better by treating umount as a special
case in the lookup code. Have it resolve the parent using normal
means, and then do a lookup of the final dentry without revalidating
it. In most cases, the final lookup will come out of the dcache, but
the case where there's a trailing symlink or !LAST_NORM entry on the
end complicates things a bit.
Cc: Neil Brown <neilb@suse.de>
Reported-by: Christopher T Vogan <cvogan@us.ibm.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This moves __d_rcu_to_refcount() from <linux/dcache.h> into fs/namei.c
and re-implements it using the lockref infrastructure instead. It also
adds a lot of comments about what is actually going on, because turning
a dentry that was looked up using RCU into a long-lived reference
counted entry is one of the more subtle parts of the rcu walk.
We also used to be _particularly_ subtle in unlazy_walk() where we
re-validate both the dentry and its parent using the same sequence
count. We used to do it by nesting the locks and then verifying the
sequence count just once.
That was silly, because nested locking is expensive, but the sequence
count check is not. So this just re-validates the dentry and the parent
separately, avoiding the nested locking, and making the lockref lookup
possible.
Acked-by: Waiman Long <waiman.long@hp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This just replaces the dentry count/lock combination with the lockref
structure that contains both a count and a spinlock, and does the
mechanical conversion to use the lockref infrastructure.
There are no semantic changes here, it's purely syntactic. The
reference lockref implementation uses the spinlock exactly the same way
that the old dcache code did, and the bulk of this patch is just
expanding the internal "d_count" use in the dcache code to use
"d_lockref.count" instead.
This is purely preparation for the real change to make the reference
count updates be lockless during the 3.12 merge window.
[ As with the previous commit, this is a rewritten version of a concept
originally from Waiman, so credit goes to him, blame for any errors
goes to me.
Waiman's patch had some semantic differences for taking advantage of
the lockless update in dget_parent(), while this patch is
intentionally a pure search-and-replace change with no semantic
changes. - Linus ]
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit bb2314b479.
It wasn't necessarily wrong per se, but we're still busily discussing
the exact details of this all, so I'm going to revert it for now.
It's true that you can already do flink() through /proc and that flink()
isn't new. But as Brad Spengler points out, some secure environments do
not mount proc, and flink adds a new interface that can avoid path
lookup of the source for those kinds of environments.
We may re-do this (and even mark it for stable backporting back in 3.11
and possibly earlier) once the whole discussion about the interface is done.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every now and then someone proposes a new flink syscall, and this spawns
a long discussion of whether it would be a security problem. I think
that this is missing the point: flink is *already* allowed without
privilege as long as /proc is mounted -- it's called AT_SYMLINK_FOLLOW.
Now that O_TMPFILE is here, the ability to create a file with O_TMPFILE,
write it, and link it in is very convenient. The only problem is that
it requires that /proc be mounted so that you can do:
linkat(AT_FDCWD, "/proc/self/fd/<tmpfd>", dfd, path, AT_SYMLINK_NOFOLLOW)
This sucks -- it's much nicer to do:
linkat(tmpfd, "", dfd, path, AT_EMPTY_PATH)
Let's allow it.
If this turns out to be excessively scary, it we could instead require
that the inode in question be I_LINKABLE, but this seems pointless given
the /proc situation
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[suggested by Rasmus Villemoes] make O_DIRECTORY | O_RDWR part of O_TMPFILE;
that will fail on old kernels in a lot more cases than what I came up with.
And make sure O_CREAT doesn't get there...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instances either don't look at it at all (the majority of cases) or
only want it to find the superblock (which can be had as dentry->d_sb).
A few cases that want more are actually safe with dentry->d_inode -
the only precaution needed is the check that it hadn't been replaced with
NULL by rmdir() or by overwriting rename(), which case should be simply
treated as cache miss.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>