In bch_mca_scan(), the return value should not be the number of freed btree
nodes, but the number of pages of freed btree nodes.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Stripe size is shown as zero when no strip in back end device:
[root@ceph132 ~]# cat /sys/block/sdd/bcache/stripe_size
0.0k
Actually it should be 1T Bytes (1 << 31 sectors), but in sysfs
interface, stripe_size was changed from sectors to bytes, and move
9 bits left, so the 32 bits variable overflows.
This patch change the variable to a 64 bits type before moving bits.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When we run IO in a detached device, and run iostat to shows IO status,
normally it will show like bellow (Omitted some fields):
Device: ... avgrq-sz avgqu-sz await r_await w_await svctm %util
sdd ... 15.89 0.53 1.82 0.20 2.23 1.81 52.30
bcache0 ... 15.89 115.42 0.00 0.00 0.00 2.40 69.60
but after IO stopped, there are still very big avgqu-sz and %util
values as bellow:
Device: ... avgrq-sz avgqu-sz await r_await w_await svctm %util
bcache0 ... 0 5326.32 0.00 0.00 0.00 0.00 100.10
The reason for this issue is that, only generic_start_io_acct() called
and no generic_end_io_acct() called for detached device in
cached_dev_make_request(). See the code:
//start generic_start_io_acct()
generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
if (cached_dev_get(dc)) {
//will callback generic_end_io_acct()
}
else {
//will not call generic_end_io_acct()
}
This patch calls generic_end_io_acct() in the end of IO for detached
devices, so we can show IO state correctly.
(Modified to use GFP_NOIO in kzalloc() by Coly Li)
Changelog:
v2: fix typo.
v1: the initial version.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When there are too many I/O errors on cache device, current bcache code
will retire the whole cache set, and detach all bcache devices. But the
detached bcache devices are not stopped, which is problematic when bcache
is in writeback mode.
If the retired cache set has dirty data of backing devices, continue
writing to bcache device will write to backing device directly. If the
LBA of write request has a dirty version cached on cache device, next time
when the cache device is re-registered and backing device re-attached to
it again, the stale dirty data on cache device will be written to backing
device, and overwrite latest directly written data. This situation causes
a quite data corruption.
But we cannot simply stop all attached bcache devices when the cache set is
broken or disconnected. For example, use bcache to accelerate performance
of an email service. In such workload, if cache device is broken but no
dirty data lost, keep the bcache device alive and permit email service
continue to access user data might be a better solution for the cache
device failure.
Nix <nix@esperi.org.uk> points out the issue and provides the above example
to explain why it might be necessary to not stop bcache device for broken
cache device. Pavel Goran <via-bcache@pvgoran.name> provides a brilliant
suggestion to provide "always" and "auto" options to per-cached device
sysfs file stop_when_cache_set_failed. If cache set is retiring and the
backing device has no dirty data on cache, it should be safe to keep the
bcache device alive. In this case, if stop_when_cache_set_failed is set to
"auto", the device failure handling code will not stop this bcache device
and permit application to access the backing device with a unattached
bcache device.
Changelog:
[mlyle: edited to not break string constants across lines]
v3: fix typos pointed out by Nix.
v2: change option values of stop_when_cache_set_failed from 1/0 to
"auto"/"always".
v1: initial version, stop_when_cache_set_failed can be 0 (not stop) or 1
(always stop).
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Cc: Nix <nix@esperi.org.uk>
Cc: Pavel Goran <via-bcache@pvgoran.name>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When too many I/Os failed on cache device, bch_cache_set_error() is called
in the error handling code path to retire whole problematic cache set. If
new I/O requests continue to come and take refcount dc->count, the cache
set won't be retired immediately, this is a problem.
Further more, there are several kernel thread and self-armed kernel work
may still running after bch_cache_set_error() is called. It needs to wait
quite a while for them to stop, or they won't stop at all. They also
prevent the cache set from being retired.
The solution in this patch is, to add per cache set flag to disable I/O
request on this cache and all attached backing devices. Then new coming I/O
requests can be rejected in *_make_request() before taking refcount, kernel
threads and self-armed kernel worker can stop very fast when flags bit
CACHE_SET_IO_DISABLE is set.
Because bcache also do internal I/Os for writeback, garbage collection,
bucket allocation, journaling, this kind of I/O should be disabled after
bch_cache_set_error() is called. So closure_bio_submit() is modified to
check whether CACHE_SET_IO_DISABLE is set on cache_set->flags. If set,
closure_bio_submit() will set bio->bi_status to BLK_STS_IOERR and
return, generic_make_request() won't be called.
A sysfs interface is also added to set or clear CACHE_SET_IO_DISABLE bit
from cache_set->flags, to disable or enable cache set I/O for debugging. It
is helpful to trigger more corner case issues for failed cache device.
Changelog
v4, add wait_for_kthread_stop(), and call it before exits writeback and gc
kernel threads.
v3, change CACHE_SET_IO_DISABLE from 4 to 3, since it is bit index.
remove "bcache: " prefix when printing out kernel message.
v2, more changes by previous review,
- Use CACHE_SET_IO_DISABLE of cache_set->flags, suggested by Junhui.
- Check CACHE_SET_IO_DISABLE in bch_btree_gc() to stop a while-loop, this
is reported and inspired from origal patch of Pavel Vazharov.
v1, initial version.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Pavel Vazharov <freakpv@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
struct delayed_work writeback_rate_update in struct cache_dev is a delayed
worker to call function update_writeback_rate() in period (the interval is
defined by dc->writeback_rate_update_seconds).
When a metadate I/O error happens on cache device, bcache error handling
routine bch_cache_set_error() will call bch_cache_set_unregister() to
retire whole cache set. On the unregister code path, this delayed work is
stopped by calling cancel_delayed_work_sync(&dc->writeback_rate_update).
dc->writeback_rate_update is a special delayed work from others in bcache.
In its routine update_writeback_rate(), this delayed work is re-armed
itself. That means when cancel_delayed_work_sync() returns, this delayed
work can still be executed after several seconds defined by
dc->writeback_rate_update_seconds.
The problem is, after cancel_delayed_work_sync() returns, the cache set
unregister code path will continue and release memory of struct cache set.
Then the delayed work is scheduled to run, __update_writeback_rate()
will reference the already released cache_set memory, and trigger a NULL
pointer deference fault.
This patch introduces two more bcache device flags,
- BCACHE_DEV_WB_RUNNING
bit set: bcache device is in writeback mode and running, it is OK for
dc->writeback_rate_update to re-arm itself.
bit clear:bcache device is trying to stop dc->writeback_rate_update,
this delayed work should not re-arm itself and quit.
- BCACHE_DEV_RATE_DW_RUNNING
bit set: routine update_writeback_rate() is executing.
bit clear: routine update_writeback_rate() quits.
This patch also adds a function cancel_writeback_rate_update_dwork() to
wait for dc->writeback_rate_update quits before cancel it by calling
cancel_delayed_work_sync(). In order to avoid a deadlock by unexpected
quit dc->writeback_rate_update, after time_out seconds this function will
give up and continue to call cancel_delayed_work_sync().
And here I explain how this patch stops self re-armed delayed work properly
with the above stuffs.
update_writeback_rate() sets BCACHE_DEV_RATE_DW_RUNNING at its beginning
and clears BCACHE_DEV_RATE_DW_RUNNING at its end. Before calling
cancel_writeback_rate_update_dwork() clear flag BCACHE_DEV_WB_RUNNING.
Before calling cancel_delayed_work_sync() wait utill flag
BCACHE_DEV_RATE_DW_RUNNING is clear. So when calling
cancel_delayed_work_sync(), dc->writeback_rate_update must be already re-
armed, or quite by seeing BCACHE_DEV_WB_RUNNING cleared. In both cases
delayed work routine update_writeback_rate() won't be executed after
cancel_delayed_work_sync() returns.
Inside update_writeback_rate() before calling schedule_delayed_work(), flag
BCACHE_DEV_WB_RUNNING is checked before. If this flag is cleared, it means
someone is about to stop the delayed work. Because flag
BCACHE_DEV_RATE_DW_RUNNING is set already and cancel_delayed_work_sync()
has to wait for this flag to be cleared, we don't need to worry about race
condition here.
If update_writeback_rate() is scheduled to run after checking
BCACHE_DEV_RATE_DW_RUNNING and before calling cancel_delayed_work_sync()
in cancel_writeback_rate_update_dwork(), it is also safe. Because at this
moment BCACHE_DEV_WB_RUNNING is cleared with memory barrier. As I mentioned
previously, update_writeback_rate() will see BCACHE_DEV_WB_RUNNING is clear
and quit immediately.
Because there are more dependences inside update_writeback_rate() to struct
cache_set memory, dc->writeback_rate_update is not a simple self re-arm
delayed work. After trying many different methods (e.g. hold dc->count, or
use locks), this is the only way I can find which works to properly stop
dc->writeback_rate_update delayed work.
Changelog:
v3: change values of BCACHE_DEV_WB_RUNNING and BCACHE_DEV_RATE_DW_RUNNING
to bit index, for test_bit().
v2: Try to fix the race issue which is pointed out by Junhui.
v1: The initial version for review
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Junhui Tang <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In patch "bcache: fix cached_dev->count usage for bch_cache_set_error()",
cached_dev_get() is called when creating dc->writeback_thread, and
cached_dev_put() is called when exiting dc->writeback_thread. This
modification works well unless people detach the bcache device manually by
'echo 1 > /sys/block/bcache<N>/bcache/detach'
Because this sysfs interface only calls bch_cached_dev_detach() which wakes
up dc->writeback_thread but does not stop it. The reason is, before patch
"bcache: fix cached_dev->count usage for bch_cache_set_error()", inside
bch_writeback_thread(), if cache is not dirty after writeback,
cached_dev_put() will be called here. And in cached_dev_make_request() when
a new write request makes cache from clean to dirty, cached_dev_get() will
be called there. Since we don't operate dc->count in these locations,
refcount d->count cannot be dropped after cache becomes clean, and
cached_dev_detach_finish() won't be called to detach bcache device.
This patch fixes the issue by checking whether BCACHE_DEV_DETACHING is
set inside bch_writeback_thread(). If this bit is set and cache is clean
(no existing writeback_keys), break the while-loop, call cached_dev_put()
and quit the writeback thread.
Please note if cache is still dirty, even BCACHE_DEV_DETACHING is set the
writeback thread should continue to perform writeback, this is the original
design of manually detach.
It is safe to do the following check without locking, let me explain why,
+ if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
+ (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
If the kenrel thread does not sleep and continue to run due to conditions
are not updated in time on the running CPU core, it just consumes more CPU
cycles and has no hurt. This should-sleep-but-run is safe here. We just
focus on the should-run-but-sleep condition, which means the writeback
thread goes to sleep in mistake while it should continue to run.
1, First of all, no matter the writeback thread is hung or not,
kthread_stop() from cached_dev_detach_finish() will wake up it and
terminate by making kthread_should_stop() return true. And in normal
run time, bit on index BCACHE_DEV_DETACHING is always cleared, the
condition
!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)
is always true and can be ignored as constant value.
2, If one of the following conditions is true, the writeback thread should
go to sleep,
"!atomic_read(&dc->has_dirty)" or "!dc->writeback_running)"
each of them independently controls the writeback thread should sleep or
not, let's analyse them one by one.
2.1 condition "!atomic_read(&dc->has_dirty)"
If dc->has_dirty is set from 0 to 1 on another CPU core, bcache will
call bch_writeback_queue() immediately or call bch_writeback_add() which
indirectly calls bch_writeback_queue() too. In bch_writeback_queue(),
wake_up_process(dc->writeback_thread) is called. It sets writeback
thread's task state to TASK_RUNNING and following an implicit memory
barrier, then tries to wake up the writeback thread.
In writeback thread, its task state is set to TASK_INTERRUPTIBLE before
doing the condition check. If other CPU core sets the TASK_RUNNING state
after writeback thread setting TASK_INTERRUPTIBLE, the writeback thread
will be scheduled to run very soon because its state is not
TASK_INTERRUPTIBLE. If other CPU core sets the TASK_RUNNING state before
writeback thread setting TASK_INTERRUPTIBLE, the implict memory barrier
of wake_up_process() will make sure modification of dc->has_dirty on
other CPU core is updated and observed on the CPU core of writeback
thread. Therefore the condition check will correctly be false, and
continue writeback code without sleeping.
2.2 condition "!dc->writeback_running)"
dc->writeback_running can be changed via sysfs file, every time it is
modified, a following bch_writeback_queue() is alwasy called. So the
change is always observed on the CPU core of writeback thread. If
dc->writeback_running is changed from 0 to 1 on other CPU core, this
condition check will observe the modification and allow writeback
thread to continue to run without sleeping.
Now we can see, even without a locking protection, multiple conditions
check is safe here, no deadlock or process hang up will happen.
I compose a separte patch because that patch "bcache: fix cached_dev->count
usage for bch_cache_set_error()" already gets a "Reviewed-by:" from Hannes
Reinecke. Also this fix is not trivial and good for a separate patch.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Hannes Reinecke <hare@suse.com>
Cc: Huijun Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When bcache metadata I/O fails, bcache will call bch_cache_set_error()
to retire the whole cache set. The expected behavior to retire a cache
set is to unregister the cache set, and unregister all backing device
attached to this cache set, then remove sysfs entries of the cache set
and all attached backing devices, finally release memory of structs
cache_set, cache, cached_dev and bcache_device.
In my testing when journal I/O failure triggered by disconnected cache
device, sometimes the cache set cannot be retired, and its sysfs
entry /sys/fs/bcache/<uuid> still exits and the backing device also
references it. This is not expected behavior.
When metadata I/O failes, the call senquence to retire whole cache set is,
bch_cache_set_error()
bch_cache_set_unregister()
bch_cache_set_stop()
__cache_set_unregister() <- called as callback by calling
clousre_queue(&c->caching)
cache_set_flush() <- called as a callback when refcount
of cache_set->caching is 0
cache_set_free() <- called as a callback when refcount
of catch_set->cl is 0
bch_cache_set_release() <- called as a callback when refcount
of catch_set->kobj is 0
I find if kernel thread bch_writeback_thread() quits while-loop when
kthread_should_stop() is true and searched_full_index is false, clousre
callback cache_set_flush() set by continue_at() will never be called. The
result is, bcache fails to retire whole cache set.
cache_set_flush() will be called when refcount of closure c->caching is 0,
and in function bcache_device_detach() refcount of closure c->caching is
released to 0 by clousre_put(). In metadata error code path, function
bcache_device_detach() is called by cached_dev_detach_finish(). This is a
callback routine being called when cached_dev->count is 0. This refcount
is decreased by cached_dev_put().
The above dependence indicates, cache_set_flush() will be called when
refcount of cache_set->cl is 0, and refcount of cache_set->cl to be 0
when refcount of cache_dev->count is 0.
The reason why sometimes cache_dev->count is not 0 (when metadata I/O fails
and bch_cache_set_error() called) is, in bch_writeback_thread(), refcount
of cache_dev is not decreased properly.
In bch_writeback_thread(), cached_dev_put() is called only when
searched_full_index is true and cached_dev->writeback_keys is empty, a.k.a
there is no dirty data on cache. In most of run time it is correct, but
when bch_writeback_thread() quits the while-loop while cache is still
dirty, current code forget to call cached_dev_put() before this kernel
thread exits. This is why sometimes cache_set_flush() is not executed and
cache set fails to be retired.
The reason to call cached_dev_put() in bch_writeback_rate() is, when the
cache device changes from clean to dirty, cached_dev_get() is called, to
make sure during writeback operatiions both backing and cache devices
won't be released.
Adding following code in bch_writeback_thread() does not work,
static int bch_writeback_thread(void *arg)
}
+ if (atomic_read(&dc->has_dirty))
+ cached_dev_put()
+
return 0;
}
because writeback kernel thread can be waken up and start via sysfs entry:
echo 1 > /sys/block/bcache<N>/bcache/writeback_running
It is difficult to check whether backing device is dirty without race and
extra lock. So the above modification will introduce potential refcount
underflow in some conditions.
The correct fix is, to take cached dev refcount when creating the kernel
thread, and put it before the kernel thread exits. Then bcache does not
need to take a cached dev refcount when cache turns from clean to dirty,
or to put a cached dev refcount when cache turns from ditry to clean. The
writeback kernel thread is alwasy safe to reference data structure from
cache set, cache and cached device (because a refcount of cache device is
taken for it already), and no matter the kernel thread is stopped by I/O
errors or system reboot, cached_dev->count can always be used correctly.
The patch is simple, but understanding how it works is quite complicated.
Changelog:
v2: set dc->writeback_thread to NULL in this patch, as suggested by Hannes.
v1: initial version for review.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch has been generated as follows:
for verb in set_unlocked clear_unlocked set clear; do
replace-in-files queue_flag_${verb} blk_queue_flag_${verb%_unlocked} \
$(git grep -lw queue_flag_${verb} drivers block/bsg*)
done
Except for protecting all queue flag changes with the queue lock
this patch does not change any functionality.
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Use the blk_queue_flag_{set,clear}() functions instead of open-coding
these.
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Ming Lei <ming.lei@redhat.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch does not change any functionality.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ulf Hansson <ulf.hansson@linaro.org>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Remove the disk, partition and bdi sysfs attributes before cleaning up
the request queue associated with the disk.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 2831231d4c ("bcache: reduce cache_set devices iteration by
devices_max_used") adds c->devices_max_used to reduce iteration of
c->uuids elements, this value is updated in bcache_device_attach().
But for flash only volume, when calling flash_devs_run(), the function
bcache_device_attach() is not called yet and c->devices_max_used is not
updated. The unexpected result is, the flash only volume won't be run
by flash_devs_run().
This patch fixes the issue by iterate all c->uuids elements in
flash_devs_run(). c->devices_max_used will be updated properly when
bcache_device_attach() gets called.
[mlyle: commit subject edited for character limit]
Fixes: 2831231d4c ("bcache: reduce cache_set devices iteration by devices_max_used")
Reported-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
dec_pending() is given an error status (possibly 0) to be recorded
against a bio. It can be called several times on the one 'struct
dm_io', and it is careful to only assign a non-zero error to
io->status. However when it then assigned io->status to bio->bi_status,
it is not careful and could overwrite a genuine error status with 0.
This can happen when chained bios are in use. If a bio is chained
beneath the bio that this dm_io is handling, the child bio might
complete and set bio->bi_status before the dm_io completes.
This has been possible since chained bios were introduced in 3.14, and
has become a lot easier to trigger with commit 18a25da843 ("dm: ensure
bio submission follows a depth-first tree walk") as that commit caused
dm to start using chained bios itself.
A particular failure mode is that if a bio spans an 'error' target and a
working target, the 'error' fragment will complete instantly and set the
->bi_status, and the other fragment will normally complete a little
later, and will clear ->bi_status.
The fix is simply to only assign io_error to bio->bi_status when
io_error is not zero.
Reported-and-tested-by: Milan Broz <gmazyland@gmail.com>
Cc: stable@vger.kernel.org (v3.14+)
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
back-end device sdm has already attached a cache_set with ID
f67ebe1f-f8bc-4d73-bfe5-9dc88607f119, then try to attach with
another cache set, and it returns with an error:
[root]# cd /sys/block/sdm/bcache
[root]# echo 5ccd0a63-148e-48b8-afa2-aca9cbd6279f > attach
-bash: echo: write error: Invalid argument
After that, execute a command to modify the label of bcache
device:
[root]# echo data_disk1 > label
Then we reboot the system, when the system power on, the back-end
device can not attach to cache_set, a messages show in the log:
Feb 5 12:05:52 ceph152 kernel: [922385.508498] bcache:
bch_cached_dev_attach() couldn't find uuid for sdm in set
In sysfs_attach(), dc->sb.set_uuid was assigned to the value
which input through sysfs, no matter whether it is success
or not in bch_cached_dev_attach(). For example, If the back-end
device has already attached to an cache set, bch_cached_dev_attach()
would fail, but dc->sb.set_uuid was changed. Then modify the
label of bcache device, it will call bch_write_bdev_super(),
which would write the dc->sb.set_uuid to the super block, so we
record a wrong cache set ID in the super block, after the system
reboot, the cache set couldn't find the uuid of the back-end
device, so the bcache device couldn't exist and use any more.
In this patch, we don't assigned cache set ID to dc->sb.set_uuid
in sysfs_attach() directly, but input it into bch_cached_dev_attach(),
and assigned dc->sb.set_uuid to the cache set ID after the back-end
device attached to the cache set successful.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
I attach a back-end device to a cache set, and the cache set is not
registered yet, this back-end device did not attach successfully, and no
error returned:
[root]# echo 87859280-fec6-4bcc-20df7ca8f86b > /sys/block/sde/bcache/attach
[root]#
In sysfs_attach(), the return value "v" is initialized to "size" in
the beginning, and if no cache set exist in bch_cache_sets, the "v" value
would not change any more, and return to sysfs, sysfs regard it as success
since the "size" is a positive number.
This patch fixes this issue by assigning "v" with "-ENOENT" in the
initialization.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
dc->writeback_rate_update_seconds can be set via sysfs and its value can
be set to [1, ULONG_MAX]. It does not make sense to set such a large
value, 60 seconds is long enough value considering the default 5 seconds
works well for long time.
Because dc->writeback_rate_update is a special delayed work, it re-arms
itself inside the delayed work routine update_writeback_rate(). When
stopping it by cancel_delayed_work_sync(), there should be a timeout to
wait and make sure the re-armed delayed work is stopped too. A small max
value of dc->writeback_rate_update_seconds is also helpful to decide a
reasonable small timeout.
This patch limits sysfs interface to set dc->writeback_rate_update_seconds
in range of [1, 60] seconds, and replaces the hand-coded number by macros.
Changelog:
v2: fix a rebase typo in v4, which is pointed out by Michael Lyle.
v1: initial version.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After long time running of random small IO writing,
I reboot the machine, and after the machine power on,
I found bcache got stuck, the stack is:
[root@ceph153 ~]# cat /proc/2510/task/*/stack
[<ffffffffa06b2455>] closure_sync+0x25/0x90 [bcache]
[<ffffffffa06b6be8>] bch_journal+0x118/0x2b0 [bcache]
[<ffffffffa06b6dc7>] bch_journal_meta+0x47/0x70 [bcache]
[<ffffffffa06be8f7>] bch_prio_write+0x237/0x340 [bcache]
[<ffffffffa06a8018>] bch_allocator_thread+0x3c8/0x3d0 [bcache]
[<ffffffff810a631f>] kthread+0xcf/0xe0
[<ffffffff8164c318>] ret_from_fork+0x58/0x90
[<ffffffffffffffff>] 0xffffffffffffffff
[root@ceph153 ~]# cat /proc/2038/task/*/stack
[<ffffffffa06b1abd>] __bch_btree_map_nodes+0x12d/0x150 [bcache]
[<ffffffffa06b1bd1>] bch_btree_insert+0xf1/0x170 [bcache]
[<ffffffffa06b637f>] bch_journal_replay+0x13f/0x230 [bcache]
[<ffffffffa06c75fe>] run_cache_set+0x79a/0x7c2 [bcache]
[<ffffffffa06c0cf8>] register_bcache+0xd48/0x1310 [bcache]
[<ffffffff812f702f>] kobj_attr_store+0xf/0x20
[<ffffffff8125b216>] sysfs_write_file+0xc6/0x140
[<ffffffff811dfbfd>] vfs_write+0xbd/0x1e0
[<ffffffff811e069f>] SyS_write+0x7f/0xe0
[<ffffffff8164c3c9>] system_call_fastpath+0x16/0x1
The stack shows the register thread and allocator thread
were getting stuck when registering cache device.
I reboot the machine several times, the issue always
exsit in this machine.
I debug the code, and found the call trace as bellow:
register_bcache()
==>run_cache_set()
==>bch_journal_replay()
==>bch_btree_insert()
==>__bch_btree_map_nodes()
==>btree_insert_fn()
==>btree_split() //node need split
==>btree_check_reserve()
In btree_check_reserve(), It will check if there is enough buckets
of RESERVE_BTREE type, since allocator thread did not work yet, so
no buckets of RESERVE_BTREE type allocated, so the register thread
waits on c->btree_cache_wait, and goes to sleep.
Then the allocator thread initialized, the call trace is bellow:
bch_allocator_thread()
==>bch_prio_write()
==>bch_journal_meta()
==>bch_journal()
==>journal_wait_for_write()
In journal_wait_for_write(), It will check if journal is full by
journal_full(), but the long time random small IO writing
causes the exhaustion of journal buckets(journal.blocks_free=0),
In order to release the journal buckets,
the allocator calls btree_flush_write() to flush keys to
btree nodes, and waits on c->journal.wait until btree nodes writing
over or there has already some journal buckets space, then the
allocator thread goes to sleep. but in btree_flush_write(), since
bch_journal_replay() is not finished, so no btree nodes have journal
(condition "if (btree_current_write(b)->journal)" never satisfied),
so we got no btree node to flush, no journal bucket released,
and allocator sleep all the times.
Through the above analysis, we can see that:
1) Register thread wait for allocator thread to allocate buckets of
RESERVE_BTREE type;
2) Alloctor thread wait for register thread to replay journal, so it
can flush btree nodes and get journal bucket.
then they are all got stuck by waiting for each other.
Hua Rui provided a patch for me, by allocating some buckets of
RESERVE_BTREE type in advance, so the register thread can get bucket
when btree node splitting and no need to waiting for the allocator
thread. I tested it, it has effect, and register thread run a step
forward, but finally are still got stuck, the reason is only 8 bucket
of RESERVE_BTREE type were allocated, and in bch_journal_replay(),
after 2 btree nodes splitting, only 4 bucket of RESERVE_BTREE type left,
then btree_check_reserve() is not satisfied anymore, so it goes to sleep
again, and in the same time, alloctor thread did not flush enough btree
nodes to release a journal bucket, so they all got stuck again.
So we need to allocate more buckets of RESERVE_BTREE type in advance,
but how much is enough? By experience and test, I think it should be
as much as journal buckets. Then I modify the code as this patch,
and test in the machine, and it works.
This patch modified base on Hua Rui’s patch, and allocate more buckets
of RESERVE_BTREE type in advance to avoid register thread and allocate
thread going to wait for each other.
[patch v2] ca->sb.njournal_buckets would be 0 in the first time after
cache creation, and no journal exists, so just 8 btree buckets is OK.
Signed-off-by: Hua Rui <huarui.dev@gmail.com>
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Struct cache uses io_errors for two purposes,
- Error decay: when cache set error_decay is set, io_errors is used to
generate a small piece of delay when I/O error happens.
- I/O errors counter: in order to generate big enough value for error
decay, I/O errors counter value is stored by left shifting 20 bits (a.k.a
IO_ERROR_SHIFT).
In function bch_count_io_errors(), if I/O errors counter reaches cache set
error limit, bch_cache_set_error() will be called to retire the whold cache
set. But current code is problematic when checking the error limit, see the
following code piece from bch_count_io_errors(),
90 if (error) {
91 char buf[BDEVNAME_SIZE];
92 unsigned errors = atomic_add_return(1 << IO_ERROR_SHIFT,
93 &ca->io_errors);
94 errors >>= IO_ERROR_SHIFT;
95
96 if (errors < ca->set->error_limit)
97 pr_err("%s: IO error on %s, recovering",
98 bdevname(ca->bdev, buf), m);
99 else
100 bch_cache_set_error(ca->set,
101 "%s: too many IO errors %s",
102 bdevname(ca->bdev, buf), m);
103 }
At line 94, errors is right shifting IO_ERROR_SHIFT bits, now it is real
errors counter to compare at line 96. But ca->set->error_limit is initia-
lized with an amplified value in bch_cache_set_alloc(),
1545 c->error_limit = 8 << IO_ERROR_SHIFT;
It means by default, in bch_count_io_errors(), before 8<<20 errors happened
bch_cache_set_error() won't be called to retire the problematic cache
device. If the average request size is 64KB, it means bcache won't handle
failed device until 512GB data is requested. This is too large to be an I/O
threashold. So I believe the correct error limit should be much less.
This patch sets default cache set error limit to 8, then in
bch_count_io_errors() when errors counter reaches 8 (if it is default
value), function bch_cache_set_error() will be called to retire the whole
cache set. This patch also removes bits shifting when store or show
io_error_limit value via sysfs interface.
Nowadays most of SSDs handle internal flash failure automatically by LBA
address re-indirect mapping. If an I/O error can be observed by upper layer
code, it will be a notable error because that SSD can not re-indirect
map the problematic LBA address to an available flash block. This situation
indicates the whole SSD will be failed very soon. Therefore setting 8 as
the default io error limit value makes sense, it is enough for most of
cache devices.
Changelog:
v2: add reviewed-by from Hannes.
v1: initial version for review.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Kernel thread routine bch_writeback_thread() has the following code block,
447 down_write(&dc->writeback_lock);
448~450 if (check conditions) {
451 up_write(&dc->writeback_lock);
452 set_current_state(TASK_INTERRUPTIBLE);
453
454 if (kthread_should_stop())
455 return 0;
456
457 schedule();
458 continue;
459 }
If condition check is true, its task state is set to TASK_INTERRUPTIBLE
and call schedule() to wait for others to wake up it.
There are 2 issues in current code,
1, Task state is set to TASK_INTERRUPTIBLE after the condition checks, if
another process changes the condition and call wake_up_process(dc->
writeback_thread), then at line 452 task state is set back to
TASK_INTERRUPTIBLE, the writeback kernel thread will lose a chance to be
waken up.
2, At line 454 if kthread_should_stop() is true, writeback kernel thread
will return to kernel/kthread.c:kthread() with TASK_INTERRUPTIBLE and
call do_exit(). It is not good to enter do_exit() with task state
TASK_INTERRUPTIBLE, in following code path might_sleep() is called and a
warning message is reported by __might_sleep(): "WARNING: do not call
blocking ops when !TASK_RUNNING; state=1 set at [xxxx]".
For the first issue, task state should be set before condition checks.
Ineed because dc->writeback_lock is required when modifying all the
conditions, calling set_current_state() inside code block where dc->
writeback_lock is hold is safe. But this is quite implicit, so I still move
set_current_state() before all the condition checks.
For the second issue, frankley speaking it does not hurt when kernel thread
exits with TASK_INTERRUPTIBLE state, but this warning message scares users,
makes them feel there might be something risky with bcache and hurt their
data. Setting task state to TASK_RUNNING before returning fixes this
problem.
In alloc.c:allocator_wait(), there is also a similar issue, and is also
fixed in this patch.
Changelog:
v3: merge two similar fixes into one patch
v2: fix the race issue in v1 patch.
v1: initial buggy fix.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After long time small writing I/O running, we found the occupancy of CPU
is very high and I/O performance has been reduced by about half:
[root@ceph151 internal]# top
top - 15:51:05 up 1 day,2:43, 4 users, load average: 16.89, 15.15, 16.53
Tasks: 2063 total, 4 running, 2059 sleeping, 0 stopped, 0 zombie
%Cpu(s):4.3 us, 17.1 sy 0.0 ni, 66.1 id, 12.0 wa, 0.0 hi, 0.5 si, 0.0 st
KiB Mem : 65450044 total, 24586420 free, 38909008 used, 1954616 buff/cache
KiB Swap: 65667068 total, 65667068 free, 0 used. 25136812 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2023 root 20 0 0 0 0 S 55.1 0.0 0:04.42 kworker/11:191
14126 root 20 0 0 0 0 S 42.9 0.0 0:08.72 kworker/10:3
9292 root 20 0 0 0 0 S 30.4 0.0 1:10.99 kworker/6:1
8553 ceph 20 0 4242492 1.805g 18804 S 30.0 2.9 410:07.04 ceph-osd
12287 root 20 0 0 0 0 S 26.7 0.0 0:28.13 kworker/7:85
31019 root 20 0 0 0 0 S 26.1 0.0 1:30.79 kworker/22:1
1787 root 20 0 0 0 0 R 25.7 0.0 5:18.45 kworker/8:7
32169 root 20 0 0 0 0 S 14.5 0.0 1:01.92 kworker/23:1
21476 root 20 0 0 0 0 S 13.9 0.0 0:05.09 kworker/1:54
2204 root 20 0 0 0 0 S 12.5 0.0 1:25.17 kworker/9:10
16994 root 20 0 0 0 0 S 12.2 0.0 0:06.27 kworker/5:106
15714 root 20 0 0 0 0 R 10.9 0.0 0:01.85 kworker/19:2
9661 ceph 20 0 4246876 1.731g 18800 S 10.6 2.8 403:00.80 ceph-osd
11460 ceph 20 0 4164692 2.206g 18876 S 10.6 3.5 360:27.19 ceph-osd
9960 root 20 0 0 0 0 S 10.2 0.0 0:02.75 kworker/2:139
11699 ceph 20 0 4169244 1.920g 18920 S 10.2 3.1 355:23.67 ceph-osd
6843 ceph 20 0 4197632 1.810g 18900 S 9.6 2.9 380:08.30 ceph-osd
The kernel work consumed a lot of CPU, and I found they are running journal
work, The journal is reclaiming source and flush btree node with surprising
frequency.
Through further analysis, we found that in btree_flush_write(), we try to
get a btree node with the smallest fifo idex to flush by traverse all the
btree nodein c->bucket_hash, after we getting it, since no locker protects
it, this btree node may have been written to cache device by other works,
and if this occurred, we retry to traverse in c->bucket_hash and get
another btree node. When the problem occurrd, the retry times is very high,
and we consume a lot of CPU in looking for a appropriate btree node.
In this patch, we try to record 128 btree nodes with the smallest fifo idex
in heap, and pop one by one when we need to flush btree node. It greatly
reduces the time for the loop to find the appropriate BTREE node, and also
reduce the occupancy of CPU.
[note by mpl: this triggers a checkpatch error because of adjacent,
pre-existing style violations]
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Sometimes, Journal takes up a lot of CPU, we need statistics
to know what's the journal is doing. So this patch provide
some journal statistics:
1) reclaim: how many times the journal try to reclaim resource,
usually the journal bucket or/and the pin are exhausted.
2) flush_write: how many times the journal try to flush btree node
to cache device, usually the journal bucket are exhausted.
3) retry_flush_write: how many times the journal retry to flush
the next btree node, usually the previous tree node have been
flushed by other thread.
we show these statistic by sysfs interface. Through these statistics
We can totally see the status of journal module when the CPU is too
high.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCAAGBQJadzbSAAoJEPfTWPspceCmt5QP/jo6MSsNVevAQOE75Jje+qa/
aF/BjHBdUmmI5WtPrtoz4igaJou7M2U0s8jdsc3c7uMw8dGTKc6ujIquSEn0wevY
faJPTjWzLum3y50gwRHcrHCQIlxOe5/f9rJevW4+q76aMP3aWKjO4bgBExH+2XnA
CaT+6d40skYt20Sy428H0yhVdDAMiQYXTeg4SssWQY9AvJSSiW7ax+vmP3r5BKpV
dXHggwgzqDuMwLZG80Tfg4GHGv5qisIrqLOCxtXNYHDNb/aDmbTFTO2jPgobT8gW
N2kWxsOkBayUdPw6Nt2Wlm4toQgR5GJGH04LH2vI5p4dp4Grvx/aFGvUbT7+sN1u
g/mmqsUUnYuO5AJ8XY2s2F7ezaT6v9x8BbLHuA2vz0r5GsdFVXctZ/bXgQqkmh9i
KLtfyOPldlczclVEuKL4xai1aXLcoBzDwyLxzbFp3+eAlhcgoSqxnMsE4fCJblCU
dfShDChu1SbBD6dyGx8sol9cT48RFj2tBtpfcYxFW/NJJOQoh9FTqPQetYQxQ72c
TadEf40hmw5Q2l0Hu5pwVbKHWUP0wn0VznkAOfT4VV1ysk93oExMbjgS2qh16xEZ
oQwFDQMk3D8BXI9VwH8gUUnypkhcooMhznxSC3BQxjGn/R+byp7QEPvxSEZz/4nD
BaBSbyAU5cpof+Eaqs4B
=qeDb
-----END PGP SIGNATURE-----
Merge tag 'for-linus-20180204' of git://git.kernel.dk/linux-block
Pull more block updates from Jens Axboe:
"Most of this is fixes and not new code/features:
- skd fix from Arnd, fixing a build error dependent on sla allocator
type.
- blk-mq scheduler discard merging fixes, one from me and one from
Keith. This fixes a segment miscalculation for blk-mq-sched, where
we mistakenly think two segments are physically contigious even
though the request isn't carrying real data. Also fixes a bio-to-rq
merge case.
- Don't re-set a bit on the buffer_head flags, if it's already set.
This can cause scalability concerns on bigger machines and
workloads. From Kemi Wang.
- Add BLK_STS_DEV_RESOURCE return value to blk-mq, allowing us to
distuingish between a local (device related) resource starvation
and a global one. The latter might happen without IO being in
flight, so it has to be handled a bit differently. From Ming"
* tag 'for-linus-20180204' of git://git.kernel.dk/linux-block:
block: skd: fix incorrect linux/slab_def.h inclusion
buffer: Avoid setting buffer bits that are already set
blk-mq-sched: Enable merging discard bio into request
blk-mq: fix discard merge with scheduler attached
blk-mq: introduce BLK_STS_DEV_RESOURCE
walk; this is critical to allow forward progress without the need to
use the bioset's BIOSET_NEED_RESCUER.
- Remove DM core's BIOSET_NEED_RESCUER based dm_offload infrastructure.
- DM core cleanups and improvements to make bio-based DM more efficient
(e.g. reduced memory footprint as well leveraging per-bio-data more).
- Introduce new bio-based mode (DM_TYPE_NVME_BIO_BASED) that leverages
the more direct IO submission path in the block layer; this mode is
used by DM multipath and also optimizes targets like DM thin-pool that
stack directly on NVMe data device.
- DM multipath improvements to factor out legacy SCSI-only
(e.g. scsi_dh) code paths to allow for more optimized support for NVMe
multipath.
- A fix for DM multipath path selectors (service-time and queue-length)
to select paths in a more balanced way; largely academic but doesn't
hurt.
- Numerous DM raid target fixes and improvements.
- Add a new DM "unstriped" target that enables Intel to workaround
firmware limitations in some NVMe drives that are striped internally
(this target also works when stacked above the DM "striped" target).
- Various Documentation fixes and improvements.
- Misc. cleanups and fixes across various DM infrastructure and targets
(e.g. bufio, flakey, log-writes, snapshot).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJacgwPAAoJEMUj8QotnQNaEw0H/0XRTcg8/lRuGl46kdeI3PgR
ZxUy4XgUrCLiACWO5yCU/nKipB32+3xTlTDTBcjmaBfX8HolH147Pasb1KdHqLVC
dOWLMpjlFztb5fnuOMitJA05qQAbgRlZ52QdVk/FDo9yWicgWjQZduh8aYX53pHw
6XOYWzSFAXQcaduPdz6TLiPw479xBwIpXxQbrO09f4qt3Ub4bqknEhzFXc+6M7zl
ejmW/bG2Qg6WmsfAuaAhFTV0LpTPSEzvaq9TfR7yqFU3DvDIAi7Yh8eQinIUDo4u
txpOGoESRAMPAMKH0/UJdr/u7jTsfgJox4QEavWfnViPvkouah5KdjVOL1veZ5U=
=R3dN
-----END PGP SIGNATURE-----
Merge tag 'for-4.16/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm
Pull device mapper updates from Mike Snitzer:
- DM core fixes to ensure that bio submission follows a depth-first
tree walk; this is critical to allow forward progress without the
need to use the bioset's BIOSET_NEED_RESCUER.
- Remove DM core's BIOSET_NEED_RESCUER based dm_offload infrastructure.
- DM core cleanups and improvements to make bio-based DM more efficient
(e.g. reduced memory footprint as well leveraging per-bio-data more).
- Introduce new bio-based mode (DM_TYPE_NVME_BIO_BASED) that leverages
the more direct IO submission path in the block layer; this mode is
used by DM multipath and also optimizes targets like DM thin-pool
that stack directly on NVMe data device.
- DM multipath improvements to factor out legacy SCSI-only (e.g.
scsi_dh) code paths to allow for more optimized support for NVMe
multipath.
- A fix for DM multipath path selectors (service-time and queue-length)
to select paths in a more balanced way; largely academic but doesn't
hurt.
- Numerous DM raid target fixes and improvements.
- Add a new DM "unstriped" target that enables Intel to workaround
firmware limitations in some NVMe drives that are striped internally
(this target also works when stacked above the DM "striped" target).
- Various Documentation fixes and improvements.
- Misc cleanups and fixes across various DM infrastructure and targets
(e.g. bufio, flakey, log-writes, snapshot).
* tag 'for-4.16/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: (69 commits)
dm cache: Documentation: update default migration_throttling value
dm mpath selector: more evenly distribute ties
dm unstripe: fix target length versus number of stripes size check
dm thin: fix trailing semicolon in __remap_and_issue_shared_cell
dm table: fix NVMe bio-based dm_table_determine_type() validation
dm: various cleanups to md->queue initialization code
dm mpath: delay the retry of a request if the target responded as busy
dm mpath: return DM_MAPIO_DELAY_REQUEUE if QUEUE_IO or PG_INIT_REQUIRED
dm mpath: return DM_MAPIO_REQUEUE on blk-mq rq allocation failure
dm log writes: fix max length used for kstrndup
dm: backfill missing calls to mutex_destroy()
dm snapshot: use mutex instead of rw_semaphore
dm flakey: check for null arg_name in parse_features()
dm thin: extend thinpool status format string with omitted fields
dm thin: fixes in thin-provisioning.txt
dm thin: document representation of <highest mapped sector> when there is none
dm thin: fix documentation relative to low water mark threshold
dm cache: be consistent in specifying sectors and SI units in cache.txt
dm cache: delete obsoleted paragraph in cache.txt
dm cache: fix grammar in cache-policies.txt
...
Pull MD updates from Shaohua Li:
"Some small fixes for MD:
- fix raid5-cache potential problems if raid5 cache isn't fully
recovered
- fix a wait-within-wait warning in raid1/10
- make raid5-PPL support disks with writeback cache enabled"
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md:
raid5-ppl: PPL support for disks with write-back cache enabled
md/r5cache: print more info of log recovery
md/raid1,raid10: silence warning about wait-within-wait
md: introduce new personality funciton start()
This status is returned from driver to block layer if device related
resource is unavailable, but driver can guarantee that IO dispatch
will be triggered in future when the resource is available.
Convert some drivers to return BLK_STS_DEV_RESOURCE. Also, if driver
returns BLK_STS_RESOURCE and SCHED_RESTART is set, rerun queue after
a delay (BLK_MQ_DELAY_QUEUE) to avoid IO stalls. BLK_MQ_DELAY_QUEUE is
3 ms because both scsi-mq and nvmefc are using that magic value.
If a driver can make sure there is in-flight IO, it is safe to return
BLK_STS_DEV_RESOURCE because:
1) If all in-flight IOs complete before examining SCHED_RESTART in
blk_mq_dispatch_rq_list(), SCHED_RESTART must be cleared, so queue
is run immediately in this case by blk_mq_dispatch_rq_list();
2) if there is any in-flight IO after/when examining SCHED_RESTART
in blk_mq_dispatch_rq_list():
- if SCHED_RESTART isn't set, queue is run immediately as handled in 1)
- otherwise, this request will be dispatched after any in-flight IO is
completed via blk_mq_sched_restart()
3) if SCHED_RESTART is set concurently in context because of
BLK_STS_RESOURCE, blk_mq_delay_run_hw_queue() will cover the above two
cases and make sure IO hang can be avoided.
One invariant is that queue will be rerun if SCHED_RESTART is set.
Suggested-by: Jens Axboe <axboe@kernel.dk>
Tested-by: Laurence Oberman <loberman@redhat.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull poll annotations from Al Viro:
"This introduces a __bitwise type for POLL### bitmap, and propagates
the annotations through the tree. Most of that stuff is as simple as
'make ->poll() instances return __poll_t and do the same to local
variables used to hold the future return value'.
Some of the obvious brainos found in process are fixed (e.g. POLLIN
misspelled as POLL_IN). At that point the amount of sparse warnings is
low and most of them are for genuine bugs - e.g. ->poll() instance
deciding to return -EINVAL instead of a bitmap. I hadn't touched those
in this series - it's large enough as it is.
Another problem it has caught was eventpoll() ABI mess; select.c and
eventpoll.c assumed that corresponding POLL### and EPOLL### were
equal. That's true for some, but not all of them - EPOLL### are
arch-independent, but POLL### are not.
The last commit in this series separates userland POLL### values from
the (now arch-independent) kernel-side ones, converting between them
in the few places where they are copied to/from userland. AFAICS, this
is the least disruptive fix preserving poll(2) ABI and making epoll()
work on all architectures.
As it is, it's simply broken on sparc - try to give it EPOLLWRNORM and
it will trigger only on what would've triggered EPOLLWRBAND on other
architectures. EPOLLWRBAND and EPOLLRDHUP, OTOH, are never triggered
at all on sparc. With this patch they should work consistently on all
architectures"
* 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
make kernel-side POLL... arch-independent
eventpoll: no need to mask the result of epi_item_poll() again
eventpoll: constify struct epoll_event pointers
debugging printk in sg_poll() uses %x to print POLL... bitmap
annotate poll(2) guts
9p: untangle ->poll() mess
->si_band gets POLL... bitmap stored into a user-visible long field
ring_buffer_poll_wait() return value used as return value of ->poll()
the rest of drivers/*: annotate ->poll() instances
media: annotate ->poll() instances
fs: annotate ->poll() instances
ipc, kernel, mm: annotate ->poll() instances
net: annotate ->poll() instances
apparmor: annotate ->poll() instances
tomoyo: annotate ->poll() instances
sound: annotate ->poll() instances
acpi: annotate ->poll() instances
crypto: annotate ->poll() instances
block: annotate ->poll() instances
x86: annotate ->poll() instances
...
Pull block updates from Jens Axboe:
"This is the main pull request for block IO related changes for the
4.16 kernel. Nothing major in this pull request, but a good amount of
improvements and fixes all over the map. This contains:
- BFQ improvements, fixes, and cleanups from Angelo, Chiara, and
Paolo.
- Support for SMR zones for deadline and mq-deadline from Damien and
Christoph.
- Set of fixes for bcache by way of Michael Lyle, including fixes
from himself, Kent, Rui, Tang, and Coly.
- Series from Matias for lightnvm with fixes from Hans Holmberg,
Javier, and Matias. Mostly centered around pblk, and the removing
rrpc 1.2 in preparation for supporting 2.0.
- A couple of NVMe pull requests from Christoph. Nothing major in
here, just fixes and cleanups, and support for command tracing from
Johannes.
- Support for blk-throttle for tracking reads and writes separately.
From Joseph Qi. A few cleanups/fixes also for blk-throttle from
Weiping.
- Series from Mike Snitzer that enables dm to register its queue more
logically, something that's alwways been problematic on dm since
it's a stacked device.
- Series from Ming cleaning up some of the bio accessor use, in
preparation for supporting multipage bvecs.
- Various fixes from Ming closing up holes around queue mapping and
quiescing.
- BSD partition fix from Richard Narron, fixing a problem where we
can't mount newer (10/11) FreeBSD partitions.
- Series from Tejun reworking blk-mq timeout handling. The previous
scheme relied on atomic bits, but it had races where we would think
a request had timed out if it to reused at the wrong time.
- null_blk now supports faking timeouts, to enable us to better
exercise and test that functionality separately. From me.
- Kill the separate atomic poll bit in the request struct. After
this, we don't use the atomic bits on blk-mq anymore at all. From
me.
- sgl_alloc/free helpers from Bart.
- Heavily contended tag case scalability improvement from me.
- Various little fixes and cleanups from Arnd, Bart, Corentin,
Douglas, Eryu, Goldwyn, and myself"
* 'for-4.16/block' of git://git.kernel.dk/linux-block: (186 commits)
block: remove smart1,2.h
nvme: add tracepoint for nvme_complete_rq
nvme: add tracepoint for nvme_setup_cmd
nvme-pci: introduce RECONNECTING state to mark initializing procedure
nvme-rdma: remove redundant boolean for inline_data
nvme: don't free uuid pointer before printing it
nvme-pci: Suspend queues after deleting them
bsg: use pr_debug instead of hand crafted macros
blk-mq-debugfs: don't allow write on attributes with seq_operations set
nvme-pci: Fix queue double allocations
block: Set BIO_TRACE_COMPLETION on new bio during split
blk-throttle: use queue_is_rq_based
block: Remove kblockd_schedule_delayed_work{,_on}()
blk-mq: Avoid that blk_mq_delay_run_hw_queue() introduces unintended delays
blk-mq: Rename blk_mq_request_direct_issue() into blk_mq_request_issue_directly()
lib/scatterlist: Fix chaining support in sgl_alloc_order()
blk-throttle: track read and write request individually
block: add bdev_read_only() checks to common helpers
block: fail op_is_write() requests to read-only partitions
blk-throttle: export io_serviced_recursive, io_service_bytes_recursive
...
Move the last used path to the end of the list (least preferred) so that
ties are more evenly distributed.
For example, in case with three paths with one that is slower than
others, the remaining two would be unevenly used if they tie. This is
due to the rotation not being a truely fair distribution.
Illustrated: paths a, b, c, 'c' has 1 outstanding IO, a and b are 'tied'
Three possible rotations:
(a, b, c) -> best path 'a'
(b, c, a) -> best path 'b'
(c, a, b) -> best path 'a'
(a, b, c) -> best path 'a'
(b, c, a) -> best path 'b'
(c, a, b) -> best path 'a'
...
So 'a' is used 2x more than 'b', although they should be used evenly.
With this change, the most recently used path is always the least
preferred, removing this bias resulting in even distribution.
(a, b, c) -> best path 'a'
(b, c, a) -> best path 'b'
(c, a, b) -> best path 'a'
(c, b, a) -> best path 'b'
...
Signed-off-by: Khazhismel Kumykov <khazhy@google.com>
Reviewed-by: Martin Wilck <mwilck@suse.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Since the unstripe target takes a target length which is the
size of *one* striped member we're trying to expose, not the
total size of *all* the striped members, the check does not
make sense and fails for some striped setups.
For example, say we have a 4TB striped device:
or 3907018496 sectors per underlying device:
if (sector_div(width, uc->stripes)) :
3907018496 / 2(num stripes) == 1953509248
tmp_len = width;
if (sector_div(tmp_len, uc->chunk_size)) :
1953509248 / 256(chunk size) == 7630895.5
(fails)
Fix this by removing the first check which isn't valid for unstriping.
Signed-off-by: Scott Bauer <scott.bauer@intel.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The trailing semicolon is an empty statement that does no operation.
Removing it since it doesn't do anything.
Signed-off-by: Luis de Bethencourt <luisbg@kernel.org>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The 'verify_rq_based:' code in dm_table_determine_type() was checking
all devices in the DM table rather than only checking the data devices.
Fix this by using the immutable target's iterate_devices method.
Also, tweak the block of dm_table_determine_type() code that decides
whether to upgrade from DM_TYPE_BIO_BASED to DM_TYPE_NVME_BIO_BASED so
that it makes sure the immutable_target doesn't support require
splitting IOs.
These changes have been verified to allow a "thin-pool" target whose
data device is an NVMe device to be upgraded to DM_TYPE_NVME_BIO_BASED.
Using the thin-pool in NVMe bio-based mode was verified to pass all the
device-mapper-test-suite's "thin-provisioning" tests.
Also verified that request-based DM multipath (with queue_mode "rq" and
"mq") works as expected using the 'mptest' harness.
Fixes: 22c11858e ("dm: introduce DM_TYPE_NVME_BIO_BASED")
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Add DM_ENDIO_DELAY_REQUEUE to allow request-based multipath's
multipath_end_io() to instruct dm-rq.c:dm_done() to delay a requeue.
This is beneficial to do if BLK_STS_RESOURCE is returned from the target
(because target is busy).
Relative to blk-mq: kick the hw queues via blk_mq_requeue_work(),
indirectly from dm-rq.c:__dm_mq_kick_requeue_list(), after a delay.
For old .request_fn: use blk_delay_queue().
bio-based multipath doesn't have feature parity with request-based for
retryable error requeues; that is something that'll need fixing in the
future.
Suggested-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Bart Van Assche <bart.vanassche@wdc.com>
[as interpreted from Bart's "... patch looks fine to me."]
blk_insert_cloned_request() is called in the fast path of a dm-rq driver
(e.g. blk-mq request-based DM mpath). blk_insert_cloned_request() uses
blk_mq_request_bypass_insert() to directly append the request to the
blk-mq hctx->dispatch_list of the underlying queue.
1) This way isn't efficient enough because the hctx spinlock is always
used.
2) With blk_insert_cloned_request(), we completely bypass underlying
queue's elevator and depend on the upper-level dm-rq driver's elevator
to schedule IO. But dm-rq currently can't get the underlying queue's
dispatch feedback at all. Without knowing whether a request was issued
or not (e.g. due to underlying queue being busy) the dm-rq elevator will
not be able to provide effective IO merging (as a side-effect of dm-rq
currently blindly destaging a request from its elevator only to requeue
it after a delay, which kills any opportunity for merging). This
obviously causes very bad sequential IO performance.
Fix this by updating blk_insert_cloned_request() to use
blk_mq_request_direct_issue(). blk_mq_request_direct_issue() allows a
request to be issued directly to the underlying queue and returns the
dispatch feedback (blk_status_t). If blk_mq_request_direct_issue()
returns BLK_SYS_RESOURCE the dm-rq driver will now use DM_MAPIO_REQUEUE
to _not_ destage the request. Whereby preserving the opportunity to
merge IO.
With this, request-based DM's blk-mq sequential IO performance is vastly
improved (as much as 3X in mpath/virtio-scsi testing).
Signed-off-by: Ming Lei <ming.lei@redhat.com>
[blk-mq.c changes heavily influenced by Ming Lei's initial solution, but
they were refactored to make them less fragile and easier to read/review]
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Avoid using DM_MAPIO_REQUEUE unless absolutely necessary because it
results in dm-rq.c:dm_mq_queue_rq() returning BLK_STS_RESOURCE to
blk-mq -- doing so should only ever be done if the underlying queue is
out of resources. So switch to returning DM_MAPIO_DELAY_REQUEUE from
multipath_clone_and_map() if either MPATHF_QUEUE_IO or
MPATHF_PG_INIT_REQUIRED are set.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
blk-mq will rerun queue via RESTART or dispatch wake after one request
is completed, so not necessary to wait random time for requeuing, we
should trust blk-mq to do it.
More importantly, we need to return BLK_STS_RESOURCE to blk-mq so that
dequeuing from the I/O scheduler can be stopped, this results in
improved I/O merging.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
If source string is longer than max, kstrndup will allocate max+1
space. So make sure the result will not exceed max.
Signed-off-by: Ma Shimiao <mashimiao.fnst@cn.fujitsu.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The rw_semaphore is acquired for read only in two places, neither is
performance-critical. So replace it with a mutex -- which is more
efficient.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
One can crash dm-flakey by specifying more feature arguments than the
number of features supplied. Checking for null in arg_name avoids
this.
dmsetup create flakey-test --table "0 66076080 flakey /dev/sdb9 0 0 180 2 drop_writes"
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
If anyone is going to use dm_table_create(), they probably should be
able to use dm_table_destroy() too. Move the dm_table_destroy()
definition outside the private header, near dm_table_create()
Signed-off-by: Brian Norris <briannorris@chromium.org>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Fixes the following sparse warning:
drivers/md/dm-raid.c:33:1: warning:
symbol 'raid_sets' was not declared. Should it be static?
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
dm_bufio_client_create() does not check result of register_shrinker()
which was tagged as __must_check recently, reported by sparse.
Signed-off-by: Aliaksei Karaliou <akaraliou.dev@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The client's mutex needs to be destroyed in dm_bufio_client_destroy() as
well as the dm_bufio_client_create() error path.
Signed-off-by: Aliaksei Karaliou <akaraliou.dev@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Use REQ_OP_READ and REQ_OP_WRITE macros instead of READ and WRITE. They
have the same value, but the block layer uses REQ_OP so bufio should
too.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
This device mapper "unstriped" target remaps and unstripes I/O so it
is issued solely on a single drive in a HW RAID0 or dm-striped target.
In a 4 drive HW RAID0 the striped target exposes 1/4th of the LBA range
as a virtual drive. Each I/O to that virtual drive will only be issued
to the 1 drive that was selected of the 4 drives in the HW RAID0.
This unstriped target is most useful for Intel NVMe drives that have
multiple cores but that do not have firmware control to pin separate LBA
ranges to each discrete cpu core.
Signed-off-by: Scott Bauer <scott.bauer@intel.com>
Signed-off-by: Heinz Mauelshagen <heinzm@redhat.com>
Acked-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>