Patch add "mem_access" event to sysfs. This as-is not a raw event
supported by Power8 pmu. Instead, it is formed based on
raw event encoding specificed in isa207-common.h.
Primary PMU event used here is PM_MRK_INST_CMPL.
This event tracks only the completed marked instructions.
Random sampling mode (MMCRA[SM]) with Random Instruction
Sampling (RIS) is enabled to mark type of instructions.
With Random sampling in RLS mode with PM_MRK_INST_CMPL event,
the LDST /DATA_SRC fields in SIER identifies the memory
hierarchy level (eg: L1, L2 etc) statisfied a data-cache
miss for a marked instruction.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Patch to export SIER bits to userspace via
perf_mem_data_src and perf_sample_data struct.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Patch to export SIER bits to userspace via
perf_mem_data_src and perf_sample_data struct.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Threshold feature when used with MMCRA [Threshold Event Counter Event],
MMCRA[Threshold Start event] and MMCRA[Threshold End event] will update
MMCRA[Threashold Event Counter Exponent] and MMCRA[Threshold Event
Counter Multiplier] with the corresponding threshold event count values.
Patch to export MMCRA[TECX/TECM] to userspace in 'weight' field of
struct perf_sample_data.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The LDST field and DATA_SRC in SIER identifies the memory hierarchy level
(eg: L1, L2 etc), from which a data-cache miss for a marked instruction
was satisfied. Use the 'perf_mem_data_src' object to export this
hierarchy level to user space.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The CMA pages migration code does not support compound pages at
the moment so it performs few tests before proceeding to actual page
migration.
One of the tests - PageTransHuge() - has VM_BUG_ON_PAGE(PageTail()) as
it is designed to be called on head pages only. Since we also test for
PageCompound(), and it contains PageTail() and PageHead(), we can
simplify the check by leaving just PageCompound() and therefore avoid
possible VM_BUG_ON_PAGE.
Fixes: 2e5bbb5461 ("KVM: PPC: Book3S HV: Migrate pinned pages out of CMA")
Cc: stable@vger.kernel.org # v4.9+
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As part of the new large address space support, processes start out life with a
128TB virtual address space. However when calling mmap() a process can pass a
hint address, and if that hint is > 128TB the kernel will use the full 512TB
address space to try and satisfy the mmap() request.
Currently we have a check that the hint is > 128TB and < 512TB (TASK_SIZE),
which was added as an optimisation to avoid updating addr_limit unnecessarily
and also to avoid calling slice_flush_segments() on all CPUs more than
necessary.
However this has the user-visible side effect that an mmap() hint above 512TB
does not search the full address space unless a preceding mmap() used a hint
value > 128TB && < 512TB.
So fix it to treat any hint above 128TB as a hint to search the full address
space, instead of checking the hint against TASK_SIZE, we instead check if the
addr_limit is already == TASK_SIZE.
This also brings the ABI in-line with what is proposed on x86. ie, that a hint
address above 128TB up to and including (2^64)-1 is an indication to search the
full address space.
Fixes: f4ea6dcb08 (powerpc/mm: Enable mappings above 128TB)
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The TLB flush for radix first flushes TLB for radix configuration,
then flushes for hash configuration. The second flush is unnecessary
but does not affect correctness.
Fixes: 1a472c9dba ("powerpc/mm/radix: Add tlbflush routines")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We don't init addr_limit correctly for 32 bit applications. So default to using
mm->task_size for boundary condition checking. We use addr_limit to only control
free space search. This makes sure that we do the right thing with 32 bit
applications.
We should consolidate the usage of TASK_SIZE/mm->task_size and
mm->context.addr_limit later.
This partially reverts commit fbfef9027c (powerpc/mm: Switch some
TASK_SIZE checks to use mm_context addr_limit).
Fixes: fbfef9027c ("powerpc/mm: Switch some TASK_SIZE checks to use mm_context addr_limit")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The XIVE enablement patches included a change to set the LPES (Logical
Partitioning Environment Selector) bit (bit # 3) in LPCR (Logical Partitioning
Control Register) on POWER9 hosts. This bit sets external interrupts to guest
delivery mode, which uses SRR0/1. The host's EE interrupt handler is written to
expect HSRR0/1 (for earlier CPUs). This should be fine because XIVE is
configured not to deliver EEs to the host (Hypervisor Virtulization Interrupt is
used instead) so the EE handler should never be executed.
However a bug in interrupt controller code, hardware, or odd configuration of a
simulator could result in the host getting an EE incorrectly. Keeping the EE
delivery mode matching the host EE handler prevents strange crashes due to using
the wrong exception registers.
KVM will configure the LPCR to set LPES prior to running a guest so that EEs are
delivered to the guest using SRR0/1.
Fixes: 08a1e650cc ("powerpc: Fixup LPCR:PECE and HEIC setting on POWER9")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Massage change log to avoid referring to LPES0 which is now renamed LPES]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The pseries platform supports Power4 and later CPUs, all of which are
multithreaded and/or multicore.
In practice no one ever builds a SMP=n kernel for these machines. So as
we did for powernv, have the pseries platform imply SMP=y.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The powernv platform supports Power7 and later CPUs, all of which are
multithreaded and multicore.
As such we never build a SMP=n kernel for those machines, other than
possibly for debugging or running in a simulator.
In the debugging case we can get a similar effect by booting with
nr_cpus=1, or there's always the option of building a custom kernel with
SMP hacked out.
For running in simulators the code size reduction from building without
SMP is not particularly important, what matters is the number of
instructions executed. A quick test shows that a SMP=y kernel takes ~6%
more instructions to boot to a shell. Booting with nr_cpus=1 recovers
about half that deficit.
On the flip side, keeping the SMP=n kernel building can be a pain at
times. And although we've mostly kept it building in recent years, no
one is regularly testing that the SMP=n kernel actually boots and works
well on these machines.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Of the 64-bit Book3S platforms, only powermac supports booting on an
actual non-SMP system. The other platforms can be built with SMP
disabled, but it doesn't make a lot of sense given the CPUs they support
are all multicore or multithreaded.
So give platforms the option of forcing SMP=y.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently powerpc's asm/io.h includes linux/io.h, and linux/io.h
includes asm/io.h.
This can cause problems because depending on which is included first the
order of definitions between the two files will change.
The include of linux/io.h was added back in 2008 in commit b41e5fffe8
("[POWERPC] devres: Add devm_ioremap_prot()"). It's not entirely clear
it was needed then, but devm_ioremap_prot() has since been removed
entirely as unused, in dedd24a12f ("powerpc: Remove unused
devm_ioremap_prot()").
So it seems to be unnecessary and can potentially cause problems, so
remove the include of linux/io.h from asm/io.h
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 requires msgsync for receiver-side synchronization, and a DD1
workaround restricts IPIs to core-local.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Drop no longer needed asm feature macro changes]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
IPIs are a pretty hot path and we already have the ability to do asm feature
patching, so use it.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Change log detail]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 changes requirements and adds new instructions for
synchronization.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Change the doorbell callers to know about their msgsnd addressing,
rather than have them set a per-cpu target data tag at boot that gets
sent to the cause_ipi functions. The data is only used for doorbell IPI
functions, no other IPI types, so it makes sense to keep that detail
local to doorbell.
Have the platform code understand doorbell IPIs, rather than the
interrupt controller code understand them. Platform code can look at
capabilities it has available and decide which to use.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add the bit definition and use it in facility_unavailable_exception() so we can
intelligently report the cause if we take a fault for SCV. This doesn't actually
enable SCV.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Drop whitespace changes to the existing entries, flush out change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We have a #define for it, so use it.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The current behaviour of the hash table dump assumes that memory is contiguous
and iterates from the start of memory to (start + size of memory). When memory
isn't physically contiguous, this doesn't work.
If memory exists at 0-5 GB and 6-10 GB then the current approach will check if
entries exist in the hash table from 0GB to 9GB. This patch changes the
behaviour to iterate over any holes up to the end of memory.
Fixes: 1515ab9321 ("powerpc/mm: Dump hash table")
Signed-off-by: Rashmica Gupta <rashmica.g@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The current page table dumper scans the Linux page tables and coalesces mappings
with adjacent virtual addresses and similar PTE flags. This behaviour is
somewhat broken when you consider the IOREMAP space where entirely unrelated
mappings will appear to be virtually contiguous. This patch modifies the range
coalescing so that only ranges that are both physically and virtually contiguous
are combined. This patch also adds to the dump output the physical address at
the start of each range.
Fixes: 8eb07b1870 ("powerpc/mm: Dump linux pagetables")
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
[mpe: Print the physicall address with 0x like the other addresses]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On Book3s we have two PTE flags used to mark cache-inhibited mappings:
_PAGE_TOLERANT and _PAGE_NON_IDEMPOTENT. Currently the kernel page table dumper
only looks at the generic _PAGE_NO_CACHE which is defined to be _PAGE_TOLERANT.
This patch modifies the dumper so both flags are shown in the dump.
Fixes: 8eb07b1870 ("powerpc/mm: Dump linux pagetables")
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently sys_mmap() and sys_mmap2() (32-bit only), are not visible to the
syscall tracing machinery. This means users are not able to see the execution of
mmap() syscalls using the syscall tracer.
Fix that by using SYSCALL_DEFINE6 for sys_mmap() and sys_mmap2() so that the
meta-data associated with these syscalls is visible to the syscall tracer.
A side-effect of this change is that the return type has changed from unsigned
long to long. However this should have no effect, the only code in the kernel
which uses the result of these syscalls is in the syscall return path, which is
written in asm and treats the result as unsigned regardless.
Example output:
cat-3399 [001] .... 196.542410: sys_mmap(addr: 7fff922a0000, len: 20000, prot: 3, flags: 812, fd: 3, offset: 1b0000)
cat-3399 [001] .... 196.542443: sys_mmap -> 0x7fff922a0000
cat-3399 [001] .... 196.542668: sys_munmap(addr: 7fff922c0000, len: 6d2c)
cat-3399 [001] .... 196.542677: sys_munmap -> 0x0
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
[mpe: Massage change log, add detail on return type change]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Recently in commit f6eedbba7a ("powerpc/mm/hash: Increase VA range to 128TB"),
we increased H_PGD_INDEX_SIZE to 15 when we're building with 64K pages. This
makes it larger than RADIX_PGD_INDEX_SIZE (13), which means the logic to
calculate MAX_PGD_INDEX_SIZE in book3s/64/pgtable.h is wrong.
The end result is that the PGD (Page Global Directory, ie top level page table)
of the kernel (aka. swapper_pg_dir), is too small.
This generally doesn't lead to a crash, as we don't use the full range in normal
operation. However if we try to dump the kernel pagetables we can trigger a
crash because we walk off the end of the pgd into other memory and eventually
try to dereference something bogus:
$ cat /sys/kernel/debug/kernel_pagetables
Unable to handle kernel paging request for data at address 0xe8fece0000000000
Faulting instruction address: 0xc000000000072314
cpu 0xc: Vector: 380 (Data SLB Access) at [c0000000daa13890]
pc: c000000000072314: ptdump_show+0x164/0x430
lr: c000000000072550: ptdump_show+0x3a0/0x430
dar: e802cf0000000000
seq_read+0xf8/0x560
full_proxy_read+0x84/0xc0
__vfs_read+0x6c/0x1d0
vfs_read+0xbc/0x1b0
SyS_read+0x6c/0x110
system_call+0x38/0xfc
The root cause is that MAX_PGD_INDEX_SIZE isn't actually computed to be
the max of H_PGD_INDEX_SIZE or RADIX_PGD_INDEX_SIZE. To fix that move
the calculation into asm-offsets.c where we can do it easily using
max().
Fixes: f6eedbba7a ("powerpc/mm/hash: Increase VA range to 128TB")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This merges the arch part of the XIVE support, leaving the final commit
with the KVM specific pieces dangling on the branch for Paul to merge
via the kvm-ppc tree.
POWER9 DD1.0 hardware has a bug where the SPRs of a thread waking up
from stop 0,1,2 with ESL=1 can endup being misplaced in the core. Thus
the HSPRG0 of a thread waking up from can contain the paca pointer of
its sibling.
This patch implements a context recovery framework within threads of a
core, by provisioning space in paca_struct for saving every sibling
threads's paca pointers. Basically, we should be able to arrive at the
right paca pointer from any of the thread's existing paca pointer.
At bootup, during powernv idle-init, we save the paca address of every
CPU in each one its siblings paca_struct in the slot corresponding to
this CPU's index in the core.
On wakeup from a stop, the thread will determine its index in the core
from the TIR register and recover its PACA pointer by indexing into
the correct slot in the provisioned space in the current PACA.
Furthermore, ensure that the NVGPRs are restored from the stack on the
way out by setting the NAPSTATELOST in paca.
[Changelog written with inputs from svaidy@linux.vnet.ibm.com]
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Call it a bug]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently during idle-init on power9, if we don't find suitable stop
states in the device tree that can be used as the
default_stop/deepest_stop, we set stop0 (ESL=1,EC=1) as the default
stop state psscr to be used by power9_idle and deepest stop state
which is used by CPU-Hotplug.
However, if the platform firmware has not configured or enabled a stop
state, the kernel should not make any assumptions and fallback to a
default choice.
If the kernel uses a stop state that is not configured by the platform
firmware, it may lead to further failures which should be avoided.
In this patch, we modify the init code to ensure that the kernel uses
only the stop states exposed by the firmware through the device
tree. When a suitable default stop state isn't found, we disable
ppc_md.power_save for power9. Similarly, when a suitable
deepest_stop_state is not found in the device tree exported by the
firmware, fall back to the default busy-wait loop in the CPU-Hotplug
code.
[Changelog written with inputs from svaidy@linux.vnet.ibm.com]
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently, the powernv cpu-offline function assumes that platform idle
states such as stop on POWER9, winkle/sleep/nap on POWER8 are always
available. On POWER8, it picks nap as the default state if other deep
idle states like sleep/winkle are not available and enabled in the
platform.
On POWER9, nap is not available and all idle states are managed by
STOP instruction. The parameters to the idle state are passed through
processor stop status control register (PSSCR). Hence as such
executing STOP would take parameters from current PSSCR. We do not
want to make any assumptions in kernel on what STOP states and PSSCR
features are configured by the platform.
Ideally platform will configure a good set of stop states that can be
used in the kernel. We would like to start with a clean slate, if the
platform choose to not configure any state or there is an error in
platform firmware that lead to no stop states being configured or
allowed to be requested.
This patch adds a fallback method for CPU-Hotplug that is similar to
snooze loop at idle where the threads are left to spin at low priority
and hence reduce the cycles consumed.
This is a safe fallback mechanism in the case when no stop state would
be requested if the platform firmware did not configure them most
likely due to an error condition.
Requesting a stop state when the platform has not configured them or
enabled them would lead to further error conditions which could be
difficult to debug.
[Changelog written with inputs from svaidy@linux.vnet.ibm.com]
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Move the piece of code in powernv/smp.c::pnv_smp_cpu_kill_self() which
transitions the CPU to the deepest available platform idle state to a
new function named pnv_cpu_offline() in powernv/idle.c. The rationale
behind this code movement is that the data required to determine the
deepest available platform state resides in powernv/idle.c.
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add user space exported API definitions for 512KB, 1MB, 2MB, 8MB, 16MB,
1GB, 16GB non default huge page sizes to be used with mmap() system
call.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
[mpe: Reword the comment to emphasise that these are only needed to use
the non-default huge page size, and updated the change log.]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Make sparsemem the default on all 64-bit Book3S platforms. It already is
for pseries and ps3, and we need to enable it for powernv because on
POWER9 memory between chips is discontiguous.
For the other platforms sparsemem should work fine, though it might add
a small amount of overhead. We can always force FLATMEM in the
defconfigs if necessary.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
setup_initial_memory_limit() is called from early_init_devtree(), which
runs prior to feature patching. If the kernel is built with CONFIG_JUMP_LABEL=y
and CONFIG_JUMP_LABEL_FEATURE_CHECKS=y then we will potentially get the
wrong value.
If we also have CONFIG_JUMP_LABEL_FEATURE_CHECK_DEBUG=y we get a warning
and backtrace:
Warning! mmu_has_feature() used prior to jump label init!
CPU: 0 PID: 0 Comm: swapper Not tainted 4.11.0-rc4-gccN-next-20170331-g6af2434 #1
Call Trace:
[c000000000fc3d50] [c000000000a26c30] .dump_stack+0xa8/0xe8 (unreliable)
[c000000000fc3de0] [c00000000002e6b8] .setup_initial_memory_limit+0xa4/0x104
[c000000000fc3e60] [c000000000d5c23c] .early_init_devtree+0xd0/0x2f8
[c000000000fc3f00] [c000000000d5d3b0] .early_setup+0x90/0x11c
[c000000000fc3f90] [c000000000000520] start_here_multiplatform+0x68/0x80
Fix it by using early_mmu_has_feature().
Fixes: c12e6f24d4 ("powerpc: Add option to use jump label for mmu_has_feature()")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
These files don't seem to have any need for asm/debug.h, now that all it
includes are the debugger hooks and breakpoint definitions.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
powerpc_debugfs_root is the dentry representing the root of the
"powerpc" directory tree in debugfs.
Currently it sits in asm/debug.h, a long with some other things that
have "debug" in the name, but are otherwise unrelated.
Pull it out into a separate header, which also includes linux/debugfs.h,
and convert all the users to include debugfs.h instead of debug.h.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In the recent commit 1ab66d1fba ("powerpc/powernv: Introduce address
translation services for Nvlink2") the NPU code gained a dependency on MMU
notifiers.
All our defconfigs have KVM enabled, which selects MMU_NOTIFIER, but if KVM is
not enabled then the build breaks.
Fix it by always selecting MMU_NOTIFIER when we're building powernv.
Fixes: 1ab66d1fba ("powerpc/powernv: Introduce address translation services for Nvlink2")
Signed-off-by: Alistair Popple <alistair@popple.id.au>
[mpe: Reword change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
For a tlbiel with pid, we need to issue tlbiel with set number encoded. We
don't need to do ptesync for each of those. Instead we need one for the entire
tlbiel pid operation.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
For fullmm tlb flush, we do a flush with RIC_FLUSH_ALL which will invalidate all
related caches (radix__tlb_flush()). Hence the pwc flush is not needed.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We need to set LPES in order for normal external interrupts (0x500)
to be directed to the guest while running in guest state.
We also need HEIC set to prevent them to be sent to the host while
in host state.
With XIVE the host never gets one of these and wouldn't know how to
handle it. All host external interrupts come in via the new
hypervisor virtualization interrupts vector.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We have all sort of variants of MMIO accessors for the real mode
instructions. This creates a clean set of accessors based on
Linux normal naming conventions, replacing all occurrences of
the old ones in the tree.
I have purposefully removed the "out/in" variants in favor of
only including __raw variants. Any code using these is already
pretty much hand tuned to operate in a very specific environment.
I've fixed up the 2 users (only one of them actually needed
a barrier in the first place).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The function doesn't exist anymore
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
It's only used within the same file it's defined
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We traditionally have linux/ before asm/
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The XIVE interrupt controller is the new interrupt controller
found in POWER9. It supports advanced virtualization capabilities
among other things.
Currently we use a set of firmware calls that simulate the old
"XICS" interrupt controller but this is fairly inefficient.
This adds the framework for using XIVE along with a native
backend which OPAL for configuration. Later, a backend allowing
the use in a KVM or PowerVM guest will also be provided.
This disables some fast path for interrupts in KVM when XIVE is
enabled as these rely on the firmware emulation code which is no
longer available when the XIVE is used natively by Linux.
A latter patch will make KVM also directly exploit the XIVE, thus
recovering the lost performance (and more).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Fixup pr_xxx("XIVE:"...), don't split pr_xxx() strings,
tweak Kconfig so XIVE_NATIVE selects XIVE and depends on POWERNV,
fix build errors when SMP=n, fold in fixes from Ben:
Don't call cpu_online() on an invalid CPU number
Fix irq target selection returning out of bounds cpu#
Extra sanity checks on cpu numbers
]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some powerpc platforms use this to move IRQs away from a CPU being
unplugged. This function has several bugs such as not taking the right
locks or failing to NULL check pointers.
There's a new generic function doing exactly the same thing without all
the bugs, so let's use it instead.
mpe: The obvious place for the select of GENERIC_IRQ_MIGRATION is on
HOTPLUG_CPU, but that doesn't work. On some configs PM_SLEEP_SMP will
select HOTPLUG_CPU even though its dependencies are not met, which means
the select of GENERIC_IRQ_MIGRATION doesn't happen. That leads to the
build breaking. Fix it by moving the select of GENERIC_IRQ_MIGRATION to
SMP.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some platforms (will) need to perform allocations before bringing
a new CPU online. Doing it from smp_ops->setup_cpu is the wrong
thing to do:
- It has no useful failure path (too late)
- Calling any allocator will enable interrupts prematurely
causing problems with large decrementer among others
Instead, add a new callback that is called from __cpu_up (so from
the context trying to online the new CPU) at a point where we
can safely allocate and handle failures.
This will be used by XIVE support.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>