Pull x86/pti updates from Thomas Gleixner:
"Another set of melted spectrum related changes:
- Code simplifications and cleanups for RSB and retpolines.
- Make the indirect calls in KVM speculation safe.
- Whitelist CPUs which are known not to speculate from Meltdown and
prepare for the new CPUID flag which tells the kernel that a CPU is
not affected.
- A less rigorous variant of the module retpoline check which merily
warns when a non-retpoline protected module is loaded and reflects
that fact in the sysfs file.
- Prepare for Indirect Branch Prediction Barrier support.
- Prepare for exposure of the Speculation Control MSRs to guests, so
guest OSes which depend on those "features" can use them. Includes
a blacklist of the broken microcodes. The actual exposure of the
MSRs through KVM is still being worked on"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Simplify indirect_branch_prediction_barrier()
x86/retpoline: Simplify vmexit_fill_RSB()
x86/cpufeatures: Clean up Spectre v2 related CPUID flags
x86/cpu/bugs: Make retpoline module warning conditional
x86/bugs: Drop one "mitigation" from dmesg
x86/nospec: Fix header guards names
x86/alternative: Print unadorned pointers
x86/speculation: Add basic IBPB (Indirect Branch Prediction Barrier) support
x86/cpufeature: Blacklist SPEC_CTRL/PRED_CMD on early Spectre v2 microcodes
x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown
x86/msr: Add definitions for new speculation control MSRs
x86/cpufeatures: Add AMD feature bits for Speculation Control
x86/cpufeatures: Add Intel feature bits for Speculation Control
x86/cpufeatures: Add CPUID_7_EDX CPUID leaf
module/retpoline: Warn about missing retpoline in module
KVM: VMX: Make indirect call speculation safe
KVM: x86: Make indirect calls in emulator speculation safe
Group together the calls to alloc_vmcs and loaded_vmcs_init. Soon we'll also
allocate an MSR bitmap there.
Cc: stable@vger.kernel.org # prereq for Spectre mitigation
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The potential performance advantages of a vmcs02 pool have never been
realized. To simplify the code, eliminate the pool. Instead, a single
vmcs02 is allocated per VCPU when the VCPU enters VMX operation.
Cc: stable@vger.kernel.org # prereq for Spectre mitigation
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Ameya More <ameya.more@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Replace indirect call with CALL_NOSPEC.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: rga@amazon.de
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lkml.kernel.org/r/20180125095843.645776917@infradead.org
Remove duplicate expression in nested_vmx_prepare_msr_bitmap, and make
the register names clearer in hardware_setup.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Resolved rebase conflict after removing Intel PT. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The bulk of the MSR bitmap is either immutable, or can be copied from
the L1 bitmap. By initializing it at VMXON time, and copying the mutable
parts one long at a time on vmentry (rather than one bit), about 4000
clock cycles (30%) can be saved on a nested VMLAUNCH/VMRESUME.
The resulting for loop only has four iterations, so it is cheap enough
to reinitialize the MSR write bitmaps on every iteration, and it makes
the code simpler.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The APICv-enabled MSR bitmap is a superset of the APICv-disabled bitmap.
Make that obvious in vmx_disable_intercept_msr_x2apic.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Resolved rebase conflict after removing Intel PT. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The POSTED_INTR_NV field is constant (though it differs between the vmcs01 and
vmcs02), there is no need to reload it on vmexit to L1.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
These fields are also simple copies of the data in the vmcs12 struct.
For some of them, prepare_vmcs02 was skipping the copy when the field
was unused. In prepare_vmcs02_full, we copy them always as long as the
field exists on the host, because the corresponding execution control
might be one of the shadowed fields.
Optimization opportunities remain for MSRs that, depending on the
entry/exit controls, have to be copied from either the vmcs01 or
the vmcs12: EFER (whose value is partly stored in the entry controls
too), PAT, DEBUGCTL (and also DR7). Before moving these three and
the entry/exit controls to prepare_vmcs02_full, KVM would have to set
dirty_vmcs12 on writes to the L1 MSRs.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This part is separate for ease of review, because git prefers to move
prepare_vmcs02 below the initial long sequence of vmcs_write* operations.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
VMCS12 fields that are not handled through shadow VMCS are rarely
written, and thus they are also almost constant in the vmcs02. We can
thus optimize prepare_vmcs02 by skipping all the work for non-shadowed
fields in the common case.
This patch introduces the (pretty simple) tracking infrastructure; the
next patches will move work to prepare_vmcs02_full and save a few hundred
clock cycles per VMRESUME on a Haswell Xeon E5 system:
before after
cpuid 14159 13869
vmcall 15290 14951
inl_from_kernel 17703 17447
outl_to_kernel 16011 14692
self_ipi_sti_nop 16763 15825
self_ipi_tpr_sti_nop 17341 15935
wr_tsc_adjust_msr 14510 14264
rd_tsc_adjust_msr 15018 14311
mmio-wildcard-eventfd:pci-mem 16381 14947
mmio-datamatch-eventfd:pci-mem 18620 17858
portio-wildcard-eventfd:pci-io 15121 14769
portio-datamatch-eventfd:pci-io 15761 14831
(average savings 748, stdev 460).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The vmcs_field_to_offset_table was a rather sparse table of short
integers with a maximum index of 0x6c16, amounting to 55342 bytes. Now
that we are considering support for multiple VMCS12 formats, it would
be unfortunate to replicate that large, sparse table. Rotating the
field encoding (as a 16-bit integer) left by 6 reduces that table to
5926 bytes.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Per the SDM, "[VMCS] Fields are grouped by width (16-bit, 32-bit,
etc.) and type (guest-state, host-state, etc.)." Previously, the width
was indicated by vmcs_field_type. To avoid confusion when we start
dealing with both field width and field type, change vmcs_field_type
to vmcs_field_width.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This is the highest index value used in any supported VMCS12 field
encoding. It is used to populate the IA32_VMX_VMCS_ENUM MSR.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Because all fields can be read/written with a single vmread/vmwrite on
64-bit kernels, the switch statements in copy_vmcs12_to_shadow and
copy_shadow_to_vmcs12 are unnecessary.
What I did in this patch is to copy the two parts of 64-bit fields
separately on 32-bit kernels, to keep all complicated #ifdef-ery
in init_vmcs_shadow_fields. The disadvantage is that 64-bit fields
have to be listed separately in shadow_read_only/read_write_fields,
but those are few and we can validate the arrays when building the
VMREAD and VMWRITE bitmaps. This saves a few hundred clock cycles
per nested vmexit.
However there is still a "switch" in vmcs_read_any and vmcs_write_any.
So, while at it, this patch reorders the fields by type, hoping that
the branch predictor appreciates it.
Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Compared to when VMCS shadowing was added to KVM, we are reading/writing
a few more fields: the PML index, the interrupt status and the preemption
timer value. The first two are because we are exposing more features
to nested guests, the preemption timer is simply because we have grown
a new optimization. Adding them to the shadow VMCS field lists reduces
the cost of a vmexit by about 1000 clock cycles for each field that exists
on bare metal.
On the other hand, the guest BNDCFGS and TSC offset are not written on
fast paths, so remove them.
Suggested-by: Jim Mattson <jmattson@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Consider the following scenario:
1. CPU A calls vmx_deliver_nested_posted_interrupt() to send an IPI
to CPU B via virtual posted-interrupt mechanism.
2. CPU B is currently executing L2 guest.
3. vmx_deliver_nested_posted_interrupt() calls
kvm_vcpu_trigger_posted_interrupt() which will note that
vcpu->mode == IN_GUEST_MODE.
4. Assume that before CPU A sends the physical POSTED_INTR_NESTED_VECTOR
IPI, CPU B exits from L2 to L0 during event-delivery
(valid IDT-vectoring-info).
5. CPU A now sends the physical IPI. The IPI is received in host and
it's handler (smp_kvm_posted_intr_nested_ipi()) does nothing.
6. Assume that before CPU A sets pi_pending=true and KVM_REQ_EVENT,
CPU B continues to run in L0 and reach vcpu_enter_guest(). As
KVM_REQ_EVENT is not set yet, vcpu_enter_guest() will continue and resume
L2 guest.
7. At this point, CPU A sets pi_pending=true and KVM_REQ_EVENT but
it's too late! CPU B already entered L2 and KVM_REQ_EVENT will only be
consumed at next L2 entry!
Another scenario to consider:
1. CPU A calls vmx_deliver_nested_posted_interrupt() to send an IPI
to CPU B via virtual posted-interrupt mechanism.
2. Assume that before CPU A calls kvm_vcpu_trigger_posted_interrupt(),
CPU B is at L0 and is about to resume into L2. Further assume that it is
in vcpu_enter_guest() after check for KVM_REQ_EVENT.
3. At this point, CPU A calls kvm_vcpu_trigger_posted_interrupt() which
will note that vcpu->mode != IN_GUEST_MODE. Therefore, do nothing and
return false. Then, will set pi_pending=true and KVM_REQ_EVENT.
4. Now CPU B continue and resumes into L2 guest without processing
the posted-interrupt until next L2 entry!
To fix both issues, we just need to change
vmx_deliver_nested_posted_interrupt() to set pi_pending=true and
KVM_REQ_EVENT before calling kvm_vcpu_trigger_posted_interrupt().
It will fix the first scenario by chaging step (6) to note that
KVM_REQ_EVENT and pi_pending=true and therefore process
nested posted-interrupt.
It will fix the second scenario by two possible ways:
1. If kvm_vcpu_trigger_posted_interrupt() is called while CPU B has changed
vcpu->mode to IN_GUEST_MODE, physical IPI will be sent and will be received
when CPU resumes into L2.
2. If kvm_vcpu_trigger_posted_interrupt() is called while CPU B hasn't yet
changed vcpu->mode to IN_GUEST_MODE, then after CPU B will change
vcpu->mode it will call kvm_request_pending() which will return true and
therefore force another round of vcpu_enter_guest() which will note that
KVM_REQ_EVENT and pi_pending=true and therefore process nested
posted-interrupt.
Cc: stable@vger.kernel.org
Fixes: 705699a139 ("KVM: nVMX: Enable nested posted interrupt processing")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
[Add kvm_vcpu_kick to also handle the case where L1 doesn't intercept L2 HLT
and L2 executes HLT instruction. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Before each vmentry to guest, vcpu_enter_guest() calls sync_pir_to_irr()
which calls vmx_hwapic_irr_update() to update RVI.
Currently, vmx_hwapic_irr_update() contains a tweak in case it is called
when CPU is running L2 and L1 don't intercept external-interrupts.
In that case, code injects interrupt directly into L2 instead of
updating RVI.
Besides being hacky (wouldn't expect function updating RVI to also
inject interrupt), it also doesn't handle this case correctly.
The code contains several issues:
1. When code calls kvm_queue_interrupt() it just passes it max_irr which
represents the highest IRR currently pending in L1 LAPIC.
This is problematic as interrupt was injected to guest but it's bit is
still set in LAPIC IRR instead of being cleared from IRR and set in ISR.
2. Code doesn't check if LAPIC PPR is set to accept an interrupt of
max_irr priority. It just checks if interrupts are enabled in guest with
vmx_interrupt_allowed().
To fix the above issues:
1. Simplify vmx_hwapic_irr_update() to just update RVI.
Note that this shouldn't happen when CPU is running L2
(See comment in code).
2. Since now vmx_hwapic_irr_update() only does logic for L1
virtual-interrupt-delivery, inject_pending_event() should be the
one responsible for injecting the interrupt directly into L2.
Therefore, change kvm_cpu_has_injectable_intr() to check L1
LAPIC when CPU is running L2.
3. Change vmx_sync_pir_to_irr() to set KVM_REQ_EVENT when L1
has a pending injectable interrupt.
Fixes: 963fee1656 ("KVM: nVMX: Fix virtual interrupt delivery
injection")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
In case posted-interrupt was delivered to CPU while it is in host
(outside guest), then posted-interrupt delivery will be done by
calling sync_pir_to_irr() at vmentry after interrupts are disabled.
sync_pir_to_irr() will check vmx->pi_desc.control ON bit and if
set, it will sync vmx->pi_desc.pir to IRR and afterwards update RVI to
ensure virtual-interrupt-delivery will dispatch interrupt to guest.
However, it is possible that L1 will receive a posted-interrupt while
CPU runs at host and is about to enter L2. In this case, the call to
sync_pir_to_irr() will indeed update the L1's APIC IRR but
vcpu_enter_guest() will then just resume into L2 guest without
re-evaluating if it should exit from L2 to L1 as a result of this
new pending L1 event.
To address this case, if sync_pir_to_irr() has a new L1 injectable
interrupt and CPU is running L2, we force exit GUEST_MODE which will
result in another iteration of vcpu_run() run loop which will call
kvm_vcpu_running() which will call check_nested_events() which will
handle the pending L1 event properly.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
kvm_clear_exception_queue() should clear pending exception.
This also includes exceptions which were only marked pending but not
yet injected. This is because exception.pending is used for both L1
and L2 to determine if an exception should be raised to guest.
Note that an exception which is pending but not yet injected will
be raised again once the guest will be resumed.
Consider the following scenario:
1) L0 KVM with ignore_msrs=false.
2) L1 prepare vmcs12 with the following:
a) No intercepts on MSR (MSR_BITMAP exist and is filled with 0).
b) No intercept for #GP.
c) vmx-preemption-timer is configured.
3) L1 enters into L2.
4) L2 reads an unhandled MSR that exists in MSR_BITMAP
(such as 0x1fff).
L2 RDMSR could be handled as described below:
1) L2 exits to L0 on RDMSR and calls handle_rdmsr().
2) handle_rdmsr() calls kvm_inject_gp() which sets
KVM_REQ_EVENT, exception.pending=true and exception.injected=false.
3) vcpu_enter_guest() consumes KVM_REQ_EVENT and calls
inject_pending_event() which calls vmx_check_nested_events()
which sees that exception.pending=true but
nested_vmx_check_exception() returns 0 and therefore does nothing at
this point. However let's assume it later sees vmx-preemption-timer
expired and therefore exits from L2 to L1 by calling
nested_vmx_vmexit().
4) nested_vmx_vmexit() calls prepare_vmcs12()
which calls vmcs12_save_pending_event() but it does nothing as
exception.injected is false. Also prepare_vmcs12() calls
kvm_clear_exception_queue() which does nothing as
exception.injected is already false.
5) We now return from vmx_check_nested_events() with 0 while still
having exception.pending=true!
6) Therefore inject_pending_event() continues
and we inject L2 exception to L1!...
This commit will fix above issue by changing step (4) to
clear exception.pending in kvm_clear_exception_queue().
Fixes: 664f8e26b0 ("KVM: X86: Fix loss of exception which has not yet been injected")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
... just like in vmx_set_msr().
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Introduce a new bool invalidate_gpa argument to kvm_x86_ops->tlb_flush,
it will be used by later patches to just flush guest tlb.
For VMX, this will use INVVPID instead of INVEPT, which will invalidate
combined mappings while keeping guest-physical mappings.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Pull x86 pti updates from Thomas Gleixner:
"This contains:
- a PTI bugfix to avoid setting reserved CR3 bits when PCID is
disabled. This seems to cause issues on a virtual machine at least
and is incorrect according to the AMD manual.
- a PTI bugfix which disables the perf BTS facility if PTI is
enabled. The BTS AUX buffer is not globally visible and causes the
CPU to fault when the mapping disappears on switching CR3 to user
space. A full fix which restores BTS on PTI is non trivial and will
be worked on.
- PTI bugfixes for EFI and trusted boot which make sure that the user
space visible page table entries have the NX bit cleared
- removal of dead code in the PTI pagetable setup functions
- add PTI documentation
- add a selftest for vsyscall to verify that the kernel actually
implements what it advertises.
- a sysfs interface to expose vulnerability and mitigation
information so there is a coherent way for users to retrieve the
status.
- the initial spectre_v2 mitigations, aka retpoline:
+ The necessary ASM thunk and compiler support
+ The ASM variants of retpoline and the conversion of affected ASM
code
+ Make LFENCE serializing on AMD so it can be used as speculation
trap
+ The RSB fill after vmexit
- initial objtool support for retpoline
As I said in the status mail this is the most of the set of patches
which should go into 4.15 except two straight forward patches still on
hold:
- the retpoline add on of LFENCE which waits for ACKs
- the RSB fill after context switch
Both should be ready to go early next week and with that we'll have
covered the major holes of spectre_v2 and go back to normality"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86,perf: Disable intel_bts when PTI
security/Kconfig: Correct the Documentation reference for PTI
x86/pti: Fix !PCID and sanitize defines
selftests/x86: Add test_vsyscall
x86/retpoline: Fill return stack buffer on vmexit
x86/retpoline/irq32: Convert assembler indirect jumps
x86/retpoline/checksum32: Convert assembler indirect jumps
x86/retpoline/xen: Convert Xen hypercall indirect jumps
x86/retpoline/hyperv: Convert assembler indirect jumps
x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
x86/retpoline/entry: Convert entry assembler indirect jumps
x86/retpoline/crypto: Convert crypto assembler indirect jumps
x86/spectre: Add boot time option to select Spectre v2 mitigation
x86/retpoline: Add initial retpoline support
objtool: Allow alternatives to be ignored
objtool: Detect jumps to retpoline thunks
x86/pti: Make unpoison of pgd for trusted boot work for real
x86/alternatives: Fix optimize_nops() checking
sysfs/cpu: Fix typos in vulnerability documentation
x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
...
In accordance with the Intel and AMD documentation, we need to overwrite
all entries in the RSB on exiting a guest, to prevent malicious branch
target predictions from affecting the host kernel. This is needed both
for retpoline and for IBRS.
[ak: numbers again for the RSB stuffing labels]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515755487-8524-1-git-send-email-dwmw@amazon.co.uk
This adds a memory barrier when performing a lookup into
the vmcs_field_to_offset_table. This is related to
CVE-2017-5753.
Signed-off-by: Andrew Honig <ahonig@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commits ae1f576707
and ac9b305caa.
If the hardware doesn't support MOVBE, but L0 sets CPUID.01H:ECX.MOVBE
in L1's emulated CPUID information, then L1 is likely to pass that
CPUID bit through to L2. L2 will expect MOVBE to work, but if L1
doesn't intercept #UD, then any MOVBE instruction executed in L2 will
raise #UD, and the exception will be delivered in L2.
Commit ac9b305caa is a better and more
complete version of ae1f576707 ("KVM: nVMX: Do not emulate #UD while
in guest mode"); however, neither considers the above case.
Suggested-by: Jim Mattson <jmattson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
s390:
* Two fixes for potential bitmap overruns in the cmma migration code
x86:
* Clear guest provided GPRs to defeat the Project Zero PoC for CVE
2017-5715
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaUTJ4AAoJEED/6hsPKofohk0IAJAFlMG66u5MxC0kSM61U4Zf
1vkzRwAkBbcN82LpGQKbqabVyTq0F3aLipyOn6WO5SN0K5m+OI2OV/aAroPyX8bI
F7nWIqTXLhJ9X6KXINFvyavHMprvWl8PA72tR/B/7GhhfShrZ2wGgqhl0vv/kCUK
/8q+5e693yJqw8ceemin9a6kPJrLpmjeH+Oy24KIlGbvJWV4UrIE86pRHnAnBtg8
L7Vbxn5+ezKmakvBh+zF8NKcD1zHDcmQZHoYFPsQT0vX5GPoYqT2bcO6gsh1Grmp
8ti6KkrnP+j2A/OEna4LBWfwKI/1xHXneB22BYrAxvNjHt+R4JrjaPpx82SEB4Y=
=URMR
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
"s390:
- Two fixes for potential bitmap overruns in the cmma migration code
x86:
- Clear guest provided GPRs to defeat the Project Zero PoC for CVE
2017-5715"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: vmx: Scrub hardware GPRs at VM-exit
KVM: s390: prevent buffer overrun on memory hotplug during migration
KVM: s390: fix cmma migration for multiple memory slots
Guest GPR values are live in the hardware GPRs at VM-exit. Do not
leave any guest values in hardware GPRs after the guest GPR values are
saved to the vcpu_vmx structure.
This is a partial mitigation for CVE 2017-5715 and CVE 2017-5753.
Specifically, it defeats the Project Zero PoC for CVE 2017-5715.
Suggested-by: Eric Northup <digitaleric@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Eric Northup <digitaleric@google.com>
Reviewed-by: Benjamin Serebrin <serebrin@google.com>
Reviewed-by: Andrew Honig <ahonig@google.com>
[Paolo: Add AMD bits, Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 syscall entry code changes for PTI from Ingo Molnar:
"The main changes here are Andy Lutomirski's changes to switch the
x86-64 entry code to use the 'per CPU entry trampoline stack'. This,
besides helping fix KASLR leaks (the pending Page Table Isolation
(PTI) work), also robustifies the x86 entry code"
* 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
x86/cpufeatures: Make CPU bugs sticky
x86/paravirt: Provide a way to check for hypervisors
x86/paravirt: Dont patch flush_tlb_single
x86/entry/64: Make cpu_entry_area.tss read-only
x86/entry: Clean up the SYSENTER_stack code
x86/entry/64: Remove the SYSENTER stack canary
x86/entry/64: Move the IST stacks into struct cpu_entry_area
x86/entry/64: Create a per-CPU SYSCALL entry trampoline
x86/entry/64: Return to userspace from the trampoline stack
x86/entry/64: Use a per-CPU trampoline stack for IDT entries
x86/espfix/64: Stop assuming that pt_regs is on the entry stack
x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0
x86/entry: Remap the TSS into the CPU entry area
x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct
x86/dumpstack: Handle stack overflow on all stacks
x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss
x86/kasan/64: Teach KASAN about the cpu_entry_area
x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area
x86/entry/gdt: Put per-CPU GDT remaps in ascending order
x86/dumpstack: Add get_stack_info() support for the SYSENTER stack
...
This has a secondary purpose: it puts the entry stack into a region
with a well-controlled layout. A subsequent patch will take
advantage of this to streamline the SYSCALL entry code to be able to
find it more easily.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.962042855@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A future patch will move SYSENTER_stack to the beginning of cpu_tss
to help detect overflow. Before this can happen, fix several code
paths that hardcode assumptions about the old layout.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.722425540@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As we're about to call vcpu_load() from architecture-specific
implementations of the KVM vcpu ioctls, but yet we access data
structures protected by the vcpu->mutex in the generic code, factor
this logic out from vcpu_load().
x86 is the only architecture which calls vcpu_load() outside of the main
vcpu ioctl function, and these calls will no longer take the vcpu mutex
following this patch. However, with the exception of
kvm_arch_vcpu_postcreate (see below), the callers are either in the
creation or destruction path of the VCPU, which means there cannot be
any concurrent access to the data structure, because the file descriptor
is not yet accessible, or is already gone.
kvm_arch_vcpu_postcreate makes the newly created vcpu potentially
accessible by other in-kernel threads through the kvm->vcpus array, and
we therefore take the vcpu mutex in this case directly.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since KVM removes the only I/O port 0x80 bypass on Intel hosts,
clear CPU_BASED_USE_IO_BITMAPS and set CPU_BASED_UNCOND_IO_EXITING
bit. Then these I/O permission bitmaps are not used at all, so
drop I/O permission bitmaps.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Quan Xu <quan.xu0@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_IA32_DEBUGCTLMSR is zeroed on VMEXIT, so it is saved/restored each
time during world switch. This patch caches the host IA32_DEBUGCTL MSR
and saves/restores the host IA32_DEBUGCTL msr when guest/host switches
to avoid to save/restore each time during world switch. This saves
about 100 clock cycles per vmexit.
Suggested-by: Jim Mattson <jmattson@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When attempting to free a loaded VMCS02, add a WARN and avoid
freeing it (to avoid use-after-free situations).
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Ameya More <ameya.more@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The potential performance advantages of a vmcs02 pool have never been
realized. To simplify the code, eliminate the pool. Instead, a single
vmcs02 is allocated per VCPU when the VCPU enters VMX operation.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Ameya More <ameya.more@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This is encoded as F3 0F C7 /7 with a register argument. The register
argument is the second array in the group9 GroupDual, while F3 is the
fourth element of a Prefix.
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
UMIP can be emulated almost perfectly on Intel processor by enabling
descriptor-table exits. SMSW does not cause a vmexit and hence it
cannot be changed into a #GP fault, but all in all it's the most
"innocuous" of the unprivileged instructions that UMIP blocks.
In fact, Linux is _also_ emulating SMSW instructions on behalf of the
program that executes them, because some 16-bit programs expect to use
SMSW to detect vm86 mode, so this is an even smaller issue.
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The User-Mode Instruction Prevention feature present in recent Intel
processor prevents a group of instructions (sgdt, sidt, sldt, smsw, and
str) from being executed with CPL > 0. Otherwise, a general protection
fault is issued.
UMIP instructions in general are also able to trigger vmexits, so we can
actually emulate UMIP on older processors. This commit sets up the
infrastructure so that kvm-intel.ko and kvm-amd.ko can set the UMIP
feature bit for CPUID even if the feature is not actually available
in hardware.
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_io_bitmap_b should not be allocated twice.
Fixes: 2361133293 ("KVM: VMX: refactor setup of global page-sized bitmaps")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This fixes CVE-2017-1000407.
KVM allows guests to directly access I/O port 0x80 on Intel hosts. If
the guest floods this port with writes it generates exceptions and
instability in the host kernel, leading to a crash. With this change
guest writes to port 0x80 on Intel will behave the same as they
currently behave on AMD systems.
Prevent the flooding by removing the code that sets port 0x80 as a
passthrough port. This is essentially the same as upstream patch
99f85a28a7, except that patch was
for AMD chipsets and this patch is for Intel.
Signed-off-by: Andrew Honig <ahonig@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Fixes: fdef3ad1b3 ("KVM: VMX: Enable io bitmaps to avoid IO port 0x80 VMEXITs")
Cc: <stable@vger.kernel.org>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reported by syzkaller:
------------[ cut here ]------------
WARNING: CPU: 5 PID: 2939 at arch/x86/kvm/vmx.c:3844 free_loaded_vmcs+0x77/0x80 [kvm_intel]
CPU: 5 PID: 2939 Comm: repro Not tainted 4.14.0+ #26
RIP: 0010:free_loaded_vmcs+0x77/0x80 [kvm_intel]
Call Trace:
vmx_free_vcpu+0xda/0x130 [kvm_intel]
kvm_arch_destroy_vm+0x192/0x290 [kvm]
kvm_put_kvm+0x262/0x560 [kvm]
kvm_vm_release+0x2c/0x30 [kvm]
__fput+0x190/0x370
task_work_run+0xa1/0xd0
do_exit+0x4d2/0x13e0
do_group_exit+0x89/0x140
get_signal+0x318/0xb80
do_signal+0x8c/0xb40
exit_to_usermode_loop+0xe4/0x140
syscall_return_slowpath+0x206/0x230
entry_SYSCALL_64_fastpath+0x98/0x9a
The syzkaller testcase will execute VMXON/VMLAUCH instructions, so the
vmx->nested stuff is populated, it will also issue KVM_SMI ioctl. However,
the testcase is just a simple c program and not be lauched by something
like seabios which implements smi_handler. Commit 05cade71cf (KVM: nSVM:
fix SMI injection in guest mode) gets out of guest mode and set nested.vmxon
to false for the duration of SMM according to SDM 34.14.1 "leave VMX
operation" upon entering SMM. We can't alloc/free the vmx->nested stuff
each time when entering/exiting SMM since it will induce more overhead. So
the function vmx_pre_enter_smm() marks nested.vmxon false even if vmx->nested
stuff is still populated. What it expected is em_rsm() can mark nested.vmxon
to be true again. However, the smi_handler/rsm will not execute since there
is no something like seabios in this scenario. The function free_nested()
fails to free the vmx->nested stuff since the vmx->nested.vmxon is false
which results in the above warning.
This patch fixes it by also considering the no SMI handler case, luckily
vmx->nested.smm.vmxon is marked according to the value of vmx->nested.vmxon
in vmx_pre_enter_smm(), we can take advantage of it and free vmx->nested
stuff when L1 goes down.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Fixes: 05cade71cf (KVM: nSVM: fix SMI injection in guest mode)
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported by syzkaller:
*** Guest State ***
CR0: actual=0x0000000080010031, shadow=0x0000000060000010, gh_mask=fffffffffffffff7
CR4: actual=0x0000000000002061, shadow=0x0000000000000000, gh_mask=ffffffffffffe8f1
CR3 = 0x000000002081e000
RSP = 0x000000000000fffa RIP = 0x0000000000000000
RFLAGS=0x00023000 DR7 = 0x00000000000000
^^^^^^^^^^
------------[ cut here ]------------
WARNING: CPU: 6 PID: 24431 at /home/kernel/linux/arch/x86/kvm//x86.c:7302 kvm_arch_vcpu_ioctl_run+0x651/0x2ea0 [kvm]
CPU: 6 PID: 24431 Comm: reprotest Tainted: G W OE 4.14.0+ #26
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x651/0x2ea0 [kvm]
RSP: 0018:ffff880291d179e0 EFLAGS: 00010202
Call Trace:
kvm_vcpu_ioctl+0x479/0x880 [kvm]
do_vfs_ioctl+0x142/0x9a0
SyS_ioctl+0x74/0x80
entry_SYSCALL_64_fastpath+0x23/0x9a
The failed vmentry is triggered by the following beautified testcase:
#include <unistd.h>
#include <sys/syscall.h>
#include <string.h>
#include <stdint.h>
#include <linux/kvm.h>
#include <fcntl.h>
#include <sys/ioctl.h>
long r[5];
int main()
{
struct kvm_debugregs dr = { 0 };
r[2] = open("/dev/kvm", O_RDONLY);
r[3] = ioctl(r[2], KVM_CREATE_VM, 0);
r[4] = ioctl(r[3], KVM_CREATE_VCPU, 7);
struct kvm_guest_debug debug = {
.control = 0xf0403,
.arch = {
.debugreg[6] = 0x2,
.debugreg[7] = 0x2
}
};
ioctl(r[4], KVM_SET_GUEST_DEBUG, &debug);
ioctl(r[4], KVM_RUN, 0);
}
which testcase tries to setup the processor specific debug
registers and configure vCPU for handling guest debug events through
KVM_SET_GUEST_DEBUG. The KVM_SET_GUEST_DEBUG ioctl will get and set
rflags in order to set TF bit if single step is needed. All regs' caches
are reset to avail and GUEST_RFLAGS vmcs field is reset to 0x2 during vCPU
reset. However, the cache of rflags is not reset during vCPU reset. The
function vmx_get_rflags() returns an unreset rflags cache value since
the cache is marked avail, it is 0 after boot. Vmentry fails if the
rflags reserved bit 1 is 0.
This patch fixes it by resetting both the GUEST_RFLAGS vmcs field and
its cache to 0x2 during vCPU reset.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These bits were not defined until now in common code, but they are
now that the kernel supports UMIP too.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_check_nested_events() should return -EBUSY only in case there is a
pending L1 event which requires a VMExit from L2 to L1 but such a
VMExit is currently blocked. Such VMExits are blocked either
because nested_run_pending=1 or an event was reinjected to L2.
vmx_check_nested_events() should return 0 in case there are no
pending L1 events which requires a VMExit from L2 to L1 or if
a VMExit from L2 to L1 was done internally.
However, upstream commit which introduced blocking in case an event was
reinjected to L2 (commit acc9ab6013 ("KVM: nVMX: Fix pending events
injection")) contains a bug: It returns -EBUSY even if there are no
pending L1 events which requires VMExit from L2 to L1.
This commit fix this issue.
Fixes: acc9ab6013 ("KVM: nVMX: Fix pending events injection")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Commit 4f350c6dbc (kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure
properly) can result in L1(run kvm-unit-tests/run_tests.sh vmx_controls in L1)
null pointer deference and also L0 calltrace when EPT=0 on both L0 and L1.
In L1:
BUG: unable to handle kernel paging request at ffffffffc015bf8f
IP: vmx_vcpu_run+0x202/0x510 [kvm_intel]
PGD 146e13067 P4D 146e13067 PUD 146e15067 PMD 3d2686067 PTE 3d4af9161
Oops: 0003 [#1] PREEMPT SMP
CPU: 2 PID: 1798 Comm: qemu-system-x86 Not tainted 4.14.0-rc4+ #6
RIP: 0010:vmx_vcpu_run+0x202/0x510 [kvm_intel]
Call Trace:
WARNING: kernel stack frame pointer at ffffb86f4988bc18 in qemu-system-x86:1798 has bad value 0000000000000002
In L0:
-----------[ cut here ]------------
WARNING: CPU: 6 PID: 4460 at /home/kernel/linux/arch/x86/kvm//vmx.c:9845 vmx_inject_page_fault_nested+0x130/0x140 [kvm_intel]
CPU: 6 PID: 4460 Comm: qemu-system-x86 Tainted: G OE 4.14.0-rc7+ #25
RIP: 0010:vmx_inject_page_fault_nested+0x130/0x140 [kvm_intel]
Call Trace:
paging64_page_fault+0x500/0xde0 [kvm]
? paging32_gva_to_gpa_nested+0x120/0x120 [kvm]
? nonpaging_page_fault+0x3b0/0x3b0 [kvm]
? __asan_storeN+0x12/0x20
? paging64_gva_to_gpa+0xb0/0x120 [kvm]
? paging64_walk_addr_generic+0x11a0/0x11a0 [kvm]
? lock_acquire+0x2c0/0x2c0
? vmx_read_guest_seg_ar+0x97/0x100 [kvm_intel]
? vmx_get_segment+0x2a6/0x310 [kvm_intel]
? sched_clock+0x1f/0x30
? check_chain_key+0x137/0x1e0
? __lock_acquire+0x83c/0x2420
? kvm_multiple_exception+0xf2/0x220 [kvm]
? debug_check_no_locks_freed+0x240/0x240
? debug_smp_processor_id+0x17/0x20
? __lock_is_held+0x9e/0x100
kvm_mmu_page_fault+0x90/0x180 [kvm]
kvm_handle_page_fault+0x15c/0x310 [kvm]
? __lock_is_held+0x9e/0x100
handle_exception+0x3c7/0x4d0 [kvm_intel]
vmx_handle_exit+0x103/0x1010 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0x1628/0x2e20 [kvm]
The commit avoids to load host state of vmcs12 as vmcs01's guest state
since vmcs12 is not modified (except for the VM-instruction error field)
if the checking of vmcs control area fails. However, the mmu context is
switched to nested mmu in prepare_vmcs02() and it will not be reloaded
since load_vmcs12_host_state() is skipped when nested VMLAUNCH/VMRESUME
fails. This patch fixes it by reloading mmu context when nested
VMLAUNCH/VMRESUME fails.
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
According to the SDM, if the "load IA32_BNDCFGS" VM-entry controls is 1, the
following checks are performed on the field for the IA32_BNDCFGS MSR:
- Bits reserved in the IA32_BNDCFGS MSR must be 0.
- The linear address in bits 63:12 must be canonical.
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
In case of instruction-decode failure or emulation failure,
x86_emulate_instruction() will call reexecute_instruction() which will
attempt to use the cr2 value passed to x86_emulate_instruction().
However, when x86_emulate_instruction() is called from
emulate_instruction(), cr2 is not passed (passed as 0) and therefore
it doesn't make sense to execute reexecute_instruction() logic at all.
Fixes: 51d8b66199 ("KVM: cleanup emulate_instruction")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Instruction emulation after trapping a #UD exception can result in an
MMIO access, for example when emulating a MOVBE on a processor that
doesn't support the instruction. In this case, the #UD vmexit handler
must exit to user mode, but there wasn't any code to do so. Add it for
both VMX and SVM.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When running L2, #UD should be intercepted by L1 or just forwarded
directly to L2. It should not reach L0 x86 emulator.
Therefore, set intercept for #UD only based on L1 exception-bitmap.
Also add WARN_ON_ONCE() on L0 #UD intercept handlers to make sure
it is never reached while running L2.
This improves commit ae1f576707 ("KVM: nVMX: Do not emulate #UD while
in guest mode") by removing an unnecessary exit from L2 to L0 on #UD
when L1 doesn't intercept it.
In addition, SVM L0 #UD intercept handler doesn't handle correctly the
case it is raised from L2. In this case, it should forward the #UD to
guest instead of x86 emulator. As done in VMX #UD intercept handler.
This commit fixes this issue as-well.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
To simplify testing of these rarely used code paths, add a module parameter
that turns it on. One eventinj.flat test (NMI after iret) fails when
loading kvm_intel with vnmi=0.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This is more or less a revert of commit 2c82878b0c ("KVM: VMX: require
virtual NMI support", 2017-03-27); it turns out that Core 2 Duo machines
only had virtual NMIs in some SKUs.
The revert is not trivial because in the meanwhile there have been several
fixes to nested NMI injection. Therefore, the entire vNMI state is moved
to struct loaded_vmcs.
Another change compared to before the patch is a simplification here:
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
!(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
get_vmcs12(vcpu))))) {
The final condition here is always true (because nested_cpu_has_virtual_nmis
is always false) and is removed.
Fixes: 2c82878b0c
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1490803
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
In kvm_apic_set_state() we update the hardware virtualized APIC after
the full APIC state has been overwritten. Do the same, when the full
APIC state has been reset in kvm_lapic_reset().
This updates some hardware state that was previously forgotten, as
far as I can tell. Also, this allows removing some APIC-related reset
code from vmx_vcpu_reset().
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Parts of the posted interrupt descriptor configure host behavior,
such as the notification vector and destination. Overwriting them
with zero as done during vCPU reset breaks posted interrupts.
KVM (re-)writes these fields on certain occasions and belatedly fixes
the situation in many cases. However, if you have a guest configured
with "idle=poll", for example, the fields might stay zero forever.
Do not reset the full descriptor in vmx_vcpu_reset(). Instead,
reset only the outstanding notifications and leave everything
else untouched.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In my setup, EPT is not exposed to L1, the VPID capability is exposed and
can be observed by vmxcap tool in L1:
INVVPID supported yes
Individual-address INVVPID yes
Single-context INVVPID yes
All-context INVVPID yes
Single-context-retaining-globals INVVPID yes
However, the module parameter of VPID observed in L1 is always N, the
cpu_has_vmx_invvpid() check in L1 KVM fails since vmx_capability.vpid
is 0 and it is not read from MSR due to EPT is not exposed.
The VPID can be used to tag linear mappings when EPT is not enabled. However,
current logic just detects VPID capability if EPT is enabled, this patch
fixes it.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
I can use vmxcap tool to observe "EPTP Switching yes" even if EPT is not
exposed to L1.
EPT switching is advertised unconditionally since it is emulated, however,
it can be treated as an extended feature for EPT and it should not be
advertised if EPT itself is not exposed. This patch fixes it.
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Commit 05cade71cf ("KVM: nSVM: fix SMI injection in guest mode") made
KVM mask SMI if GIF=0 but it didn't do anything to unmask it when GIF is
enabled.
The issue manifests for me as a significantly longer boot time of Windows
guests when running with SMM-enabled OVMF.
This commit fixes it by intercepting STGI instead of requesting immediate
exit if the reason why SMM was masked is GIF.
Fixes: 05cade71cf ("KVM: nSVM: fix SMI injection in guest mode")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Entering SMM while running in guest mode wasn't working very well because several
pieces of the vcpu state were left set up for nested operation.
Some of the issues observed:
* L1 was getting unexpected VM exits (using L1 interception controls but running
in SMM execution environment)
* SMM handler couldn't write to vmx_set_cr4 because of incorrect validity checks
predicated on nested.vmxon
* MMU was confused (walk_mmu was still set to nested_mmu)
Intel SDM actually prescribes the logical processor to "leave VMX operation" upon
entering SMM in 34.14.1 Default Treatment of SMI Delivery. What we need to do is
basically get out of guest mode and set nested.vmxon to false for the duration of
SMM. All this completely transparent to L1, i.e. L1 is not given control and no
L1 observable state changes.
To avoid code duplication this commit takes advantage of the existing nested
vmexit and run functionality, perhaps at the cost of efficiency. To get out of
guest mode, nested_vmx_vmexit with exit_reason == -1 is called, a trick already
used in vmx_leave_nested. Re-entering is cleaner, using enter_vmx_non_root_mode.
This commit fixes running Windows Server 2016 with Hyper-V enabled in a VM with
OVMF firmware (OVMF_CODE-need-smm.fd).
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel SDM 27.5.2 Loading Host Segment and Descriptor-Table Registers:
"The GDTR and IDTR limits are each set to FFFFH."
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to NMI, there may be ISA specific reasons why an SMI cannot be
injected into the guest. This commit adds a new smi_allowed callback to
be implemented in following commits.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Entering and exiting SMM may require ISA specific handling under certain
circumstances. This commit adds two new callbacks with empty implementations.
Actual functionality will be added in following commits.
* pre_enter_smm() is to be called when injecting an SMM, before any
SMM related vcpu state has been changed
* pre_leave_smm() is to be called when emulating the RSM instruction,
when the vcpu is in real mode and before any SMM related vcpu state
has been restored
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It has always annoyed me a bit how SVM_EXIT_NPF is handled by
pf_interception. This is also the only reason behind the
under-documented need_unprotect argument to kvm_handle_page_fault.
Let NPF go straight to kvm_mmu_page_fault, just like VMX
does in handle_ept_violation and handle_ept_misconfig.
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SDM mentioned:
"If either the “unrestricted guest†VM-execution control or the “mode-based
execute control for EPT†VM- execution control is 1, the “enable EPTâ€
VM-execution control must also be 1."
However, we can still observe unrestricted_guest is Y after inserting the kvm-intel.ko
w/ ept=N. It depends on later starts a guest in order that the function
vmx_compute_secondary_exec_control() can be executed, then both the module parameter
and exec control fields will be amended.
This patch fixes it by amending module parameter immediately during vmcs data setup.
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- XCR0 is reset to 1 by RESET but not INIT
- XSS is zeroed by both RESET and INIT
- BNDCFGU, BND0-BND3, BNDCFGS, BNDSTATUS are zeroed by both RESET and INIT
This patch does this according to SDM.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let's just name these according to the SDM. This should make it clearer
that the are used to enable exiting and not the feature itself.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
No need for another enable_ept check. kvm->arch.ept_identity_map_addr
only has to be inititalized once. Having alloc_identity_pagetable() is
overkill and dropping BUG_ONs is always nice.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
They are inititally 0, so no need to reset them to 0.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
vcpu->cpu is not cleared when doing a vmx_vcpu_put/load, so this can be
dropped.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Without this, we won't be able to do any flushes, so let's just require
it. Should be absent in very strange configurations.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
ept_* function should only be called with enable_ept being set.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This function is only called with enable_ept.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Make it a void and drop error handling code.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
KVM doesn't expose the PLE capability to the L1 hypervisor, however,
ple_window still shows the default value on L1 hypervisor. This patch
fixes it by clearing all the PLE related module parameter if there is
no PLE capability.
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When KVM emulates an exit from L2 to L1, it loads L1 CR4 into the
guest CR4. Before this CR4 loading, the guest CR4 refers to L2
CR4. Because these two CR4's are in different levels of guest, we
should vmx_set_cr4() rather than kvm_set_cr4() here. The latter, which
is used to handle guest writes to its CR4, checks the guest change to
CR4 and may fail if the change is invalid.
The failure may cause trouble. Consider we start
a L1 guest with non-zero L1 PCID in use,
(i.e. L1 CR4.PCIDE == 1 && L1 CR3.PCID != 0)
and
a L2 guest with L2 PCID disabled,
(i.e. L2 CR4.PCIDE == 0)
and following events may happen:
1. If kvm_set_cr4() is used in load_vmcs12_host_state() to load L1 CR4
into guest CR4 (in VMCS01) for L2 to L1 exit, it will fail because
of PCID check. As a result, the guest CR4 recorded in L0 KVM (i.e.
vcpu->arch.cr4) is left to the value of L2 CR4.
2. Later, if L1 attempts to change its CR4, e.g., clearing VMXE bit,
kvm_set_cr4() in L0 KVM will think L1 also wants to enable PCID,
because the wrong L2 CR4 is used by L0 KVM as L1 CR4. As L1
CR3.PCID != 0, L0 KVM will inject GP to L1 guest.
Fixes: 4704d0befb ("KVM: nVMX: Exiting from L2 to L1")
Cc: qemu-stable@nongnu.org
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
that was finally triggered by PCID support.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZzmJqAAoJEL/70l94x66D99oH/R4hOMfzDxFOgW3LnaCQJvwo
n1+tH3as0dfdkpggZ+UmJuKnbVJ0625+qozenrdYkKtk1YiyIIQWG3vdsz4HBfzp
CYK2NVVymf0dg8DQaluz6iB1R28ke12PggzyFv01s1QyENBDA8J38pslZarPM2OA
tnpRKC6B59/VmRD0PWS6yRmTXY+HfzWlWg4JMraq2VdybbEXJhh8BNfjjNn30DkZ
SW8kHq60AUd5Arhb3cmiPiXZCQ7odqF2u2mEcBmnA9hAacaGEheSzKCUOaEIjmZV
5/jTyG1tZkN7CbrG81ryuoa8A6qTOSyHxo1QkzAmE/p+s2IzGfzzLqmtfIsAWkE=
=1lM1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Mixed bugfixes. Perhaps the most interesting one is a latent bug that
was finally triggered by PCID support"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm/x86: Handle async PF in RCU read-side critical sections
KVM: nVMX: Fix nested #PF intends to break L1's vmlauch/vmresume
KVM: VMX: use cmpxchg64
KVM: VMX: simplify and fix vmx_vcpu_pi_load
KVM: VMX: avoid double list add with VT-d posted interrupts
KVM: VMX: extract __pi_post_block
KVM: PPC: Book3S HV: Check for updated HDSISR on P9 HDSI exception
KVM: nVMX: fix HOST_CR3/HOST_CR4 cache
------------[ cut here ]------------
WARNING: CPU: 4 PID: 5280 at /home/kernel/linux/arch/x86/kvm//vmx.c:11394 nested_vmx_vmexit+0xc2b/0xd70 [kvm_intel]
CPU: 4 PID: 5280 Comm: qemu-system-x86 Tainted: G W OE 4.13.0+ #17
RIP: 0010:nested_vmx_vmexit+0xc2b/0xd70 [kvm_intel]
Call Trace:
? emulator_read_emulated+0x15/0x20 [kvm]
? segmented_read+0xae/0xf0 [kvm]
vmx_inject_page_fault_nested+0x60/0x70 [kvm_intel]
? vmx_inject_page_fault_nested+0x60/0x70 [kvm_intel]
x86_emulate_instruction+0x733/0x810 [kvm]
vmx_handle_exit+0x2f4/0xda0 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0xd2f/0x1c60 [kvm]
kvm_arch_vcpu_ioctl_run+0xdab/0x1c60 [kvm]
? kvm_arch_vcpu_load+0x62/0x230 [kvm]
kvm_vcpu_ioctl+0x340/0x700 [kvm]
? kvm_vcpu_ioctl+0x340/0x700 [kvm]
? __fget+0xfc/0x210
do_vfs_ioctl+0xa4/0x6a0
? __fget+0x11d/0x210
SyS_ioctl+0x79/0x90
entry_SYSCALL_64_fastpath+0x23/0xc2
A nested #PF is triggered during L0 emulating instruction for L2. However, it
doesn't consider we should not break L1's vmlauch/vmresme. This patch fixes
it by queuing the #PF exception instead ,requesting an immediate VM exit from
L2 and keeping the exception for L1 pending for a subsequent nested VM exit.
This should actually work all the time, making vmx_inject_page_fault_nested
totally unnecessary. However, that's not working yet, so this patch can work
around the issue in the meanwhile.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The simplify part: do not touch pi_desc.nv, we can set it when the
VCPU is first created. Likewise, pi_desc.sn is only handled by
vmx_vcpu_pi_load, do not touch it in __pi_post_block.
The fix part: do not check kvm_arch_has_assigned_device, instead
check the SN bit to figure out whether vmx_vcpu_pi_put ran before.
This matches what the previous patch did in pi_post_block.
Cc: Huangweidong <weidong.huang@huawei.com>
Cc: Gonglei <arei.gonglei@huawei.com>
Cc: wangxin <wangxinxin.wang@huawei.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Longpeng (Mike) <longpeng2@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases, for example involving hot-unplug of assigned
devices, pi_post_block can forget to remove the vCPU from the
blocked_vcpu_list. When this happens, the next call to
pi_pre_block corrupts the list.
Fix this in two ways. First, check vcpu->pre_pcpu in pi_pre_block
and WARN instead of adding the element twice in the list. Second,
always do the list removal in pi_post_block if vcpu->pre_pcpu is
set (not -1).
The new code keeps interrupts disabled for the whole duration of
pi_pre_block/pi_post_block. This is not strictly necessary, but
easier to follow. For the same reason, PI.ON is checked only
after the cmpxchg, and to handle it we just call the post-block
code. This removes duplication of the list removal code.
Cc: Huangweidong <weidong.huang@huawei.com>
Cc: Gonglei <arei.gonglei@huawei.com>
Cc: wangxin <wangxinxin.wang@huawei.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Longpeng (Mike) <longpeng2@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 fixes from Ingo Molnar:
"Another round of CR3/PCID related fixes (I think this addresses all
but one of the known problems with PCID support), an objtool fix plus
a Clang fix that (finally) solves all Clang quirks to build a bootable
x86 kernel as-is"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm: Fix inline asm call constraints for Clang
objtool: Handle another GCC stack pointer adjustment bug
x86/mm/32: Load a sane CR3 before cpu_init() on secondary CPUs
x86/mm/32: Move setup_clear_cpu_cap(X86_FEATURE_PCID) earlier
x86/mm/64: Stop using CR3.PCID == 0 in ASID-aware code
x86/mm: Factor out CR3-building code
For inline asm statements which have a CALL instruction, we list the
stack pointer as a constraint to convince GCC to ensure the frame
pointer is set up first:
static inline void foo()
{
register void *__sp asm(_ASM_SP);
asm("call bar" : "+r" (__sp))
}
Unfortunately, that pattern causes Clang to corrupt the stack pointer.
The fix is easy: convert the stack pointer register variable to a global
variable.
It should be noted that the end result is different based on the GCC
version. With GCC 6.4, this patch has exactly the same result as
before:
defconfig defconfig-nofp distro distro-nofp
before 9820389 9491555 8816046 8516940
after 9820389 9491555 8816046 8516940
With GCC 7.2, however, GCC's behavior has changed. It now changes its
behavior based on the conversion of the register variable to a global.
That somehow convinces it to *always* set up the frame pointer before
inserting *any* inline asm. (Therefore, listing the variable as an
output constraint is a no-op and is no longer necessary.) It's a bit
overkill, but the performance impact should be negligible. And in fact,
there's a nice improvement with frame pointers disabled:
defconfig defconfig-nofp distro distro-nofp
before 9796316 9468236 9076191 8790305
after 9796957 9464267 9076381 8785949
So in summary, while listing the stack pointer as an output constraint
is no longer necessary for newer versions of GCC, it's still needed for
older versions.
Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3db862e970c432ae823cf515c52b54fec8270e0e.1505942196.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For nested virt we maintain multiple VMCS that can run on a vCPU. So it is
incorrect to keep vmcs_host_cr3 and vmcs_host_cr4, whose purpose is caching
the value of the rarely changing HOST_CR3 and HOST_CR4 VMCS fields, in
vCPU-wide data structures.
Hyper-V nested on KVM runs into this consistently for me with PCID enabled.
CR3 is updated with a new value, unlikely(cr3 != vmx->host_state.vmcs_host_cr3)
fires, and the currently loaded VMCS is updated. Then we switch from L2 to
L1 and the next exit reverts CR3 to its old value.
Fixes: d6e41f1151 ("x86/mm, KVM: Teach KVM's VMX code that CR3 isn't a constant")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc)) in kvm_vcpu_trigger_posted_interrupt()
intends to detect the violation of invariant that VT-d PI notification
event is not suppressed when vcpu is in the guest mode. Because the
two checks for the target vcpu mode and the target suppress field
cannot be performed atomically, the target vcpu mode may change in
between. If that does happen, WARN_ON_ONCE() here may raise false
alarms.
As the previous patch fixed the real invariant breaker, remove this
WARN_ON_ONCE() to avoid false alarms, and document the allowed cases
instead.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: "Ramamurthy, Venkatesh" <venkatesh.ramamurthy@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 28b835d60f ("KVM: Update Posted-Interrupts Descriptor when vCPU is preempted")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
In kvm_vcpu_trigger_posted_interrupt() and pi_pre_block(), KVM
assumes that PI notification events should not be suppressed when the
target vCPU is not blocked.
vmx_update_pi_irte() sets the SN field before changing an interrupt
from posting to remapping, but it does not check the vCPU mode.
Therefore, the change of SN field may break above the assumption.
Besides, I don't see reasons to suppress notification events here, so
remove the changes of SN field to avoid race condition.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: "Ramamurthy, Venkatesh" <venkatesh.ramamurthy@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 28b835d60f ("KVM: Update Posted-Interrupts Descriptor when vCPU is preempted")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When emulating a nested VM-entry from L1 to L2, several control field
validation checks are deferred to the hardware. Should one of these
validation checks fail, vcpu_vmx_run will set the vmx->fail flag. When
this happens, the L2 guest state is not loaded (even in part), and
execution should continue in L1 with the next instruction after the
VMLAUNCH/VMRESUME.
The VMCS12 is not modified (except for the VM-instruction error
field), the VMCS12 MSR save/load lists are not processed, and the CPU
state is not loaded from the VMCS12 host area. Moreover, the vmcs02
exit reason is stale, so it should not be consulted for any reason.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On an early VMLAUNCH/VMRESUME failure (i.e. one which sets the
VM-instruction error field of the current VMCS), the launch state of
the current VMCS is not set to "launched," and the VM-exit information
fields of the current VMCS (including IDT-vectoring information and
exit reason) are stale.
On a late VMLAUNCH/VMRESUME failure (i.e. one which sets the high bit
of the exit reason field), the launch state of the current VMCS is not
set to "launched," and only two of the VM-exit information fields of
the current VMCS are modified (exit reason and exit
qualification). The remaining VM-exit information fields of the
current VMCS (including IDT-vectoring information, in particular) are
stale.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After a successful VM-entry, RFLAGS is cleared, with the exception of
bit 1, which is always set. This is handled by load_vmcs12_host_state.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The value of the guest_irq argument to vmx_update_pi_irte() is
ultimately coming from a KVM_IRQFD API call. Do not BUG() in
vmx_update_pi_irte() if the value is out-of bounds. (Especially,
since KVM as a whole seems to hang after that.)
Instead, print a message only once if we find that we don't have a
route for a certain IRQ (which can be out-of-bounds or within the
array).
This fixes CVE-2017-1000252.
Fixes: efc644048e ("KVM: x86: Update IRTE for posted-interrupts")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If L1 does not specify the "use TPR shadow" VM-execution control in
vmcs12, then L0 must specify the "CR8-load exiting" and "CR8-store
exiting" VM-execution controls in vmcs02. Failure to do so will give
the L2 VM unrestricted read/write access to the hardware CR8.
This fixes CVE-2017-12154.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Modify struct kvm_x86_ops.arch.apicv_active() to take struct kvm_vcpu
pointer as parameter in preparation to subsequent changes.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Common:
- improve heuristic for boosting preempted spinlocks by ignoring VCPUs
in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge powerpc/topic/ppc-kvm branch that contains
find_linux_pte_or_hugepte and POWER9 thread management cleanup
- merge kvm-ppc-fixes with a fix that missed 4.13 because of vacations
- fixes
s390:
- merge of topic branch tlb-flushing from the s390 tree to get the
no-dat base features
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJZspE1AAoJEED/6hsPKofoDcMIALT11n+LKV50QGwQdg2W1GOt
aChbgnj/Kegit3hQlDhVNb8kmdZEOZzSL81Lh0VPEr7zXU8QiWn2snbizDPv8sde
MpHhcZYZZ0YrpoiZKjl8yiwcu88OWGn2qtJ7OpuTS5hvEGAfxMncp0AMZho6fnz/
ySTwJ9GK2MTgBw39OAzCeDOeoYn4NKYMwjJGqBXRhNX8PG/1wmfqv0vPrd6wfg31
KJ58BumavwJjr8YbQ1xELm9rpQrAmaayIsG0R1dEUqCbt5a1+t2gt4h2uY7tWcIv
ACt2bIze7eF3xA+OpRs+eT+yemiH3t9btIVmhCfzUpnQ+V5Z55VMSwASLtTuJRQ=
=R8Ry
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.14
Common:
- improve heuristic for boosting preempted spinlocks by ignoring
VCPUs in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge kvm-ppc-fixes with a fix that missed 4.13 because of
vacations
- fixes
s390:
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested"
* tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits)
KVM: arm/arm64: Support uaccess of GICC_APRn
KVM: arm/arm64: Extract GICv3 max APRn index calculation
KVM: arm/arm64: vITS: Drop its_ite->lpi field
KVM: arm/arm64: vgic: constify seq_operations and file_operations
KVM: arm/arm64: Fix guest external abort matching
KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd
KVM: s390: vsie: cleanup mcck reinjection
KVM: s390: use WARN_ON_ONCE only for checking
KVM: s390: guestdbg: fix range check
KVM: PPC: Book3S HV: Report storage key support to userspace
KVM: PPC: Book3S HV: Fix case where HDEC is treated as 32-bit on POWER9
KVM: PPC: Book3S HV: Fix invalid use of register expression
KVM: PPC: Book3S HV: Fix H_REGISTER_VPA VPA size validation
KVM: PPC: Book3S HV: Fix setting of storage key in H_ENTER
KVM: PPC: e500mc: Fix a NULL dereference
KVM: PPC: e500: Fix some NULL dereferences on error
KVM: PPC: Book3S HV: Protect updates to spapr_tce_tables list
KVM: s390: we are always in czam mode
KVM: s390: expose no-DAT to guest and migration support
KVM: s390: sthyi: remove invalid guest write access
...
This fix was intended for 4.13, but didn't get in because both
maintainers were on vacation.
Paul Mackerras:
"It adds mutual exclusion between list_add_rcu and list_del_rcu calls
on the kvm->arch.spapr_tce_tables list. Without this, userspace could
potentially trigger corruption of the list and cause a host crash or
worse."
Pull x86 apic updates from Thomas Gleixner:
"This update provides:
- Cleanup of the IDT management including the removal of the extra
tracing IDT. A first step to cleanup the vector management code.
- The removal of the paravirt op adjust_exception_frame. This is a
XEN specific issue, but merged through this branch to avoid nasty
merge collisions
- Prevent dmesg spam about the TSC DEADLINE bug, when the CPU has
disabled the TSC DEADLINE timer in CPUID.
- Adjust a debug message in the ioapic code to print out the
information correctly"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
x86/idt: Fix the X86_TRAP_BP gate
x86/xen: Get rid of paravirt op adjust_exception_frame
x86/eisa: Add missing include
x86/idt: Remove superfluous ALIGNment
x86/apic: Silence "FW_BUG TSC_DEADLINE disabled due to Errata" on CPUs without the feature
x86/idt: Remove the tracing IDT leftovers
x86/idt: Hide set_intr_gate()
x86/idt: Simplify alloc_intr_gate()
x86/idt: Deinline setup functions
x86/idt: Remove unused functions/inlines
x86/idt: Move interrupt gate initialization to IDT code
x86/idt: Move APIC gate initialization to tables
x86/idt: Move regular trap init to tables
x86/idt: Move IST stack based traps to table init
x86/idt: Move debug stack init to table based
x86/idt: Switch early trap init to IDT tables
x86/idt: Prepare for table based init
x86/idt: Move early IDT setup out of 32-bit asm
x86/idt: Move early IDT handler setup to IDT code
x86/idt: Consolidate IDT invalidation
...
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
The first 32 bits of gate struct are the same for 32 and 64 bit kernels.
The 32-bit version uses desc_struct and no designated data structure,
so we need different accessors for 32 and 64 bit kernels.
Aside of that the macros which are necessary to build the 32-bit
gate descriptor are horrible to read.
Unify the gate structs and switch all code fiddling with it over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064957.861974317@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
According to the SDM, if the "use TPR shadow" VM-execution control is
1, bits 11:0 of the virtual-APIC address must be 0 and the address
should set any bits beyond the processor's physical-address width.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move it to struct kvm_arch_vcpu, replacing guest_pkru_valid with a
simple comparison against the host value of the register. The write of
PKRU in addition can be skipped if the guest has not enabled the feature.
Once we do this, we need not test OSPKE in the host anymore, because
guest_CR4.PKE=1 implies host_CR4.PKE=1.
The static PKU test is kept to elide the code on older CPUs.
Suggested-by: Yang Zhang <zy107165@alibaba-inc.com>
Fixes: 1be0e61c1f
Cc: stable@vger.kernel.org
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
------------[ cut here ]------------
WARNING: CPU: 7 PID: 3861 at /home/kernel/ssd/kvm/arch/x86/kvm//vmx.c:11299 nested_vmx_vmexit+0x176e/0x1980 [kvm_intel]
CPU: 7 PID: 3861 Comm: qemu-system-x86 Tainted: G W OE 4.13.0-rc4+ #11
RIP: 0010:nested_vmx_vmexit+0x176e/0x1980 [kvm_intel]
Call Trace:
? kvm_multiple_exception+0x149/0x170 [kvm]
? handle_emulation_failure+0x79/0x230 [kvm]
? load_vmcs12_host_state+0xa80/0xa80 [kvm_intel]
? check_chain_key+0x137/0x1e0
? reexecute_instruction.part.168+0x130/0x130 [kvm]
nested_vmx_inject_exception_vmexit+0xb7/0x100 [kvm_intel]
? nested_vmx_inject_exception_vmexit+0xb7/0x100 [kvm_intel]
vmx_queue_exception+0x197/0x300 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0x1b0c/0x2c90 [kvm]
? kvm_arch_vcpu_runnable+0x220/0x220 [kvm]
? preempt_count_sub+0x18/0xc0
? restart_apic_timer+0x17d/0x300 [kvm]
? kvm_lapic_restart_hv_timer+0x37/0x50 [kvm]
? kvm_arch_vcpu_load+0x1d8/0x350 [kvm]
kvm_vcpu_ioctl+0x4e4/0x910 [kvm]
? kvm_vcpu_ioctl+0x4e4/0x910 [kvm]
? kvm_dev_ioctl+0xbe0/0xbe0 [kvm]
The flag "nested_run_pending", which can override the decision of which should run
next, L1 or L2. nested_run_pending=1 means that we *must* run L2 next, not L1. This
is necessary in particular when L1 did a VMLAUNCH of L2 and therefore expects L2 to
be run (and perhaps be injected with an event it specified, etc.). Nested_run_pending
is especially intended to avoid switching to L1 in the injection decision-point.
This can be handled just like the other cases in vmx_check_nested_events, instead of
having a special case in vmx_queue_exception.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_complete_interrupts() assumes that the exception is always injected,
so it can be dropped by kvm_clear_exception_queue(). However,
an exception cannot be injected immediately if it is: 1) originally
destined to a nested guest; 2) trapped to cause a vmexit; 3) happening
right after VMLAUNCH/VMRESUME, i.e. when nested_run_pending is true.
This patch applies to exceptions the same algorithm that is used for
NMIs, replacing exception.reinject with "exception.injected" (equivalent
to nmi_injected).
exception.pending now represents an exception that is queued and whose
side effects (e.g., update RFLAGS.RF or DR7) have not been applied yet.
If exception.pending is true, the exception might result in a nested
vmexit instead, too (in which case the side effects must not be applied).
exception.injected instead represents an exception that is going to be
injected into the guest at the next vmentry.
Reported-by: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_event_needs_reinjection() encapsulation.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch exposes 5 level page table feature to the VM.
At the same time, the canonical virtual address checking is
extended to support both 48-bits and 57-bits address width.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extends the shadow paging code, so that 5 level shadow page
table can be constructed if VM is running in 5 level paging
mode.
Also extends the ept code, so that 5 level ept table can be
constructed if maxphysaddr of VM exceeds 48 bits. Unlike the
shadow logic, KVM should still use 4 level ept table for a VM
whose physical address width is less than 48 bits, even when
the VM is running in 5 level paging mode.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
[Unconditionally reset the MMU context in kvm_cpuid_update.
Changing MAXPHYADDR invalidates the reserved bit bitmasks.
- Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A guest may not be configured to support XSAVES/XRSTORS, even when the host
does. If the guest does not support XSAVES/XRSTORS, clear the secondary
execution control so that the processor will raise #UD.
Also clear the "allowed-1" bit for XSAVES/XRSTORS exiting in the
IA32_VMX_PROCBASED_CTLS2 MSR, and pass through VMCS12's control in
the VMCS02.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A guest may not be configured to support RDSEED, even when the host
does. If the guest does not support RDSEED, intercept the instruction
and synthesize #UD. Also clear the "allowed-1" bit for RDSEED exiting
in the IA32_VMX_PROCBASED_CTLS2 MSR.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A guest may not be configured to support RDRAND, even when the host
does. If the guest does not support RDRAND, intercept the instruction
and synthesize #UD. Also clear the "allowed-1" bit for RDRAND exiting
in the IA32_VMX_PROCBASED_CTLS2 MSR.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, secondary execution controls are divided in three groups:
- static, depending mostly on the module arguments or the processor
(vmx_secondary_exec_control)
- static, depending on CPUID (vmx_cpuid_update)
- dynamic, depending on nested VMX or local APIC state
Because walking CPUID is expensive, prepare_vmcs02 is using only
the first group. This however is unnecessarily complicated. Just
cache the static secondary execution controls, and then prepare_vmcs02
does not need to compute them every time. Computation of all static
secondary execution controls is now kept in a single function,
vmx_compute_secondary_exec_control.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We already always set that type but don't check if it is supported. Also
for nVMX, we only support WB for now. Let's just require it.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Don't use shifts, tag them correctly as EPTP and use better matching
names (PWL vs. GAW).
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
There is currently some confusion between nested and L1 GPAs. The
assignment to "direct" in kvm_mmu_page_fault tries to fix that, but
it is not enough. What this patch does is fence off the MMIO cache
completely when using shadow nested page tables, since we have neither
a GVA nor an L1 GPA to put in the cache. This also allows some
simplifications in kvm_mmu_page_fault and FNAME(page_fault).
The EPT misconfig likewise does not have an L1 GPA to pass to
kvm_io_bus_write, so that must be skipped for guest mode.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Changed comment to say "GPAs" instead of "L1's physical addresses", as
per David's review. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When a guest causes a page fault which requires emulation, the
vcpu->arch.gpa_available flag is set to indicate that cr2 contains a
valid GPA.
Currently, emulator_read_write_onepage() makes use of gpa_available flag
to avoid a guest page walk for a known MMIO regions. Lets not limit
the gpa_available optimization to just MMIO region. The patch extends
the check to avoid page walk whenever gpa_available flag is set.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
[Fix EPT=0 according to Wanpeng Li's fix, plus ensure VMX also uses the
new code. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Moved "ret < 0" to the else brach, as per David's review. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Calling handle_mmio_page_fault() has been unnecessary since commit
e9ee956e31 ("KVM: x86: MMU: Move handle_mmio_page_fault() call to
kvm_mmu_page_fault()", 2016-02-22).
handle_mmio_page_fault() can now be made static.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's reuse the function introduced with eptp switching.
We don't explicitly have to check against enable_ept_ad_bits, as this
is implicitly done when checking against nested_vmx_ept_caps in
valid_ept_address().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is the same as commit 147277540b ("kvm: svm: Add support for
additional SVM NPF error codes", 2016-11-23), but for Intel processors.
In this case, the exit qualification field's bit 8 says whether the
EPT violation occurred while translating the guest's final physical
address or rather while translating the guest page tables.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported by syzkaller:
The kvm-intel.unrestricted_guest=0
WARNING: CPU: 5 PID: 1014 at /home/kernel/data/kvm/arch/x86/kvm//x86.c:7227 kvm_arch_vcpu_ioctl_run+0x38b/0x1be0 [kvm]
CPU: 5 PID: 1014 Comm: warn_test Tainted: G W OE 4.13.0-rc3+ #8
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x38b/0x1be0 [kvm]
Call Trace:
? put_pid+0x3a/0x50
? rcu_read_lock_sched_held+0x79/0x80
? kmem_cache_free+0x2f2/0x350
kvm_vcpu_ioctl+0x340/0x700 [kvm]
? kvm_vcpu_ioctl+0x340/0x700 [kvm]
? __fget+0xfc/0x210
do_vfs_ioctl+0xa4/0x6a0
? __fget+0x11d/0x210
SyS_ioctl+0x79/0x90
entry_SYSCALL_64_fastpath+0x23/0xc2
? __this_cpu_preempt_check+0x13/0x20
The syszkaller folks reported a residual mmio emulation request to userspace
due to vm86 fails to emulate inject real mode interrupt(fails to read CS) and
incurs a triple fault. The vCPU returns to userspace with vcpu->mmio_needed == true
and KVM_EXIT_SHUTDOWN exit reason. However, the syszkaller testcase constructs
several threads to launch the same vCPU, the thread which lauch this vCPU after
the thread whichs get the vcpu->mmio_needed == true and KVM_EXIT_SHUTDOWN will
trigger the warning.
#define _GNU_SOURCE
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/kvm.h>
#include <stdio.h>
int kvmcpu;
struct kvm_run *run;
void* thr(void* arg)
{
int res;
res = ioctl(kvmcpu, KVM_RUN, 0);
printf("ret1=%d exit_reason=%d suberror=%d\n",
res, run->exit_reason, run->internal.suberror);
return 0;
}
void test()
{
int i, kvm, kvmvm;
pthread_t th[4];
kvm = open("/dev/kvm", O_RDWR);
kvmvm = ioctl(kvm, KVM_CREATE_VM, 0);
kvmcpu = ioctl(kvmvm, KVM_CREATE_VCPU, 0);
run = (struct kvm_run*)mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, kvmcpu, 0);
srand(getpid());
for (i = 0; i < 4; i++) {
pthread_create(&th[i], 0, thr, 0);
usleep(rand() % 10000);
}
for (i = 0; i < 4; i++)
pthread_join(th[i], 0);
}
int main()
{
for (;;) {
int pid = fork();
if (pid < 0)
exit(1);
if (pid == 0) {
test();
exit(0);
}
int status;
while (waitpid(pid, &status, __WALL) != pid) {}
}
return 0;
}
This patch fixes it by resetting the vcpu->mmio_needed once we receive
the triple fault to avoid the residue.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
get_cpl requires vcpu_load, so we must cache the result (whether the
vcpu was preempted when its cpl=0) in kvm_vcpu_arch.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a vcpu exits due to request a user mode spinlock, then
the spinlock-holder may be preempted in user mode or kernel mode.
(Note that not all architectures trap spin loops in user mode,
only AMD x86 and ARM/ARM64 currently do).
But if a vcpu exits in kernel mode, then the holder must be
preempted in kernel mode, so we should choose a vcpu in kernel mode
as a more likely candidate for the lock holder.
This introduces kvm_arch_vcpu_in_kernel() to decide whether the
vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's
new argument says the same of the spinning VCPU.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add guest_cpuid_clear() and use it instead of kvm_find_cpuid_entry().
Also replace some uses of kvm_find_cpuid_entry() with guest_cpuid_has().
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch turns guest_cpuid_has_XYZ(cpuid) into guest_cpuid_has(cpuid,
X86_FEATURE_XYZ), which gets rid of many very similar helpers.
When seeing a X86_FEATURE_*, we can know which cpuid it belongs to, but
this information isn't in common code, so we recreate it for KVM.
Add some BUILD_BUG_ONs to make sure that it runs nicely.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When L2 uses vmfunc, L0 utilizes the associated vmexit to
emulate a switching of the ept pointer by reloading the
guest MMU.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Expose VMFUNC in MSRs and VMCS fields. No actual VMFUNCs are enabled.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Enable VMFUNC in the secondary execution controls. This simplifies the
changes necessary to expose it to nested hypervisors. VMFUNCs still
cause #UD when invoked.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's also just use the underlying functions directly here.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
[Rebased on top of 9f744c5974 ("KVM: nVMX: do not pin the VMCS12")]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
nested_get_page() just sounds confusing. All we want is a page from G1.
This is even unrelated to nested.
Let's introduce kvm_vcpu_gpa_to_page() so we don't get too lengthy
lines.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
[Squash pasto fix from Wanpeng Li. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose the "Enable INVPCID" secondary execution control to the guest
and properly reflect the exit reason.
In addition, before this patch the guest was always running with
INVPCID enabled, causing pcid.flat's "Test on INVPCID when disabled"
test to fail.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
------------[ cut here ]------------
WARNING: CPU: 5 PID: 2288 at arch/x86/kvm/vmx.c:11124 nested_vmx_vmexit+0xd64/0xd70 [kvm_intel]
CPU: 5 PID: 2288 Comm: qemu-system-x86 Not tainted 4.13.0-rc2+ #7
RIP: 0010:nested_vmx_vmexit+0xd64/0xd70 [kvm_intel]
Call Trace:
vmx_check_nested_events+0x131/0x1f0 [kvm_intel]
? vmx_check_nested_events+0x131/0x1f0 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0x5dd/0x1be0 [kvm]
? vmx_vcpu_load+0x1be/0x220 [kvm_intel]
? kvm_arch_vcpu_load+0x62/0x230 [kvm]
kvm_vcpu_ioctl+0x340/0x700 [kvm]
? kvm_vcpu_ioctl+0x340/0x700 [kvm]
? __fget+0xfc/0x210
do_vfs_ioctl+0xa4/0x6a0
? __fget+0x11d/0x210
SyS_ioctl+0x79/0x90
do_syscall_64+0x8f/0x750
? trace_hardirqs_on_thunk+0x1a/0x1c
entry_SYSCALL64_slow_path+0x25/0x25
This can be reproduced by booting L1 guest w/ 'noapic' grub parameter, which
means that tells the kernel to not make use of any IOAPICs that may be present
in the system.
Actually external_intr variable in nested_vmx_vmexit() is the req_int_win
variable passed from vcpu_enter_guest() which means that the L0's userspace
requests an irq window. I observed the scenario (!kvm_cpu_has_interrupt(vcpu) &&
L0's userspace reqeusts an irq window) is true, so there is no interrupt which
L1 requires to inject to L2, we should not attempt to emualte "Acknowledge
interrupt on exit" for the irq window requirement in this scenario.
This patch fixes it by not attempt to emulate "Acknowledge interrupt on exit"
if there is no L1 requirement to inject an interrupt to L2.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Added code comment to make it obvious that the behavior is not correct.
We should do a userspace exit with open interrupt window instead of the
nested VM exit. This patch still improves the behavior, so it was
accepted as a (temporary) workaround.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The host physical addresses of L1's Virtual APIC Page and Posted
Interrupt descriptor are loaded into the VMCS02. The CPU may write
to these pages via their host physical address while L2 is running,
bypassing address-translation-based dirty tracking (e.g. EPT write
protection). Mark them dirty on every exit from L2 to prevent them
from getting out of sync with dirty tracking.
Also mark the virtual APIC page and the posted interrupt descriptor
dirty when KVM is virtualizing posted interrupt processing.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
According to the Intel SDM, software cannot rely on the current VMCS to be
coherent after a VMXOFF or shutdown. So this is a valid way to handle VMCS12
flushes.
24.11.1 Software Use of Virtual-Machine Control Structures
...
If a logical processor leaves VMX operation, any VMCSs active on
that logical processor may be corrupted (see below). To prevent
such corruption of a VMCS that may be used either after a return
to VMX operation or on another logical processor, software should
execute VMCLEAR for that VMCS before executing the VMXOFF instruction
or removing power from the processor (e.g., as part of a transition
to the S3 and S4 power states).
...
This fixes a "suspicious rcu_dereference_check() usage!" warning during
kvm_vm_release() because nested_release_vmcs12() calls
kvm_vcpu_write_guest_page() without holding kvm->srcu.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Since the current implementation of VMCS12 does a memcpy in and out
of guest memory, we do not need current_vmcs12 and current_vmcs12_page
anymore. current_vmptr is enough to read and write the VMCS12.
And David Matlack noted:
This patch also fixes dirty tracking (memslot->dirty_bitmap) of the
VMCS12 page by using kvm_write_guest. nested_release_page() only marks
the struct page dirty.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Added David Matlack's note and nested_release_page_clean() fix.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
There are three issues in nested_vmx_check_exception:
1) it is not taking PFEC_MATCH/PFEC_MASK into account, as reported
by Wanpeng Li;
2) it should rebuild the interruption info and exit qualification fields
from scratch, as reported by Jim Mattson, because the values from the
L2->L0 vmexit may be invalid (e.g. if an emulated instruction causes
a page fault, the EPT misconfig's exit qualification is incorrect).
3) CR2 and DR6 should not be written for exception intercept vmexits
(CR2 only for AMD).
This patch fixes the first two and adds a comment about the last,
outlining the fix.
Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do this in the caller of nested_vmx_vmexit instead.
nested_vmx_check_exception was doing a vmwrite to the vmcs02's
VM_EXIT_INTR_ERROR_CODE field, so that prepare_vmcs12 would move
the field to vmcs12->vm_exit_intr_error_code. However that isn't
possible on pre-Haswell machines. Moving the vmcs12 write to the
callers fixes it.
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Changed nested_vmx_reflect_vmexit() return type to (int)1 from (bool)1,
thanks to fengguang.wu@intel.com]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Run kvm-unit-tests/eventinj.flat in L1 w/ ept=0 on both L0 and L1:
Before NMI IRET test
Sending NMI to self
NMI isr running stack 0x461000
Sending nested NMI to self
After nested NMI to self
Nested NMI isr running rip=40038e
After iret
After NMI to self
FAIL: NMI
Commit 4c4a6f790e (KVM: nVMX: track NMI blocking state separately
for each VMCS) tracks NMI blocking state separately for vmcs01 and
vmcs02. However it is not enough:
- The L2 (kvm-unit-tests/eventinj.flat) generates NMI that will fault
on IRET, so the L2 can generate #PF which can be intercepted by L0.
- L0 walks L1's guest page table and sees the mapping is invalid, it
resumes the L1 guest and injects the #PF into L1. At this point the
vmcs02 has nmi_known_unmasked=true.
- L1 sets set bit 3 (blocking by NMI) in the interruptibility-state field
of vmcs12 (and fixes the shadow page table) before resuming L2 guest.
- L1 executes VMRESUME to resume L2, causing a vmexit to L0
- during VMRESUME emulation, prepare_vmcs02 sets bit 3 in the
interruptibility-state field of vmcs02, but nmi_known_unmasked is
still true.
- L2 immediately exits to L0 with another page fault, because L0 still has
not updated the NGVA->HPA page tables. However, nmi_known_unmasked is
true so vmx_recover_nmi_blocking does not do anything.
The fix is to update nmi_known_unmasked when preparing vmcs02 from vmcs12.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PI vector for L0 and L1 must be different. If dest vcpu0
is in guest mode while vcpu1 is delivering a non-nested PI to
vcpu0, there wont't be any vmexit so that the non-nested interrupt
will be delayed.
Signed-off-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can be reproduced by EPT=1, unrestricted_guest=N, emulate_invalid_state=Y
or EPT=0, the trace of kvm-unit-tests/taskswitch2.flat is like below, it tries
to emulate invalid guest state task-switch:
kvm_exit: reason TASK_SWITCH rip 0x0 info 40000058 0
kvm_emulate_insn: 42000:0:0f 0b (0x2)
kvm_emulate_insn: 42000:0:0f 0b (0x2) failed
kvm_inj_exception: #UD (0x0)
kvm_entry: vcpu 0
kvm_exit: reason TASK_SWITCH rip 0x0 info 40000058 0
kvm_emulate_insn: 42000:0:0f 0b (0x2)
kvm_emulate_insn: 42000:0:0f 0b (0x2) failed
kvm_inj_exception: #UD (0x0)
......................
It appears that the task-switch emulation updates rflags (and vm86
flag) only after the segments are loaded, causing vmx->emulation_required
to be set, when in fact invalid guest state emulation is not needed.
This patch fixes it by updating vmx->emulation_required after the
rflags (and vm86 flag) is updated in task-switch emulation.
Thanks Radim for moving the update to vmx__set_flags and adding Paolo's
suggestion for the check.
Suggested-by: Nadav Amit <nadav.amit@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Immediately following MOV-to-SS/POP-to-SS, VM-entry is
disallowed. This check comes after the check for a valid VMCS. When
this check fails, the instruction pointer should fall through to the
next instruction, the ALU flags should be set to indicate VMfailValid,
and the VM-instruction error should be set to 26 ("VM entry with
events blocked by MOV SS").
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
vmx_recover_nmi_blocking is using a cached value of the guest
interruptibility info, which is stored in vmx->nmi_known_unmasked.
vmx_recover_nmi_blocking is run for both normal and nested guests,
so the cached value must be per-VMCS.
This fixes eventinj.flat in a nested non-EPT environment. With EPT it
works, because the EPT violation handler doesn't have the
vmx->nmi_known_unmasked optimization (it is unnecessary because, unlike
vmx_recover_nmi_blocking, it can just look at the exit qualification).
Thanks to Wanpeng Li for debugging the testcase and providing an initial
patch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Update the KVM support to work with SME. The VMCB has a number of fields
where physical addresses are used and these addresses must contain the
memory encryption mask in order to properly access the encrypted memory.
Also, use the memory encryption mask when creating and using the nested
page tables.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/89146eccfa50334409801ff20acd52a90fb5efcf.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Adds another flag bit (bit 2) to MSR_KVM_ASYNC_PF_EN. If bit 2 is 1,
async page faults are delivered to L1 as #PF vmexits; if bit 2 is 0,
kvm_can_do_async_pf returns 0 if in guest mode.
This is similar to what svm.c wanted to do all along, but it is only
enabled for Linux as L1 hypervisor. Foreign hypervisors must never
receive async page faults as vmexits, because they'd probably be very
confused about that.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Add an nested_apf field to vcpu->arch.exception to identify an async page
fault, and constructs the expected vm-exit information fields. Force a
nested VM exit from nested_vmx_check_exception() if the injected #PF is
async page fault.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This patch adds the L1 guest async page fault #PF vmexit handler, such
by L1 similar to ordinary async page fault.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Passed insn parameters to kvm_mmu_page_fault().]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This patch removes all arguments except the first in
kvm_x86_ops->queue_exception since they can extract the arguments from
vcpu->arch.exception themselves.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
vmx_complete_atomic_exit should call kvm_machine_check for any
VM-entry failure due to a machine-check event. Such an exit should be
recognized solely by its basic exit reason (i.e. the low 16 bits of
the VMCS exit reason field). None of the other VMCS exit information
fields contain valid information when the VM-exit is due to "VM-entry
failure due to machine-check event".
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@tencent.com>
[Changed VM_EXIT_INTR_INFO condition to better describe its reason.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Inconsistencies result from shadowing only accesses to the full
64-bits of a 64-bit VMCS field, but not shadowing accesses to the high
32-bits of the field. The "high" part of a 64-bit field should be
shadowed whenever the full 64-bit field is shadowed.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow the L1 guest to specify the last page of addressable guest
physical memory for an L2 MSR permission bitmap. Also remove the
vmcs12_read_any() check that should never fail.
Fixes: 3af18d9c5f ("KVM: nVMX: Prepare for using hardware MSR bitmap")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the SDM, if the "use I/O bitmaps" VM-execution control is
1, bits 11:0 of each I/O-bitmap address must be 0. Neither address
should set any bits beyond the processor's physical-address width.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMCS launch state is not set to "launched" unless the VMLAUNCH
actually succeeds. VMLAUNCH failure includes VM-exits with bit 31 set.
Note that this change does not address the general problem that a
failure to launch/resume vmcs02 (i.e. vmx->fail) is not handled
correctly.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This exit ended up being reported, but the currently exposed data does not provide
much of a starting point for debugging. In the reported case, the vmexit was
an EPT misconfiguration (MMIO access). Let userspace report ethe exit qualification
and, if relevant, the GPA.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements
There is a small conflict in arch/s390 due to an arch-wide field rename.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZW4XTAAoJEL/70l94x66DkhMH/izpk54KI17PtyQ9VYI2sYeZ
BWK6Kl886g3ij4pFi3pECqjDJzWaa3ai+vFfzzpJJ8OkCJT5Rv4LxC5ERltVVmR8
A3T1I/MRktSC0VJLv34daPC2z4Lco/6SPipUpPnL4bE2HATKed4vzoOjQ3tOeGTy
dwi7TFjKwoVDiM7kPPDRnTHqCe5G5n13sZ49dBe9WeJ7ttJauWqoxhlYosCGNPEj
g8ZX8+cvcAhVnz5uFL8roqZ8ygNEQq2mgkU18W8ZZKuiuwR0gdsG0gSBFNTdwIMK
NoreRKMrw0+oLXTIB8SZsoieU6Qi7w3xMAMabe8AJsvYtoersugbOmdxGCr1lsA=
=OD7H
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC:
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
Update my email address
kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS
x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12
kvm: x86: mmu: allow A/D bits to be disabled in an mmu
x86: kvm: mmu: make spte mmio mask more explicit
x86: kvm: mmu: dead code thanks to access tracking
KVM: PPC: Book3S: Fix typo in XICS-on-XIVE state saving code
KVM: PPC: Book3S HV: Close race with testing for signals on guest entry
KVM: PPC: Book3S HV: Simplify dynamic micro-threading code
KVM: x86: remove ignored type attribute
KVM: LAPIC: Fix lapic timer injection delay
KVM: lapic: reorganize restart_apic_timer
KVM: lapic: reorganize start_hv_timer
kvm: nVMX: Check memory operand to INVVPID
KVM: s390: Inject machine check into the nested guest
KVM: s390: Inject machine check into the guest
tools/kvm_stat: add new interactive command 'b'
tools/kvm_stat: add new command line switch '-i'
tools/kvm_stat: fix error on interactive command 'g'
KVM: SVM: suppress unnecessary NMI singlestep on GIF=0 and nested exit
...
It's easier for host applications, such as QEMU, if they can always
access guest MSR_IA32_BNDCFGS in VMCS, even though MPX is disabled in
guest cpuid.
Cc: stable@vger.kernel.org
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 mm updates from Ingo Molnar:
"The main changes in this cycle were:
- Continued work to add support for 5-level paging provided by future
Intel CPUs. In particular we switch the x86 GUP code to the generic
implementation. (Kirill A. Shutemov)
- Continued work to add PCID CPU support to native kernels as well.
In this round most of the focus is on reworking/refreshing the TLB
flush infrastructure for the upcoming PCID changes. (Andy
Lutomirski)"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
x86/mm: Delete a big outdated comment about TLB flushing
x86/mm: Don't reenter flush_tlb_func_common()
x86/KASLR: Fix detection 32/64 bit bootloaders for 5-level paging
x86/ftrace: Exclude functions in head64.c from function-tracing
x86/mmap, ASLR: Do not treat unlimited-stack tasks as legacy mmap
x86/mm: Remove reset_lazy_tlbstate()
x86/ldt: Simplify the LDT switching logic
x86/boot/64: Put __startup_64() into .head.text
x86/mm: Add support for 5-level paging for KASLR
x86/mm: Make kernel_physical_mapping_init() support 5-level paging
x86/mm: Add sync_global_pgds() for configuration with 5-level paging
x86/boot/64: Add support of additional page table level during early boot
x86/boot/64: Rename init_level4_pgt and early_level4_pgt
x86/boot/64: Rewrite startup_64() in C
x86/boot/compressed: Enable 5-level paging during decompression stage
x86/boot/efi: Define __KERNEL32_CS GDT on 64-bit configurations
x86/boot/efi: Fix __KERNEL_CS definition of GDT entry on 64-bit configurations
x86/boot/efi: Cleanup initialization of GDT entries
x86/asm: Fix comment in return_from_SYSCALL_64()
x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation
...
EPT A/D was enabled in the vmcs02 EPTP regardless of the vmcs12's EPTP
value. The problem is that enabling A/D changes the behavior of L2's
x86 page table walks as seen by L1. With A/D enabled, x86 page table
walks are always treated as EPT writes.
Commit ae1e2d1082 ("kvm: nVMX: support EPT accessed/dirty bits",
2017-03-30) tried to work around this problem by clearing the write
bit in the exit qualification for EPT violations triggered by page
walks. However, that fixup introduced the opposite bug: page-table walks
that actually set x86 A/D bits were *missing* the write bit in the exit
qualification.
This patch fixes the problem by disabling EPT A/D in the shadow MMU
when EPT A/D is disabled in vmcs12's EPTP.
Signed-off-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Specify both a mask (i.e., bits to consider) and a value (i.e.,
pattern of bits that indicates a special PTE) for mmio SPTEs. On
Intel, this lets us pack even more information into the
(SPTE_SPECIAL_MASK | EPT_VMX_RWX_MASK) mask we use for access
tracking liberating all (SPTE_SPECIAL_MASK | (non-misconfigured-RWX))
values.
Signed-off-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation for an objtool rewrite which will have broader checks,
whitelist functions and files which cause problems because they do
unusual things with the stack.
These whitelists serve as a TODO list for which functions and files
don't yet have undwarf unwinder coverage. Eventually most of the
whitelists can be removed in favor of manual CFI hint annotations or
objtool improvements.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/7f934a5d707a574bda33ea282e9478e627fb1829.1498659915.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the TSC deadline timer is programmed really close to the deadline or
even in the past, the computation in vmx_set_hv_timer will program the
absolute target tsc value to vmcs preemption timer field w/ delta == 0,
then plays a vmentry and an upcoming vmx preemption timer fire vmexit
dance, the lapic timer injection is delayed due to this duration. Actually
the lapic timer which is emulated by hrtimer can handle this correctly.
This patch fixes it by firing the lapic timer and injecting a timer interrupt
immediately during the next vmentry if the TSC deadline timer is programmed
really close to the deadline or even in the past. This saves ~300 cycles on
the tsc_deadline_timer test of apic.flat.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The memory operand fetched for INVVPID is 128 bits. Bits 63:16 are
reserved and must be zero. Otherwise, the instruction fails with
VMfail(Invalid operand to INVEPT/INVVPID). If the INVVPID_TYPE is 0
(individual address invalidation), then bits 127:64 must be in
canonical form, or the instruction fails with VMfail(Invalid operand
to INVEPT/INVVPID).
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kernel has several code paths that read CR3. Most of them assume that
CR3 contains the PGD's physical address, whereas some of them awkwardly
use PHYSICAL_PAGE_MASK to mask off low bits.
Add explicit mask macros for CR3 and convert all of the CR3 readers.
This will keep them from breaking when PCID is enabled.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: xen-devel <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/883f8fb121f4616c1c1427ad87350bb2f5ffeca1.1497288170.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The guest-linear address field is set for VM exits due to attempts to
execute LMSW with a memory operand and VM exits due to attempts to
execute INS or OUTS for which the relevant segment is usable,
regardless of whether or not EPT is in use.
Fixes: 119a9c01a5 ("KVM: nVMX: pass valid guest linear-address to the L1")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The XSS-exiting bitmap is a VMCS control field that does not change
while the CPU is in non-root mode. Transferring the unchanged value
from vmcs02 to vmcs12 is unnecessary.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Bits 11:2 must be zero and the linear addess in bits 63:12 must be
canonical. Otherwise, WRMSR(BNDCFGS) should raise #GP.
Fixes: 0dd376e709 ("KVM: x86: add MSR_IA32_BNDCFGS to msrs_to_save")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The BNDCFGS MSR should only be exposed to the guest if the guest
supports MPX. (cf. the TSC_AUX MSR and RDTSCP.)
Fixes: 0dd376e709 ("KVM: x86: add MSR_IA32_BNDCFGS to msrs_to_save")
Change-Id: I3ad7c01bda616715137ceac878f3fa7e66b6b387
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The MSR permission bitmaps are shared by all VMs. However, some VMs
may not be configured to support MPX, even when the host does. If the
host supports VMX and the guest does not, we should intercept accesses
to the BNDCFGS MSR, so that we can synthesize a #GP
fault. Furthermore, if the host does not support MPX and the
"ignore_msrs" kvm kernel parameter is set, then we should intercept
accesses to the BNDCFGS MSR, so that we can skip over the rdmsr/wrmsr
without raising a #GP fault.
Fixes: da8999d318 ("KVM: x86: Intel MPX vmx and msr handle")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
WARNING: CPU: 3 PID: 2840 at arch/x86/kvm/vmx.c:10966 nested_vmx_vmexit+0xdcd/0xde0 [kvm_intel]
CPU: 3 PID: 2840 Comm: qemu-system-x86 Tainted: G OE 4.12.0-rc3+ #23
RIP: 0010:nested_vmx_vmexit+0xdcd/0xde0 [kvm_intel]
Call Trace:
? kvm_check_async_pf_completion+0xef/0x120 [kvm]
? rcu_read_lock_sched_held+0x79/0x80
vmx_queue_exception+0x104/0x160 [kvm_intel]
? vmx_queue_exception+0x104/0x160 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0x1171/0x1ce0 [kvm]
? kvm_arch_vcpu_load+0x47/0x240 [kvm]
? kvm_arch_vcpu_load+0x62/0x240 [kvm]
kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? __fget+0xf3/0x210
do_vfs_ioctl+0xa4/0x700
? __fget+0x114/0x210
SyS_ioctl+0x79/0x90
do_syscall_64+0x81/0x220
entry_SYSCALL64_slow_path+0x25/0x25
This is triggered occasionally by running both win7 and win2016 in L2, in
addition, EPT is disabled on both L1 and L2. It can't be reproduced easily.
Commit 0b6ac343fc (KVM: nVMX: Correct handling of exception injection) mentioned
that "KVM wants to inject page-faults which it got to the guest. This function
assumes it is called with the exit reason in vmcs02 being a #PF exception".
Commit e011c663 (KVM: nVMX: Check all exceptions for intercept during delivery to
L2) allows to check all exceptions for intercept during delivery to L2. However,
there is no guarantee the exit reason is exception currently, when there is an
external interrupt occurred on host, maybe a time interrupt for host which should
not be injected to guest, and somewhere queues an exception, then the function
nested_vmx_check_exception() will be called and the vmexit emulation codes will
try to emulate the "Acknowledge interrupt on exit" behavior, the warning is
triggered.
Reusing the exit reason from the L2->L0 vmexit is wrong in this case,
the reason must always be EXCEPTION_NMI when injecting an exception into
L1 as a nested vmexit.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Fixes: e011c663b9 ("KVM: nVMX: Check all exceptions for intercept during delivery to L2")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When PCID is enabled, CR3's PCID bits can change during context
switches, so KVM won't be able to treat CR3 as a per-mm constant any
more.
I structured this like the existing CR4 handling. Under ordinary
circumstances (PCID disabled or if the current PCID and the value
that's already in the VMCS match), then we won't do an extra VMCS
write, and we'll never do an extra direct CR3 read. The overhead
should be minimal.
I disallowed using the new helper in non-atomic context because
PCID support will cause CR3 to stop being constant in non-atomic
process context.
(Frankly, it also scares me a bit that KVM ever treated CR3 as
constant, but it looks like it was okay before.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This should have been indented one more character over and it should use
tabs.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
kvm_skip_emulated_instruction() will return 0 if userspace is
single-stepping the guest.
kvm_skip_emulated_instruction() uses return status convention of exit
handler: 0 means "exit to userspace" and 1 means "continue vm entries".
The problem is that nested_vmx_check_vmptr() return status means
something else: 0 is ok, 1 is error.
This means we would continue executing after a failure. Static checker
noticed it because vmptr was not initialized.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Fixes: 6affcbedca ("KVM: x86: Add kvm_skip_emulated_instruction and use it.")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The decision whether or not to exit from L2 to L1 on an lmsw instruction is
based on bogus values: instead of using the information encoded within the
exit qualification, it uses the data also used for the mov-to-cr
instruction, which boils down to using whatever is in %eax at that point.
Use the correct values instead.
Without this fix, an L1 may not get notified when a 32-bit Linux L2
switches its secondary CPUs to protected mode; the L1 is only notified on
the next modification of CR0. This short time window poses a problem, when
there is some other reason to exit to L1 in between. Then, L2 will be
resumed in real mode and chaos ensues.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can observe eptad kvm_intel module parameter is still Y
even if ept is disabled which is weird. This patch will
not enable EPT A/D feature if EPT feature is disabled.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
There are PML_ENTITY_NUM elements in the pml_address[] array so the >
should be >= or we write beyond the end of the array when we do:
pml_address[vmcs12->guest_pml_index--] = gpa;
Fixes: c5f983f6e8 ("nVMX: Implement emulated Page Modification Logging")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Advertise the PML bit in vmcs12 but don't try to enable
it in hardware when running L2 since L0 is emulating it. Also,
preserve L0's settings for PML since it may still
want to log writes.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With EPT A/D enabled, processor access to L2 guest
paging structures will result in a write violation.
When this happens, write the GUEST_PHYSICAL_ADDRESS
to the pml buffer provided by L1 if the access is
write and the dirty bit is being set.
This patch also adds necessary checks during VMEntry if L1
has enabled PML. If the PML index overflows, we change the
exit reason and run L1 to simulate a PML full event.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the SDM, the CR3-target count must not be greater than
4. Future processors may support a different number of CR3-target
values. Software should read the VMX capability MSR IA32_VMX_MISC to
determine the number of values supported.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
According to the SDM, if the "activate secondary controls" primary
processor-based VM-execution control is 0, no checks are performed on
the secondary processor-based VM-execution controls.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 mm updates from Ingo Molnar:
"The main x86 MM changes in this cycle were:
- continued native kernel PCID support preparation patches to the TLB
flushing code (Andy Lutomirski)
- various fixes related to 32-bit compat syscall returning address
over 4Gb in applications, launched from 64-bit binaries - motivated
by C/R frameworks such as Virtuozzo. (Dmitry Safonov)
- continued Intel 5-level paging enablement: in particular the
conversion of x86 GUP to the generic GUP code. (Kirill A. Shutemov)
- x86/mpx ABI corner case fixes/enhancements (Joerg Roedel)
- ... plus misc updates, fixes and cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
mm, zone_device: Replace {get, put}_zone_device_page() with a single reference to fix pmem crash
x86/mm: Fix flush_tlb_page() on Xen
x86/mm: Make flush_tlb_mm_range() more predictable
x86/mm: Remove flush_tlb() and flush_tlb_current_task()
x86/vm86/32: Switch to flush_tlb_mm_range() in mark_screen_rdonly()
x86/mm/64: Fix crash in remove_pagetable()
Revert "x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation"
x86/boot/e820: Remove a redundant self assignment
x86/mm: Fix dump pagetables for 4 levels of page tables
x86/mpx, selftests: Only check bounds-vs-shadow when we keep shadow
x86/mpx: Correctly report do_mpx_bt_fault() failures to user-space
Revert "x86/mm/numa: Remove numa_nodemask_from_meminfo()"
x86/espfix: Add support for 5-level paging
x86/kasan: Extend KASAN to support 5-level paging
x86/mm: Add basic defines/helpers for CONFIG_X86_5LEVEL=y
x86/paravirt: Add 5-level support to the paravirt code
x86/mm: Define virtual memory map for 5-level paging
x86/asm: Remove __VIRTUAL_MASK_SHIFT==47 assert
x86/boot: Detect 5-level paging support
x86/mm/numa: Remove numa_nodemask_from_meminfo()
...
According to the Intel SDM, "Certain exceptions have priority over VM
exits. These include invalid-opcode exceptions, faults based on
privilege level*, and general-protection exceptions that are based on
checking I/O permission bits in the task-state segment (TSS)."
There is no need to check for faulting conditions that the hardware
has already checked.
* These include faults generated by attempts to execute, in
virtual-8086 mode, privileged instructions that are not recognized
in that mode.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Users were expected to use kvm_check_request() for testing and clearing,
but request have expanded their use since then and some users want to
only test or do a faster clear.
Make sure that requests are not directly accessed with bit operations.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guests that are heavy on futexes end up IPI'ing each other a lot. That
can lead to significant slowdowns and latency increase for those guests
when running within KVM.
If only a single guest is needed on a host, we have a lot of spare host
CPU time we can throw at the problem. Modern CPUs implement a feature
called "MWAIT" which allows guests to wake up sleeping remote CPUs without
an IPI - thus without an exit - at the expense of never going out of guest
context.
The decision whether this is something sensible to use should be up to the
VM admin, so to user space. We can however allow MWAIT execution on systems
that support it properly hardware wise.
This patch adds a CAP to user space and a KVM cpuid leaf to indicate
availability of native MWAIT execution. With that enabled, the worst a
guest can do is waste as many cycles as a "jmp ." would do, so it's not
a privilege problem.
We consciously do *not* expose the feature in our CPUID bitmap, as most
people will want to benefit from sleeping vCPUs to allow for over commit.
Reported-by: "Gabriel L. Somlo" <gsomlo@gmail.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
[agraf: fix amd, change commit message]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmm_exclusive=0 leads to KVM setting X86_CR4_VMXE always and calling
VMXON only when the vcpu is loaded. X86_CR4_VMXE is used as an
indication in cpu_emergency_vmxoff() (called on kdump) if VMXOFF has to be
called. This is obviously not the case if both are used independtly.
Calling VMXOFF without a previous VMXON will result in an exception.
In addition, X86_CR4_VMXE is used as a mean to test if VMX is already in
use by another VMM in hardware_enable(). So there can't really be
co-existance. If the other VMM is prepared for co-existance and does a
similar check, only one VMM can exist. If the other VMM is not prepared
and blindly sets/clears X86_CR4_VMXE, we will get inconsistencies with
X86_CR4_VMXE.
As we also had bug reports related to clearing of vmcs with vmm_exclusive=0
this seems to be pretty much untested. So let's better drop it.
While at it, directly move setting/clearing X86_CR4_VMXE into
kvm_cpu_vmxon/off.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I have introduced this bug when applying and simplifying Paolo's patch
as we agreed on the list. The original was "x &= ~y; if (z) x |= y;".
Here is the story of a bad workflow:
A maintainer was already testing with the intended change, but it was
applied only to a testing repo on a different machine. When the time
to push tested patches to kvm/next came, he realized that this change
was missing and quickly added it to the maintenance repo, didn't test
again (because the change is trivial, right), and pushed the world to
fire.
Fixes: ae1e2d1082 ("kvm: nVMX: support EPT accessed/dirty bits")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Now use bit 6 of EPTP to optionally enable A/D bits for EPTP. Another
thing to change is that, when EPT accessed and dirty bits are not in use,
VMX treats accesses to guest paging structures as data reads. When they
are in use (bit 6 of EPTP is set), they are treated as writes and the
corresponding EPT dirty bit is set. The MMU didn't know this detail,
so this patch adds it.
We also have to fix up the exit qualification. It may be wrong because
KVM sets bit 6 but the guest might not.
L1 emulates EPT A/D bits using write permissions, so in principle it may
be possible for EPT A/D bits to be used by L1 even though not available
in hardware. The problem is that guest page-table walks will be treated
as reads rather than writes, so they would not cause an EPT violation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Fixed typo in walk_addr_generic() comment and changed bit clear +
conditional-set pattern in handle_ept_violation() to conditional-clear]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
handle_ept_violation is checking for "guest-linear-address invalid" +
"not a paging-structure walk". However, _all_ EPT violations without
a valid guest linear address are paging structure walks, because those
EPT violations happen when loading the guest PDPTEs.
Therefore, the check can never be true, and even if it were, KVM doesn't
care about the guest linear address; it only uses the guest *physical*
address VMCS field. So, remove the check altogether.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Large pages at the PDPE level can be emulated by the MMU, so the bit
can be set unconditionally in the EPT capabilities MSR. The same is
true of 2MB EPT pages, though all Intel processors with EPT in practice
support those.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Virtual NMIs are only missing in Prescott and Yonah chips. Both are obsolete
for virtualization usage---Yonah is 32-bit only even---so drop vNMI emulation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let's combine it in a single function vmx_switch_vmcs().
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
According to the Intel SDM, volume 3, section 28.3.2: Creating and
Using Cached Translation Information, "No linear mappings are used
while EPT is in use." INVEPT will invalidate both the guest-physical
mappings and the combined mappings in the TLBs and paging-structure
caches, so an INVVPID is superfluous.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
L2 was running with uninitialized PML fields which led to incomplete
dirty bitmap logging. This manifested as all kinds of subtle erratic
behavior of the nested guest.
Fixes: 843e433057 ("KVM: VMX: Add PML support in VMX")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The PML feature is not exposed to guests so we should not be forwarding
the vmexit either.
This commit fixes BSOD 0x20001 (HYPERVISOR_ERROR) when running Hyper-V
enabled Windows Server 2016 in L1 on hardware that supports PML.
Fixes: 843e433057 ("KVM: VMX: Add PML support in VMX")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The nested_ept_enabled flag introduced in commit 7ca29de213 was not
computed correctly. We are interested only in L1's EPT state, not the
the combined L0+L1 value.
In particular, if L0 uses EPT but L1 does not, nested_ept_enabled must
be false to make sure that PDPSTRs are loaded based on CR3 as usual,
because the special case described in 26.3.2.4 Loading Page-Directory-
Pointer-Table Entries does not apply.
Fixes: 7ca29de213 ("KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT")
Cc: qemu-stable@nongnu.org
Reported-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can be reproduced by running L2 on L1, and disable VPID on L0
if w/o commit "KVM: nVMX: Fix nested VPID vmx exec control", the L2
crash as below:
KVM: entry failed, hardware error 0x7
EAX=00000000 EBX=00000000 ECX=00000000 EDX=000306c3
ESI=00000000 EDI=00000000 EBP=00000000 ESP=00000000
EIP=0000fff0 EFL=00000002 [-------] CPL=0 II=0 A20=1 SMM=0 HLT=0
ES =0000 00000000 0000ffff 00009300
CS =f000 ffff0000 0000ffff 00009b00
SS =0000 00000000 0000ffff 00009300
DS =0000 00000000 0000ffff 00009300
FS =0000 00000000 0000ffff 00009300
GS =0000 00000000 0000ffff 00009300
LDT=0000 00000000 0000ffff 00008200
TR =0000 00000000 0000ffff 00008b00
GDT= 00000000 0000ffff
IDT= 00000000 0000ffff
CR0=60000010 CR2=00000000 CR3=00000000 CR4=00000000
DR0=0000000000000000 DR1=0000000000000000 DR2=0000000000000000 DR3=0000000000000000
DR6=00000000ffff0ff0 DR7=0000000000000400
EFER=0000000000000000
Reference SDM 30.3 INVVPID:
Protected Mode Exceptions
- #UD
- If not in VMX operation.
- If the logical processor does not support VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=0).
- If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does
not support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).
So we should check both VPID enable bit in vmx exec control and INVVPID support bit
in vmx capability MSRs to enable VPID. This patch adds the guarantee to not enable
VPID if either INVVPID or single-context/all-context invalidation is not exposed in
vmx capability MSRs.
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can be reproduced by running kvm-unit-tests/vmx.flat on L0 w/ vpid disabled.
Test suite: VPID
Unhandled exception 6 #UD at ip 00000000004051a6
error_code=0000 rflags=00010047 cs=00000008
rax=0000000000000000 rcx=0000000000000001 rdx=0000000000000047 rbx=0000000000402f79
rbp=0000000000456240 rsi=0000000000000001 rdi=0000000000000000
r8=000000000000000a r9=00000000000003f8 r10=0000000080010011 r11=0000000000000000
r12=0000000000000003 r13=0000000000000708 r14=0000000000000000 r15=0000000000000000
cr0=0000000080010031 cr2=0000000000000000 cr3=0000000007fff000 cr4=0000000000002020
cr8=0000000000000000
STACK: @4051a6 40523e 400f7f 402059 40028f
We should hide and forbid VPID in L1 if it is disabled on L0. However, nested VPID
enable bit is set unconditionally during setup nested vmx exec controls though VPID
is not exposed through nested VMX capablity. This patch fixes it by don't set nested
VPID enable bit if it is disabled on L0.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 5c614b3583 (KVM: nVMX: nested VPID emulation)
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Quoting from the Intel SDM, volume 3, section 28.3.3.4: Guidelines for
Use of the INVEPT Instruction:
If EPT was in use on a logical processor at one time with EPTP X, it
is recommended that software use the INVEPT instruction with the
"single-context" INVEPT type and with EPTP X in the INVEPT descriptor
before a VM entry on the same logical processor that enables EPT with
EPTP X and either (a) the "virtualize APIC accesses" VM-execution
control was changed from 0 to 1; or (b) the value of the APIC-access
address was changed.
In the nested case, the burden falls on L1, unless L0 enables EPT in
vmcs02 when L1 doesn't enable EPT in vmcs12.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
There's a single caller that is only there because it's passing a
pointer into a function (vmcs_writel()) that takes an unsigned long.
Let's just cast it in place rather than having a bunch of trivial
helpers.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/46108fb35e1699252b1b6a85039303ff562c9836.1490218061.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kvm mmu is reset once successfully loading CR3 as part of emulating vmentry
in nested_vmx_load_cr3(). We should not reset kvm mmu twice.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This patch makes the GDT remapped pages read-only, to prevent accidental
(or intentional) corruption of this key data structure.
This change is done only on 64-bit, because 32-bit needs it to be writable
for TSS switches.
The native_load_tr_desc function was adapted to correctly handle a
read-only GDT. The LTR instruction always writes to the GDT TSS entry.
This generates a page fault if the GDT is read-only. This change checks
if the current GDT is a remap and swap GDTs as needed. This function was
tested by booting multiple machines and checking hibernation works
properly.
KVM SVM and VMX were adapted to use the writeable GDT. On VMX, the
per-cpu variable was removed for functions to fetch the original GDT.
Instead of reloading the previous GDT, VMX will reload the fixmap GDT as
expected. For testing, VMs were started and restored on multiple
configurations.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Luis R . Rodriguez <mcgrof@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: kernel-hardening@lists.openwall.com
Cc: kvm@vger.kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Cc: zijun_hu <zijun_hu@htc.com>
Link: http://lkml.kernel.org/r/20170314170508.100882-3-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Before trying to do nested_get_page() in nested_vmx_merge_msr_bitmap(),
we have already checked that the MSR bitmap address is valid (4k aligned
and within physical limits). SDM doesn't specify what happens if the
there is no memory mapped at the valid address, but Intel CPUs treat the
situation as if the bitmap was configured to trap all MSRs.
KVM already does that by returning false and a correct handling doesn't
need the guest-trigerrable warning that was reported by syzkaller:
(The warning was originally there to catch some possible bugs in nVMX.)
------------[ cut here ]------------
WARNING: CPU: 0 PID: 7832 at arch/x86/kvm/vmx.c:9709
nested_vmx_merge_msr_bitmap arch/x86/kvm/vmx.c:9709 [inline]
WARNING: CPU: 0 PID: 7832 at arch/x86/kvm/vmx.c:9709
nested_get_vmcs12_pages+0xfb6/0x15c0 arch/x86/kvm/vmx.c:9640
Kernel panic - not syncing: panic_on_warn set ...
CPU: 0 PID: 7832 Comm: syz-executor1 Not tainted 4.10.0+ #229
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:15 [inline]
dump_stack+0x2ee/0x3ef lib/dump_stack.c:51
panic+0x1fb/0x412 kernel/panic.c:179
__warn+0x1c4/0x1e0 kernel/panic.c:540
warn_slowpath_null+0x2c/0x40 kernel/panic.c:583
nested_vmx_merge_msr_bitmap arch/x86/kvm/vmx.c:9709 [inline]
nested_get_vmcs12_pages+0xfb6/0x15c0 arch/x86/kvm/vmx.c:9640
enter_vmx_non_root_mode arch/x86/kvm/vmx.c:10471 [inline]
nested_vmx_run+0x6186/0xaab0 arch/x86/kvm/vmx.c:10561
handle_vmlaunch+0x1a/0x20 arch/x86/kvm/vmx.c:7312
vmx_handle_exit+0xfc0/0x3f00 arch/x86/kvm/vmx.c:8526
vcpu_enter_guest arch/x86/kvm/x86.c:6982 [inline]
vcpu_run arch/x86/kvm/x86.c:7044 [inline]
kvm_arch_vcpu_ioctl_run+0x1418/0x4840 arch/x86/kvm/x86.c:7205
kvm_vcpu_ioctl+0x673/0x1120 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2570
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
[Jim Mattson explained the bare metal behavior: "I believe this behavior
would be documented in the chipset data sheet rather than the SDM,
since the chipset returns all 1s for an unclaimed read."]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
VMCLEAR should silently ignore a failure to clear the launch state of
the VMCS referenced by the operand.
Signed-off-by: Jim Mattson <jmattson@google.com>
[Changed "kvm_write_guest(vcpu->kvm" to "kvm_vcpu_write_guest(vcpu".]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
L2 fails to boot on a non-APICv box dues to 'commit 0ad3bed6c5
("kvm: nVMX: move nested events check to kvm_vcpu_running")'
KVM internal error. Suberror: 3
extra data[0]: 800000ef
extra data[1]: 1
RAX=0000000000000000 RBX=ffffffff81f36140 RCX=0000000000000000 RDX=0000000000000000
RSI=0000000000000000 RDI=0000000000000000 RBP=ffff88007c92fe90 RSP=ffff88007c92fe90
R8 =ffff88007fccdca0 R9 =0000000000000000 R10=00000000fffedb3d R11=0000000000000000
R12=0000000000000003 R13=0000000000000000 R14=0000000000000000 R15=ffff88007c92c000
RIP=ffffffff810645e6 RFL=00000246 [---Z-P-] CPL=0 II=0 A20=1 SMM=0 HLT=0
ES =0000 0000000000000000 ffffffff 00c00000
CS =0010 0000000000000000 ffffffff 00a09b00 DPL=0 CS64 [-RA]
SS =0000 0000000000000000 ffffffff 00c00000
DS =0000 0000000000000000 ffffffff 00c00000
FS =0000 0000000000000000 ffffffff 00c00000
GS =0000 ffff88007fcc0000 ffffffff 00c00000
LDT=0000 0000000000000000 ffffffff 00c00000
TR =0040 ffff88007fcd4200 00002087 00008b00 DPL=0 TSS64-busy
GDT= ffff88007fcc9000 0000007f
IDT= ffffffffff578000 00000fff
CR0=80050033 CR2=00000000ffffffff CR3=0000000001e0a000 CR4=003406e0
DR0=0000000000000000 DR1=0000000000000000 DR2=0000000000000000 DR3=0000000000000000
DR6=00000000fffe0ff0 DR7=0000000000000400
EFER=0000000000000d01
We should try to reinject previous events if any before trying to inject
new event if pending. If vmexit is triggered by L2 guest and L0 interested
in, we should reinject IDT-vectoring info to L2 through vmcs02 if any,
otherwise, we can consider new IRQs/NMIs which can be injected and call
nested events callback to switch from L2 to L1 if needed and inject the
proper vmexit events. However, 'commit 0ad3bed6c5 ("kvm: nVMX: move
nested events check to kvm_vcpu_running")' results in the handle events
order reversely on non-APICv box. This patch fixes it by bailing out for
pending events and not consider new events in this scenario.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Fixes: 0ad3bed6c5 ("kvm: nVMX: move nested events check to kvm_vcpu_running")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The pointer 'struct desc_struct *d' is unused since commit 8c2e41f7ae
("x86/kvm/vmx: Simplify segment_base()") so let's remove it.
Signed-off-by: Jérémy Lefaure <jeremy.lefaure@lse.epita.fr>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Guest segment selector is 16 bit field and guest segment base is natural
width field. Fix two incorrect invocations accordingly.
Without this patch, build fails when aggressive inlining is used with ICC.
Cc: stable@vger.kernel.org
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel's VMX is daft and resets the hidden TSS limit register to 0x67
on VMX reload, and the 0x67 is not configurable. KVM currently
reloads TR using the LTR instruction on every exit, but this is quite
slow because LTR is serializing.
The 0x67 limit is entirely harmless unless ioperm() is in use, so
defer the reload until a task using ioperm() is actually running.
Here's some poorly done benchmarking using kvm-unit-tests:
Before:
cpuid 1313
vmcall 1195
mov_from_cr8 11
mov_to_cr8 17
inl_from_pmtimer 6770
inl_from_qemu 6856
inl_from_kernel 2435
outl_to_kernel 1402
After:
cpuid 1291
vmcall 1181
mov_from_cr8 11
mov_to_cr8 16
inl_from_pmtimer 6457
inl_from_qemu 6209
inl_from_kernel 2339
outl_to_kernel 1391
Signed-off-by: Andy Lutomirski <luto@kernel.org>
[Force-reload TR in invalidate_tss_limit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use actual pointer types for pointers (instead of unsigned long) and
replace hardcoded constants with the appropriate self-documenting
macros.
The function is still a bit messy, but this seems a lot better than
before to me.
This is mostly borrowed from a patch by Thomas Garnier.
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was a bit buggy (it didn't list all segment types that needed
64-bit fixups), but the bug was irrelevant because it wasn't called
in any interesting context on 64-bit kernels and was only used for
data segents on 32-bit kernels.
To avoid confusion, make it explicitly 32-bit only.
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current CPU's TSS base is a foregone conclusion, so there's no need
to parse it out of the segment tables. This should save a couple cycles
(as STR is surely microcoded and poorly optimized) but, more importantly,
it's a cleanup and it means that segment_base() will never be called on
64-bit kernels.
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
handle_vmon gets a reference on VMXON region page,
but does not release it. Release the reference.
Found by syzkaller; based on a patch by Dmitry.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The FPU is always active now when running KVM.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nested_vmx_run is split into two parts: the part that handles the
VMLAUNCH/VMRESUME instruction, and the part that modifies the vcpu state
to transition from VMX root mode to VMX non-root mode. The latter will
be used when restoring the checkpointed state of a vCPU that was in VMX
operation when a snapshot was taken.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The checks performed on the contents of the vmcs12 are extracted from
nested_vmx_run so that they can be used to validate a vmcs12 that has
been restored from a checkpoint.
Signed-off-by: Jim Mattson <jmattson@google.com>
[Change prepare_vmcs02 and nested_vmx_load_cr3's last argument to u32,
to match check_vmentry_postreqs. Update comments for singlestep
handling. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Perform the checks on vmcs12 state early, but defer the gpa->hpa lookups
until after prepare_vmcs02. Later, when we restore the checkpointed
state of a vCPU in guest mode, we will not be able to do the gpa->hpa
lookups when the restore is done.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle_vmptrld is split into two parts: the part that handles the
VMPTRLD instruction, and the part that establishes the current VMCS
pointer. The latter will be used when restoring the checkpointed state
of a vCPU that had a valid VMCS pointer when a snapshot was taken.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle_vmon is split into two parts: the part that handles the VMXON
instruction, and the part that modifies the vcpu state to transition
from legacy mode to VMX operation. The latter will be used when
restoring the checkpointed state of a vCPU that was in VMX operation
when a snapshot was taken.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split prepare_vmcs12 into two parts: the part that stores the current L2
guest state and the part that sets up the exit information fields. The
former will be used when checkpointing the vCPU's VMX state.
Modify prepare_vmcs02 so that it can construct a vmcs02 midway through
L2 execution, using the checkpointed L2 guest state saved into the
cached vmcs12 above.
Signed-off-by: Jim Mattson <jmattson@google.com>
[Rebasing: add from_vmentry argument to prepare_vmcs02 instead of using
vmx->nested.nested_run_pending, because it is no longer 1 at the
point prepare_vmcs02 is called. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU
is blocked", 2015-09-18) the posted interrupt descriptor is checked
unconditionally for PIR.ON. Therefore we don't need KVM_REQ_EVENT to
trigger the scan and, if NMIs or SMIs are not involved, we can avoid
the complicated event injection path.
Calling kvm_vcpu_kick if PIR.ON=1 is also useless, though it has been
there since APICv was introduced.
However, without the KVM_REQ_EVENT safety net KVM needs to be much
more careful about races between vmx_deliver_posted_interrupt and
vcpu_enter_guest. First, the IPI for posted interrupts may be issued
between setting vcpu->mode = IN_GUEST_MODE and disabling interrupts.
If that happens, kvm_trigger_posted_interrupt returns true, but
smp_kvm_posted_intr_ipi doesn't do anything about it. The guest is
entered with PIR.ON, but the posted interrupt IPI has not been sent
and the interrupt is only delivered to the guest on the next vmentry
(if any). To fix this, disable interrupts before setting vcpu->mode.
This ensures that the IPI is delayed until the guest enters non-root mode;
it is then trapped by the processor causing the interrupt to be injected.
Second, the IPI may be issued between kvm_x86_ops->sync_pir_to_irr(vcpu)
and vcpu->mode = IN_GUEST_MODE. In this case, kvm_vcpu_kick is called
but it (correctly) doesn't do anything because it sees vcpu->mode ==
OUTSIDE_GUEST_MODE. Again, the guest is entered with PIR.ON but no
posted interrupt IPI is pending; this time, the fix for this is to move
the RVI update after IN_GUEST_MODE.
Both issues were mostly masked by the liberal usage of KVM_REQ_EVENT,
though the second could actually happen with VT-d posted interrupts.
In both race scenarios KVM_REQ_EVENT would cancel guest entry, resulting
in another vmentry which would inject the interrupt.
This saves about 300 cycles on the self_ipi_* tests of vmexit.flat.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calls to apic_find_highest_irr are scanning IRR twice, once
in vmx_sync_pir_from_irr and once in apic_search_irr. Change
sync_pir_from_irr to get the new maximum IRR from kvm_apic_update_irr;
now that it does the computation, it can also do the RVI write.
In order to avoid complications in svm.c, make the callback optional.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pending interrupts might be in the PI descriptor when the
LAPIC is restored from an external state; we do not want
them to be injected.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As in the SVM patch, the guest physical address is passed by
VMX to x86_emulate_instruction already, so mark the GPA as available
in vcpu->arch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_complete_nested_posted_interrupt() can't fail, let's turn it into
a void function.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kmap() can't fail, therefore it will always return a valid pointer. Let's
just get rid of the unnecessary checks.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of the caller including the SPTE_SPECIAL_MASK in the masks being
supplied to kvm_mmu_set_mmio_spte_mask() and kvm_mmu_set_mask_ptes(),
those functions now themselves include the SPTE_SPECIAL_MASK.
Note that bit 63 is now reset in the default MMIO mask.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the EPT_VIOLATION_READ/WRITE/INSTR constants to
EPT_VIOLATION_ACC_READ/WRITE/INSTR to more clearly indicate that these
signify the type of the memory access as opposed to the permissions
granted by the PTE.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit bc6134942d.
A CPUID instruction executed in VMX non-root mode always causes a
VM-exit, regardless of the leaf being queried.
Fixes: bc6134942d ("KVM: nested VMX: disable perf cpuid reporting")
Signed-off-by: Jim Mattson <jmattson@google.com>
[The issue solved by bc6134942d has been resolved with ff651cb613
("KVM: nVMX: Add nested msr load/restore algorithm").]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Checks on the operand to VMXON are performed after the check for
legacy mode operation and the #GP checks, according to the pseudo-code
in Intel's SDM.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Since we're already in VCPU context, all we have to do here is recompute
the PPR value. That will in turn generate a KVM_REQ_EVENT if necessary.
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This change implements lockless access tracking for Intel CPUs without EPT
A bits. This is achieved by marking the PTEs as not-present (but not
completely clearing them) when clear_flush_young() is called after marking
the pages as accessed. When an EPT Violation is generated as a result of
the VM accessing those pages, the PTEs are restored to their original values.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MMIO SPTEs currently set both bits 62 and 63 to distinguish them as special
PTEs. However, bit 63 is used as the SVE bit in Intel EPT PTEs. The SVE bit
is ignored for misconfigured PTEs but not necessarily for not-Present PTEs.
Since MMIO SPTEs use an EPT misconfiguration, so using bit 63 for them is
acceptable. However, the upcoming fast access tracking feature adds another
type of special tracking PTE, which uses not-Present PTEs and hence should
not set bit 63.
In order to use common bits to distinguish both type of special PTEs, we
now use only bit 62 as the special bit.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This change adds some symbolic constants for VM Exit Qualifications
related to EPT Violations and updates handle_ept_violation() to use
these constants instead of hard-coded numbers.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Declaration of VMX_VPID_EXTENT_SUPPORTED_MASK occures twice in the code.
Probably, it was happened after unsuccessful merge.
Signed-off-by: Jan Dakinevich <jan.dakinevich@gmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
kvm_skip_emulated_instruction() should not be called after emulating
a VM-entry failure during or after loading guest state
(nested_vmx_entry_failure()). Otherwise the L1 hypervisor is resumed
some number of bytes past vmcs->host_rip.
Fixes: eb27756217
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When L2 exits to L0 due to "exception or NMI", software exceptions
(#BP and #OF) for which L1 has requested an intercept should be
handled by L1 rather than L0. Previously, only hardware exceptions
were forwarded to L1.
Signed-off-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the operand passed to VMPTRLD matches the address of the VMXON
region, the VMX instruction error code should be
VMXERR_VMPTRLD_VMXON_POINTER rather than VMXERR_VMCLEAR_VMXON_POINTER.
Signed-off-by: GanShun <ganshun@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86: userspace can now hide nested VMX features from guests; nested
VMX can now run Hyper-V in a guest; support for AVX512_4VNNIW and
AVX512_FMAPS in KVM; infrastructure support for virtual Intel GPUs.
PPC: support for KVM guests on POWER9; improved support for interrupt
polling; optimizations and cleanups.
s390: two small optimizations, more stuff is in flight and will be
in 4.11.
ARM: support for the GICv3 ITS on 32bit platforms.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQExBAABCAAbBQJYTkP0FBxwYm9uemluaUByZWRoYXQuY29tAAoJEL/70l94x66D
lZIH/iT1n9OQXcuTpYYnQhuCenzI3GZZOIMTbCvK2i5bo0FIJKxVn0EiAAqZSXvO
nO185FqjOgLuJ1AD1kJuxzye5suuQp4HIPWWgNHcexLuy43WXWKZe0IQlJ4zM2Xf
u31HakpFmVDD+Cd1qN3yDXtDrRQ79/xQn2kw7CWb8olp+pVqwbceN3IVie9QYU+3
gCz0qU6As0aQIwq2PyalOe03sO10PZlm4XhsoXgWPG7P18BMRhNLTDqhLhu7A/ry
qElVMANT7LSNLzlwNdpzdK8rVuKxETwjlc1UP8vSuhrwad4zM2JJ1Exk26nC2NaG
D0j4tRSyGFIdx6lukZm7HmiSHZ0=
=mkoB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small release, the most interesting stuff is x86 nested virt
improvements.
x86:
- userspace can now hide nested VMX features from guests
- nested VMX can now run Hyper-V in a guest
- support for AVX512_4VNNIW and AVX512_FMAPS in KVM
- infrastructure support for virtual Intel GPUs.
PPC:
- support for KVM guests on POWER9
- improved support for interrupt polling
- optimizations and cleanups.
s390:
- two small optimizations, more stuff is in flight and will be in
4.11.
ARM:
- support for the GICv3 ITS on 32bit platforms"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
KVM: arm/arm64: timer: Check for properly initialized timer on init
KVM: arm/arm64: vgic-v2: Limit ITARGETSR bits to number of VCPUs
KVM: x86: Handle the kthread worker using the new API
KVM: nVMX: invvpid handling improvements
KVM: nVMX: check host CR3 on vmentry and vmexit
KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
KVM: nVMX: propagate errors from prepare_vmcs02
KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT
KVM: nVMX: load GUEST_EFER after GUEST_CR0 during emulated VM-entry
KVM: nVMX: generate MSR_IA32_CR{0,4}_FIXED1 from guest CPUID
KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation
KVM: nVMX: support restore of VMX capability MSRs
KVM: nVMX: generate non-true VMX MSRs based on true versions
KVM: x86: Do not clear RFLAGS.TF when a singlestep trap occurs.
KVM: x86: Add kvm_skip_emulated_instruction and use it.
KVM: VMX: Move skip_emulated_instruction out of nested_vmx_check_vmcs12
KVM: VMX: Reorder some skip_emulated_instruction calls
KVM: x86: Add a return value to kvm_emulate_cpuid
KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
...
- Expose all invalidation types to the L1
- Reject invvpid instruction, if L1 passed zero vpid value to single
context invalidations
Signed-off-by: Jan Dakinevich <jan.dakinevich@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit adds missing host CR3 checks. Before entering guest mode, the value
of CR3 is checked for reserved bits. After returning, nested_vmx_load_cr3 is
called to set the new CR3 value and check and load PDPTRs.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Loading CR3 as part of emulating vmentry is different from regular CR3 loads,
as implemented in kvm_set_cr3, in several ways.
* different rules are followed to check CR3 and it is desirable for the caller
to distinguish between the possible failures
* PDPTRs are not loaded if PAE paging and nested EPT are both enabled
* many MMU operations are not necessary
This patch introduces nested_vmx_load_cr3 suitable for CR3 loads as part of
nested vmentry and vmexit, and makes use of it on the nested vmentry path.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>