Commit b87cf80af3 added support for
ARAT (Always Running APIC timer) on AMD processors that are not
affected by erratum 400. This erratum is present on certain processor
families and prevents APIC timer from waking up the CPU when it
is in a deep C state, including C1E state.
Determining whether a processor is affected by this erratum may
have some corner cases and handling these cases is somewhat
complicated. In the interest of simplicity we won't claim ARAT
support on processor families below 0x12 and will go back to
broadcasting timer when going idle.
Signed-off-by: Boris Ostrovsky <ostr@amd64.org>
Link: http://lkml.kernel.org/r/1306423192-19774-1-git-send-email-ostr@amd64.org
Tested-by: Boris Petkov <borislav.petkov@amd.com>
Cc: Hans Rosenfeld <Hans.Rosenfeld@amd.com>
Cc: Andreas Herrmann <Andreas.Herrmann3@amd.com>
Cc: Chuck Ebbert <cebbert@redhat.com>
Cc: stable@kernel.org # 32.x, 38.x, 39.x
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The workaround for Bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=33012
introduced a read and a write to the MC4 mask msr.
Unfortunatly this MSR is not emulated by the KVM hypervisor
so that the kernel will get a #GP and crashes when applying
this workaround when running inside KVM.
This issue was reported as:
https://bugzilla.kernel.org/show_bug.cgi?id=35132
and is fixed with this patch. The change just let the kernel
ignore any #GP it gets while accessing this MSR by using the
_safe msr access methods.
Reported-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@kernel.org> # .39.x
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Trying to enable the local APIC timer on early K8 revisions
uncovers a number of other issues with it, in conjunction with
the C1E enter path on AMD. Fixing those causes much more churn
and troubles than the benefit of using that timer brings so
don't enable it on K8 at all, falling back to the original
functionality the kernel had wrt to that.
Reported-and-bisected-by: Nick Bowler <nbowler@elliptictech.com>
Cc: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Nick Bowler <nbowler@elliptictech.com>
Cc: Joerg-Volker-Peetz <jvpeetz@web.de>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1305636919-31165-3-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This reverts commit e20a2d205c, as it crashes
certain boxes with specific AMD CPU models.
Moving the lower endpoint of the Erratum 400 check to accomodate
earlier K8 revisions (A-E) opens a can of worms which is simply
not worth to fix properly by tweaking the errata checking
framework:
* missing IntPenging MSR on revisions < CG cause #GP:
http://marc.info/?l=linux-kernel&m=130541471818831
* makes earlier revisions use the LAPIC timer instead of the C1E
idle routine which switches to HPET, thus not waking up in
deeper C-states:
http://lkml.org/lkml/2011/4/24/20
Therefore, leave the original boundary starting with K8-revF.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Older AMD K8 processors (Revisions A-E) are affected by erratum
400 (APIC timer interrupts don't occur in C states greater than
C1). This, for example, means that X86_FEATURE_ARAT flag should
not be set for these parts.
This addresses regression introduced by commit
b87cf80af3 ("x86, AMD: Set ARAT
feature on AMD processors") where the system may become
unresponsive until external interrupt (such as keyboard input)
occurs. This results, for example, in time not being reported
correctly, lack of progress on the system and other lockups.
Reported-by: Joerg-Volker Peetz <jvpeetz@web.de>
Tested-by: Joerg-Volker Peetz <jvpeetz@web.de>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1304113663-6586-1-git-send-email-ostr@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch disables GartTlbWlk errors on AMD Fam10h CPUs if
the BIOS forgets to do is (or is just too old). Letting
these errors enabled can cause a sync-flood on the CPU
causing a reboot.
The AMD BKDG recommends disabling GART TLB Wlk Error completely.
This patch is the fix for
https://bugzilla.kernel.org/show_bug.cgi?id=33012
on my machine.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/20110415131152.GJ18463@8bytes.org
Tested-by: Alexandre Demers <alexandre.f.demers@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Support for Always Running APIC timer (ARAT) was introduced in
commit db954b5898. This feature
allows us to avoid switching timers from LAPIC to something else
(e.g. HPET) and go into timer broadcasts when entering deep
C-states.
AMD processors don't provide a CPUID bit for that feature but
they also keep APIC timers running in deep C-states (except for
cases when the processor is affected by erratum 400). Therefore
we should set ARAT feature bit on AMD CPUs.
Tested-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Acked-by: Mark Langsdorf <mark.langsdorf@amd.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@amd.com>
LKML-Reference: <1300205624-4813-1-git-send-email-ostr@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit d518573de6 ("x86, amd: Normalize compute unit IDs on
multi-node processors") introduced compute unit normalization
but causes a compiler warning:
arch/x86/kernel/cpu/amd.c: In function 'amd_detect_cmp':
arch/x86/kernel/cpu/amd.c:268: warning: 'cores_per_cu' may be used uninitialized in this function
arch/x86/kernel/cpu/amd.c:268: note: 'cores_per_cu' was declared here
The compiler is right - initialize it with a proper value.
Also, fix up a comment while at it.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20110214171451.GB10076@kryptos.osrc.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Unlike 64bit, 32bit has been using its own cpu_to_node_map[] for
CPU -> NUMA node mapping. Replace it with early_percpu variable
x86_cpu_to_node_map and share the mapping code with 64bit.
* USE_PERCPU_NUMA_NODE_ID is now enabled for 32bit too.
* x86_cpu_to_node_map and numa_set/clear_node() are moved from
numa_64 to numa. For now, on 32bit, x86_cpu_to_node_map is initialized
with 0 instead of NUMA_NO_NODE. This is to avoid introducing unexpected
behavior change and will be updated once init path is unified.
* srat_detect_node() is now enabled for x86_32 too. It calls
numa_set_node() and initializes the mapping making explicit
cpu_to_node_map[] updates from map/unmap_cpu_to_node() unnecessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-15-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
The mapping between cpu/apicid and node is done via
apicid_to_node[] on 64bit and apicid_2_node[] +
apic->x86_32_numa_cpu_node() on 32bit. This difference makes it
difficult to further unify 32 and 64bit NUMA handling.
This patch unifies it by replacing both apicid_to_node[] and
apicid_2_node[] with __apicid_to_node[] array, which is accessed
by two accessors - set_apicid_to_node() and numa_cpu_node(). On
64bit, numa_cpu_node() always consults __apicid_to_node[]
directly while 32bit goes through apic->numa_cpu_node() method
to allow apic implementations to override it.
srat_detect_node() for amd cpus contains workaround for broken
NUMA configuration which assumes relationship between APIC ID,
HT node ID and NUMA topology. Leave it to access
__apicid_to_node[] directly as mapping through CPU might result
in undesirable behavior change. The comment is reformatted and
updated to note the ugliness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-14-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
On multi-node CPUs we don't need the socket wide compute unit ID
but the node-wide compute unit ID. Thus we need to normalize the
value. This is similar to what we do with cpu_core_id.
A compute unit is then identified by physical_package_id,
node_id, and compute_unit_id.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <1295881543-572552-2-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace all uses of current_cpu_data with this_cpu operations on the
per cpu structure cpu_info. The scala accesses are replaced with the
matching this_cpu ops which results in smaller and more efficient
code.
In the long run, it might be a good idea to remove cpu_data() macro
too and use per_cpu macro directly.
tj: updated description
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Get compute unit information from CPUID Fn8000_001E_EBX.
(See AMD CPUID Specification - publication # 25481, revision 2.34,
September 2010.)
Note that each core on a compute unit still has a core_id of its own.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123857.GE20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Node information (ID, number of internal nodes) is provided via
CPUID Fn8000_001e_ECX.
See AMD CPUID Specification (Publication # 25481, Revision 2.34,
September 2010).
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123628.GD20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Old 32-bit AMD CPUs (all w/o L3 cache) should always return 0
for cpuid_edx(0x80000006).
For unknown reason the 32-bit implementation differed from the
64-bit implementation. See commit 67cddd9479 ("i386: Add L3 cache
support to AMD CPUID4 emulation"). The current check is the
result of the x86 merge.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
LKML-Reference: <20100902133710.GA5449@loge.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
6b37f5a20c introduced the CPU frequency
calibration code for AMD CPUs whose TSCs didn't increment with the
core's P0 frequency. From F10h, revB onward, however, the TSC increment
rate is denoted by MSRC001_0015[24] and when this bit is set (which
should be done by the BIOS) the TSC increments with the P0 frequency
so the calibration is not needed and booting can be a couple of mcecs
faster on those machines.
Besides, there should be virtually no machines out there which don't
have this bit set, therefore this calibration can be safely removed. It
is a shaky hack anyway since it assumes implicitly that the core is in
P0 when BIOS hands off to the OS, which might not always be the case.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100825162823.GE26438@aftab>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
A bug in the family-model-stepping matching code caused the presence of
errata to go undetected when OSVW was not used. This causes hangs on
some K8 systems because the E400 workaround is not enabled.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1282141190-930137-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
boot_cpu_id is there for historical reasons and was renamed to
boot_cpu_physical_apicid in patch:
c70dcb7 x86: change boot_cpu_id to boot_cpu_physical_apicid
However, there are some remaining occurrences of boot_cpu_id that are
never touched in the kernel and thus its value is always 0.
This patch removes boot_cpu_id completely.
Signed-off-by: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1279731838-1522-8-git-send-email-robert.richter@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Exprot the AMD errata definitions, since they are needed by kvm_amd.ko
if that is built as a module. Doing "make allmodconfig" during
testing would have caught this.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-1-git-send-email-hans.rosenfeld@amd.com>
Use the AMD errata checking framework instead of open-coding the test.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-3-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Remove check_c1e_idle() and use the new AMD errata checking framework
instead.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-2-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Errata are defined using the AMD_LEGACY_ERRATUM() or AMD_OSVW_ERRATUM()
macros. The latter is intended for newer errata that have an OSVW id
assigned, which it takes as first argument. Both take a variable number
of family-specific model-stepping ranges created by AMD_MODEL_RANGE().
Iff an erratum has an OSVW id, OSVW is available on the CPU, and the
OSVW id is known to the hardware, it is used to determine whether an
erratum is present. Otherwise, the model-stepping ranges are matched
against the current CPU to find out whether the erratum applies.
For certain special errata, the code using this framework might have to
conduct further checks to make sure an erratum is really (not) present.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Extend support to future families, and in particular:
* extend direct mapping split of Tseg SMM area.
* extend K8 flavored alternatives (NOPS).
* rep movs* prefix is fast in ucode.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100602182921.GA21557@aftab>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Use NodeId MSR to get NodeId and number of nodes per processor.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20091216144355.GB28798@alberich.amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
When there are a large number of processors in a system, there
is an excessive amount of messages sent to the system console.
It's estimated that with 4096 processors in a system, and the
console baudrate set to 56K, the startup messages will take
about 84 minutes to clear the serial port.
This set of patches limits the number of repetitious messages
which contain no additional information. Much of this information
is obtainable from the /proc and /sysfs. Some of the messages
are also sent to the kernel log buffer as KERN_DEBUG messages so
dmesg can be used to examine more closely any details specific to
a problem.
The new cpu bootup sequence for system_state == SYSTEM_BOOTING:
Booting Node 0, Processors #1#2#3#4#5#6#7 Ok.
Booting Node 1, Processors #8#9#10#11#12#13#14#15 Ok.
...
Booting Node 3, Processors #56#57#58#59#60#61#62#63 Ok.
Brought up 64 CPUs
After the system is running, a single line boot message is displayed
when CPU's are hotplugged on:
Booting Node %d Processor %d APIC 0x%x
Status of the following lines:
CPU: Physical Processor ID: printed once (for boot cpu)
CPU: Processor Core ID: printed once (for boot cpu)
CPU: Hyper-Threading is disabled printed once (for boot cpu)
CPU: Thermal monitoring enabled printed once (for boot cpu)
CPU %d/0x%x -> Node %d: removed
CPU %d is now offline: only if system_state == RUNNING
Initializing CPU#%d: KERN_DEBUG
Signed-off-by: Mike Travis <travis@sgi.com>
LKML-Reference: <4B219E28.8080601@sgi.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
display_cacheinfo() doesn't display anything anymore and it is used to
detect CPU cache sizes. Rename it accordingly.
Signed-off-by: Borislav Petkov <petkovbb@gmail.com>
LKML-Reference: <20091121130145.GA31357@liondog.tnic>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This trivial patch fixes one missing space in printk.
I already fixed it about half a year ago or more, but the change (in
arch/x86/kernel/cpu/smpboot.c at that time) didn't made into
mainline yet.
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
index 28e5f59..6c139ed 100644
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (22 commits)
x86: Fix code patching for paravirt-alternatives on 486
x86, msr: change msr-reg.o to obj-y, and export its symbols
x86: Use hard_smp_processor_id() to get apic id for AMD K8 cpus
x86, sched: Workaround broken sched domain creation for AMD Magny-Cours
x86, mcheck: Use correct cpumask for shared bank4
x86, cacheinfo: Fixup L3 cache information for AMD multi-node processors
x86: Fix CPU llc_shared_map information for AMD Magny-Cours
x86, msr: Fix msr-reg.S compilation with gas 2.16.1, on 32-bit too
x86: Move kernel_fpu_using to irq_fpu_usable in asm/i387.h
x86, msr: fix msr-reg.S compilation with gas 2.16.1
x86, msr: Export the register-setting MSR functions via /dev/*/msr
x86, msr: Create _on_cpu helpers for {rw,wr}msr_safe_regs()
x86, msr: Have the _safe MSR functions return -EIO, not -EFAULT
x86, msr: CFI annotations, cleanups for msr-reg.S
x86, asm: Make _ASM_EXTABLE() usable from assembly code
x86, asm: Add 32-bit versions of the combined CFI macros
x86, AMD: Disable wrongly set X86_FEATURE_LAHF_LM CPUID bit
x86, msr: Rewrite AMD rd/wrmsr variants
x86, msr: Add rd/wrmsr interfaces with preset registers
x86: add specific support for Intel Atom architecture
...
Otherwise, system with apci id lifting will have wrong apicid in
/proc/cpuinfo.
and use that in srat_detect_node().
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
LKML-Reference: <4A998CCA.1040407@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Construct entire NodeID and use it as cpu_llc_id. Thus internal node
siblings are stored in llc_shared_map.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
fbd8b1819e turns off the bit for
/proc/cpuinfo. However, a proper/full fix would be to additionally
turn off the bit in the CPUID output so that future callers get
correct CPU features info.
Do that by basically reversing what the BIOS wrongfully does at boot.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1251705011-18636-3-git-send-email-petkovbb@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Due to an erratum with certain AMD Athlon 64 processors, the
BIOS may need to force enable the LAHF_LM capability.
Unfortunately, in at least one case, the BIOS does this even
for processors that do not support the functionality.
Add a specific check that will clear the feature bit for
processors known not to support the LAHF/SAHF instructions.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Acked-by: Borislav Petkov <petkovbb@googlemail.com>
LKML-Reference: <4A80A5AD.2000209@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If we've logically disabled apics, don't probe the PCI space for the
AMD extended APIC ID.
[ Impact: prevent boot crash under Xen. ]
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Reported-by: Bastian Blank <bastian@waldi.eu.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
No code changes except printk levels (although some of the K6
mtrr code might be clearer if there were a few as would
splitting out some of the intel cache code).
Signed-off-by: Alan Cox <alan@linux.intel.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This counts when building sched domains in case NUMA information
is not available.
( See cpu_coregroup_mask() which uses llc_shared_map which in turn is
created based on cpu_llc_id. )
Currently Linux builds domains as follows:
(example from a dual socket quad-core system)
CPU0 attaching sched-domain:
domain 0: span 0-7 level CPU
groups: 0 1 2 3 4 5 6 7
...
CPU7 attaching sched-domain:
domain 0: span 0-7 level CPU
groups: 7 0 1 2 3 4 5 6
Ever since that is borked for multi-core AMD CPU systems.
This patch fixes that and now we get a proper:
CPU0 attaching sched-domain:
domain 0: span 0-3 level MC
groups: 0 1 2 3
domain 1: span 0-7 level CPU
groups: 0-3 4-7
...
CPU7 attaching sched-domain:
domain 0: span 4-7 level MC
groups: 7 4 5 6
domain 1: span 0-7 level CPU
groups: 4-7 0-3
This allows scheduler to assign tasks to cores on different sockets
(i.e. that don't share last level cache) for performance reasons.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20090619085909.GJ5218@alberich.amd.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Clear TS in irq_ts_save() when in an atomic section
x86: Detect use of extended APIC ID for AMD CPUs
x86: memtest: remove 64-bit division
x86, UV: Fix macros for multiple coherency domains
x86: Fix non-lazy GS handling in sys_vm86()
x86: Add quirk for reboot stalls on a Dell Optiplex 360
x86: Fix UV BAU activation descriptor init
Booting a 32-bit kernel on Magny-Cours results in the following panic:
...
Using APIC driver default
...
Overriding APIC driver with bigsmp
...
Getting VERSION: 80050010
Getting VERSION: 80050010
Getting ID: 10000000
Getting ID: ef000000
Getting LVT0: 700
Getting LVT1: 10000
Kernel panic - not syncing: Boot APIC ID in local APIC unexpected (16 vs 0)
Pid: 1, comm: swapper Not tainted 2.6.30-rcX #2
Call Trace:
[<c05194da>] ? panic+0x38/0xd3
[<c0743102>] ? native_smp_prepare_cpus+0x259/0x31f
[<c073b19d>] ? kernel_init+0x3e/0x141
[<c073b15f>] ? kernel_init+0x0/0x141
[<c020325f>] ? kernel_thread_helper+0x7/0x10
The reason is that default_get_apic_id handled extension of local APIC
ID field just in case of XAPIC.
Thus for this AMD CPU, default_get_apic_id() returns 0 and
bigsmp_get_apic_id() returns 16 which leads to the respective kernel
panic.
This patch introduces a Linux specific feature flag to indicate
support for extended APIC id (8 bits instead of 4 bits width) and sets
the flag on AMD CPUs if applicable.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: <stable@kernel.org>
LKML-Reference: <20090608135509.GA12431@alberich.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
should not call that if apic is disabled.
[ Impact: fix crash on certain UP configs ]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
LKML-Reference: <4A09CCBB.2000306@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: debuggability and micro-optimization
Putting whatever is possible into the (final) .rodata section increases
the likelihood of catching memory corruption bugs early, and reduces
false cache line sharing.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <49B90961.76E4.0078.0@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup and code size reduction on 64-bit
This code is only applied to Intel Pentium and AMD K7 32-bit cpus.
Move those checks to intel_init()/amd_init() for 32-bit
so 64-bit will not build this code.
Also change to use cpu_index check to see if we need to emit warning.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <49B377D2.8030108@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: reward non-stop TSCs with good TSC-based clocksources, etc.
Add support for CPUID_0x80000007_Bit8 on Intel CPUs as well. This bit means
that the TSC is invariant with C/P/T states and always runs at constant
frequency.
With Intel CPUs, we have 3 classes
* CPUs where TSC runs at constant rate and does not stop n C-states
* CPUs where TSC runs at constant rate, but will stop in deep C-states
* CPUs where TSC rate will vary based on P/T-states and TSC will stop in deep
C-states.
To cover these 3, one feature bit (CONSTANT_TSC) is not enough. So, add a
second bit (NONSTOP_TSC). CONSTANT_TSC indicates that the TSC runs at
constant frequency irrespective of P/T-states, and NONSTOP_TSC indicates
that TSC does not stop in deep C-states.
CPUID_0x8000000_Bit8 indicates both these feature bit can be set.
We still have CONSTANT_TSC _set_ and NONSTOP_TSC _not_set_ on some older Intel
CPUs, based on model checks. We can use TSC on such CPUs for time, as long as
those CPUs do not support/enter deep C-states.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>