Commit Graph

153274 Commits

Author SHA1 Message Date
Luwei Kang
ee85dec2fe KVM: x86: Disable Intel PT when VMXON in L1 guest
Currently, Intel Processor Trace do not support tracing in L1 guest
VMX operation(IA32_VMX_MISC[bit 14] is 0). As mentioned in SDM,
on these type of processors, execution of the VMXON instruction will
clears IA32_RTIT_CTL.TraceEn and any attempt to write IA32_RTIT_CTL
causes a general-protection exception (#GP).

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:38 +01:00
Chao Peng
b08c28960f KVM: x86: Set intercept for Intel PT MSRs read/write
To save performance overhead, disable intercept Intel PT MSRs
read/write when Intel PT is enabled in guest.
MSR_IA32_RTIT_CTL is an exception that will always be intercepted.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:37 +01:00
Chao Peng
bf8c55d8dc KVM: x86: Implement Intel PT MSRs read/write emulation
This patch implement Intel Processor Trace MSRs read/write
emulation.
Intel PT MSRs read/write need to be emulated when Intel PT
MSRs is intercepted in guest and during live migration.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:36 +01:00
Luwei Kang
6c0f0bba85 KVM: x86: Introduce a function to initialize the PT configuration
Initialize the Intel PT configuration when cpuid update.
Include cpuid inforamtion, rtit_ctl bit mask and the number of
address ranges.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:36 +01:00
Chao Peng
2ef444f160 KVM: x86: Add Intel PT context switch for each vcpu
Load/Store Intel Processor Trace register in context switch.
MSR IA32_RTIT_CTL is loaded/stored automatically from VMCS.
In Host-Guest mode, we need load/resore PT MSRs only when PT
is enabled in guest.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:35 +01:00
Chao Peng
86f5201df0 KVM: x86: Add Intel Processor Trace cpuid emulation
Expose Intel Processor Trace to guest only when
the PT works in Host-Guest mode.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:35 +01:00
Chao Peng
f99e3daf94 KVM: x86: Add Intel PT virtualization work mode
Intel Processor Trace virtualization can be work in one
of 2 possible modes:

a. System-Wide mode (default):
   When the host configures Intel PT to collect trace packets
   of the entire system, it can leave the relevant VMX controls
   clear to allow VMX-specific packets to provide information
   across VMX transitions.
   KVM guest will not aware this feature in this mode and both
   host and KVM guest trace will output to host buffer.

b. Host-Guest mode:
   Host can configure trace-packet generation while in
   VMX non-root operation for guests and root operation
   for native executing normally.
   Intel PT will be exposed to KVM guest in this mode, and
   the trace output to respective buffer of host and guest.
   In this mode, tht status of PT will be saved and disabled
   before VM-entry and restored after VM-exit if trace
   a virtual machine.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:34 +01:00
Luwei Kang
e0018afec5 perf/x86/intel/pt: add new capability for Intel PT
This adds support for "output to Trace Transport subsystem"
capability of Intel PT. It means that PT can output its
trace to an MMIO address range rather than system memory buffer.

Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:33 +01:00
Luwei Kang
69843a913f perf/x86/intel/pt: Add new bit definitions for PT MSRs
Add bit definitions for Intel PT MSRs to support trace output
directed to the memeory subsystem and holds a count if packet
bytes that have been sent out.

These are required by the upcoming PT support in KVM guests
for MSRs read/write emulation.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:33 +01:00
Luwei Kang
61be2998ca perf/x86/intel/pt: Introduce intel_pt_validate_cap()
intel_pt_validate_hw_cap() validates whether a given PT capability is
supported by the hardware. It checks the PT capability array which
reflects the capabilities of the hardware on which the code is executed.

For setting up PT for KVM guests this is not correct as the capability
array for the guest can be different from the host array.

Provide a new function to check against a given capability array.

Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:32 +01:00
Chao Peng
f6d079ce86 perf/x86/intel/pt: Export pt_cap_get()
pt_cap_get() is required by the upcoming PT support in KVM guests.

Export it and move the capabilites enum to a global header.

As a global functions, "pt_*" is already used for ptrace and
other things, so it makes sense to use "intel_pt_*" as a prefix.

Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:32 +01:00
Chao Peng
887eda13b5 perf/x86/intel/pt: Move Intel PT MSRs bit defines to global header
The Intel Processor Trace (PT) MSR bit defines are in a private
header. The upcoming support for PT virtualization requires these defines
to be accessible from KVM code.

Move them to the global MSR header file.

Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:31 +01:00
Wei Yang
bdd303cb1b KVM: fix some typos
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
[Preserved the iff and a probably intentional weird bracket notation.
 Also dropped the style change to make a single-purpose patch. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:26 +01:00
Peng Hao
649472a169 x86/kvmclock: convert to SPDX identifiers
Update the verbose license text with the matching SPDX
license identifier.

Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
[Changed deprecated GPL-2.0+ to GPL-2.0-or-later. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:25 +01:00
Sean Christopherson
9b7ebff23c KVM: x86: Remove KF() macro placeholder
Although well-intentioned, keeping the KF() definition as a hint for
handling scattered CPUID features may be counter-productive.  Simply
redefining the bit position only works for directly manipulating the
guest's CPUID leafs, e.g. it doesn't make guest_cpuid_has() magically
work.  Taking an alternative approach, e.g. ensuring the bit position
is identical between the Linux-defined and hardware-defined features,
may be a simpler and/or more effective method of exposing scattered
features to the guest.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:25 +01:00
Jim Mattson
788fc1e9ad kvm: vmx: Allow guest read access to IA32_TSC
Let the guest read the IA32_TSC MSR with the generic RDMSR instruction
as well as the specific RDTSC(P) instructions. Note that the hardware
applies the TSC multiplier and offset (when applicable) to the result of
RDMSR(IA32_TSC), just as it does to the result of RDTSC(P).

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:24 +01:00
Jim Mattson
9ebdfe5230 kvm: nVMX: NMI-window and interrupt-window exiting should wake L2 from HLT
According to the SDM, "NMI-window exiting" VM-exits wake a logical
processor from the same inactive states as would an NMI and
"interrupt-window exiting" VM-exits wake a logical processor from the
same inactive states as would an external interrupt. Specifically, they
wake a logical processor from the shutdown state and from the states
entered using the HLT and MWAIT instructions.

Fixes: 6dfacadd58 ("KVM: nVMX: Add support for activity state HLT")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Squashed comments of two Jim's patches and used the simplified code
 hunk provided by Sean. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:24 +01:00
Tambe, William
e081354d6a KVM: nSVM: Fix nested guest support for PAUSE filtering.
Currently, the nested guest's PAUSE intercept intentions are not being
honored.  Instead, since the L0 hypervisor's pause_filter_count and
pause_filter_thresh values are still in place, these values are used
instead of those programmed in the VMCB by the L1 hypervisor.

To honor the desired PAUSE intercept support of the L1 hypervisor, the L0
hypervisor must use the PAUSE filtering fields of the L1 hypervisor. This
requires saving and restoring of both the L0 and L1 hypervisor's PAUSE
filtering fields.

Signed-off-by: William Tambe <william.tambe@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:23 +01:00
YueHaibing
ba7424b200 KVM: VMX: Remove duplicated include from vmx.c
Remove duplicated include.

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:21 +01:00
Vitaly Kuznetsov
e87555e550 KVM: x86: svm: report MSR_IA32_MCG_EXT_CTL as unsupported
AMD doesn't seem to implement MSR_IA32_MCG_EXT_CTL and svm code in kvm
knows nothing about it, however, this MSR is among emulated_msrs and
thus returned with KVM_GET_MSR_INDEX_LIST. The consequent KVM_GET_MSRS,
of course, fails.

Report the MSR as unsupported to not confuse userspace.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:20 +01:00
Paolo Bonzini
ed8e481227 KVM: x86: fix size of x86_fpu_cache objects
The memory allocation in b666a4b697 ("kvm: x86: Dynamically allocate
guest_fpu", 2018-11-06) is wrong, there are other members in struct fpu
before the fpregs_state union and the patch should be doing something
similar to the code in fpu__init_task_struct_size.  It's enough to run
a guest and then rmmod kvm to see slub errors which are actually caused
by memory corruption.

For now let's revert it to sizeof(struct fpu), which is conservative.
I have plans to move fsave/fxsave/xsave directly in KVM, without using
the kernel FPU helpers, and once it's done, the size of the object in
the cache will be something like kvm_xstate_size.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:19 +01:00
Radim Krčmář
cfdfaf4a86 PPC KVM update for 4.21
The main new feature this time is support in HV nested KVM for passing
 a device that is emulated by a level 0 hypervisor and presented to
 level 1 as a PCI device through to a level 2 guest using VFIO.
 
 Apart from that there are improvements for migration of radix guests
 under HV KVM and some other fixes and cleanups.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQEcBAABCAAGBQJcGFzEAAoJEJ2a6ncsY3GfKjoH/Azcf8QIO5ftyHrjazFZOSUh
 5Lr24HZTYHheowp6obzuZWRAIyckHmflRmOkv8RVGuA8+Sp+m5pBxN3WTVPOwDUh
 WanOWVGJsuhl6qATmkm7xIxmYhQEyLxVNbnWva7WXuZ92rgGCNfHtByHWAx/7vTe
 q5Shr4fLIQ8HRzor8Xqqph1I0hQNTE9VsaK1hW/PxI0gsO8qjDwOR8SDpT/aaJrS
 Sir+lM0TwCbJREuObDxYAXn1OWy8rMYjlb9fEBv5tmPCQKiB9vJz4tV+ahR9eJ14
 PEF57MoBOGwzQXo4geFLuo/Bu8fDygKsKQX1eYGcn6tRGA4pnTxzYl0+dHLBkOM=
 =3WkD
 -----END PGP SIGNATURE-----

Merge tag 'kvm-ppc-next-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc

PPC KVM update for 4.21 from Paul Mackerras

The main new feature this time is support in HV nested KVM for passing
a device that is emulated by a level 0 hypervisor and presented to
level 1 as a PCI device through to a level 2 guest using VFIO.

Apart from that there are improvements for migration of radix guests
under HV KVM and some other fixes and cleanups.
2018-12-20 14:54:09 +01:00
Paolo Bonzini
e9f2e05a5f KVM: s390: Fixes for 4.21
Just two small fixes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABAgAGBQJcGgnhAAoJEBF7vIC1phx8kfgP/iiXHJo94IK/rqXbYFGnw259
 ehRaWmzXJAdU6G7RgaAqyNkEudOjIoPx9QDe0WRl/vRkAiQ2iejoovGFfa/wDkV4
 N4uCKdKJ8U39ixonC7/b90798p+Fgc1MfNHtrsvgjj9d4kjzx6L0Qq9G+8t9EcU+
 BJZNuK6L2+AY/o/yysVTCp5yI/Pqf0vtKrtglsGe7Eg1FES8MWR3A0OIeOar5Bcq
 uGFIUhEy2tHDNFYSdrmKCF4DGkJ+RmBgAEq/Lp2RqChD00CfVE/pHNZfQHGXmPFA
 MuWvUohuhhF7Ly3OrQKNdILqxQkqUov3pNeWSzTb4Awy/GY3F1j9K4ysF4/uQLFr
 97kjySVUpK1qhDVVS2lGZp1gOAmjByVfw9j7/Jq+MPDsHmNRISTfbCjdkzyhHxcd
 joPS9/StC1r/kFN9pyfDr+S+8KgG4jx5Jk6Jjwt+BOUi2pummP9UcrAfxQd+6QKZ
 3s2qrgAbkaJfYXpTqEw0WkxncYsNC+WVL3tmL7IQdBo6C+rPtUPpiSgT4Mbwy9Tk
 s7KGX9u33mDuw4vvz3LFZcgcXdM+hItzsHsE/l8PFOea5jqKIvyyuaK9zjGS25b1
 VTP/2RckdopTHEy+iFz3tmRzHB2n36U3cEeOCow3/wDzEbJKy2qK7SeIUTuQloyG
 ZZChydpdoc3I/5m6ecCc
 =GVCX
 -----END PGP SIGNATURE-----

Merge tag 'kvm-s390-next-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD

KVM: s390: Fixes for 4.21

Just two small fixes.
2018-12-19 22:17:09 +01:00
Paolo Bonzini
8c5e14f438 KVM/arm updates for 4.21
- Large PUD support for HugeTLB
 - Single-stepping fixes
 - Improved tracing
 - Various timer and vgic fixups
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCgAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAlwahf0VHG1hcmMuenlu
 Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDl3MQAKTJ2+vA1vCln2OiKJLZ0TzsSVFB
 EXiJfQ6QghD+BHeXw/XU/4X8sD8NjzIP833RvmAgQ/Gm2BpEY/Fj4CmTKaoA5wfJ
 UMEvLUFGWb19d0hbf7AllSXg3FvkpAMVof7zfKIyI7tHem6sWHmyXDiXzEfpX2un
 bS3x8OBbdVhHcjCvgc1U6Jbii0KUR8Ac5PJBJny1PWkKHFe8NYf/cX+Ii//FMdCm
 7zihQAFOpksVOI7y9wYwpmMeI52vDwesergqBBJXkklsAFAda56a2NuoG6oim3BJ
 FH/cavGGfrwcdN6Dh5tkvubfxIL5sKF57ZW0Jpy7MPK7u2Zzr7ZvRBHdvYqE+kp3
 +jieKr6t1MVnpYfOOZRZgnTqio3Cp++2GzZr283IH0WjDTnN7hhEWbU6/o8DHSge
 H/nDyxSycbUZtrGVAOm6oPoy4hNElvW8S71+rLqXVc46aKs3YheNg5MqkLawRA0q
 5U9Lw5Um/IvcjfM8DESpmYnugZV8FkzEcMZ3SQjQRYafXdjq2V2NjSMtl2+dyeDh
 KthCujhK0F1KBgw7FocNOwh2M7q6mIjw93HrX30CcT6cu2q+0apty+tjXZapP+dc
 l7Tad8iFGzAGvW0i3yNWADXhMGk721YrGmptWZh4M9B8CZr2pPzuB4nUPDMeyMYl
 XlgIgVGv24MKDjnW
 =SiUI
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-for-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm updates for 4.21

- Large PUD support for HugeTLB
- Single-stepping fixes
- Improved tracing
- Various timer and vgic fixups
2018-12-19 20:33:55 +01:00
Marc Zyngier
8c33df1afd arm: KVM: Add S2_PMD_{MASK,SIZE} constants
They were missing, and it turns out that we do need them now.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-19 17:48:21 +00:00
Marc Zyngier
58466766cd arm/arm64: KVM: Add ARM_EXCEPTION_IS_TRAP macro
32 and 64bit use different symbols to identify the traps.
32bit has a fine grained approach (prefetch abort, data abort and HVC),
while 64bit is pretty happy with just "trap".

This has been fine so far, except that we now need to decode some
of that in tracepoints that are common to both architectures.

Introduce ARM_EXCEPTION_IS_TRAP which abstracts the trap symbols
and make the tracepoint use it.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-19 17:47:53 +00:00
Will Deacon
df655b75c4 arm64: KVM: Avoid setting the upper 32 bits of VTCR_EL2 to 1
Although bit 31 of VTCR_EL2 is RES1, we inadvertently end up setting all
of the upper 32 bits to 1 as well because we define VTCR_EL2_RES1 as
signed, which is sign-extended when assigning to kvm->arch.vtcr.

Lucky for us, the architecture currently treats these upper bits as RES0
so, whilst we've been naughty, we haven't set fire to anything yet.

Cc: <stable@vger.kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-19 17:47:52 +00:00
Marc Zyngier
599d79dcd1 arm64: KVM: Add trapped system register access tracepoint
We're pretty blind when it comes to system register tracing,
and rely on the ESR value displayed by kvm_handle_sys, which
isn't much.

Instead, let's add an actual name to the sysreg entries, so that
we can finally print it as we're about to perform the access
itself.

The new tracepoint is conveniently called kvm_sys_access.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-19 17:47:08 +00:00
Christoffer Dall
da6f16662a KVM: arm64: Make vcpu const in vcpu_read_sys_reg
vcpu_read_sys_reg should not be modifying the VCPU structure.
Eventually, to handle EL2 sysregs for nested virtualization, we will
call vcpu_read_sys_reg from places that have a const vcpu pointer, which
will complain about the lack of the const modifier on the read path.

Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-19 17:47:07 +00:00
Christoffer Dall
71a7e47f39 KVM: arm/arm64: Fixup the kvm_exit tracepoint
The kvm_exit tracepoint strangely always reported exits as being IRQs.
This seems to be because either the __print_symbolic or the tracepoint
macros use a variable named idx.

Take this chance to update the fields in the tracepoint to reflect the
concepts in the arm64 architecture that we pass to the tracepoint and
move the exception type table to the same location and header files as
the exits code.

We also clear out the exception code to 0 for IRQ exits (which
translates to UNKNOWN in text) to make it slighyly less confusing to
parse the trace output.

Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-19 17:47:06 +00:00
Christoffer Dall
6992195cc6 KVM: arm64: Clarify explanation of STAGE2_PGTABLE_LEVELS
In attempting to re-construct the logic for our stage 2 page table
layout I found the reasoning in the comment explaining how we calculate
the number of levels used for stage 2 page tables a bit backwards.

This commit attempts to clarify the comment, to make it slightly easier
to read without having the Arm ARM open on the right page.

While we're at it, fixup a typo in a comment that was recently changed.

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 15:14:50 +00:00
Punit Agrawal
b8e0ba7c8b KVM: arm64: Add support for creating PUD hugepages at stage 2
KVM only supports PMD hugepages at stage 2. Now that the various page
handling routines are updated, extend the stage 2 fault handling to
map in PUD hugepages.

Addition of PUD hugepage support enables additional page sizes (e.g.,
1G with 4K granule) which can be useful on cores that support mapping
larger block sizes in the TLB entries.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replace BUG() => WARN_ON(1) for arm32 PUD helpers ]
Signed-off-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 15:14:49 +00:00
Punit Agrawal
35a6396619 KVM: arm64: Update age handlers to support PUD hugepages
In preparation for creating larger hugepages at Stage 2, add support
to the age handling notifiers for PUD hugepages when encountered.

Provide trivial helpers for arm32 to allow sharing code.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON(1) for arm32 PUD helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 15:14:48 +00:00
Punit Agrawal
eb3f0624ea KVM: arm64: Support handling access faults for PUD hugepages
In preparation for creating larger hugepages at Stage 2, extend the
access fault handling at Stage 2 to support PUD hugepages when
encountered.

Provide trivial helpers for arm32 to allow sharing of code.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON(1) in PUD helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 15:14:48 +00:00
Punit Agrawal
86d1c55ea6 KVM: arm64: Support PUD hugepage in stage2_is_exec()
In preparation for creating PUD hugepages at stage 2, add support for
detecting execute permissions on PUD page table entries. Faults due to
lack of execute permissions on page table entries is used to perform
i-cache invalidation on first execute.

Provide trivial implementations of arm32 helpers to allow sharing of
code.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON(1) in arm32 PUD helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 15:14:48 +00:00
Punit Agrawal
4ea5af5311 KVM: arm64: Support dirty page tracking for PUD hugepages
In preparation for creating PUD hugepages at stage 2, add support for
write protecting PUD hugepages when they are encountered. Write
protecting guest tables is used to track dirty pages when migrating
VMs.

Also, provide trivial implementations of required kvm_s2pud_* helpers
to allow sharing of code with arm32.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON() in arm32 pud helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 15:14:47 +00:00
Punit Agrawal
f8df73388e KVM: arm/arm64: Introduce helpers to manipulate page table entries
Introduce helpers to abstract architectural handling of the conversion
of pfn to page table entries and marking a PMD page table entry as a
block entry.

The helpers are introduced in preparation for supporting PUD hugepages
at stage 2 - which are supported on arm64 but do not exist on arm.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 15:14:47 +00:00
Mark Rutland
d1878af3a5 KVM: arm/arm64: Log PSTATE for unhandled sysregs
When KVM traps an unhandled sysreg/coproc access from a guest, it logs
the guest PC. To aid debugging, it would be helpful to know which
exception level the trap came from, along with other PSTATE/CPSR bits,
so let's log the PSTATE/CPSR too.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 15:14:45 +00:00
Mark Rutland
bd7d95cafb arm64: KVM: Consistently advance singlestep when emulating instructions
When we emulate a guest instruction, we don't advance the hardware
singlestep state machine, and thus the guest will receive a software
step exception after a next instruction which is not emulated by the
host.

We bodge around this in an ad-hoc fashion. Sometimes we explicitly check
whether userspace requested a single step, and fake a debug exception
from within the kernel. Other times, we advance the HW singlestep state
rely on the HW to generate the exception for us. Thus, the observed step
behaviour differs for host and guest.

Let's make this simpler and consistent by always advancing the HW
singlestep state machine when we skip an instruction. Thus we can rely
on the hardware to generate the singlestep exception for us, and never
need to explicitly check for an active-pending step, nor do we need to
fake a debug exception from the guest.

Cc: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-18 14:11:37 +00:00
Michael Mueller
7aedd9d48f KVM: s390: fix kmsg component kvm-s390
Relocate #define statement for kvm related kernel messages
before the include of printk to become effective.

Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2018-12-18 10:18:27 +01:00
Michael Mueller
308c3e6673 KVM: s390: unregister debug feature on failing arch init
Make sure the debug feature and its allocated resources get
released upon unsuccessful architecture initialization.

A related indication of the issue will be reported as kernel
message.

Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Message-Id: <20181130143215.69496-2-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2018-12-18 10:18:27 +01:00
Suraj Jitindar Singh
95d386c2d2 KVM: PPC: Book3S HV: Allow passthrough of an emulated device to an L3 guest
Previously when a device was being emulated by an L1 guest for an L2
guest, that device couldn't then be passed through to an L3 guest. This
was because the L1 guest had no method for accessing L3 memory.

The hcall H_COPY_TOFROM_GUEST provides this access. Thus this setup for
passthrough can now be allowed.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:50 +11:00
Suraj Jitindar Singh
6ff887b8bd KVM: PPC: Book3S: Introduce new hcall H_COPY_TOFROM_GUEST to access quadrants 1 & 2
A guest cannot access quadrants 1 or 2 as this would result in an
exception. Thus introduce the hcall H_COPY_TOFROM_GUEST to be used by a
guest when it wants to perform an access to quadrants 1 or 2, for
example when it wants to access memory for one of its nested guests.

Also provide an implementation for the kvm-hv module.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:50 +11:00
Suraj Jitindar Singh
873db2cd9a KVM: PPC: Book3S HV: Allow passthrough of an emulated device to an L2 guest
Allow for a device which is being emulated at L0 (the host) for an L1
guest to be passed through to a nested (L2) guest.

The existing kvmppc_hv_emulate_mmio function can be used here. The main
challenge is that for a load the result must be stored into the L2 gpr,
not an L1 gpr as would normally be the case after going out to qemu to
complete the operation. This presents a challenge as at this point the
L2 gpr state has been written back into L1 memory.

To work around this we store the address in L1 memory of the L2 gpr
where the result of the load is to be stored and use the new io_gpr
value KVM_MMIO_REG_NESTED_GPR to indicate that this is a nested load for
which completion must be done when returning back into the kernel. Then
in kvmppc_complete_mmio_load() the resultant value is written into L1
memory at the location of the indicated L2 gpr.

Note that we don't currently let an L1 guest emulate a device for an L2
guest which is then passed through to an L3 guest.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:50 +11:00
Suraj Jitindar Singh
cc6929cc84 KVM: PPC: Update kvmppc_st and kvmppc_ld to use quadrants
The functions kvmppc_st and kvmppc_ld are used to access guest memory
from the host using a guest effective address. They do so by translating
through the process table to obtain a guest real address and then using
kvm_read_guest or kvm_write_guest to make the access with the guest real
address.

This method of access however only works for L1 guests and will give the
incorrect results for a nested guest.

We can however use the store_to_eaddr and load_from_eaddr kvmppc_ops to
perform the access for a nested guesti (and a L1 guest). So attempt this
method first and fall back to the old method if this fails and we aren't
running a nested guest.

At this stage there is no fall back method to perform the access for a
nested guest and this is left as a future improvement. For now we will
return to the nested guest and rely on the fact that a translation
should be faulted in before retrying the access.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:50 +11:00
Suraj Jitindar Singh
dceadcf91b KVM: PPC: Add load_from_eaddr and store_to_eaddr to the kvmppc_ops struct
The kvmppc_ops struct is used to store function pointers to kvm
implementation specific functions.

Introduce two new functions load_from_eaddr and store_to_eaddr to be
used to load from and store to a guest effective address respectively.

Also implement these for the kvm-hv module. If we are using the radix
mmu then we can call the functions to access quadrant 1 and 2.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:50 +11:00
Suraj Jitindar Singh
d7b4561522 KVM: PPC: Book3S HV: Implement functions to access quadrants 1 & 2
The POWER9 radix mmu has the concept of quadrants. The quadrant number
is the two high bits of the effective address and determines the fully
qualified address to be used for the translation. The fully qualified
address consists of the effective lpid, the effective pid and the
effective address. This gives then 4 possible quadrants 0, 1, 2, and 3.

When accessing these quadrants the fully qualified address is obtained
as follows:

Quadrant		| Hypervisor		| Guest
--------------------------------------------------------------------------
			| EA[0:1] = 0b00	| EA[0:1] = 0b00
0			| effLPID = 0		| effLPID = LPIDR
			| effPID  = PIDR	| effPID  = PIDR
--------------------------------------------------------------------------
			| EA[0:1] = 0b01	|
1			| effLPID = LPIDR	| Invalid Access
			| effPID  = PIDR	|
--------------------------------------------------------------------------
			| EA[0:1] = 0b10	|
2			| effLPID = LPIDR	| Invalid Access
			| effPID  = 0		|
--------------------------------------------------------------------------
			| EA[0:1] = 0b11	| EA[0:1] = 0b11
3			| effLPID = 0		| effLPID = LPIDR
			| effPID  = 0		| effPID  = 0
--------------------------------------------------------------------------

In the Guest;
Quadrant 3 is normally used to address the operating system since this
uses effPID=0 and effLPID=LPIDR, meaning the PID register doesn't need to
be switched.
Quadrant 0 is normally used to address user space since the effLPID and
effPID are taken from the corresponding registers.

In the Host;
Quadrant 0 and 3 are used as above, however the effLPID is always 0 to
address the host.

Quadrants 1 and 2 can be used by the host to address guest memory using
a guest effective address. Since the effLPID comes from the LPID register,
the host loads the LPID of the guest it would like to access (and the
PID of the process) and can perform accesses to a guest effective
address.

This means quadrant 1 can be used to address the guest user space and
quadrant 2 can be used to address the guest operating system from the
hypervisor, using a guest effective address.

Access to the quadrants can cause a Hypervisor Data Storage Interrupt
(HDSI) due to being unable to perform partition scoped translation.
Previously this could only be generated from a guest and so the code
path expects us to take the KVM trampoline in the interrupt handler.
This is no longer the case so we modify the handler to call
bad_page_fault() to check if we were expecting this fault so we can
handle it gracefully and just return with an error code. In the hash mmu
case we still raise an unknown exception since quadrants aren't defined
for the hash mmu.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:50 +11:00
Suraj Jitindar Singh
d232afebf9 KVM: PPC: Book3S HV: Add function kvmhv_vcpu_is_radix()
There exists a function kvm_is_radix() which is used to determine if a
kvm instance is using the radix mmu. However this only applies to the
first level (L1) guest. Add a function kvmhv_vcpu_is_radix() which can
be used to determine if the current execution context of the vcpu is
radix, accounting for if the vcpu is running a nested guest.

Currently all nested guests must be radix but this may change in the
future.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:49 +11:00
Suraj Jitindar Singh
693ac10a88 KVM: PPC: Book3S: Only report KVM_CAP_SPAPR_TCE_VFIO on powernv machines
The kvm capability KVM_CAP_SPAPR_TCE_VFIO is used to indicate the
availability of in kernel tce acceleration for vfio. However it is
currently the case that this is only available on a powernv machine,
not for a pseries machine.

Thus make this capability dependent on having the cpu feature
CPU_FTR_HVMODE.

[paulus@ozlabs.org - fixed compilation for Book E.]

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:49 +11:00
Paul Mackerras
5af3e9d06d KVM: PPC: Book3S HV: Flush guest mappings when turning dirty tracking on/off
This adds code to flush the partition-scoped page tables for a radix
guest when dirty tracking is turned on or off for a memslot.  Only the
guest real addresses covered by the memslot are flushed.  The reason
for this is to get rid of any 2M PTEs in the partition-scoped page
tables that correspond to host transparent huge pages, so that page
dirtiness is tracked at a system page (4k or 64k) granularity rather
than a 2M granularity.  The page tables are also flushed when turning
dirty tracking off so that the memslot's address space can be
repopulated with THPs if possible.

To do this, we add a new function kvmppc_radix_flush_memslot().  Since
this does what's needed for kvmppc_core_flush_memslot_hv() on a radix
guest, we now make kvmppc_core_flush_memslot_hv() call the new
kvmppc_radix_flush_memslot() rather than calling kvm_unmap_radix()
for each page in the memslot.  This has the effect of fixing a bug in
that kvmppc_core_flush_memslot_hv() was previously calling
kvm_unmap_radix() without holding the kvm->mmu_lock spinlock, which
is required to be held.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 10:58:51 +11:00