Commit Graph

10650 Commits

Author SHA1 Message Date
Minchan Kim
a42094676f zsmalloc: use first_page rather than page
Clean up function parameter "struct page".  Many functions of zsmalloc
expect that page paramter is "first_page" so use "first_page" rather
than "page" for code readability.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Andrey Ryabinin
64f8ebaf11 mm/kasan: add API to check memory regions
Memory access coded in an assembly won't be seen by KASAN as a compiler
can instrument only C code.  Add kasan_check_[read,write]() API which is
going to be used to check a certain memory range.

Link: http://lkml.kernel.org/r/1462538722-1574-3-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Andrey Ryabinin
936bb4bbbb mm/kasan: print name of mem[set,cpy,move]() caller in report
When bogus memory access happens in mem[set,cpy,move]() it's usually
caller's fault.  So don't blame mem[set,cpy,move]() in bug report, blame
the caller instead.

Before:
  BUG: KASAN: out-of-bounds access in memset+0x23/0x40 at <address>
After:
  BUG: KASAN: out-of-bounds access in <memset_caller> at <address>

Link: http://lkml.kernel.org/r/1462538722-1574-2-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Alexander Potapenko
4ebb31a42f mm, kasan: don't call kasan_krealloc() from ksize().
Instead of calling kasan_krealloc(), which replaces the memory
allocation stack ID (if stack depot is used), just unpoison the whole
memory chunk.

Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Alexander Potapenko
55834c5909 mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE.  The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.

When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator.  From now on the
allocator may reuse it for another allocation.  Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).

When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped.  Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.

Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.

Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

Freed objects are first added to per-cpu quarantine queues.  When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue.  Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).

As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased.  Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.

Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.

This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov.  A number of improvements have been
suggested by Andrey Ryabinin.

[glider@google.com: v9]
  Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
David Rientjes
dfef2ef402 mm, migrate: increment fail count on ENOMEM
If page migration fails due to -ENOMEM, nr_failed should still be
incremented for proper statistics.

This was encountered recently when all page migration vmstats showed 0,
and inferred that migrate_pages() was never called, although in reality
the first page migration failed because compaction_alloc() failed to
find a migration target.

This patch increments nr_failed so the vmstat is properly accounted on
ENOMEM.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1605191510230.32658@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Chen Feng
6cd9dc3e75 mm/compaction.c: fix zoneindex in kcompactd()
While testing the kcompactd in my platform 3G MEM only DMA ZONE.  I
found the kcompactd never wakeup.  It seems the zoneindex has already
minus 1 before.  So the traverse here should be <=.

It fixes a regression where kswapd could previously compact, but
kcompactd not.  Not a crash fix though.

[akpm@linux-foundation.org: fix kcompactd_do_work() as well, per Hugh]
Link: http://lkml.kernel.org/r/1463659121-84124-1-git-send-email-puck.chen@hisilicon.com
Fixes: accf62422b ("mm, kswapd: replace kswapd compaction with waking up kcompactd")
Signed-off-by: Chen Feng <puck.chen@hisilicon.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zhuangluan Su <suzhuangluan@hisilicon.com>
Cc: Yiping Xu <xuyiping@hisilicon.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
David Rientjes
f050897778 mm, thp: khugepaged should scan when sleep value is written
If a large value is written to scan_sleep_millisecs, for example, that
period must lapse before khugepaged will wake up for periodic
collapsing.

If this value is tuned to 1 day, for example, and then re-tuned to its
default 10s, khugepaged will still wait for a day before scanning again.

This patch causes khugepaged to wakeup immediately when the value is
changed and then sleep until that value is rewritten or the new value
lapses.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1605181453200.4786@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
NeilBrown
a53eaff8c1 MM: increase safety margin provided by PF_LESS_THROTTLE
When nfsd is exporting a filesystem over NFS which is then NFS-mounted
on the local machine there is a risk of deadlock.  This happens when
there are lots of dirty pages in the NFS filesystem and they cause NFSD
to be throttled, either in throttle_vm_writeout() or in
balance_dirty_pages().

To avoid this problem the PF_LESS_THROTTLE flag is set for NFSD threads
and it provides a 25% increase to the limits that affect NFSD.  Any
process writing to an NFS filesystem will be throttled well before the
number of dirty NFS pages reaches the limit imposed on NFSD, so NFSD
will not deadlock on pages that it needs to write out.  At least it
shouldn't.

All processes are allowed a small excess margin to avoid performing too
many calculations: ratelimit_pages.

ratelimit_pages is set so that if a thread on every CPU uses the entire
margin, the total will only go 3% over the limit, and this is much less
than the 25% bonus that PF_LESS_THROTTLE provides, so this margin
shouldn't be a problem.  But it is.

The "total memory" that these 3% and 25% are calculated against are not
really total memory but are "global_dirtyable_memory()" which doesn't
include anonymous memory, just free memory and page-cache memory.

The "ratelimit_pages" number is based on whatever the
global_dirtyable_memory was on the last CPU hot-plug, which might not be
what you expect, but is probably close to the total freeable memory.

The throttle threshold uses the global_dirtable_memory at the moment
when the throttling happens, which could be much less than at the last
CPU hotplug.  So if lots of anonymous memory has been allocated, thus
pushing out lots of page-cache pages, then NFSD might end up being
throttled due to dirty NFS pages because the "25%" bonus it gets is
calculated against a rather small amount of dirtyable memory, while the
"3%" margin that other processes are allowed to dirty without penalty is
calculated against a much larger number.

To remove this possibility of deadlock we need to make sure that the
margin granted to PF_LESS_THROTTLE exceeds that rate-limit margin.
Simply adding ratelimit_pages isn't enough as that should be multiplied
by the number of cpus.

So add "global_wb_domain.dirty_limit / 32" as that more accurately
reflects the current total over-shoot margin.  This ensures that the
number of dirty NFS pages never gets so high that nfsd will be throttled
waiting for them to be written.

Link: http://lkml.kernel.org/r/87futgowwv.fsf@notabene.neil.brown.name
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Naoya Horiguchi
e570f56ccc mm: check_new_page_bad() directly returns in __PG_HWPOISON case
Currently we check page->flags twice for "HWPoisoned" case of
check_new_page_bad(), which can cause a race with unpoisoning.

This race unnecessarily taints kernel with "BUG: Bad page state".
check_new_page_bad() is the only caller of bad_page() which is
interested in __PG_HWPOISON, so let's move the hwpoison related code in
bad_page() to it.

Link: http://lkml.kernel.org/r/20160518100949.GA17299@hori1.linux.bs1.fc.nec.co.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
seokhoon.yoon
29b52de182 mm, kasan: fix to call kasan_free_pages() after poisoning page
When CONFIG_PAGE_POISONING and CONFIG_KASAN is enabled,
free_pages_prepare()'s codeflow is below.

  1)kmemcheck_free_shadow()
  2)kasan_free_pages()
    - set shadow byte of page is freed
  3)kernel_poison_pages()
  3.1) check access to page is valid or not using kasan
    ---> error occur, kasan think it is invalid access
  3.2) poison page
  4)kernel_map_pages()

So kasan_free_pages() should be called after poisoning the page.

Link: http://lkml.kernel.org/r/1463220405-7455-1-git-send-email-iamyooon@gmail.com
Signed-off-by: seokhoon.yoon <iamyooon@gmail.com>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Minchan Kim
d0834a6c2c mm: disable fault around on emulated access bit architecture
fault_around aims to reduce minor faults of file-backed pages via
speculative ahead pte mapping and relying on readahead logic.  However,
on non-HW access bit architecture the benefit is highly limited because
they should emulate the young bit with minor faults for reclaim's page
aging algorithm.  IOW, we cannot reduce minor faults on those
architectures.

I did quick a test on my ARM machine.

512M file mmap sequential every word read on eSATA drive 4 times.
stddev is stable.

  = fault_around 4096 =
  elapsed time(usec): 6747645

  = fault_around 65536 =
  elapsed time(usec): 6709263

  0.5% gain.

Even when I tested it with eMMC there is no gain because I guess with
slow storage the major fault is the dominant factor.

Also, fault_around has the side effect of shrinking slab more
aggressively and causes higher vmpressure, so if such speculation fails,
it can evict slab more which can result in page I/O (e.g., inode cache).
In the end, it would make void any benefit of fault_around.

So let's make the default "disabled" on those architectures.

Link: http://lkml.kernel.org/r/20160518014229.GB21538@bbox
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Kirill A. Shutemov
5c0a85fad9 mm: make faultaround produce old ptes
Currently, faultaround code produces young pte.  This can screw up
vmscan behaviour[1], as it makes vmscan think that these pages are hot
and not push them out on first round.

During sparse file access faultaround gets more pages mapped and all of
them are young.  Under memory pressure, this makes vmscan swap out anon
pages instead, or to drop other page cache pages which otherwise stay
resident.

Modify faultaround to produce old ptes, so they can easily be reclaimed
under memory pressure.

This can to some extend defeat the purpose of faultaround on machines
without hardware accessed bit as it will not help us with reducing the
number of minor page faults.

We may want to disable faultaround on such machines altogether, but
that's subject for separate patchset.

Minchan:
 "I tested 512M mmap sequential word read test on non-HW access bit
  system (i.e., ARM) and confirmed it doesn't increase minor fault any
  more.

  old: 4096 fault_around
  minor fault: 131291
  elapsed time: 6747645 usec

  new: 65536 fault_around
  minor fault: 131291
  elapsed time: 6709263 usec

  0.56% benefit"

[1] https://lkml.kernel.org/r/1460992636-711-1-git-send-email-vinmenon@codeaurora.org

Link: http://lkml.kernel.org/r/1463488366-47723-1-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Tested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Stefan Bader
4b50bcc7ed mm: use phys_addr_t for reserve_bootmem_region() arguments
Since commit 92923ca3aa ("mm: meminit: only set page reserved in the
memblock region") the reserved bit is set on reserved memblock regions.
However start and end address are passed as unsigned long.  This is only
32bit on i386, so it can end up marking the wrong pages reserved for
ranges at 4GB and above.

This was observed on a 32bit Xen dom0 which was booted with initial
memory set to a value below 4G but allowing to balloon in memory
(dom0_mem=1024M for example).  This would define a reserved bootmem
region for the additional memory (for example on a 8GB system there was
a reverved region covering the 4GB-8GB range).  But since the addresses
were passed on as unsigned long, this was actually marking all pages
from 0 to 4GB as reserved.

Fixes: 92923ca3aa ("mm: meminit: only set page reserved in the memblock region")
Link: http://lkml.kernel.org/r/1463491221-10573-1-git-send-email-stefan.bader@canonical.com
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
Cc: <stable@vger.kernel.org>	[4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Richard Leitner
cd33a76b0f mm/memblock.c: remove unnecessary always-true comparison
Comparing an u64 variable to >= 0 returns always true and can therefore
be removed.  This issue was detected using the -Wtype-limits gcc flag.

This patch fixes following type-limits warning:

  mm/memblock.c: In function `__next_reserved_mem_region':
  mm/memblock.c:843:11: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
    if (*idx >= 0 && *idx < type->cnt) {

Link: http://lkml.kernel.org/r/20160510103625.3a7f8f32@g0hl1n.net
Signed-off-by: Richard Leitner <dev@g0hl1n.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Vitaly Wool
9a001fc19c z3fold: the 3-fold allocator for compressed pages
This patch introduces z3fold, a special purpose allocator for storing
compressed pages.  It is designed to store up to three compressed pages
per physical page.  It is a ZBUD derivative which allows for higher
compression ratio keeping the simplicity and determinism of its
predecessor.

This patch comes as a follow-up to the discussions at the Embedded Linux
Conference in San-Diego related to the talk [1].  The outcome of these
discussions was that it would be good to have a compressed page
allocator as stable and deterministic as zbud with with higher
compression ratio.

To keep the determinism and simplicity, z3fold, just like zbud, always
stores an integral number of compressed pages per page, but it can store
up to 3 pages unlike zbud which can store at most 2.  Therefore the
compression ratio goes to around 2.6x while zbud's one is around 1.7x.

The patch is based on the latest linux.git tree.

This version has been updated after testing on various simulators (e.g.
ARM Versatile Express, MIPS Malta, x86_64/Haswell) and basing on
comments from Dan Streetman [3].

[1] https://openiotelc2016.sched.org/event/6DAC/swapping-and-embedded-compression-relieves-the-pressure-vitaly-wool-softprise-consulting-ou
[2] https://lkml.org/lkml/2016/4/21/799
[3] https://lkml.org/lkml/2016/5/4/852

Link: http://lkml.kernel.org/r/20160509151753.ec3f9fda3c9898d31ff52a32@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Andrea Arcangeli
d5ee7c3bcc mm: thp: split_huge_pmd_address() comment improvement
Comment is partly wrong, this improves it by including the case of
split_huge_pmd_address() called by try_to_unmap_one if TTU_SPLIT_HUGE_PMD
is set.

Link: http://lkml.kernel.org/r/1462547040-1737-4-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Christoph Lameter
7b8da4c7f0 vmstat: get rid of the ugly cpu_stat_off variable
The cpu_stat_off variable is unecessary since we can check if a
workqueue request is pending otherwise.  Removal of cpu_stat_off makes
it pretty easy for the vmstat shepherd to ensure that the proper things
happen.

Removing the state also removes all races related to it.  Should a
workqueue not be scheduled as needed for vmstat_update then the shepherd
will notice and schedule it as needed.  Should a workqueue be
unecessarily scheduled then the vmstat updater will disable it.

[akpm@linux-foundation.org: fix indentation, per Michal]
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1605061306460.17934@east.gentwo.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <htejun@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Greg Thelen
51038171b7 memcg: fix stale mem_cgroup_force_empty() comment
Commit f61c42a7d9 ("memcg: remove tasks/children test from
mem_cgroup_force_empty()") removed memory reparenting from the function.

Fix the function's comment.

Link: http://lkml.kernel.org/r/1462569810-54496-1-git-send-email-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Minfei Huang
2a138dc7e5 mm: use existing helper to convert "on"/"off" to boolean
It's more convenient to use existing function helper to convert string
"on/off" to boolean.

Link: http://lkml.kernel.org/r/1461908824-16129-1-git-send-email-mnghuan@gmail.com
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Ming Li
a4a921aa5c mm/swap.c: put activate_page_pvecs and other pagevecs together
Put the activate_page_pvecs definition next to those of the other
pagevecs, for clarity.

Signed-off-by: Ming Li <mingli199x@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
David Rientjes
297880f4af mm, hugetlb_cgroup: round limit_in_bytes down to hugepage size
The page_counter rounds limits down to page size values.  This makes
sense, except in the case of hugetlb_cgroup where it's not possible to
charge partial hugepages.  If the hugetlb_cgroup margin is less than the
hugepage size being charged, it will fail as expected.

Round the hugetlb_cgroup limit down to hugepage size, since it is the
effective limit of the cgroup.

For consistency, round down PAGE_COUNTER_MAX as well when a
hugetlb_cgroup is created: this prevents error reports when a user
cannot restore the value to the kernel default.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nikolay Borisov <kernel@kyup.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Konstantin Khlebnikov
f4fcd55841 mm: enable RLIMIT_DATA by default with workaround for valgrind
Since commit 8463833590 ("mm: rework virtual memory accounting")
RLIMIT_DATA limits both brk() and private mmap() but this's disabled by
default because of incompatibility with older versions of valgrind.

Valgrind always set limit to zero and fails if RLIMIT_DATA is enabled.
Fortunately it changes only rlim_cur and keeps rlim_max for reverting
limit back when needed.

This patch checks current usage also against rlim_max if rlim_cur is
zero.  This is safe because task anyway can increase rlim_cur up to
rlim_max.  Size of brk is still checked against rlim_cur, so this part
is completely compatible - zero rlim_cur forbids brk() but allows
private mmap().

Link: http://lkml.kernel.org/r/56A28613.5070104@de.ibm.com
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Yongji Xie
d5957d2fc2 mm: fix incorrect pfn passed to untrack_pfn() in remap_pfn_range()
We use generic hooks in remap_pfn_range() to help archs to track pfnmap
regions.  The code is something like:

  int remap_pfn_range()
  {
	...
	track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
	...
	pfn -= addr >> PAGE_SHIFT;
	...
	untrack_pfn(vma, pfn, PAGE_ALIGN(size));
	...
  }

Here we can easily find the pfn is changed but not recovered before
untrack_pfn() is called.  That's incorrect.

There are no known runtime effects - this is from inspection.

Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Chris Wilson
80c4bd7a5e mm/vmalloc: keep a separate lazy-free list
When mixing lots of vmallocs and set_memory_*() (which calls
vm_unmap_aliases()) I encountered situations where the performance
degraded severely due to the walking of the entire vmap_area list each
invocation.

One simple improvement is to add the lazily freed vmap_area to a
separate lockless free list, such that we then avoid having to walk the
full list on each purge.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Roman Pen <r.peniaev@gmail.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Pen <r.peniaev@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Alexander Kuleshov
f705ac4b39 mm/memblock.c: move memblock_{add,reserve}_region into memblock_{add,reserve}
memblock_add_region() and memblock_reserve_region() do nothing specific
before the call of memblock_add_range(), only print debug output.

We can do the same in memblock_add() and memblock_reserve() since both
memblock_add_region() and memblock_reserve_region() are not used by
anybody outside of memblock.c and memblock_{add,reserve}() have the same
set of flags and nids.

Since memblock_add_region() and memblock_reserve_region() will be
inlined, there will not be functional changes, but will improve code
readability a little.

Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Chen Yucong
495367c051 mm/memory-failure.c: replace "MCE" with "Memory failure"
HWPoison was specific to some particular x86 platforms.  And it is often
seen as high level machine check handler.  And therefore, 'MCE' is used
for the format prefix of printk().  However, 'PowerNV' has also used
HWPoison for handling memory errors[1], so 'MCE' is no longer suitable
to memory_failure.c.

Additionally, 'MCE' and 'Memory failure' have different context.  The
former belongs to exception context and the latter belongs to process
context.  Furthermore, HWPoison can also be used for off-lining those
sub-health pages that do not trigger any machine check exception.

This patch aims to replace 'MCE' with a more appropriate prefix.

[1] commit 75eb3d9b60 ("powerpc/powernv: Get FSP memory errors
and plumb into memory poison infrastructure.")

Signed-off-by: Chen Yucong <slaoub@gmail.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Yang Shi
340a43bed6 mm: thp: simplify the implementation of mk_huge_pmd()
The implementation of mk_huge_pmd looks verbose, it could be just
simplified to one line code.

Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Tetsuo Handa
f44666b046 mm,oom: speed up select_bad_process() loop
Since commit 3a5dda7a17 ("oom: prevent unnecessary oom kills or kernel
panics"), select_bad_process() is using for_each_process_thread().

Since oom_unkillable_task() scans all threads in the caller's thread
group and oom_task_origin() scans signal_struct of the caller's thread
group, we don't need to call oom_unkillable_task() and oom_task_origin()
on each thread.  Also, since !mm test will be done later at
oom_badness(), we don't need to do !mm test on each thread.  Therefore,
we only need to do TIF_MEMDIE test on each thread.

Although the original code was correct it was quite inefficient because
each thread group was scanned num_threads times which can be a lot
especially with processes with many threads.  Even though the OOM is
extremely cold path it is always good to be as effective as possible
when we are inside rcu_read_lock() - aka unpreemptible context.

If we track number of TIF_MEMDIE threads inside signal_struct, we don't
need to do TIF_MEMDIE test on each thread.  This will allow
select_bad_process() to use for_each_process().

This patch adds a counter to signal_struct for tracking how many
TIF_MEMDIE threads are in a given thread group, and check it at
oom_scan_process_thread() so that select_bad_process() can use
for_each_process() rather than for_each_process_thread().

[mhocko@suse.com: do not blow the signal_struct size]
  Link: http://lkml.kernel.org/r/20160520075035.GF19172@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/201605182230.IDC73435.MVSOHLFOQFOJtF@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
ec8d7c14ea mm, oom_reaper: do not mmput synchronously from the oom reaper context
Tetsuo has properly noted that mmput slow path might get blocked waiting
for another party (e.g.  exit_aio waits for an IO).  If that happens the
oom_reaper would be put out of the way and will not be able to process
next oom victim.  We should strive for making this context as reliable
and independent on other subsystems as much as possible.

Introduce mmput_async which will perform the slow path from an async
(WQ) context.  This will delay the operation but that shouldn't be a
problem because the oom_reaper has reclaimed the victim's address space
for most cases as much as possible and the remaining context shouldn't
bind too much memory anymore.  The only exception is when mmap_sem
trylock has failed which shouldn't happen too often.

The issue is only theoretical but not impossible.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
bb8a4b7fd1 mm, oom_reaper: hide oom reaped tasks from OOM killer more carefully
Commit 36324a990c ("oom: clear TIF_MEMDIE after oom_reaper managed to
unmap the address space") not only clears TIF_MEMDIE for oom reaped task
but also set OOM_SCORE_ADJ_MIN for the target task to hide it from the
oom killer.  This works in simple cases but it is not sufficient for
(unlikely) cases where the mm is shared between independent processes
(as they do not share signal struct).  If the mm had only small amount
of memory which could be reaped then another task sharing the mm could
be selected and that wouldn't help to move out from the oom situation.

Introduce MMF_OOM_REAPED mm flag which is checked in oom_badness (same
as OOM_SCORE_ADJ_MIN) and task is skipped if the flag is set.  Set the
flag after __oom_reap_task is done with a task.  This will force the
select_bad_process() to ignore all already oom reaped tasks as well as
no such task is sacrificed for its parent.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
31e49bfda1 mm, oom: protect !costly allocations some more for !CONFIG_COMPACTION
Joonsoo has reported that he is able to trigger OOM for !costly high
order requests (heavy fork() workload close the OOM) with the new oom
detection rework.  This is because we rely only on should_reclaim_retry
when the compaction is disabled and it only checks watermarks for the
requested order and so we might trigger OOM when there is a lot of free
memory.

It is not very clear what are the usual workloads when the compaction is
disabled.  Relying on high order allocations heavily without any
mechanism to create those orders except for unbound amount of reclaim is
certainly not a good idea.

To prevent from potential regressions let's help this configuration
some.  We have to sacrifice the determinsm though because there simply
is none here possible.  should_compact_retry implementation for
!CONFIG_COMPACTION, which was empty so far, will do watermark check for
order-0 on all eligible zones.  This will cause retrying until either
the reclaim cannot make any further progress or all the zones are
depleted even for order-0 pages.  This means that the number of retries
is basically unbounded for !costly orders but that was the case before
the rework as well so this shouldn't regress.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1463051677-29418-3-git-send-email-mhocko@kernel.org
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
86a294a81f mm, oom, compaction: prevent from should_compact_retry looping for ever for costly orders
"mm: consider compaction feedback also for costly allocation" has
removed the upper bound for the reclaim/compaction retries based on the
number of reclaimed pages for costly orders.  While this is desirable
the patch did miss a mis interaction between reclaim, compaction and the
retry logic.  The direct reclaim tries to get zones over min watermark
while compaction backs off and returns COMPACT_SKIPPED when all zones
are below low watermark + 1<<order gap.  If we are getting really close
to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a
high order request (e.g.  hugetlb order-9) while the reclaim is not able
to release enough pages to get us over low watermark.  The reclaim is
still able to make some progress (usually trashing over few remaining
pages) so we are not able to break out from the loop.

I have seen this happening with the same test described in "mm: consider
compaction feedback also for costly allocation" on a swapless system.
The original problem got resolved by "vmscan: consider classzone_idx in
compaction_ready" but it shows how things might go wrong when we
approach the oom event horizont.

The reason why compaction requires being over low rather than min
watermark is not clear to me.  This check was there essentially since
56de7263fc ("mm: compaction: direct compact when a high-order
allocation fails").  It is clearly an implementation detail though and
we shouldn't pull it into the generic retry logic while we should be
able to cope with such eventuality.  The only place in
should_compact_retry where we retry without any upper bound is for
compaction_withdrawn() case.

Introduce compaction_zonelist_suitable function which checks the given
zonelist and returns true only if there is at least one zone which would
would unblock __compaction_suitable if more memory got reclaimed.  In
this implementation it checks __compaction_suitable with NR_FREE_PAGES
plus part of the reclaimable memory as the target for the watermark
check.  The reclaimable memory is reduced linearly by the allocation
order.  The idea is that we do not want to reclaim all the remaining
memory for a single allocation request just unblock
__compaction_suitable which doesn't guarantee we will make a further
progress.

The new helper is then used if compaction_withdrawn() feedback was
provided so we do not retry if there is no outlook for a further
progress.  !costly requests shouldn't be affected much - e.g.  order-2
pages would require to have at least 64kB on the reclaimable LRUs while
order-9 would need at least 32M which should be enough to not lock up.

[vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable]
[akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
7854ea6c28 mm: consider compaction feedback also for costly allocation
PAGE_ALLOC_COSTLY_ORDER retry logic is mostly handled inside
should_reclaim_retry currently where we decide to not retry after at
least order worth of pages were reclaimed or the watermark check for at
least one zone would succeed after reclaiming all pages if the reclaim
hasn't made any progress.  Compaction feedback is mostly ignored and we
just try to make sure that the compaction did at least something before
giving up.

The first condition was added by a41f24ea9f ("page allocator: smarter
retry of costly-order allocations) and it assumed that lumpy reclaim
could have created a page of the sufficient order.  Lumpy reclaim, has
been removed quite some time ago so the assumption doesn't hold anymore.
Remove the check for the number of reclaimed pages and rely on the
compaction feedback solely.  should_reclaim_retry now only makes sure
that we keep retrying reclaim for high order pages only if they are
hidden by watermaks so order-0 reclaim makes really sense.

should_compact_retry now keeps retrying even for the costly allocations.
The number of retries is reduced wrt.  !costly requests because they are
less important and harder to grant and so their pressure shouldn't cause
contention for other requests or cause an over reclaim.  We also do not
reset no_progress_loops for costly request to make sure we do not keep
reclaiming too agressively.

This has been tested by running a process which fragments memory:
	- compact memory
	- mmap large portion of the memory (1920M on 2GRAM machine with 2G
	  of swapspace)
	- MADV_DONTNEED single page in PAGE_SIZE*((1UL<<MAX_ORDER)-1)
	  steps until certain amount of memory is freed (250M in my test)
	  and reduce the step to (step / 2) + 1 after reaching the end of
	  the mapping
	- then run a script which populates the page cache 2G (MemTotal)
	  from /dev/zero to a new file
And then tries to allocate
nr_hugepages=$(awk '/MemAvailable/{printf "%d\n", $2/(2*1024)}' /proc/meminfo)
huge pages.

root@test1:~# echo 1 > /proc/sys/vm/overcommit_memory;echo 1 > /proc/sys/vm/compact_memory; ./fragment-mem-and-run /root/alloc_hugepages.sh 1920M 250M
Node 0, zone      DMA     31     28     31     10      2      0      2      1      2      3      1
Node 0, zone    DMA32    437    319    171     50     28     25     20     16     16     14    437

* This is the /proc/buddyinfo after the compaction

Done fragmenting. size=2013265920 freed=262144000
Node 0, zone      DMA    165     48      3      1      2      0      2      2      2      2      0
Node 0, zone    DMA32  35109  14575    185     51     41     12      6      0      0      0      0

* /proc/buddyinfo after memory got fragmented

Executing "/root/alloc_hugepages.sh"
Eating some pagecache
508623+0 records in
508623+0 records out
2083319808 bytes (2.1 GB) copied, 11.7292 s, 178 MB/s
Node 0, zone      DMA      3      5      3      1      2      0      2      2      2      2      0
Node 0, zone    DMA32    111    344    153     20     24     10      3      0      0      0      0

* /proc/buddyinfo after page cache got eaten

Trying to allocate 129
129

* 129 hugepages requested and all of them granted.

Node 0, zone      DMA      3      5      3      1      2      0      2      2      2      2      0
Node 0, zone    DMA32    127     97     30     99     11      6      2      1      4      0      0

* /proc/buddyinfo after hugetlb allocation.

10 runs will behave as follows:
Trying to allocate 130
130
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
--
Trying to allocate 132
132
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129

So basically 100% success for all 10 attempts.
Without the patch numbers looked much worse:
Trying to allocate 128
12
--
Trying to allocate 129
14
--
Trying to allocate 129
7
--
Trying to allocate 129
16
--
Trying to allocate 129
30
--
Trying to allocate 129
38
--
Trying to allocate 129
19
--
Trying to allocate 129
37
--
Trying to allocate 129
28
--
Trying to allocate 129
37

Just for completness the base kernel without oom detection rework looks
as follows:
Trying to allocate 127
30
--
Trying to allocate 129
12
--
Trying to allocate 129
52
--
Trying to allocate 128
32
--
Trying to allocate 129
12
--
Trying to allocate 129
10
--
Trying to allocate 129
32
--
Trying to allocate 128
14
--
Trying to allocate 128
16
--
Trying to allocate 129
8

As we can see the success rate is much more volatile and smaller without
this patch. So the patch not only makes the retry logic for costly
requests more sensible the success rate is even higher.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
33c2d21438 mm, oom: protect !costly allocations some more
should_reclaim_retry will give up retries for higher order allocations
if none of the eligible zones has any requested or higher order pages
available even if we pass the watermak check for order-0.  This is done
because there is no guarantee that the reclaimable and currently free
pages will form the required order.

This can, however, lead to situations where the high-order request (e.g.
order-2 required for the stack allocation during fork) will trigger OOM
too early - e.g.  after the first reclaim/compaction round.  Such a
system would have to be highly fragmented and there is no guarantee
further reclaim/compaction attempts would help but at least make sure
that the compaction was active before we go OOM and keep retrying even
if should_reclaim_retry tells us to oom if

	- the last compaction round backed off or
	- we haven't completed at least MAX_COMPACT_RETRIES active
	  compaction rounds.

The first rule ensures that the very last attempt for compaction was not
ignored while the second guarantees that the compaction has done some
work.  Multiple retries might be needed to prevent occasional pigggy
backing of other contexts to steal the compacted pages before the
current context manages to retry to allocate them.

compaction_failed() is taken as a final word from the compaction that
the retry doesn't make much sense.  We have to be careful though because
the first compaction round is MIGRATE_ASYNC which is rather weak as it
ignores pages under writeback and gives up too easily in other
situations.  We therefore have to make sure that MIGRATE_SYNC_LIGHT mode
has been used before we give up.  With this logic in place we do not
have to increase the migration mode unconditionally and rather do it
only if the compaction failed for the weaker mode.  A nice side effect
is that the stronger migration mode is used only when really needed so
this has a potential of smaller latencies in some cases.

Please note that the compaction doesn't tell us much about how
successful it was when returning compaction_made_progress so we just
have to blindly trust that another retry is worthwhile and cap the
number to something reasonable to guarantee a convergence.

If the given number of successful retries is not sufficient for a
reasonable workloads we should focus on the collected compaction
tracepoints data and try to address the issue in the compaction code.
If this is not feasible we can increase the retries limit.

[mhocko@suse.com: fix warning]
  Link: http://lkml.kernel.org/r/20160512061636.GA4200@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
ede3771373 mm: throttle on IO only when there are too many dirty and writeback pages
wait_iff_congested has been used to throttle allocator before it retried
another round of direct reclaim to allow the writeback to make some
progress and prevent reclaim from looping over dirty/writeback pages
without making any progress.

We used to do congestion_wait before commit 0e093d9976 ("writeback: do
not sleep on the congestion queue if there are no congested BDIs or if
significant congestion is not being encountered in the current zone")
but that led to undesirable stalls and sleeping for the full timeout
even when the BDI wasn't congested.  Hence wait_iff_congested was used
instead.

But it seems that even wait_iff_congested doesn't work as expected.  We
might have a small file LRU list with all pages dirty/writeback and yet
the bdi is not congested so this is just a cond_resched in the end and
can end up triggering pre mature OOM.

This patch replaces the unconditional wait_iff_congested by
congestion_wait which is executed only if we _know_ that the last round
of direct reclaim didn't make any progress and dirty+writeback pages are
more than a half of the reclaimable pages on the zone which might be
usable for our target allocation.  This shouldn't reintroduce stalls
fixed by 0e093d9976 because congestion_wait is called only when we are
getting hopeless when sleeping is a better choice than OOM with many
pages under IO.

We have to preserve logic introduced by commit 373ccbe592 ("mm,
vmstat: allow WQ concurrency to discover memory reclaim doesn't make any
progress") into the __alloc_pages_slowpath now that wait_iff_congested
is not used anymore.  As the only remaining user of wait_iff_congested
is shrink_inactive_list we can remove the WQ specific short sleep from
wait_iff_congested because the sleep is needed to be done only once in
the allocation retry cycle.

[mhocko@suse.com: high_zoneidx->ac_classzone_idx to evaluate memory reserves properly]
 Link: http://lkml.kernel.org/r/1463051677-29418-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
0a0337e0d1 mm, oom: rework oom detection
__alloc_pages_slowpath has traditionally relied on the direct reclaim
and did_some_progress as an indicator that it makes sense to retry
allocation rather than declaring OOM.  shrink_zones had to rely on
zone_reclaimable if shrink_zone didn't make any progress to prevent from
a premature OOM killer invocation - the LRU might be full of dirty or
writeback pages and direct reclaim cannot clean those up.

zone_reclaimable allows to rescan the reclaimable lists several times
and restart if a page is freed.  This is really subtle behavior and it
might lead to a livelock when a single freed page keeps allocator
looping but the current task will not be able to allocate that single
page.  OOM killer would be more appropriate than looping without any
progress for unbounded amount of time.

This patch changes OOM detection logic and pulls it out from shrink_zone
which is too low to be appropriate for any high level decisions such as
OOM which is per zonelist property.  It is __alloc_pages_slowpath which
knows how many attempts have been done and what was the progress so far
therefore it is more appropriate to implement this logic.

The new heuristic is implemented in should_reclaim_retry helper called
from __alloc_pages_slowpath.  It tries to be more deterministic and
easier to follow.  It builds on an assumption that retrying makes sense
only if the currently reclaimable memory + free pages would allow the
current allocation request to succeed (as per __zone_watermark_ok) at
least for one zone in the usable zonelist.

This alone wouldn't be sufficient, though, because the writeback might
get stuck and reclaimable pages might be pinned for a really long time
or even depend on the current allocation context.  Therefore there is a
backoff mechanism implemented which reduces the reclaim target after
each reclaim round without any progress.  This means that we should
eventually converge to only NR_FREE_PAGES as the target and fail on the
wmark check and proceed to OOM.  The backoff is simple and linear with
1/16 of the reclaimable pages for each round without any progress.  We
are optimistic and reset counter for successful reclaim rounds.

Costly high order pages mostly preserve their semantic and those without
__GFP_REPEAT fail right away while those which have the flag set will
back off after the amount of reclaimable pages reaches equivalent of the
requested order.  The only difference is that if there was no progress
during the reclaim we rely on zone watermark check.  This is more
logical thing to do than previous 1<<order attempts which were a result
of zone_reclaimable faking the progress.

[vdavydov@virtuozzo.com: check classzone_idx for shrink_zone]
[hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry]
[rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES]
[rientjes@google.com: shrink_zones doesn't need to return anything]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
c5d01d0d18 mm, compaction: simplify __alloc_pages_direct_compact feedback interface
__alloc_pages_direct_compact communicates potential back off by two
variables:
	- deferred_compaction tells that the compaction returned
	  COMPACT_DEFERRED
	- contended_compaction is set when there is a contention on
	  zone->lock resp. zone->lru_lock locks

__alloc_pages_slowpath then backs of for THP allocation requests to
prevent from long stalls. This is rather messy and it would be much
cleaner to return a single compact result value and hide all the nasty
details into __alloc_pages_direct_compact.

This patch shouldn't introduce any functional changes.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
c8f7de0bfa mm, compaction: distinguish between full and partial COMPACT_COMPLETE
COMPACT_COMPLETE now means that compaction and free scanner met.  This
is not very useful information if somebody just wants to use this
feedback and make any decisions based on that.  The current caller might
be a poor guy who just happened to scan tiny portion of the zone and
that could be the reason no suitable pages were compacted.  Make sure we
distinguish the full and partial zone walks.

Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success
and be optimistic in retrying.

The existing users of COMPACT_COMPLETE are conservatively changed to use
COMPACT_PARTIAL_SKIPPED as well but some of them should be probably
reconsidered and only defer the compaction only for COMPACT_COMPLETE
with the new semantic.

This patch shouldn't introduce any functional changes.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
1d4746d395 mm, compaction: distinguish COMPACT_DEFERRED from COMPACT_SKIPPED
try_to_compact_pages() can currently return COMPACT_SKIPPED even when
the compaction is defered for some zone just because zone DMA is skipped
in 99% of cases due to watermark checks.  This makes COMPACT_DEFERRED
basically unusable for the page allocator as a feedback mechanism.

Make sure we distinguish those two states properly and switch their
ordering in the enum.  This would mean that the COMPACT_SKIPPED will be
returned only when all eligible zones are skipped.

As a result COMPACT_DEFERRED handling for THP in __alloc_pages_slowpath
will be more precise and we would bail out rather than reclaim.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
c46649deae mm, compaction: cover all compaction mode in compact_zone
The compiler is complaining after "mm, compaction: change COMPACT_
constants into enum"

  mm/compaction.c: In function `compact_zone':
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_DEFERRED' not handled in switch [-Wswitch]
    switch (ret) {
    ^
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_COMPLETE' not handled in switch [-Wswitch]
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NO_SUITABLE_PAGE' not handled in switch [-Wswitch]
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NOT_SUITABLE_ZONE' not handled in switch [-Wswitch]
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_CONTENDED' not handled in switch [-Wswitch]

compaction_suitable is allowed to return only COMPACT_PARTIAL,
COMPACT_SKIPPED and COMPACT_CONTINUE so other cases are simply
impossible.  Put a VM_BUG_ON to catch an impossible return value.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
ea7ab982b6 mm, compaction: change COMPACT_ constants into enum
Compaction code is doing weird dances between COMPACT_FOO -> int ->
unsigned long

But there doesn't seem to be any reason for that.  All functions which
return/use one of those constants are not expecting any other value so it
really makes sense to define an enum for them and make it clear that no
other values are expected.

This is a pure cleanup and shouldn't introduce any functional changes.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
b6459cc154 vmscan: consider classzone_idx in compaction_ready
Motivation:
As pointed out by Linus [2][3] relying on zone_reclaimable as a way to
communicate the reclaim progress is rater dubious. I tend to agree,
not only it is really obscure, it is not hard to imagine cases where a
single page freed in the loop keeps all the reclaimers looping without
getting any progress because their gfp_mask wouldn't allow to get that
page anyway (e.g. single GFP_ATOMIC alloc and free loop). This is rather
rare so it doesn't happen in the practice but the current logic which we
have is rather obscure and hard to follow a also non-deterministic.

This is an attempt to make the OOM detection more deterministic and
easier to follow because each reclaimer basically tracks its own
progress which is implemented at the page allocator layer rather spread
out between the allocator and the reclaim.  The more on the
implementation is described in the first patch.

I have tested several different scenarios but it should be clear that
testing OOM killer is quite hard to be representative.  There is usually
a tiny gap between almost OOM and full blown OOM which is often time
sensitive.  Anyway, I have tested the following 2 scenarios and I would
appreciate if there are more to test.

Testing environment: a virtual machine with 2G of RAM and 2CPUs without
any swap to make the OOM more deterministic.

1) 2 writers (each doing dd with 4M blocks to an xfs partition with 1G
   file size, removes the files and starts over again) running in
   parallel for 10s to build up a lot of dirty pages when 100 parallel
   mem_eaters (anon private populated mmap which waits until it gets
   signal) with 80M each.

   This causes an OOM flood of course and I have compared both patched
   and unpatched kernels. The test is considered finished after there
   are no OOM conditions detected. This should tell us whether there are
   any excessive kills or some of them premature (e.g. due to dirty pages):

I have performed two runs this time each after a fresh boot.

* base kernel
$ grep "Out of memory:" base-oom-run1.log | wc -l
78
$ grep "Out of memory:" base-oom-run2.log | wc -l
78

$ grep "Kill process" base-oom-run1.log | tail -n1
[   91.391203] Out of memory: Kill process 3061 (mem_eater) score 39 or sacrifice child
$ grep "Kill process" base-oom-run2.log | tail -n1
[   82.141919] Out of memory: Kill process 3086 (mem_eater) score 39 or sacrifice child

$ grep "DMA32 free:" base-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5376.00 max: 6776.00 avg: 5530.75 std: 166.50 nr: 61
$ grep "DMA32 free:" base-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5416.00 max: 5608.00 avg: 5514.15 std: 42.94 nr: 52

$ grep "DMA32.*all_unreclaimable? no" base-oom-run1.log | wc -l
1
$ grep "DMA32.*all_unreclaimable? no" base-oom-run2.log | wc -l
3

* patched kernel
$ grep "Out of memory:" patched-oom-run1.log | wc -l
78
miso@tiehlicka /mnt/share/devel/miso/kvm $ grep "Out of memory:" patched-oom-run2.log | wc -l
77

e grep "Kill process" patched-oom-run1.log | tail -n1
[  497.317732] Out of memory: Kill process 3108 (mem_eater) score 39 or sacrifice child
$ grep "Kill process" patched-oom-run2.log | tail -n1
[  316.169920] Out of memory: Kill process 3093 (mem_eater) score 39 or sacrifice child

$ grep "DMA32 free:" patched-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5420.00 max: 5808.00 avg: 5513.90 std: 60.45 nr: 78
$ grep "DMA32 free:" patched-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5380.00 max: 6384.00 avg: 5520.94 std: 136.84 nr: 77

e grep "DMA32.*all_unreclaimable? no" patched-oom-run1.log | wc -l
2
$ grep "DMA32.*all_unreclaimable? no" patched-oom-run2.log | wc -l
3

The patched kernel run noticeably longer while invoking OOM killer same
number of times. This means that the original implementation is much
more aggressive and triggers the OOM killer sooner. free pages stats
show that neither kernels went OOM too early most of the time, though. I
guess the difference is in the backoff when retries without any progress
do sleep for a while if there is memory under writeback or dirty which
is highly likely considering the parallel IO.
Both kernels have seen races where zone wasn't marked unreclaimable
and we still hit the OOM killer. This is most likely a race where
a task managed to exit between the last allocation attempt and the oom
killer invocation.

2) 2 writers again with 10s of run and then 10 mem_eaters to consume as much
   memory as possible without triggering the OOM killer. This required a lot
   of tuning but I've considered 3 consecutive runs in three different boots
   without OOM as a success.

* base kernel
size=$(awk '/MemFree/{printf "%dK", ($2/10)-(16*1024)}' /proc/meminfo)

* patched kernel
size=$(awk '/MemFree/{printf "%dK", ($2/10)-(12*1024)}' /proc/meminfo)

That means 40M more memory was usable without triggering OOM killer. The
base kernel sometimes managed to handle the same as patched but it
wasn't consistent and failed in at least on of the 3 runs. This seems
like a minor improvement.

I was testing also GPF_REPEAT costly requests (hughetlb) with fragmented
memory and under memory pressure. The results are in patch 11 where the
logic is implemented. In short I can see huge improvement there.

I am certainly interested in other usecases as well as well as any
feedback. Especially those which require higher order requests.

This patch (of 14):

While playing with the oom detection rework [1] I have noticed that my
heavy order-9 (hugetlb) load close to OOM ended up in an endless loop
where the reclaim hasn't made any progress but did_some_progress didn't
reflect that and compaction_suitable was backing off because no zone is
above low wmark + 1 << order.

It turned out that this is in fact an old standing bug in
compaction_ready which ignores the requested_highidx and did the
watermark check for 0 classzone_idx.  This succeeds for zone DMA most
of the time as the zone is mostly unused because of lowmem protection.
As a result costly high order allocatios always report a successfull
progress even when there was none.  This wasn't a problem so far
because these allocations usually fail quite early or retry only few
times with __GFP_REPEAT but this will change after later patch in this
series so make sure to not lie about the progress and propagate
requested_highidx down to compaction_ready and use it for both the
watermak check and compaction_suitable to fix this issue.

[1] http://lkml.kernel.org/r/1459855533-4600-1-git-send-email-mhocko@kernel.org
[2] https://lkml.org/lkml/2015/10/12/808
[3] https://lkml.org/lkml/2015/10/13/597

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Rik van Riel
59dc76b0d4 mm: vmscan: reduce size of inactive file list
The inactive file list should still be large enough to contain readahead
windows and freshly written file data, but it no longer is the only
source for detecting multiple accesses to file pages.  The workingset
refault measurement code causes recently evicted file pages that get
accessed again after a shorter interval to be promoted directly to the
active list.

With that mechanism in place, we can afford to (on a larger system)
dedicate more memory to the active file list, so we can actually cache
more of the frequently used file pages in memory, and not have them
pushed out by streaming writes, once-used streaming file reads, etc.

This can help things like database workloads, where only half the page
cache can currently be used to cache the database working set.  This
patch automatically increases that fraction on larger systems, using the
same ratio that has already been used for anonymous memory.

[hannes@cmpxchg.org: cgroup-awareness]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Johannes Weiner
bbddabe2e4 mm: filemap: only do access activations on reads
Andres observed that his database workload is struggling with the
transaction journal creating pressure on frequently read pages.

Access patterns like transaction journals frequently write the same
pages over and over, but in the majority of cases those pages are never
read back.  There are no caching benefits to be had for those pages, so
activating them and having them put pressure on pages that do benefit
from caching is a bad choice.

Leave page activations to read accesses and don't promote pages based on
writes alone.

It could be said that partially written pages do contain cache-worthy
data, because even if *userspace* does not access the unwritten part,
the kernel still has to read it from the filesystem for correctness.
However, a counter argument is that these pages enjoy at least *some*
protection over other inactive file pages through the writeback cache,
in the sense that dirty pages are written back with a delay and cache
reclaim leaves them alone until they have been written back to disk.
Should that turn out to be insufficient and we see increased read IO
from partial writes under memory pressure, we can always go back and
update grab_cache_page_write_begin() to take (pos, len) so that it can
tell partial writes from pages that don't need partial reads.  But for
now, keep it simple.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Rik van Riel
f0281a00fe mm: workingset: only do workingset activations on reads
This is a follow-up to

  http://www.spinics.net/lists/linux-mm/msg101739.html

where Andres reported his database workingset being pushed out by the
minimum size enforcement of the inactive file list - currently 50% of
cache - as well as repeatedly written file pages that are never actually
read.

Two changes fell out of the discussions.  The first change observes that
pages that are only ever written don't benefit from caching beyond what
the writeback cache does for partial page writes, and so we shouldn't
promote them to the active file list where they compete with pages whose
cached data is actually accessed repeatedly.  This change comes in two
patches - one for in-cache write accesses and one for refaults triggered
by writes, neither of which should promote a cache page.

Second, with the refault detection we don't need to set 50% of the cache
aside for used-once cache anymore since we can detect frequently used
pages even when they are evicted between accesses.  We can allow the
active list to be bigger and thus protect a bigger workingset that isn't
challenged by streamers.  Depending on the access patterns, this can
increase major faults during workingset transitions for better
performance during stable phases.

This patch (of 3):

When rewriting a page, the data in that page is replaced with new data.
This means that evicting something else from the active file list, in
order to cache data that will be replaced by something else, is likely
to be a waste of memory.

It is better to save the active list for frequently read pages, because
reads actually use the data that is in the page.

This patch ignores partial writes, because it is unclear whether the
complexity of identifying those is worth any potential performance gain
obtained from better caching pages that see repeated partial writes at
large enough intervals to not get caught by the use-twice promotion code
used for the inactive file list.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Mel Gorman
4741526b83 mm, page_alloc: restore the original nodemask if the fast path allocation failed
The page allocator fast path uses either the requested nodemask or
cpuset_current_mems_allowed if cpusets are enabled.  If the allocation
context allows watermarks to be ignored then it can also ignore memory
policies.  However, on entering the allocator slowpath the nodemask may
still be cpuset_current_mems_allowed and the policies are enforced.
This patch resets the nodemask appropriately before entering the
slowpath.

Link: http://lkml.kernel.org/r/20160504143628.GU2858@techsingularity.net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
4e6118016e mm, page_alloc: uninline the bad page part of check_new_page()
Bad pages should be rare so the code handling them doesn't need to be
inline for performance reasons.  Put it to separate function which
returns void.  This also assumes that the initial page_expected_state()
result will match the result of the thorough check, i.e.  the page
doesn't become "good" in the meanwhile.  This matches the same
expectations already in place in free_pages_check().

!DEBUG_VM bloat-o-meter:

  add/remove: 1/0 grow/shrink: 0/1 up/down: 134/-274 (-140)
  function                                     old     new   delta
  check_new_page_bad                             -     134    +134
  get_page_from_freelist                      3468    3194    -274

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
e2769dbdc5 mm, page_alloc: don't duplicate code in free_pcp_prepare
The new free_pcp_prepare() function shares a lot of code with
free_pages_prepare(), which makes this a maintenance risk when some
future patch modifies only one of them.  We should be able to achieve
the same effect (skipping free_pages_check() from !DEBUG_VM configs) by
adding a parameter to free_pages_prepare() and making it inline, so the
checks (and the order != 0 parts) are eliminated from the call from
free_pcp_prepare().

!DEBUG_VM: bloat-o-meter reports no difference, as my gcc was already
inlining free_pages_prepare() and the elimination seems to work as
expected

DEBUG_VM bloat-o-meter:

  add/remove: 0/1 grow/shrink: 2/0 up/down: 1035/-778 (257)
  function                                     old     new   delta
  __free_pages_ok                              297    1060    +763
  free_hot_cold_page                           480     752    +272
  free_pages_prepare                           778       -    -778

Here inlining didn't occur before, and added some code, but it's ok for
a debug option.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
479f854a20 mm, page_alloc: defer debugging checks of pages allocated from the PCP
Every page allocated checks a number of page fields for validity.  This
catches corruption bugs of pages that are already freed but it is
expensive.  This patch weakens the debugging check by checking PCP pages
only when the PCP lists are being refilled.  All compound pages are
checked.  This potentially avoids debugging checks entirely if the PCP
lists are never emptied and refilled so some corruption issues may be
missed.  Full checking requires DEBUG_VM.

With the two deferred debugging patches applied, the impact to a page
allocator microbenchmark is

                                             4.6.0-rc3                  4.6.0-rc3
                                           inline-v3r6            deferalloc-v3r7
  Min      alloc-odr0-1               344.00 (  0.00%)           317.00 (  7.85%)
  Min      alloc-odr0-2               248.00 (  0.00%)           231.00 (  6.85%)
  Min      alloc-odr0-4               209.00 (  0.00%)           192.00 (  8.13%)
  Min      alloc-odr0-8               181.00 (  0.00%)           166.00 (  8.29%)
  Min      alloc-odr0-16              168.00 (  0.00%)           154.00 (  8.33%)
  Min      alloc-odr0-32              161.00 (  0.00%)           148.00 (  8.07%)
  Min      alloc-odr0-64              158.00 (  0.00%)           145.00 (  8.23%)
  Min      alloc-odr0-128             156.00 (  0.00%)           143.00 (  8.33%)
  Min      alloc-odr0-256             168.00 (  0.00%)           154.00 (  8.33%)
  Min      alloc-odr0-512             178.00 (  0.00%)           167.00 (  6.18%)
  Min      alloc-odr0-1024            186.00 (  0.00%)           174.00 (  6.45%)
  Min      alloc-odr0-2048            192.00 (  0.00%)           180.00 (  6.25%)
  Min      alloc-odr0-4096            198.00 (  0.00%)           184.00 (  7.07%)
  Min      alloc-odr0-8192            200.00 (  0.00%)           188.00 (  6.00%)
  Min      alloc-odr0-16384           201.00 (  0.00%)           188.00 (  6.47%)
  Min      free-odr0-1                189.00 (  0.00%)           180.00 (  4.76%)
  Min      free-odr0-2                132.00 (  0.00%)           126.00 (  4.55%)
  Min      free-odr0-4                104.00 (  0.00%)            99.00 (  4.81%)
  Min      free-odr0-8                 90.00 (  0.00%)            85.00 (  5.56%)
  Min      free-odr0-16                84.00 (  0.00%)            80.00 (  4.76%)
  Min      free-odr0-32                80.00 (  0.00%)            76.00 (  5.00%)
  Min      free-odr0-64                78.00 (  0.00%)            74.00 (  5.13%)
  Min      free-odr0-128               77.00 (  0.00%)            73.00 (  5.19%)
  Min      free-odr0-256               94.00 (  0.00%)            91.00 (  3.19%)
  Min      free-odr0-512              108.00 (  0.00%)           112.00 ( -3.70%)
  Min      free-odr0-1024             115.00 (  0.00%)           118.00 ( -2.61%)
  Min      free-odr0-2048             120.00 (  0.00%)           125.00 ( -4.17%)
  Min      free-odr0-4096             123.00 (  0.00%)           129.00 ( -4.88%)
  Min      free-odr0-8192             126.00 (  0.00%)           130.00 ( -3.17%)
  Min      free-odr0-16384            126.00 (  0.00%)           131.00 ( -3.97%)

Note that the free paths for large numbers of pages is impacted as the
debugging cost gets shifted into that path when the page data is no
longer necessarily cache-hot.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
4db7548ccb mm, page_alloc: defer debugging checks of freed pages until a PCP drain
Every page free checks a number of page fields for validity.  This
catches premature frees and corruptions but it is also expensive.  This
patch weakens the debugging check by checking PCP pages at the time they
are drained from the PCP list.  This will trigger the bug but the site
that freed the corrupt page will be lost.  To get the full context, a
kernel rebuild with DEBUG_VM is necessary.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
002f290627 cpuset: use static key better and convert to new API
An important function for cpusets is cpuset_node_allowed(), which
optimizes on the fact if there's a single root CPU set, it must be
trivially allowed.  But the check "nr_cpusets() <= 1" doesn't use the
cpusets_enabled_key static key the right way where static keys eliminate
branching overhead with jump labels.

This patch converts it so that static key is used properly.  It's also
switched to the new static key API and the checking functions are
converted to return bool instead of int.  We also provide a new variant
__cpuset_zone_allowed() which expects that the static key check was
already done and they key was enabled.  This is needed for
get_page_from_freelist() where we want to also avoid the relatively
slower check when ALLOC_CPUSET is not set in alloc_flags.

The impact on the page allocator microbenchmark is less than expected
but the cleanup in itself is worthwhile.

                                             4.6.0-rc2                  4.6.0-rc2
                                       multcheck-v1r20               cpuset-v1r20
  Min      alloc-odr0-1               348.00 (  0.00%)           348.00 (  0.00%)
  Min      alloc-odr0-2               254.00 (  0.00%)           254.00 (  0.00%)
  Min      alloc-odr0-4               213.00 (  0.00%)           213.00 (  0.00%)
  Min      alloc-odr0-8               186.00 (  0.00%)           183.00 (  1.61%)
  Min      alloc-odr0-16              173.00 (  0.00%)           171.00 (  1.16%)
  Min      alloc-odr0-32              166.00 (  0.00%)           163.00 (  1.81%)
  Min      alloc-odr0-64              162.00 (  0.00%)           159.00 (  1.85%)
  Min      alloc-odr0-128             160.00 (  0.00%)           157.00 (  1.88%)
  Min      alloc-odr0-256             169.00 (  0.00%)           166.00 (  1.78%)
  Min      alloc-odr0-512             180.00 (  0.00%)           180.00 (  0.00%)
  Min      alloc-odr0-1024            188.00 (  0.00%)           187.00 (  0.53%)
  Min      alloc-odr0-2048            194.00 (  0.00%)           193.00 (  0.52%)
  Min      alloc-odr0-4096            199.00 (  0.00%)           198.00 (  0.50%)
  Min      alloc-odr0-8192            202.00 (  0.00%)           201.00 (  0.50%)
  Min      alloc-odr0-16384           203.00 (  0.00%)           202.00 (  0.49%)

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
0b423ca22f mm, page_alloc: inline pageblock lookup in page free fast paths
The function call overhead of get_pfnblock_flags_mask() is measurable in
the page free paths.  This patch uses an inlined version that is faster.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
e5b31ac2ca mm, page_alloc: remove unnecessary variable from free_pcppages_bulk
The original count is never reused so it can be removed.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
da838d4fcb mm, page_alloc: pull out side effects from free_pages_check
Check without side-effects should be easier to maintain.  It also
removes the duplicated cpupid and flags reset done in !DEBUG_VM variant
of both free_pcp_prepare() and then bulkfree_pcp_prepare().  Finally, it
enables the next patch.

It shouldn't result in new branches, thanks to inlining of the check.

!DEBUG_VM bloat-o-meter:

  add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-27 (-27)
  function                                     old     new   delta
  __free_pages_ok                              748     739      -9
  free_pcppages_bulk                          1403    1385     -18

DEBUG_VM:

  add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-28 (-28)
  function                                     old     new   delta
  free_pages_prepare                           806     778     -28

This is also slightly faster because cpupid information is not set on
tail pages so we can avoid resets there.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
bb552ac6c6 mm, page_alloc: un-inline the bad part of free_pages_check
From: Vlastimil Babka <vbabka@suse.cz>

!DEBUG_VM size and bloat-o-meter:

  add/remove: 1/0 grow/shrink: 0/2 up/down: 124/-370 (-246)
  function                                     old     new   delta
  free_pages_check_bad                           -     124    +124
  free_pcppages_bulk                          1288    1171    -117
  __free_pages_ok                              948     695    -253

DEBUG_VM:

  add/remove: 1/0 grow/shrink: 0/1 up/down: 124/-214 (-90)
  function                                     old     new   delta
  free_pages_check_bad                           -     124    +124
  free_pages_prepare                          1112     898    -214

[akpm@linux-foundation.org: fix whitespace]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
7bfec6f47b mm, page_alloc: check multiple page fields with a single branch
Every page allocated or freed is checked for sanity to avoid corruptions
that are difficult to detect later.  A bad page could be due to a number
of fields.  Instead of using multiple branches, this patch combines
multiple fields into a single branch.  A detailed check is only
necessary if that check fails.

                                             4.6.0-rc2                  4.6.0-rc2
                                        initonce-v1r20            multcheck-v1r20
  Min      alloc-odr0-1               359.00 (  0.00%)           348.00 (  3.06%)
  Min      alloc-odr0-2               260.00 (  0.00%)           254.00 (  2.31%)
  Min      alloc-odr0-4               214.00 (  0.00%)           213.00 (  0.47%)
  Min      alloc-odr0-8               186.00 (  0.00%)           186.00 (  0.00%)
  Min      alloc-odr0-16              173.00 (  0.00%)           173.00 (  0.00%)
  Min      alloc-odr0-32              165.00 (  0.00%)           166.00 ( -0.61%)
  Min      alloc-odr0-64              162.00 (  0.00%)           162.00 (  0.00%)
  Min      alloc-odr0-128             161.00 (  0.00%)           160.00 (  0.62%)
  Min      alloc-odr0-256             170.00 (  0.00%)           169.00 (  0.59%)
  Min      alloc-odr0-512             181.00 (  0.00%)           180.00 (  0.55%)
  Min      alloc-odr0-1024            190.00 (  0.00%)           188.00 (  1.05%)
  Min      alloc-odr0-2048            196.00 (  0.00%)           194.00 (  1.02%)
  Min      alloc-odr0-4096            202.00 (  0.00%)           199.00 (  1.49%)
  Min      alloc-odr0-8192            205.00 (  0.00%)           202.00 (  1.46%)
  Min      alloc-odr0-16384           205.00 (  0.00%)           203.00 (  0.98%)

Again, the benefit is marginal but avoiding excessive branches is
important.  Ideally the paths would not have to check these conditions
at all but regrettably abandoning the tests would make use-after-free
bugs much harder to detect.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
93ea9964d1 mm, page_alloc: remove field from alloc_context
The classzone_idx can be inferred from preferred_zoneref so remove the
unnecessary field and save stack space.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
c33d6c06f6 mm, page_alloc: avoid looking up the first zone in a zonelist twice
The allocator fast path looks up the first usable zone in a zonelist and
then get_page_from_freelist does the same job in the zonelist iterator.
This patch preserves the necessary information.

                                             4.6.0-rc2                  4.6.0-rc2
                                        fastmark-v1r20             initonce-v1r20
  Min      alloc-odr0-1               364.00 (  0.00%)           359.00 (  1.37%)
  Min      alloc-odr0-2               262.00 (  0.00%)           260.00 (  0.76%)
  Min      alloc-odr0-4               214.00 (  0.00%)           214.00 (  0.00%)
  Min      alloc-odr0-8               186.00 (  0.00%)           186.00 (  0.00%)
  Min      alloc-odr0-16              173.00 (  0.00%)           173.00 (  0.00%)
  Min      alloc-odr0-32              165.00 (  0.00%)           165.00 (  0.00%)
  Min      alloc-odr0-64              161.00 (  0.00%)           162.00 ( -0.62%)
  Min      alloc-odr0-128             159.00 (  0.00%)           161.00 ( -1.26%)
  Min      alloc-odr0-256             168.00 (  0.00%)           170.00 ( -1.19%)
  Min      alloc-odr0-512             180.00 (  0.00%)           181.00 ( -0.56%)
  Min      alloc-odr0-1024            190.00 (  0.00%)           190.00 (  0.00%)
  Min      alloc-odr0-2048            196.00 (  0.00%)           196.00 (  0.00%)
  Min      alloc-odr0-4096            202.00 (  0.00%)           202.00 (  0.00%)
  Min      alloc-odr0-8192            206.00 (  0.00%)           205.00 (  0.49%)
  Min      alloc-odr0-16384           206.00 (  0.00%)           205.00 (  0.49%)

The benefit is negligible and the results are within the noise but each
cycle counts.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
48ee5f3696 mm, page_alloc: shortcut watermark checks for order-0 pages
Watermarks have to be checked on every allocation including the number
of pages being allocated and whether reserves can be accessed.  The
reserves only matter if memory is limited and the free_pages adjustment
only applies to high-order pages.  This patch adds a shortcut for
order-0 pages that avoids numerous calculations if there is plenty of
free memory yielding the following performance difference in a page
allocator microbenchmark;

                                             4.6.0-rc2                  4.6.0-rc2
                                         optfair-v1r20             fastmark-v1r20
  Min      alloc-odr0-1               380.00 (  0.00%)           364.00 (  4.21%)
  Min      alloc-odr0-2               273.00 (  0.00%)           262.00 (  4.03%)
  Min      alloc-odr0-4               227.00 (  0.00%)           214.00 (  5.73%)
  Min      alloc-odr0-8               196.00 (  0.00%)           186.00 (  5.10%)
  Min      alloc-odr0-16              183.00 (  0.00%)           173.00 (  5.46%)
  Min      alloc-odr0-32              173.00 (  0.00%)           165.00 (  4.62%)
  Min      alloc-odr0-64              169.00 (  0.00%)           161.00 (  4.73%)
  Min      alloc-odr0-128             169.00 (  0.00%)           159.00 (  5.92%)
  Min      alloc-odr0-256             180.00 (  0.00%)           168.00 (  6.67%)
  Min      alloc-odr0-512             190.00 (  0.00%)           180.00 (  5.26%)
  Min      alloc-odr0-1024            198.00 (  0.00%)           190.00 (  4.04%)
  Min      alloc-odr0-2048            204.00 (  0.00%)           196.00 (  3.92%)
  Min      alloc-odr0-4096            209.00 (  0.00%)           202.00 (  3.35%)
  Min      alloc-odr0-8192            213.00 (  0.00%)           206.00 (  3.29%)
  Min      alloc-odr0-16384           214.00 (  0.00%)           206.00 (  3.74%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
305347550b mm, page_alloc: reduce cost of fair zone allocation policy retry
The fair zone allocation policy is not without cost but it can be
reduced slightly.  This patch removes an unnecessary local variable,
checks the likely conditions of the fair zone policy first, uses a bool
instead of a flags check and falls through when a remote node is
encountered instead of doing a full restart.  The benefit is marginal
but it's there

                                             4.6.0-rc2                  4.6.0-rc2
                                         decstat-v1r20              optfair-v1r20
  Min      alloc-odr0-1               377.00 (  0.00%)           380.00 ( -0.80%)
  Min      alloc-odr0-2               273.00 (  0.00%)           273.00 (  0.00%)
  Min      alloc-odr0-4               226.00 (  0.00%)           227.00 ( -0.44%)
  Min      alloc-odr0-8               196.00 (  0.00%)           196.00 (  0.00%)
  Min      alloc-odr0-16              183.00 (  0.00%)           183.00 (  0.00%)
  Min      alloc-odr0-32              175.00 (  0.00%)           173.00 (  1.14%)
  Min      alloc-odr0-64              172.00 (  0.00%)           169.00 (  1.74%)
  Min      alloc-odr0-128             170.00 (  0.00%)           169.00 (  0.59%)
  Min      alloc-odr0-256             183.00 (  0.00%)           180.00 (  1.64%)
  Min      alloc-odr0-512             191.00 (  0.00%)           190.00 (  0.52%)
  Min      alloc-odr0-1024            199.00 (  0.00%)           198.00 (  0.50%)
  Min      alloc-odr0-2048            204.00 (  0.00%)           204.00 (  0.00%)
  Min      alloc-odr0-4096            210.00 (  0.00%)           209.00 (  0.48%)
  Min      alloc-odr0-8192            213.00 (  0.00%)           213.00 (  0.00%)
  Min      alloc-odr0-16384           214.00 (  0.00%)           214.00 (  0.00%)

The benefit is marginal at best but one of the most important benefits,
avoiding a second search when falling back to another node is not
triggered by this particular test so the benefit for some corner cases
is understated.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
4fcb097117 mm, page_alloc: shorten the page allocator fast path
The page allocator fast path checks page multiple times unnecessarily.
This patch avoids all the slowpath checks if the first allocation
attempt succeeds.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
3777999dd4 mm, page_alloc: check once if a zone has isolated pageblocks
When bulk freeing pages from the per-cpu lists the zone is checked for
isolated pageblocks on every release.  This patch checks it once per
drain.

[mgorman@techsingularity.net: fix locking radce, per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
83d4ca8148 mm, page_alloc: move __GFP_HARDWALL modifications out of the fastpath
__GFP_HARDWALL only has meaning in the context of cpusets but the fast
path always applies the flag on the first attempt.  Move the
manipulations into the cpuset paths where they will be masked by a
static branch in the common case.

With the other micro-optimisations in this series combined, the impact
on a page allocator microbenchmark is

                                             4.6.0-rc2                  4.6.0-rc2
                                         decstat-v1r20                micro-v1r20
  Min      alloc-odr0-1               381.00 (  0.00%)           377.00 (  1.05%)
  Min      alloc-odr0-2               275.00 (  0.00%)           273.00 (  0.73%)
  Min      alloc-odr0-4               229.00 (  0.00%)           226.00 (  1.31%)
  Min      alloc-odr0-8               199.00 (  0.00%)           196.00 (  1.51%)
  Min      alloc-odr0-16              186.00 (  0.00%)           183.00 (  1.61%)
  Min      alloc-odr0-32              179.00 (  0.00%)           175.00 (  2.23%)
  Min      alloc-odr0-64              174.00 (  0.00%)           172.00 (  1.15%)
  Min      alloc-odr0-128             172.00 (  0.00%)           170.00 (  1.16%)
  Min      alloc-odr0-256             181.00 (  0.00%)           183.00 ( -1.10%)
  Min      alloc-odr0-512             193.00 (  0.00%)           191.00 (  1.04%)
  Min      alloc-odr0-1024            201.00 (  0.00%)           199.00 (  1.00%)
  Min      alloc-odr0-2048            206.00 (  0.00%)           204.00 (  0.97%)
  Min      alloc-odr0-4096            212.00 (  0.00%)           210.00 (  0.94%)
  Min      alloc-odr0-8192            215.00 (  0.00%)           213.00 (  0.93%)
  Min      alloc-odr0-16384           216.00 (  0.00%)           214.00 (  0.93%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
5bb1b16975 mm, page_alloc: remove unnecessary initialisation from __alloc_pages_nodemask()
page is guaranteed to be set before it is read with or without the
initialisation.

[akpm@linux-foundation.org: fix warning]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
be06af002f mm, page_alloc: remove unnecessary initialisation in get_page_from_freelist
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
4dfa6cd8fd mm, page_alloc: remove unnecessary local variable in get_page_from_freelist
zonelist here is a copy of a struct field that is used once.  Ditch it.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
fa379b9586 mm, page_alloc: convert nr_fair_skipped to bool
The number of zones skipped to a zone expiring its fair zone allocation
quota is irrelevant.  Convert to bool.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
c603844bdc mm, page_alloc: convert alloc_flags to unsigned
alloc_flags is a bitmask of flags but it is signed which does not
necessarily generate the best code depending on the compiler.  Even
without an impact, it makes more sense that this be unsigned.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
f75fb889d1 mm, page_alloc: avoid unnecessary zone lookups during pageblock operations
Pageblocks have an associated bitmap to store migrate types and whether
the pageblock should be skipped during compaction.  The bitmap may be
associated with a memory section or a zone but the zone is looked up
unconditionally.  The compiler should optimise this away automatically
so this is a cosmetic patch only in many cases.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
754078eb45 mm, page_alloc: use __dec_zone_state for order-0 page allocation
__dec_zone_state is cheaper to use for removing an order-0 page as it
has fewer conditions to check.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                         optiter-v1r20              decstat-v1r20
  Min      alloc-odr0-1               382.00 (  0.00%)           381.00 (  0.26%)
  Min      alloc-odr0-2               282.00 (  0.00%)           275.00 (  2.48%)
  Min      alloc-odr0-4               233.00 (  0.00%)           229.00 (  1.72%)
  Min      alloc-odr0-8               203.00 (  0.00%)           199.00 (  1.97%)
  Min      alloc-odr0-16              188.00 (  0.00%)           186.00 (  1.06%)
  Min      alloc-odr0-32              182.00 (  0.00%)           179.00 (  1.65%)
  Min      alloc-odr0-64              177.00 (  0.00%)           174.00 (  1.69%)
  Min      alloc-odr0-128             175.00 (  0.00%)           172.00 (  1.71%)
  Min      alloc-odr0-256             184.00 (  0.00%)           181.00 (  1.63%)
  Min      alloc-odr0-512             197.00 (  0.00%)           193.00 (  2.03%)
  Min      alloc-odr0-1024            203.00 (  0.00%)           201.00 (  0.99%)
  Min      alloc-odr0-2048            209.00 (  0.00%)           206.00 (  1.44%)
  Min      alloc-odr0-4096            214.00 (  0.00%)           212.00 (  0.93%)
  Min      alloc-odr0-8192            218.00 (  0.00%)           215.00 (  1.38%)
  Min      alloc-odr0-16384           219.00 (  0.00%)           216.00 (  1.37%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
682a3385e7 mm, page_alloc: inline the fast path of the zonelist iterator
The page allocator iterates through a zonelist for zones that match the
addressing limitations and nodemask of the caller but many allocations
will not be restricted.  Despite this, there is always functional call
overhead which builds up.

This patch inlines the optimistic basic case and only calls the iterator
function for the complex case.  A hindrance was the fact that
cpuset_current_mems_allowed is used in the fastpath as the allowed
nodemask even though all nodes are allowed on most systems.  The patch
handles this by only considering cpuset_current_mems_allowed if a cpuset
exists.  As well as being faster in the fast-path, this removes some
junk in the slowpath.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                      statinline-v1r20              optiter-v1r20
  Min      alloc-odr0-1               412.00 (  0.00%)           382.00 (  7.28%)
  Min      alloc-odr0-2               301.00 (  0.00%)           282.00 (  6.31%)
  Min      alloc-odr0-4               247.00 (  0.00%)           233.00 (  5.67%)
  Min      alloc-odr0-8               215.00 (  0.00%)           203.00 (  5.58%)
  Min      alloc-odr0-16              199.00 (  0.00%)           188.00 (  5.53%)
  Min      alloc-odr0-32              191.00 (  0.00%)           182.00 (  4.71%)
  Min      alloc-odr0-64              187.00 (  0.00%)           177.00 (  5.35%)
  Min      alloc-odr0-128             185.00 (  0.00%)           175.00 (  5.41%)
  Min      alloc-odr0-256             193.00 (  0.00%)           184.00 (  4.66%)
  Min      alloc-odr0-512             207.00 (  0.00%)           197.00 (  4.83%)
  Min      alloc-odr0-1024            213.00 (  0.00%)           203.00 (  4.69%)
  Min      alloc-odr0-2048            220.00 (  0.00%)           209.00 (  5.00%)
  Min      alloc-odr0-4096            226.00 (  0.00%)           214.00 (  5.31%)
  Min      alloc-odr0-8192            229.00 (  0.00%)           218.00 (  4.80%)
  Min      alloc-odr0-16384           229.00 (  0.00%)           219.00 (  4.37%)

perf indicated that next_zones_zonelist disappeared in the profile and
__next_zones_zonelist did not appear.  This is expected as the
micro-benchmark would hit the inlined fast-path every time.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
060e74173f mm, page_alloc: inline zone_statistics
zone_statistics has one call-site but it's a public function.  Make it
static and inline.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                      statbranch-v1r20           statinline-v1r20
  Min      alloc-odr0-1               419.00 (  0.00%)           412.00 (  1.67%)
  Min      alloc-odr0-2               305.00 (  0.00%)           301.00 (  1.31%)
  Min      alloc-odr0-4               250.00 (  0.00%)           247.00 (  1.20%)
  Min      alloc-odr0-8               219.00 (  0.00%)           215.00 (  1.83%)
  Min      alloc-odr0-16              203.00 (  0.00%)           199.00 (  1.97%)
  Min      alloc-odr0-32              195.00 (  0.00%)           191.00 (  2.05%)
  Min      alloc-odr0-64              191.00 (  0.00%)           187.00 (  2.09%)
  Min      alloc-odr0-128             189.00 (  0.00%)           185.00 (  2.12%)
  Min      alloc-odr0-256             198.00 (  0.00%)           193.00 (  2.53%)
  Min      alloc-odr0-512             210.00 (  0.00%)           207.00 (  1.43%)
  Min      alloc-odr0-1024            216.00 (  0.00%)           213.00 (  1.39%)
  Min      alloc-odr0-2048            221.00 (  0.00%)           220.00 (  0.45%)
  Min      alloc-odr0-4096            227.00 (  0.00%)           226.00 (  0.44%)
  Min      alloc-odr0-8192            232.00 (  0.00%)           229.00 (  1.29%)
  Min      alloc-odr0-16384           232.00 (  0.00%)           229.00 (  1.29%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
b9f00e147f mm, page_alloc: reduce branches in zone_statistics
zone_statistics has more branches than it really needs to take an
unlikely GFP flag into account.  Reduce the number and annotate the
unlikely flag.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                      nocompound-v1r10           statbranch-v1r10
  Min      alloc-odr0-1               417.00 (  0.00%)           419.00 ( -0.48%)
  Min      alloc-odr0-2               308.00 (  0.00%)           305.00 (  0.97%)
  Min      alloc-odr0-4               253.00 (  0.00%)           250.00 (  1.19%)
  Min      alloc-odr0-8               221.00 (  0.00%)           219.00 (  0.90%)
  Min      alloc-odr0-16              205.00 (  0.00%)           203.00 (  0.98%)
  Min      alloc-odr0-32              199.00 (  0.00%)           195.00 (  2.01%)
  Min      alloc-odr0-64              193.00 (  0.00%)           191.00 (  1.04%)
  Min      alloc-odr0-128             191.00 (  0.00%)           189.00 (  1.05%)
  Min      alloc-odr0-256             200.00 (  0.00%)           198.00 (  1.00%)
  Min      alloc-odr0-512             212.00 (  0.00%)           210.00 (  0.94%)
  Min      alloc-odr0-1024            219.00 (  0.00%)           216.00 (  1.37%)
  Min      alloc-odr0-2048            225.00 (  0.00%)           221.00 (  1.78%)
  Min      alloc-odr0-4096            231.00 (  0.00%)           227.00 (  1.73%)
  Min      alloc-odr0-8192            234.00 (  0.00%)           232.00 (  0.85%)
  Min      alloc-odr0-16384           234.00 (  0.00%)           232.00 (  0.85%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
175145748d mm, page_alloc: use new PageAnonHead helper in the free page fast path
The PageAnon check always checks for compound_head but this is a
relatively expensive check if the caller already knows the page is a
head page.  This patch creates a helper and uses it in the page free
path which only operates on head pages.

With this patch and "Only check PageCompound for high-order pages", the
performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                               vanilla           nocompound-v1r20
  Min      alloc-odr0-1               425.00 (  0.00%)           417.00 (  1.88%)
  Min      alloc-odr0-2               313.00 (  0.00%)           308.00 (  1.60%)
  Min      alloc-odr0-4               257.00 (  0.00%)           253.00 (  1.56%)
  Min      alloc-odr0-8               224.00 (  0.00%)           221.00 (  1.34%)
  Min      alloc-odr0-16              208.00 (  0.00%)           205.00 (  1.44%)
  Min      alloc-odr0-32              199.00 (  0.00%)           199.00 (  0.00%)
  Min      alloc-odr0-64              195.00 (  0.00%)           193.00 (  1.03%)
  Min      alloc-odr0-128             192.00 (  0.00%)           191.00 (  0.52%)
  Min      alloc-odr0-256             204.00 (  0.00%)           200.00 (  1.96%)
  Min      alloc-odr0-512             213.00 (  0.00%)           212.00 (  0.47%)
  Min      alloc-odr0-1024            219.00 (  0.00%)           219.00 (  0.00%)
  Min      alloc-odr0-2048            225.00 (  0.00%)           225.00 (  0.00%)
  Min      alloc-odr0-4096            230.00 (  0.00%)           231.00 ( -0.43%)
  Min      alloc-odr0-8192            235.00 (  0.00%)           234.00 (  0.43%)
  Min      alloc-odr0-16384           235.00 (  0.00%)           234.00 (  0.43%)
  Min      free-odr0-1                215.00 (  0.00%)           191.00 ( 11.16%)
  Min      free-odr0-2                152.00 (  0.00%)           136.00 ( 10.53%)
  Min      free-odr0-4                119.00 (  0.00%)           107.00 ( 10.08%)
  Min      free-odr0-8                106.00 (  0.00%)            96.00 (  9.43%)
  Min      free-odr0-16                97.00 (  0.00%)            87.00 ( 10.31%)
  Min      free-odr0-32                91.00 (  0.00%)            83.00 (  8.79%)
  Min      free-odr0-64                89.00 (  0.00%)            81.00 (  8.99%)
  Min      free-odr0-128               88.00 (  0.00%)            80.00 (  9.09%)
  Min      free-odr0-256              106.00 (  0.00%)            95.00 ( 10.38%)
  Min      free-odr0-512              116.00 (  0.00%)           111.00 (  4.31%)
  Min      free-odr0-1024             125.00 (  0.00%)           118.00 (  5.60%)
  Min      free-odr0-2048             133.00 (  0.00%)           126.00 (  5.26%)
  Min      free-odr0-4096             136.00 (  0.00%)           130.00 (  4.41%)
  Min      free-odr0-8192             138.00 (  0.00%)           130.00 (  5.80%)
  Min      free-odr0-16384            137.00 (  0.00%)           130.00 (  5.11%)

There is a sizable boost to the free allocator performance.  While there
is an apparent boost on the allocation side, it's likely a co-incidence
or due to the patches slightly reducing cache footprint.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
d61f859039 mm, page_alloc: only check PageCompound for high-order pages
Another year, another round of page allocator optimisations focusing
this time on the alloc and free fast paths.  This should be of help to
workloads that are allocator-intensive from kernel space where the cost
of zeroing is not nceessraily incurred.

The series is motivated by the observation that page alloc
microbenchmarks on multiple machines regressed between 3.12.44 and 4.4.
Second, there is discussions before LSF/MM considering the possibility
of adding another page allocator which is potentially hazardous but a
patch series improving performance is better than whining.

After the series is applied, there are still hazards.  In the free
paths, the debugging checking and page zone/pageblock lookups dominate
but there was not an obvious solution to that.  In the alloc path, the
major contributers are dealing with zonelists, new page preperation, the
fair zone allocation and numerous statistic updates.  The fair zone
allocator is removed by the per-node LRU series if that gets merged so
it's nor a major concern at the moment.

On normal userspace benchmarks, there is little impact as the zeroing
cost is significant but it's visible

  aim9
                                 4.6.0-rc3             4.6.0-rc3
                                   vanilla         deferalloc-v3
  Min      page_test   828693.33 (  0.00%)   887060.00 (  7.04%)
  Min      brk_test   4847266.67 (  0.00%)  4966266.67 (  2.45%)
  Min      exec_test     1271.00 (  0.00%)     1275.67 (  0.37%)
  Min      fork_test    12371.75 (  0.00%)    12380.00 (  0.07%)

The overall impact on a page allocator microbenchmark for a range of orders
and number of pages allocated in a batch is

                                            4.6.0-rc3                  4.6.0-rc3
                                               vanilla            deferalloc-v3r7
  Min      alloc-odr0-1               428.00 (  0.00%)           316.00 ( 26.17%)
  Min      alloc-odr0-2               314.00 (  0.00%)           231.00 ( 26.43%)
  Min      alloc-odr0-4               256.00 (  0.00%)           192.00 ( 25.00%)
  Min      alloc-odr0-8               222.00 (  0.00%)           166.00 ( 25.23%)
  Min      alloc-odr0-16              207.00 (  0.00%)           154.00 ( 25.60%)
  Min      alloc-odr0-32              197.00 (  0.00%)           148.00 ( 24.87%)
  Min      alloc-odr0-64              193.00 (  0.00%)           144.00 ( 25.39%)
  Min      alloc-odr0-128             191.00 (  0.00%)           143.00 ( 25.13%)
  Min      alloc-odr0-256             203.00 (  0.00%)           153.00 ( 24.63%)
  Min      alloc-odr0-512             212.00 (  0.00%)           165.00 ( 22.17%)
  Min      alloc-odr0-1024            221.00 (  0.00%)           172.00 ( 22.17%)
  Min      alloc-odr0-2048            225.00 (  0.00%)           179.00 ( 20.44%)
  Min      alloc-odr0-4096            232.00 (  0.00%)           185.00 ( 20.26%)
  Min      alloc-odr0-8192            235.00 (  0.00%)           187.00 ( 20.43%)
  Min      alloc-odr0-16384           236.00 (  0.00%)           188.00 ( 20.34%)
  Min      alloc-odr1-1               519.00 (  0.00%)           450.00 ( 13.29%)
  Min      alloc-odr1-2               391.00 (  0.00%)           336.00 ( 14.07%)
  Min      alloc-odr1-4               313.00 (  0.00%)           268.00 ( 14.38%)
  Min      alloc-odr1-8               277.00 (  0.00%)           235.00 ( 15.16%)
  Min      alloc-odr1-16              256.00 (  0.00%)           218.00 ( 14.84%)
  Min      alloc-odr1-32              252.00 (  0.00%)           212.00 ( 15.87%)
  Min      alloc-odr1-64              244.00 (  0.00%)           206.00 ( 15.57%)
  Min      alloc-odr1-128             244.00 (  0.00%)           207.00 ( 15.16%)
  Min      alloc-odr1-256             243.00 (  0.00%)           207.00 ( 14.81%)
  Min      alloc-odr1-512             245.00 (  0.00%)           209.00 ( 14.69%)
  Min      alloc-odr1-1024            248.00 (  0.00%)           214.00 ( 13.71%)
  Min      alloc-odr1-2048            253.00 (  0.00%)           220.00 ( 13.04%)
  Min      alloc-odr1-4096            258.00 (  0.00%)           224.00 ( 13.18%)
  Min      alloc-odr1-8192            261.00 (  0.00%)           229.00 ( 12.26%)
  Min      alloc-odr2-1               560.00 (  0.00%)           753.00 (-34.46%)
  Min      alloc-odr2-2               424.00 (  0.00%)           351.00 ( 17.22%)
  Min      alloc-odr2-4               339.00 (  0.00%)           393.00 (-15.93%)
  Min      alloc-odr2-8               298.00 (  0.00%)           246.00 ( 17.45%)
  Min      alloc-odr2-16              276.00 (  0.00%)           227.00 ( 17.75%)
  Min      alloc-odr2-32              271.00 (  0.00%)           221.00 ( 18.45%)
  Min      alloc-odr2-64              264.00 (  0.00%)           217.00 ( 17.80%)
  Min      alloc-odr2-128             264.00 (  0.00%)           217.00 ( 17.80%)
  Min      alloc-odr2-256             264.00 (  0.00%)           218.00 ( 17.42%)
  Min      alloc-odr2-512             269.00 (  0.00%)           223.00 ( 17.10%)
  Min      alloc-odr2-1024            279.00 (  0.00%)           230.00 ( 17.56%)
  Min      alloc-odr2-2048            283.00 (  0.00%)           235.00 ( 16.96%)
  Min      alloc-odr2-4096            285.00 (  0.00%)           239.00 ( 16.14%)
  Min      alloc-odr3-1               629.00 (  0.00%)           505.00 ( 19.71%)
  Min      alloc-odr3-2               472.00 (  0.00%)           374.00 ( 20.76%)
  Min      alloc-odr3-4               383.00 (  0.00%)           301.00 ( 21.41%)
  Min      alloc-odr3-8               341.00 (  0.00%)           266.00 ( 21.99%)
  Min      alloc-odr3-16              316.00 (  0.00%)           248.00 ( 21.52%)
  Min      alloc-odr3-32              308.00 (  0.00%)           241.00 ( 21.75%)
  Min      alloc-odr3-64              305.00 (  0.00%)           241.00 ( 20.98%)
  Min      alloc-odr3-128             308.00 (  0.00%)           244.00 ( 20.78%)
  Min      alloc-odr3-256             317.00 (  0.00%)           249.00 ( 21.45%)
  Min      alloc-odr3-512             327.00 (  0.00%)           256.00 ( 21.71%)
  Min      alloc-odr3-1024            331.00 (  0.00%)           261.00 ( 21.15%)
  Min      alloc-odr3-2048            333.00 (  0.00%)           266.00 ( 20.12%)
  Min      alloc-odr4-1               767.00 (  0.00%)           572.00 ( 25.42%)
  Min      alloc-odr4-2               578.00 (  0.00%)           429.00 ( 25.78%)
  Min      alloc-odr4-4               474.00 (  0.00%)           346.00 ( 27.00%)
  Min      alloc-odr4-8               422.00 (  0.00%)           310.00 ( 26.54%)
  Min      alloc-odr4-16              399.00 (  0.00%)           295.00 ( 26.07%)
  Min      alloc-odr4-32              392.00 (  0.00%)           293.00 ( 25.26%)
  Min      alloc-odr4-64              394.00 (  0.00%)           293.00 ( 25.63%)
  Min      alloc-odr4-128             405.00 (  0.00%)           305.00 ( 24.69%)
  Min      alloc-odr4-256             417.00 (  0.00%)           319.00 ( 23.50%)
  Min      alloc-odr4-512             425.00 (  0.00%)           326.00 ( 23.29%)
  Min      alloc-odr4-1024            426.00 (  0.00%)           329.00 ( 22.77%)
  Min      free-odr0-1                216.00 (  0.00%)           178.00 ( 17.59%)
  Min      free-odr0-2                152.00 (  0.00%)           125.00 ( 17.76%)
  Min      free-odr0-4                120.00 (  0.00%)            99.00 ( 17.50%)
  Min      free-odr0-8                106.00 (  0.00%)            85.00 ( 19.81%)
  Min      free-odr0-16                97.00 (  0.00%)            80.00 ( 17.53%)
  Min      free-odr0-32                92.00 (  0.00%)            76.00 ( 17.39%)
  Min      free-odr0-64                89.00 (  0.00%)            74.00 ( 16.85%)
  Min      free-odr0-128               89.00 (  0.00%)            73.00 ( 17.98%)
  Min      free-odr0-256              107.00 (  0.00%)            90.00 ( 15.89%)
  Min      free-odr0-512              117.00 (  0.00%)           108.00 (  7.69%)
  Min      free-odr0-1024             125.00 (  0.00%)           118.00 (  5.60%)
  Min      free-odr0-2048             132.00 (  0.00%)           125.00 (  5.30%)
  Min      free-odr0-4096             135.00 (  0.00%)           130.00 (  3.70%)
  Min      free-odr0-8192             137.00 (  0.00%)           130.00 (  5.11%)
  Min      free-odr0-16384            137.00 (  0.00%)           131.00 (  4.38%)
  Min      free-odr1-1                318.00 (  0.00%)           289.00 (  9.12%)
  Min      free-odr1-2                228.00 (  0.00%)           207.00 (  9.21%)
  Min      free-odr1-4                182.00 (  0.00%)           165.00 (  9.34%)
  Min      free-odr1-8                163.00 (  0.00%)           146.00 ( 10.43%)
  Min      free-odr1-16               151.00 (  0.00%)           135.00 ( 10.60%)
  Min      free-odr1-32               146.00 (  0.00%)           129.00 ( 11.64%)
  Min      free-odr1-64               145.00 (  0.00%)           130.00 ( 10.34%)
  Min      free-odr1-128              148.00 (  0.00%)           134.00 (  9.46%)
  Min      free-odr1-256              148.00 (  0.00%)           137.00 (  7.43%)
  Min      free-odr1-512              151.00 (  0.00%)           140.00 (  7.28%)
  Min      free-odr1-1024             154.00 (  0.00%)           143.00 (  7.14%)
  Min      free-odr1-2048             156.00 (  0.00%)           144.00 (  7.69%)
  Min      free-odr1-4096             156.00 (  0.00%)           142.00 (  8.97%)
  Min      free-odr1-8192             156.00 (  0.00%)           140.00 ( 10.26%)
  Min      free-odr2-1                361.00 (  0.00%)           457.00 (-26.59%)
  Min      free-odr2-2                258.00 (  0.00%)           224.00 ( 13.18%)
  Min      free-odr2-4                208.00 (  0.00%)           223.00 ( -7.21%)
  Min      free-odr2-8                185.00 (  0.00%)           160.00 ( 13.51%)
  Min      free-odr2-16               173.00 (  0.00%)           149.00 ( 13.87%)
  Min      free-odr2-32               166.00 (  0.00%)           145.00 ( 12.65%)
  Min      free-odr2-64               166.00 (  0.00%)           146.00 ( 12.05%)
  Min      free-odr2-128              169.00 (  0.00%)           148.00 ( 12.43%)
  Min      free-odr2-256              170.00 (  0.00%)           152.00 ( 10.59%)
  Min      free-odr2-512              177.00 (  0.00%)           156.00 ( 11.86%)
  Min      free-odr2-1024             182.00 (  0.00%)           162.00 ( 10.99%)
  Min      free-odr2-2048             181.00 (  0.00%)           160.00 ( 11.60%)
  Min      free-odr2-4096             180.00 (  0.00%)           159.00 ( 11.67%)
  Min      free-odr3-1                431.00 (  0.00%)           367.00 ( 14.85%)
  Min      free-odr3-2                306.00 (  0.00%)           259.00 ( 15.36%)
  Min      free-odr3-4                249.00 (  0.00%)           208.00 ( 16.47%)
  Min      free-odr3-8                224.00 (  0.00%)           186.00 ( 16.96%)
  Min      free-odr3-16               208.00 (  0.00%)           176.00 ( 15.38%)
  Min      free-odr3-32               206.00 (  0.00%)           174.00 ( 15.53%)
  Min      free-odr3-64               210.00 (  0.00%)           178.00 ( 15.24%)
  Min      free-odr3-128              215.00 (  0.00%)           182.00 ( 15.35%)
  Min      free-odr3-256              224.00 (  0.00%)           189.00 ( 15.62%)
  Min      free-odr3-512              232.00 (  0.00%)           195.00 ( 15.95%)
  Min      free-odr3-1024             230.00 (  0.00%)           195.00 ( 15.22%)
  Min      free-odr3-2048             229.00 (  0.00%)           193.00 ( 15.72%)
  Min      free-odr4-1                561.00 (  0.00%)           439.00 ( 21.75%)
  Min      free-odr4-2                418.00 (  0.00%)           318.00 ( 23.92%)
  Min      free-odr4-4                339.00 (  0.00%)           269.00 ( 20.65%)
  Min      free-odr4-8                299.00 (  0.00%)           239.00 ( 20.07%)
  Min      free-odr4-16               289.00 (  0.00%)           234.00 ( 19.03%)
  Min      free-odr4-32               291.00 (  0.00%)           235.00 ( 19.24%)
  Min      free-odr4-64               298.00 (  0.00%)           238.00 ( 20.13%)
  Min      free-odr4-128              308.00 (  0.00%)           251.00 ( 18.51%)
  Min      free-odr4-256              321.00 (  0.00%)           267.00 ( 16.82%)
  Min      free-odr4-512              327.00 (  0.00%)           269.00 ( 17.74%)
  Min      free-odr4-1024             326.00 (  0.00%)           271.00 ( 16.87%)
  Min      total-odr0-1               644.00 (  0.00%)           494.00 ( 23.29%)
  Min      total-odr0-2               466.00 (  0.00%)           356.00 ( 23.61%)
  Min      total-odr0-4               376.00 (  0.00%)           291.00 ( 22.61%)
  Min      total-odr0-8               328.00 (  0.00%)           251.00 ( 23.48%)
  Min      total-odr0-16              304.00 (  0.00%)           234.00 ( 23.03%)
  Min      total-odr0-32              289.00 (  0.00%)           224.00 ( 22.49%)
  Min      total-odr0-64              282.00 (  0.00%)           218.00 ( 22.70%)
  Min      total-odr0-128             280.00 (  0.00%)           216.00 ( 22.86%)
  Min      total-odr0-256             310.00 (  0.00%)           243.00 ( 21.61%)
  Min      total-odr0-512             329.00 (  0.00%)           273.00 ( 17.02%)
  Min      total-odr0-1024            346.00 (  0.00%)           290.00 ( 16.18%)
  Min      total-odr0-2048            357.00 (  0.00%)           304.00 ( 14.85%)
  Min      total-odr0-4096            367.00 (  0.00%)           315.00 ( 14.17%)
  Min      total-odr0-8192            372.00 (  0.00%)           317.00 ( 14.78%)
  Min      total-odr0-16384           373.00 (  0.00%)           319.00 ( 14.48%)
  Min      total-odr1-1               838.00 (  0.00%)           739.00 ( 11.81%)
  Min      total-odr1-2               619.00 (  0.00%)           543.00 ( 12.28%)
  Min      total-odr1-4               495.00 (  0.00%)           433.00 ( 12.53%)
  Min      total-odr1-8               440.00 (  0.00%)           382.00 ( 13.18%)
  Min      total-odr1-16              407.00 (  0.00%)           353.00 ( 13.27%)
  Min      total-odr1-32              398.00 (  0.00%)           341.00 ( 14.32%)
  Min      total-odr1-64              389.00 (  0.00%)           336.00 ( 13.62%)
  Min      total-odr1-128             392.00 (  0.00%)           341.00 ( 13.01%)
  Min      total-odr1-256             391.00 (  0.00%)           344.00 ( 12.02%)
  Min      total-odr1-512             396.00 (  0.00%)           349.00 ( 11.87%)
  Min      total-odr1-1024            402.00 (  0.00%)           357.00 ( 11.19%)
  Min      total-odr1-2048            409.00 (  0.00%)           364.00 ( 11.00%)
  Min      total-odr1-4096            414.00 (  0.00%)           366.00 ( 11.59%)
  Min      total-odr1-8192            417.00 (  0.00%)           369.00 ( 11.51%)
  Min      total-odr2-1               921.00 (  0.00%)          1210.00 (-31.38%)
  Min      total-odr2-2               682.00 (  0.00%)           576.00 ( 15.54%)
  Min      total-odr2-4               547.00 (  0.00%)           616.00 (-12.61%)
  Min      total-odr2-8               483.00 (  0.00%)           406.00 ( 15.94%)
  Min      total-odr2-16              449.00 (  0.00%)           376.00 ( 16.26%)
  Min      total-odr2-32              437.00 (  0.00%)           366.00 ( 16.25%)
  Min      total-odr2-64              431.00 (  0.00%)           363.00 ( 15.78%)
  Min      total-odr2-128             433.00 (  0.00%)           365.00 ( 15.70%)
  Min      total-odr2-256             434.00 (  0.00%)           371.00 ( 14.52%)
  Min      total-odr2-512             446.00 (  0.00%)           379.00 ( 15.02%)
  Min      total-odr2-1024            461.00 (  0.00%)           392.00 ( 14.97%)
  Min      total-odr2-2048            464.00 (  0.00%)           395.00 ( 14.87%)
  Min      total-odr2-4096            465.00 (  0.00%)           398.00 ( 14.41%)
  Min      total-odr3-1              1060.00 (  0.00%)           872.00 ( 17.74%)
  Min      total-odr3-2               778.00 (  0.00%)           633.00 ( 18.64%)
  Min      total-odr3-4               632.00 (  0.00%)           510.00 ( 19.30%)
  Min      total-odr3-8               565.00 (  0.00%)           452.00 ( 20.00%)
  Min      total-odr3-16              524.00 (  0.00%)           424.00 ( 19.08%)
  Min      total-odr3-32              514.00 (  0.00%)           415.00 ( 19.26%)
  Min      total-odr3-64              515.00 (  0.00%)           419.00 ( 18.64%)
  Min      total-odr3-128             523.00 (  0.00%)           426.00 ( 18.55%)
  Min      total-odr3-256             541.00 (  0.00%)           438.00 ( 19.04%)
  Min      total-odr3-512             559.00 (  0.00%)           451.00 ( 19.32%)
  Min      total-odr3-1024            561.00 (  0.00%)           456.00 ( 18.72%)
  Min      total-odr3-2048            562.00 (  0.00%)           459.00 ( 18.33%)
  Min      total-odr4-1              1328.00 (  0.00%)          1011.00 ( 23.87%)
  Min      total-odr4-2               997.00 (  0.00%)           747.00 ( 25.08%)
  Min      total-odr4-4               813.00 (  0.00%)           615.00 ( 24.35%)
  Min      total-odr4-8               721.00 (  0.00%)           550.00 ( 23.72%)
  Min      total-odr4-16              689.00 (  0.00%)           529.00 ( 23.22%)
  Min      total-odr4-32              683.00 (  0.00%)           528.00 ( 22.69%)
  Min      total-odr4-64              692.00 (  0.00%)           531.00 ( 23.27%)
  Min      total-odr4-128             713.00 (  0.00%)           556.00 ( 22.02%)
  Min      total-odr4-256             738.00 (  0.00%)           586.00 ( 20.60%)
  Min      total-odr4-512             753.00 (  0.00%)           595.00 ( 20.98%)
  Min      total-odr4-1024            752.00 (  0.00%)           600.00 ( 20.21%)

This patch (of 27):

order-0 pages by definition cannot be compound so avoid the check in the
fast path for those pages.

[akpm@linux-foundation.org: use unlikely(order) in free_pages_prepare(), per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Michal Hocko
449d777d7a mm, oom_reaper: clear TIF_MEMDIE for all tasks queued for oom_reaper
Right now the oom reaper will clear TIF_MEMDIE only for tasks which were
successfully reaped.  This is the safest option because we know that
such an oom victim would only block forward progress of the oom killer
without a good reason because it is highly unlikely it would release
much more memory.  Basically most of its memory has been already torn
down.

We can relax this assumption to catch more corner cases though.

The first obvious one is when the oom victim clears its mm and gets
stuck later on.  oom_reaper would back of on find_lock_task_mm returning
NULL.  We can safely try to clear TIF_MEMDIE in this case because such a
task would be ignored by the oom killer anyway.  The flag would be
cleared by that time already most of the time anyway.

The less obvious one is when the oom reaper fails due to mmap_sem
contention.  Even if we clear TIF_MEMDIE for this task then it is not
very likely that we would select another task too easily because we
haven't reaped the last victim and so it would be still the #1
candidate.  There is a rare race condition possible when the current
victim terminates before the next select_bad_process but considering
that oom_reap_task had retried several times before giving up then this
sounds like a borderline thing.

After this patch we should have a guarantee that the OOM killer will not
be block for unbounded amount of time for most cases.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Michal Hocko
3ef22dfff2 oom, oom_reaper: try to reap tasks which skip regular OOM killer path
If either the current task is already killed or PF_EXITING or a selected
task is PF_EXITING then the oom killer is suppressed and so is the oom
reaper.  This patch adds try_oom_reaper which checks the given task and
queues it for the oom reaper if that is safe to be done meaning that the
task doesn't share the mm with an alive process.

This might help to release the memory pressure while the task tries to
exit.

[akpm@linux-foundation.org: fix nommu build]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Michal Hocko
3da88fb3ba mm, oom: move GFP_NOFS check to out_of_memory
__alloc_pages_may_oom is the central place to decide when the
out_of_memory should be invoked.  This is a good approach for most
checks there because they are page allocator specific and the allocation
fails right after for all of them.

The notable exception is GFP_NOFS context which is faking
did_some_progress and keep the page allocator looping even though there
couldn't have been any progress from the OOM killer.  This patch doesn't
change this behavior because we are not ready to allow those allocation
requests to fail yet (and maybe we will face the reality that we will
never manage to safely fail these request).  Instead __GFP_FS check is
moved down to out_of_memory and prevent from OOM victim selection there.
There are two reasons for that

	- OOM notifiers might release some memory even from this context
	  as none of the registered notifier seems to be FS related
	- this might help a dying thread to get an access to memory
          reserves and move on which will make the behavior more
          consistent with the case when the task gets killed from a
          different context.

Keep a comment in __alloc_pages_may_oom to make sure we do not forget
how GFP_NOFS is special and that we really want to do something about
it.

Note to the current oom_notifier users:

The observable difference for you is that oom notifiers cannot depend on
any fs locks because we could deadlock.  Not that this would be allowed
today because that would just lockup machine in most of the cases and
ruling out the OOM killer along the way.  Another difference is that
callbacks might be invoked sooner now because GFP_NOFS is a weaker
reclaim context and so there could be reclaimable memory which is just
not reachable now.  That would require GFP_NOFS only loads which are
really rare and more importantly the observable result would be dropping
of reconstructible object and potential performance drop which is not
such a big deal when we are struggling to fulfill other important
allocation requests.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vitaly Kuznetsov
86dd995d63 memory_hotplug: introduce memhp_default_state= command line parameter
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE specifies the default value for the
memory hotplug onlining policy.  Add a command line parameter to make it
possible to override the default.  It may come handy for debug and
testing purposes.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Lennart Poettering <lennart@poettering.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vitaly Kuznetsov
8604d9e534 memory_hotplug: introduce CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
This patchset continues the work I started with commit 31bc3858ea
("memory-hotplug: add automatic onlining policy for the newly added
memory").

Initially I was going to stop there and bring the policy setting logic
to userspace.  I met two issues on this way:

 1) It is possible to have memory hotplugged at boot (e.g.  with QEMU).
    These blocks stay offlined if we turn the onlining policy on by
    userspace.

 2) My attempt to bring this policy setting to systemd failed, systemd
    maintainers suggest to change the default in kernel or ...  to use
    tmpfiles.d to alter the policy (which looks like a hack to me):
        https://github.com/systemd/systemd/pull/2938

Here I suggest to add a config option to set the default value for the
policy and a kernel command line parameter to make the override.

This patch (of 2):

Introduce config option to set the default value for memory hotplug
onlining policy (/sys/devices/system/memory/auto_online_blocks).  The
reason one would want to turn this option on are to have early onlining
for hotpluggable memory available at boot and to not require any
userspace actions to make memory hotplug work.

[akpm@linux-foundation.org: tweak Kconfig text]
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Lennart Poettering <lennart@poettering.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
1d069b7dd5 huge pagecache: extend mremap pmd rmap lockout to files
Whatever huge pagecache implementation we go with, file rmap locking
must be added to anon rmap locking, when mremap's move_page_tables()
finds a pmd_trans_huge pmd entry: a simple change, let's do it now.

Factor out take_rmap_locks() and drop_rmap_locks() to handle the locking
for make move_ptes() and move_page_tables(), and delete the
VM_BUG_ON_VMA which rejected vm_file and required anon_vma.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
bf8616d5fa huge mm: move_huge_pmd does not need new_vma
Remove move_huge_pmd()'s redundant new_vma arg: all it was used for was
a VM_NOHUGEPAGE check on new_vma flags, but the new_vma is cloned from
the old vma, so a trans_huge_pmd in the new_vma will be as acceptable as
it was in the old vma, alignment and size permitting.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
52b6f46bc1 mm: /proc/sys/vm/stat_refresh to force vmstat update
Provide /proc/sys/vm/stat_refresh to force an immediate update of
per-cpu into global vmstats: useful to avoid a sleep(2) or whatever
before checking counts when testing.  Originally added to work around a
bug which left counts stranded indefinitely on a cpu going idle (an
inaccuracy magnified when small below-batch numbers represent "huge"
amounts of memory), but I believe that bug is now fixed: nonetheless,
this is still a useful knob.

Its schedule_on_each_cpu() is probably too expensive just to fold into
reading /proc/meminfo itself: give this mode 0600 to prevent abuse.
Allow a write or a read to do the same: nothing to read, but "grep -h
Shmem /proc/sys/vm/stat_refresh /proc/meminfo" is convenient.  Oh, and
since global_page_state() itself is careful to disguise any underflow as
0, hack in an "Invalid argument" and pr_warn() if a counter is negative
after the refresh - this helped to fix a misaccounting of
NR_ISOLATED_FILE in my migration code.

But on recent kernels, I find that NR_ALLOC_BATCH and NR_PAGES_SCANNED
often go negative some of the time.  I have not yet worked out why, but
have no evidence that it's actually harmful.  Punt for the moment by
just ignoring the anomaly on those.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andres Lagar-Cavilla
9e18eb2935 tmpfs: mem_cgroup charge fault to vm_mm not current mm
Although shmem_fault() has been careful to count a major fault to vm_mm,
shmem_getpage_gfp() has been careless in charging a remote access fault
to current->mm owner's memcg instead of to vma->vm_mm owner's memcg:
that is inconsistent with all the mem_cgroup charging on remote access
faults in mm/memory.c.

Fix it by passing fault_mm along with fault_type to
shmem_get_page_gfp(); but in that case, now knowing the right mm, it's
better for it to handle the PGMAJFAULT updates itself.

And let's keep this clutter out of most callers' way: change the common
shmem_getpage() wrapper to hide fault_mm and fault_type as well as gfp.

Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
75edd345e8 tmpfs: preliminary minor tidyups
Make a few cleanups in mm/shmem.c, before going on to complicate it.

shmem_alloc_page() will become more complicated: we can't afford to to
have that complication duplicated between a CONFIG_NUMA version and a
!CONFIG_NUMA version, so rearrange the #ifdef'ery there to yield a
single shmem_swapin() and a single shmem_alloc_page().

Yes, it's a shame to inflict the horrid pseudo-vma on non-NUMA
configurations, but eliminating it is a larger cleanup: I have an
alloc_pages_mpol() patchset not yet ready - mpol handling is subtle and
bug-prone, and changed yet again since my last version.

Move __SetPageLocked, __SetPageSwapBacked from shmem_getpage_gfp() to
shmem_alloc_page(): that SwapBacked flag will be useful in future, to
help to distinguish different cases appropriately.

And the SGP_DIRTY variant of SGP_CACHE is hard to understand and of
little use (IIRC it dates back to when shmem_getpage() returned the page
unlocked): kill it and do the necessary in shmem_file_read_iter().

But an arm64 build then complained that info may be uninitialized (where
shmem_getpage_gfp() deletes a freshly alloced page beyond eof), and
advancing to an "sgp <= SGP_CACHE" test jogged it back to reality.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
fa9949da59 mm: use __SetPageSwapBacked and dont ClearPageSwapBacked
v3.16 commit 07a4278843 ("mm: shmem: avoid atomic operation during
shmem_getpage_gfp") rightly replaced one instance of SetPageSwapBacked
by __SetPageSwapBacked, pointing out that the newly allocated page is
not yet visible to other users (except speculative get_page_unless_zero-
ers, who may not update page flags before their further checks).

That was part of a series in which Mel was focused on tmpfs profiles:
but almost all SetPageSwapBacked uses can be so optimized, with the same
justification.

Remove ClearPageSwapBacked from __read_swap_cache_async() error path:
it's not an error to free a page with PG_swapbacked set.

Follow a convention of __SetPageLocked, __SetPageSwapBacked instead of
doing it differently in different places; but that's for tidiness - if
the ordering actually mattered, we should not be using the __variants.

There's probably scope for further __SetPageFlags in other places, but
SwapBacked is the one I'm interested in at the moment.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Reviewed-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
9d5e6a9f22 mm: update_lru_size do the __mod_zone_page_state
Konstantin Khlebnikov pointed out (nearly four years ago, when lumpy
reclaim was removed) that lru_size can be updated by -nr_taken once per
call to isolate_lru_pages(), instead of page by page.

Update it inside isolate_lru_pages(), or at its two callsites? I chose
to update it at the callsites, rearranging and grouping the updates by
nr_taken and nr_scanned together in both.

With one exception, mem_cgroup_update_lru_size(,lru,) is then used where
__mod_zone_page_state(,NR_LRU_BASE+lru,) is used; and we shall be adding
some more calls in a future commit.  Make the code a little smaller and
simpler by incorporating stat update in lru_size update.

The exception was move_active_pages_to_lru(), which aggregated the
pgmoved stat update separately from the individual lru_size updates; but
I still think this a simplification worth making.

However, the __mod_zone_page_state is not peculiar to mem_cgroups: so
better use the name update_lru_size, calls mem_cgroup_update_lru_size
when CONFIG_MEMCG.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
ca707239e8 mm: update_lru_size warn and reset bad lru_size
Though debug kernels have a VM_BUG_ON to help protect from misaccounting
lru_size, non-debug kernels are liable to wrap it around: and then the
vast unsigned long size draws page reclaim into a loop of repeatedly
doing nothing on an empty list, without even a cond_resched().

That soft lockup looks confusingly like an over-busy reclaim scenario,
with lots of contention on the lru_lock in shrink_inactive_list(): yet
has a totally different origin.

Help differentiate with a custom warning in
mem_cgroup_update_lru_size(), even in non-debug kernels; and reset the
size to avoid the lockup.  But the particular bug which suggested this
change was mine alone, and since fixed.

Make it a WARN_ONCE: the first occurrence is the most informative, a
flurry may follow, yet even when rate-limited little more is learnt.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Konstantin Khlebnikov
1269019e69 mm/mmap: kill hook arch_rebalance_pgtables()
Nobody uses it.

Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
e87d59f7a2 mm/vmstat: make node_page_state() handles all zones by itself
node_page_state() manually adds statistics per each zone and returns
total value for all zones.  Whenever we add a new zone, we need to
consider this function and it's really troublesome.  Make it handle all
zones by itself.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
33499bfe50 mm/highmem: make nr_free_highpages() handles all highmem zones by itself
nr_free_highpages() manually adds statistics per each highmem zone and
returns a total value for them.  Whenever we add a new highmem zone, we
need to consider this function and it's really troublesome.  Make it
handle all highmem zones by itself.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
fc2bd799c7 mm/page_alloc: correct highmem memory statistics
ZONE_MOVABLE could be treated as highmem so we need to consider it for
accurate statistics.  And, in following patches, ZONE_CMA will be
introduced and it can be treated as highmem, too.  So, instead of
manually adding stat of ZONE_MOVABLE, looping all zones and check
whether the zone is highmem or not and add stat of the zone which can be
treated as highmem.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
09b4ab3c43 mm/writeback: correct dirty page calculation for highmem
ZONE_MOVABLE could be treated as highmem so we need to consider it for
accurate calculation of dirty pages.  And, in following patches,
ZONE_CMA will be introduced and it can be treated as highmem, too.  So,
instead of manually adding stat of ZONE_MOVABLE, looping all zones and
check whether the zone is highmem or not and add stat of the zone which
can be treated as highmem.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
ba6b0979e3 power: add zone range overlapping check
There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to care this overlapping when iterating pfn range.

mark_free_pages() iterates requested zone's pfn range and unset all
range's bitmap first.  And then it marks freepages in a zone to the
bitmap.  If there is an overlapping zone, above unset could clear
previous marked bit and reference to this bitmap in the future will
cause the problem.  To prevent it, this patch adds a zone check in
mark_free_pages().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
9d43f5aec9 mm/page_owner: add zone range overlapping check
There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to care this overlapping when iterating pfn range.

There are one place in page_owner.c that iterates pfn range and it
doesn't consider this overlapping.  Add it.

Without this patch, above system could over count early allocated page
number before page_owner is activated.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
a91c43c731 mm/vmstat: add zone range overlapping check
There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to care this overlapping when iterating pfn range.

There are two places in vmstat.c that iterates pfn range and they don't
consider this overlapping.  Add it.

Without this patch, above system could over count pageblock number on a
zone.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
b9eb63191a mm/memory_hotplug: add comment to some functions related to memory hotplug
__offline_isolated_pages() and test_pages_isolated() are used by memory
hotplug.  These functions require that range is in a single zone but
there is no code to do this because memory hotplug checks it before
calling these functions.  To avoid confusing future user of these
functions, this patch adds comments to them.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
f44b2dda8b mm/hugetlb: add same zone check in pfn_range_valid_gigantic()
This patchset deals with some problematic sites that iterate pfn ranges.

There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to take care of this overlapping when iterating pfn
range.

I audit many iterating sites that uses pfn_valid(), pfn_valid_within(),
zone_start_pfn and etc.  and others looks safe to me.  This is a
preparation step for a new CMA implementation, ZONE_CMA
(https://lkml.org/lkml/2015/2/12/95), because it would be easily
overlapped with other zones.  But, zone overlap check is also needed for
the general case so I send it separately.

This patch (of 5):

alloc_gigantic_page() uses alloc_contig_range() and this requires that
the requested range is in a single zone.  To satisfy this requirement,
add this check to pfn_range_valid_gigantic().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
1aa8aea535 mm: uninline page_mapped()
It's huge.  Uninlining it saves 206 bytes per callsite.  Shaves 4924
bytes from the x86_64 allmodconfig vmlinux.

[akpm@linux-foundation.org: coding-style fixes]
Cc: Steve Capper <steve.capper@arm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
fdd048e12c mm, compaction: skip blocks where isolation fails in async direct compaction
The goal of direct compaction is to quickly make a high-order page
available for the pending allocation.  Within an aligned block of pages
of desired order, a single allocated page that cannot be isolated for
migration means that the block cannot fully merge to a buddy page that
would satisfy the allocation request.  Therefore we can reduce the
allocation stall by skipping the rest of the block immediately on
isolation failure.  For async compaction, this also means a higher
chance of succeeding until it detects contention.

We however shouldn't completely sacrifice the second objective of
compaction, which is to reduce overal long-term memory fragmentation.
As a compromise, perform the eager skipping only in direct async
compaction, while sync compaction (including kcompactd) remains
thorough.

Testing was done using stress-highalloc from mmtests, configured for
order-4 GFP_KERNEL allocations:

                                 4.6-rc1               4.6-rc1
                                  before                 after
  Success 1 Min         24.00 (  0.00%)       27.00 (-12.50%)
  Success 1 Mean        30.20 (  0.00%)       31.60 ( -4.64%)
  Success 1 Max         37.00 (  0.00%)       35.00 (  5.41%)
  Success 2 Min         42.00 (  0.00%)       32.00 ( 23.81%)
  Success 2 Mean        44.00 (  0.00%)       44.80 ( -1.82%)
  Success 2 Max         48.00 (  0.00%)       52.00 ( -8.33%)
  Success 3 Min         91.00 (  0.00%)       92.00 ( -1.10%)
  Success 3 Mean        92.20 (  0.00%)       92.80 ( -0.65%)
  Success 3 Max         94.00 (  0.00%)       93.00 (  1.06%)

We can see that success rates are unaffected by the skipping.

                4.6-rc1     4.6-rc1
                 before       after
  User         2587.42     2566.53
  System        482.89      471.20
  Elapsed      1395.68     1382.00

Times are not so useful metric for this benchmark as main portion is the
interfering kernel builds, but results do hint at reduced system times.

                                      4.6-rc1     4.6-rc1
                                       before       after
  Direct pages scanned                163614      159608
  Kswapd pages scanned               2070139     2078790
  Kswapd pages reclaimed             2061707     2069757
  Direct pages reclaimed              163354      159505

Reduced direct reclaim was unintended, but could be explained by more
successful first attempt at (async) direct compaction, which is
attempted before the first reclaim attempt in __alloc_pages_slowpath().

  Compaction stalls                    33052       39853
  Compaction success                   12121       19773
  Compaction failures                  20931       20079

Compaction is indeed more successful, and thus less likely to get
deferred, so there are also more direct compaction stalls.

  Page migrate success               3781876     3326819
  Page migrate failure                 45817       41774
  Compaction pages isolated          7868232     6941457
  Compaction migrate scanned       168160492   127269354
  Compaction migrate prescanned            0           0
  Compaction free scanned         2522142582  2326342620
  Compaction free direct alloc             0           0
  Compaction free dir. all. miss           0           0
  Compaction cost                       5252        4476

The patch reduces migration scanned pages by 25% thanks to the eager
skipping.

[hughd@google.com: prevent nr_isolated_* from going negative]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
a34753d275 mm, compaction: reduce spurious pcplist drains
Compaction drains the local pcplists each time migration scanner moves
away from a cc->order aligned block where it isolated pages for
migration, so that the pages freed by migrations can merge into higher
orders.

The detection is currently coarser than it could be.  The
cc->last_migrated_pfn variable should track the lowest pfn that was
isolated for migration.  But it is set to the pfn where
isolate_migratepages_block() starts scanning, which is typically the
first pfn of the pageblock.  There, the scanner might fail to isolate
several order-aligned blocks, and then isolate COMPACT_CLUSTER_MAX in
another block.  This would cause the pcplists drain to be performed,
although the scanner didn't yet finish the block where it isolated from.

This patch thus makes cc->last_migrated_pfn handling more accurate by
setting it to the pfn of an actually isolated page in
isolate_migratepages_block().  Although practical effects of this patch
are likely low, it arguably makes the intent of the code more obvious.
Also the next patch will make async direct compaction skip blocks more
aggressively, and draining pcplists due to skipped blocks is wasteful.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
06b6640a39 mm, compaction: wrap calculating first and last pfn of pageblock
Compaction code has accumulated numerous instances of manual
calculations of the first (inclusive) and last (exclusive) pfn of a
pageblock (or a smaller block of given order), given a pfn within the
pageblock.

Wrap these calculations by introducing pageblock_start_pfn(pfn) and
pageblock_end_pfn(pfn) macros.

[vbabka@suse.cz: fix crash in get_pfnblock_flags_mask() from isolate_freepages():]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Konstantin Khlebnikov
e4c5800a39 mm/rmap: replace BUG_ON(anon_vma->degree) with VM_WARN_ON
This check effectively catches anon vma hierarchy inconsistence and some
vma corruptions.  It was effective for catching corner cases in anon vma
reusing logic.  For now this code seems stable so check could be hidden
under CONFIG_DEBUG_VM and replaced with WARN because it's not so fatal.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Suggested-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
fee83b3aba mm/mempolicy.c:offset_il_node() document and clarify
This code was pretty obscure and was relying upon obscure side-effects
of next_node(-1, ...) and was relying upon NUMA_NO_NODE being equal to
-1.

Clean that all up and document the function's intent.

Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
54f18d3526 mm/hugetlb.c: use first_memory_node
Instead of open-coding it.

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Li Zhang
949698a31a mm/page_alloc: Remove useless parameter of __free_pages_boot_core
__free_pages_boot_core has parameter pfn which is not used at all.
Remove it.

Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com>
Reviewed-by: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Michal Hocko
fda3d69be9 mm/memcontrol.c:mem_cgroup_select_victim_node(): clarify comment
> The comment seems to have not much to do with the code?

I guess the comment tries to say that the code path is triggered when we
charge the page which happens _before_ it is added to the LRU list and
so last_scanned_node might contain the stale data.

Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Yaowei Bai
c98940f6fa mm/memory_hotplug: is_mem_section_removable() can return bool
Make is_mem_section_removable() return bool to improve readability due
to this particular function only using either one or zero as its return
value.

Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vaishali Thakkar
9fee021d15 mm/hugetlb: introduce hugetlb_bad_size()
When any unsupported hugepage size is specified, 'hugepagesz=' and
'hugepages=' should be ignored during command line parsing until any
supported hugepage size is found.  But currently incorrect number of
hugepages are allocated when unsupported size is specified as it fails
to ignore the 'hugepages=' command.

Test case:

Note that this is specific to x86 architecture.

Boot the kernel with command line option 'hugepagesz=256M hugepages=X'.
After boot, dmesg output shows that X number of hugepages of the size 2M
is pre-allocated instead of 0.

So, to handle such command line options, introduce new routine
hugetlb_bad_size.  The routine hugetlb_bad_size sets the global variable
parsed_valid_hugepagesz.  We are using parsed_valid_hugepagesz to save
the state when unsupported hugepagesize is found so that we can ignore
the 'hugepages=' parameters after that and then reset the variable when
supported hugepage size is found.

The routine hugetlb_bad_size can be called while setting 'hugepagesz='
parameter in an architecture specific code.

Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mike Kravetz
09a95e29cb mm/hugetlb: optimize minimum size (min_size) accounting
It was observed that minimum size accounting associated with the
hugetlbfs min_size mount option may not perform optimally and as
expected.  As huge pages/reservations are released from the filesystem
and given back to the global pools, they are reserved for subsequent
filesystem use as long as the subpool reserved count is less than
subpool minimum size.  It does not take into account used pages within
the filesystem.  The filesystem size limits are not exceeded and this is
technically not a bug.  However, better behavior would be to wait for
the number of used pages/reservations associated with the filesystem to
drop below the minimum size before taking reservations to satisfy
minimum size.

An optimization is also made to the hugepage_subpool_get_pages() routine
which is called when pages/reservations are allocated.  This does not
change behavior, but simply avoids the accounting if all reservations
have already been taken (subpool reserved count == 0).

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
0edaf86cf1 include/linux/nodemask.h: create next_node_in() helper
Lots of code does

	node = next_node(node, XXX);
	if (node == MAX_NUMNODES)
		node = first_node(XXX);

so create next_node_in() to do this and use it in various places.

[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
0139aa7b7f mm: rename _count, field of the struct page, to _refcount
Many developers already know that field for reference count of the
struct page is _count and atomic type.  They would try to handle it
directly and this could break the purpose of page reference count
tracepoint.  To prevent direct _count modification, this patch rename it
to _refcount and add warning message on the code.  After that, developer
who need to handle reference count will find that field should not be
accessed directly.

[akpm@linux-foundation.org: fix comments, per Vlastimil]
[akpm@linux-foundation.org: Documentation/vm/transhuge.txt too]
[sfr@canb.auug.org.au: sync ethernet driver changes]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Manish Chopra <manish.chopra@qlogic.com>
Cc: Yuval Mintz <yuval.mintz@qlogic.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
6d061f9f61 mm/page_ref: use page_ref helper instead of direct modification of _count
page_reference manipulation functions are introduced to track down
reference count change of the page.  Use it instead of direct
modification of _count.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Li Peng
43efd3ea64 mm/slub.c: fix sysfs filename in comment
/sys/kernel/slab/xx/defrag_ratio should be remote_node_defrag_ratio.

Link: http://lkml.kernel.org/r/1463449242-5366-1-git-send-email-lip@dtdream.com
Signed-off-by: Li Peng <lip@dtdream.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Yang Shi
a3187e438b mm: slab: remove ZONE_DMA_FLAG
Now we have IS_ENABLED helper to check if a Kconfig option is enabled or
not, so ZONE_DMA_FLAG sounds no longer useful.

And, the use of ZONE_DMA_FLAG in slab looks pointless according to the
comment [1] from Johannes Weiner, so remove them and ORing passed in
flags with the cache gfp flags has been done in kmem_getpages().

[1] https://lkml.org/lkml/2014/9/25/553

Link: http://lkml.kernel.org/r/1462381297-11009-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Thomas Garnier
c7ce4f60ac mm: SLAB freelist randomization
Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize
the SLAB freelist.  The list is randomized during initialization of a
new set of pages.  The order on different freelist sizes is pre-computed
at boot for performance.  Each kmem_cache has its own randomized
freelist.  Before pre-computed lists are available freelists are
generated dynamically.  This security feature reduces the predictability
of the kernel SLAB allocator against heap overflows rendering attacks
much less stable.

For example this attack against SLUB (also applicable against SLAB)
would be affected:

  https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/

Also, since v4.6 the freelist was moved at the end of the SLAB.  It
means a controllable heap is opened to new attacks not yet publicly
discussed.  A kernel heap overflow can be transformed to multiple
use-after-free.  This feature makes this type of attack harder too.

To generate entropy, we use get_random_bytes_arch because 0 bits of
entropy is available in the boot stage.  In the worse case this function
will fallback to the get_random_bytes sub API.  We also generate a shift
random number to shift pre-computed freelist for each new set of pages.

The config option name is not specific to the SLAB as this approach will
be extended to other allocators like SLUB.

Performance results highlighted no major changes:

Hackbench (running 90 10 times):

  Before average: 0.0698
  After average: 0.0663 (-5.01%)

slab_test 1 run on boot.  Difference only seen on the 2048 size test
being the worse case scenario covered by freelist randomization.  New
slab pages are constantly being created on the 10000 allocations.
Variance should be mainly due to getting new pages every few
allocations.

Before:

  Single thread testing
  =====================
  1. Kmalloc: Repeatedly allocate then free test
  10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
  10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
  10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
  10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
  10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
  10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
  10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
  10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
  10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
  10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
  10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
  10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
  2. Kmalloc: alloc/free test
  10000 times kmalloc(8)/kfree -> 121 cycles
  10000 times kmalloc(16)/kfree -> 121 cycles
  10000 times kmalloc(32)/kfree -> 121 cycles
  10000 times kmalloc(64)/kfree -> 121 cycles
  10000 times kmalloc(128)/kfree -> 121 cycles
  10000 times kmalloc(256)/kfree -> 119 cycles
  10000 times kmalloc(512)/kfree -> 119 cycles
  10000 times kmalloc(1024)/kfree -> 119 cycles
  10000 times kmalloc(2048)/kfree -> 119 cycles
  10000 times kmalloc(4096)/kfree -> 121 cycles
  10000 times kmalloc(8192)/kfree -> 119 cycles
  10000 times kmalloc(16384)/kfree -> 119 cycles

After:

  Single thread testing
  =====================
  1. Kmalloc: Repeatedly allocate then free test
  10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
  10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
  10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
  10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
  10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
  10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
  10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
  10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
  10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
  10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
  10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
  10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
  2. Kmalloc: alloc/free test
  10000 times kmalloc(8)/kfree -> 121 cycles
  10000 times kmalloc(16)/kfree -> 121 cycles
  10000 times kmalloc(32)/kfree -> 123 cycles
  10000 times kmalloc(64)/kfree -> 142 cycles
  10000 times kmalloc(128)/kfree -> 121 cycles
  10000 times kmalloc(256)/kfree -> 119 cycles
  10000 times kmalloc(512)/kfree -> 119 cycles
  10000 times kmalloc(1024)/kfree -> 119 cycles
  10000 times kmalloc(2048)/kfree -> 119 cycles
  10000 times kmalloc(4096)/kfree -> 119 cycles
  10000 times kmalloc(8192)/kfree -> 119 cycles
  10000 times kmalloc(16384)/kfree -> 119 cycles

[akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()]
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vladimir Davydov
81ae6d0395 mm/slub.c: replace kick_all_cpus_sync() with synchronize_sched() in kmem_cache_shrink()
When we call __kmem_cache_shrink on memory cgroup removal, we need to
synchronize kmem_cache->cpu_partial update with put_cpu_partial that
might be running on other cpus.  Currently, we achieve that by using
kick_all_cpus_sync, which works as a system wide memory barrier.  Though
fast it is, this method has a flaw - it issues a lot of IPIs, which
might hurt high performance or real-time workloads.

To fix this, let's replace kick_all_cpus_sync with synchronize_sched.
Although the latter one may take much longer to finish, it shouldn't be
a problem in this particular case, because memory cgroups are destroyed
asynchronously from a workqueue so that no user visible effects should
be introduced.  OTOH, it will save us from excessive IPIs when someone
removes a cgroup.

Anyway, even if using synchronize_sched turns out to take too long, we
can always introduce a kind of __kmem_cache_shrink batching so that this
method would only be called once per one cgroup destruction (not per
each per memcg kmem cache as it is now).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
801faf0db8 mm/slab: lockless decision to grow cache
To check whether free objects exist or not precisely, we need to grab a
lock.  But, accuracy isn't that important because race window would be
even small and if there is too much free object, cache reaper would reap
it.  So, this patch makes the check for free object exisistence not to
hold a lock.  This will reduce lock contention in heavily allocation
case.

Note that until now, n->shared can be freed during the processing by
writing slabinfo, but, with some trick in this patch, we can access it
freely within interrupt disabled period.

Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago.  I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.

  * Before
  Kmalloc N*alloc N*free(32): Average=248/966
  Kmalloc N*alloc N*free(64): Average=261/949
  Kmalloc N*alloc N*free(128): Average=314/1016
  Kmalloc N*alloc N*free(256): Average=741/1061
  Kmalloc N*alloc N*free(512): Average=1246/1152
  Kmalloc N*alloc N*free(1024): Average=2437/1259
  Kmalloc N*alloc N*free(2048): Average=4980/1800
  Kmalloc N*alloc N*free(4096): Average=9000/2078

  * After
  Kmalloc N*alloc N*free(32): Average=344/792
  Kmalloc N*alloc N*free(64): Average=347/882
  Kmalloc N*alloc N*free(128): Average=390/959
  Kmalloc N*alloc N*free(256): Average=393/1067
  Kmalloc N*alloc N*free(512): Average=683/1229
  Kmalloc N*alloc N*free(1024): Average=1295/1325
  Kmalloc N*alloc N*free(2048): Average=2513/1664
  Kmalloc N*alloc N*free(4096): Average=4742/2172

It shows that allocation performance decreases for the object size up to
128 and it may be due to extra checks in cache_alloc_refill().  But,
with considering improvement of free performance, net result looks the
same.  Result for other size class looks very promising, roughly, 50%
performance improvement.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
213b46958c mm/slab: refill cpu cache through a new slab without holding a node lock
Until now, cache growing makes a free slab on node's slab list and then
we can allocate free objects from it.  This necessarily requires to hold
a node lock which is very contended.  If we refill cpu cache before
attaching it to node's slab list, we can avoid holding a node lock as
much as possible because this newly allocated slab is only visible to
the current task.  This will reduce lock contention.

Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago.  I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.

  * Before
  Kmalloc N*alloc N*free(32): Average=355/750
  Kmalloc N*alloc N*free(64): Average=452/812
  Kmalloc N*alloc N*free(128): Average=559/1070
  Kmalloc N*alloc N*free(256): Average=1176/980
  Kmalloc N*alloc N*free(512): Average=1939/1189
  Kmalloc N*alloc N*free(1024): Average=3521/1278
  Kmalloc N*alloc N*free(2048): Average=7152/1838
  Kmalloc N*alloc N*free(4096): Average=13438/2013

  * After
  Kmalloc N*alloc N*free(32): Average=248/966
  Kmalloc N*alloc N*free(64): Average=261/949
  Kmalloc N*alloc N*free(128): Average=314/1016
  Kmalloc N*alloc N*free(256): Average=741/1061
  Kmalloc N*alloc N*free(512): Average=1246/1152
  Kmalloc N*alloc N*free(1024): Average=2437/1259
  Kmalloc N*alloc N*free(2048): Average=4980/1800
  Kmalloc N*alloc N*free(4096): Average=9000/2078

It shows that contention is reduced for all the object sizes and
performance increases by 30 ~ 40%.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
76b342bdc7 mm/slab: separate cache_grow() to two parts
This is a preparation step to implement lockless allocation path when
there is no free objects in kmem_cache.

What we'd like to do here is to refill cpu cache without holding a node
lock.  To accomplish this purpose, refill should be done after new slab
allocation but before attaching the slab to the management list.  So,
this patch separates cache_grow() to two parts, allocation and attaching
to the list in order to add some code inbetween them in the following
patch.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
511e3a0588 mm/slab: make cache_grow() handle the page allocated on arbitrary node
Currently, cache_grow() assumes that allocated page's nodeid would be
same with parameter nodeid which is used for allocation request.  If we
discard this assumption, we can handle fallback_alloc() case gracefully.
So, this patch makes cache_grow() handle the page allocated on arbitrary
node and clean-up relevant code.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
03d1d43a12 mm/slab: racy access/modify the slab color
Slab color isn't needed to be changed strictly.  Because locking for
changing slab color could cause more lock contention so this patch
implements racy access/modify the slab color.  This is a preparation
step to implement lockless allocation path when there is no free objects
in the kmem_cache.

Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago.  I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.

  * Before
  Kmalloc N*alloc N*free(32): Average=365/806
  Kmalloc N*alloc N*free(64): Average=452/690
  Kmalloc N*alloc N*free(128): Average=736/886
  Kmalloc N*alloc N*free(256): Average=1167/985
  Kmalloc N*alloc N*free(512): Average=2088/1125
  Kmalloc N*alloc N*free(1024): Average=4115/1184
  Kmalloc N*alloc N*free(2048): Average=8451/1748
  Kmalloc N*alloc N*free(4096): Average=16024/2048

  * After
  Kmalloc N*alloc N*free(32): Average=355/750
  Kmalloc N*alloc N*free(64): Average=452/812
  Kmalloc N*alloc N*free(128): Average=559/1070
  Kmalloc N*alloc N*free(256): Average=1176/980
  Kmalloc N*alloc N*free(512): Average=1939/1189
  Kmalloc N*alloc N*free(1024): Average=3521/1278
  Kmalloc N*alloc N*free(2048): Average=7152/1838
  Kmalloc N*alloc N*free(4096): Average=13438/2013

It shows that contention is reduced for object size >= 1024 and
performance increases by roughly 15%.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
6052b7880a mm/slab: don't keep free slabs if free_objects exceeds free_limit
Currently, determination to free a slab is done whenever each freed
object is put into the slab.  This has a following problem.

Assume free_limit = 10 and nr_free = 9.

Free happens as following sequence and nr_free changes as following.

free(become a free slab) free(not become a free slab) nr_free: 9 -> 10
(at first free) -> 11 (at second free)

If we try to check if we can free current slab or not on each object
free, we can't free any slab in this situation because current slab
isn't a free slab when nr_free exceed free_limit (at second free) even
if there is a free slab.

However, if we check it lastly, we can free 1 free slab.

This problem would cause to keep too much memory in the slab subsystem.
This patch try to fix it by checking number of free object after all
free work is done.  If there is free slab at that time, we can free slab
as much as possible so we keep free slab as minimal.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
c3d332b6b2 mm/slab: clean-up kmem_cache_node setup
There are mostly same code for setting up kmem_cache_node either in
cpuup_prepare() or alloc_kmem_cache_node().  Factor out and clean-up
them.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Nishanth Menon <nm@ti.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
ded0ecf611 mm/slab: factor out kmem_cache_node initialization code
It can be reused on other place, so factor out it.  Following patch will
use it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
a5aa63a5f7 mm/slab: drain the free slab as much as possible
slabs_tofree() implies freeing all free slab.  We can do it with just
providing INT_MAX.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
8888177ea1 mm/slab: remove BAD_ALIEN_MAGIC again
Initial attemp to remove BAD_ALIEN_MAGIC is once reverted by 'commit
edcad25095 ("Revert "slab: remove BAD_ALIEN_MAGIC"")' because it
causes a problem on m68k which has many node but !CONFIG_NUMA.  In this
case, although alien cache isn't used at all but to cope with some
initialization path, garbage value is used and that is BAD_ALIEN_MAGIC.
Now, this patch set use_alien_caches to 0 when !CONFIG_NUMA, there is no
initialization path problem so we don't need BAD_ALIEN_MAGIC at all.  So
remove it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
18726ca8b3 mm/slab: fix the theoretical race by holding proper lock
While processing concurrent allocation, SLAB could be contended a lot
because it did a lots of work with holding a lock.  This patchset try to
reduce the number of critical section to reduce lock contention.  Major
changes are lockless decision to allocate more slab and lockless cpu
cache refill from the newly allocated slab.

Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago.  I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.

  * Before
  Kmalloc N*alloc N*free(32): Average=365/806
  Kmalloc N*alloc N*free(64): Average=452/690
  Kmalloc N*alloc N*free(128): Average=736/886
  Kmalloc N*alloc N*free(256): Average=1167/985
  Kmalloc N*alloc N*free(512): Average=2088/1125
  Kmalloc N*alloc N*free(1024): Average=4115/1184
  Kmalloc N*alloc N*free(2048): Average=8451/1748
  Kmalloc N*alloc N*free(4096): Average=16024/2048

  * After
  Kmalloc N*alloc N*free(32): Average=344/792
  Kmalloc N*alloc N*free(64): Average=347/882
  Kmalloc N*alloc N*free(128): Average=390/959
  Kmalloc N*alloc N*free(256): Average=393/1067
  Kmalloc N*alloc N*free(512): Average=683/1229
  Kmalloc N*alloc N*free(1024): Average=1295/1325
  Kmalloc N*alloc N*free(2048): Average=2513/1664
  Kmalloc N*alloc N*free(4096): Average=4742/2172

It shows that performance improves greatly (roughly more than 50%) for
the object class whose size is more than 128 bytes.

This patch (of 11):

If we don't hold neither the slab_mutex nor the node lock, node's shared
array cache could be freed and re-populated.  If __kmem_cache_shrink()
is called at the same time, it will call drain_array() with n->shared
without holding node lock so problem can happen.  This patch fix the
situation by holding the node lock before trying to drain the shared
array.

In addition, add a debug check to confirm that n->shared access race
doesn't exist.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Jan Kara
4d9a2c8746 dax: Remove i_mmap_lock protection
Currently faults are protected against truncate by filesystem specific
i_mmap_sem and page lock in case of hole page. Cow faults are protected
DAX radix tree entry locking. So there's no need for i_mmap_lock in DAX
code. Remove it.

Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
2016-05-19 15:28:40 -06:00
Jan Kara
bc2466e425 dax: Use radix tree entry lock to protect cow faults
When doing cow faults, we cannot directly fill in PTE as we do for other
faults as we rely on generic code to do proper accounting of the cowed page.
We also have no page to lock to protect against races with truncate as
other faults have and we need the protection to extend until the moment
generic code inserts cowed page into PTE thus at that point we have no
protection of fs-specific i_mmap_sem. So far we relied on using
i_mmap_lock for the protection however that is completely special to cow
faults. To make fault locking more uniform use DAX entry lock instead.

Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
2016-05-19 15:27:49 -06:00
Jan Kara
ac401cc782 dax: New fault locking
Currently DAX page fault locking is racy.

CPU0 (write fault)		CPU1 (read fault)

__dax_fault()			__dax_fault()
  get_block(inode, block, &bh, 0) -> not mapped
				  get_block(inode, block, &bh, 0)
				    -> not mapped
  if (!buffer_mapped(&bh))
    if (vmf->flags & FAULT_FLAG_WRITE)
      get_block(inode, block, &bh, 1) -> allocates blocks
  if (page) -> no
				  if (!buffer_mapped(&bh))
				    if (vmf->flags & FAULT_FLAG_WRITE) {
				    } else {
				      dax_load_hole();
				    }
  dax_insert_mapping()

And we are in a situation where we fail in dax_radix_entry() with -EIO.

Another problem with the current DAX page fault locking is that there is
no race-free way to clear dirty tag in the radix tree. We can always
end up with clean radix tree and dirty data in CPU cache.

We fix the first problem by introducing locking of exceptional radix
tree entries in DAX mappings acting very similarly to page lock and thus
synchronizing properly faults against the same mapping index. The same
lock can later be used to avoid races when clearing radix tree dirty
tag.

Reviewed-by: NeilBrown <neilb@suse.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
2016-05-19 15:20:54 -06:00
Jan Kara
4f622938a5 dax: Allow DAX code to replace exceptional entries
Currently we forbid page_cache_tree_insert() to replace exceptional radix
tree entries for DAX inodes. However to make DAX faults race free we will
lock radix tree entries and when hole is created, we need to replace
such locked radix tree entry with a hole page. So modify
page_cache_tree_insert() to allow that.

Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
2016-05-19 15:18:30 -06:00
Linus Torvalds
c2e7b20705 Merge branch 'work.preadv2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs cleanups from Al Viro:
 "More cleanups from Christoph"

* 'work.preadv2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  nfsd: use RWF_SYNC
  fs: add RWF_DSYNC aand RWF_SYNC
  ceph: use generic_write_sync
  fs: simplify the generic_write_sync prototype
  fs: add IOCB_SYNC and IOCB_DSYNC
  direct-io: remove the offset argument to dio_complete
  direct-io: eliminate the offset argument to ->direct_IO
  xfs: eliminate the pos variable in xfs_file_dio_aio_write
  filemap: remove the pos argument to generic_file_direct_write
  filemap: remove pos variables in generic_file_read_iter
2016-05-17 15:05:23 -07:00
Linus Torvalds
7f427d3a60 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull parallel filesystem directory handling update from Al Viro.

This is the main parallel directory work by Al that makes the vfs layer
able to do lookup and readdir in parallel within a single directory.
That's a big change, since this used to be all protected by the
directory inode mutex.

The inode mutex is replaced by an rwsem, and serialization of lookups of
a single name is done by a "in-progress" dentry marker.

The series begins with xattr cleanups, and then ends with switching
filesystems over to actually doing the readdir in parallel (switching to
the "iterate_shared()" that only takes the read lock).

A more detailed explanation of the process from Al Viro:
 "The xattr work starts with some acl fixes, then switches ->getxattr to
  passing inode and dentry separately.  This is the point where the
  things start to get tricky - that got merged into the very beginning
  of the -rc3-based #work.lookups, to allow untangling the
  security_d_instantiate() mess.  The xattr work itself proceeds to
  switch a lot of filesystems to generic_...xattr(); no complications
  there.

  After that initial xattr work, the series then does the following:

   - untangle security_d_instantiate()

   - convert a bunch of open-coded lookup_one_len_unlocked() to calls of
     that thing; one such place (in overlayfs) actually yields a trivial
     conflict with overlayfs fixes later in the cycle - overlayfs ended
     up switching to a variant of lookup_one_len_unlocked() sans the
     permission checks.  I would've dropped that commit (it gets
     overridden on merge from #ovl-fixes in #for-next; proper resolution
     is to use the variant in mainline fs/overlayfs/super.c), but I
     didn't want to rebase the damn thing - it was fairly late in the
     cycle...

   - some filesystems had managed to depend on lookup/lookup exclusion
     for *fs-internal* data structures in a way that would break if we
     relaxed the VFS exclusion.  Fixing hadn't been hard, fortunately.

   - core of that series - parallel lookup machinery, replacing
     ->i_mutex with rwsem, making lookup_slow() take it only shared.  At
     that point lookups happen in parallel; lookups on the same name
     wait for the in-progress one to be done with that dentry.

     Surprisingly little code, at that - almost all of it is in
     fs/dcache.c, with fs/namei.c changes limited to lookup_slow() -
     making it use the new primitive and actually switching to locking
     shared.

   - parallel readdir stuff - first of all, we provide the exclusion on
     per-struct file basis, same as we do for read() vs lseek() for
     regular files.  That takes care of most of the needed exclusion in
     readdir/readdir; however, these guys are trickier than lookups, so
     I went for switching them one-by-one.  To do that, a new method
     '->iterate_shared()' is added and filesystems are switched to it
     as they are either confirmed to be OK with shared lock on directory
     or fixed to be OK with that.  I hope to kill the original method
     come next cycle (almost all in-tree filesystems are switched
     already), but it's still not quite finished.

   - several filesystems get switched to parallel readdir.  The
     interesting part here is dealing with dcache preseeding by readdir;
     that needs minor adjustment to be safe with directory locked only
     shared.

     Most of the filesystems doing that got switched to in those
     commits.  Important exception: NFS.  Turns out that NFS folks, with
     their, er, insistence on VFS getting the fuck out of the way of the
     Smart Filesystem Code That Knows How And What To Lock(tm) have
     grown the locking of their own.  They had their own homegrown
     rwsem, with lookup/readdir/atomic_open being *writers* (sillyunlink
     is the reader there).  Of course, with VFS getting the fuck out of
     the way, as requested, the actual smarts of the smart filesystem
     code etc. had become exposed...

   - do_last/lookup_open/atomic_open cleanups.  As the result, open()
     without O_CREAT locks the directory only shared.  Including the
     ->atomic_open() case.  Backmerge from #for-linus in the middle of
     that - atomic_open() fix got brought in.

   - then comes NFS switch to saner (VFS-based ;-) locking, killing the
     homegrown "lookup and readdir are writers" kinda-sorta rwsem.  All
     exclusion for sillyunlink/lookup is done by the parallel lookups
     mechanism.  Exclusion between sillyunlink and rmdir is a real rwsem
     now - rmdir being the writer.

     Result: NFS lookups/readdirs/O_CREAT-less opens happen in parallel
     now.

   - the rest of the series consists of switching a lot of filesystems
     to parallel readdir; in a lot of cases ->llseek() gets simplified
     as well.  One backmerge in there (again, #for-linus - rockridge
     fix)"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (74 commits)
  ext4: switch to ->iterate_shared()
  hfs: switch to ->iterate_shared()
  hfsplus: switch to ->iterate_shared()
  hostfs: switch to ->iterate_shared()
  hpfs: switch to ->iterate_shared()
  hpfs: handle allocation failures in hpfs_add_pos()
  gfs2: switch to ->iterate_shared()
  f2fs: switch to ->iterate_shared()
  afs: switch to ->iterate_shared()
  befs: switch to ->iterate_shared()
  befs: constify stuff a bit
  isofs: switch to ->iterate_shared()
  get_acorn_filename(): deobfuscate a bit
  btrfs: switch to ->iterate_shared()
  logfs: no need to lock directory in lseek
  switch ecryptfs to ->iterate_shared
  9p: switch to ->iterate_shared()
  fat: switch to ->iterate_shared()
  romfs, squashfs: switch to ->iterate_shared()
  more trivial ->iterate_shared conversions
  ...
2016-05-17 11:01:31 -07:00
Al Viro
0e0162bb8c Merge branch 'ovl-fixes' into for-linus
Backmerge to resolve a conflict in ovl_lookup_real();
"ovl_lookup_real(): use lookup_one_len_unlocked()" instead,
but it was too late in the cycle to rebase.
2016-05-17 02:17:59 -04:00
Linus Torvalds
825a3b2605 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:

 - massive CPU hotplug rework (Thomas Gleixner)

 - improve migration fairness (Peter Zijlstra)

 - CPU load calculation updates/cleanups (Yuyang Du)

 - cpufreq updates (Steve Muckle)

 - nohz optimizations (Frederic Weisbecker)

 - switch_mm() micro-optimization on x86 (Andy Lutomirski)

 - ... lots of other enhancements, fixes and cleanups.

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (66 commits)
  ARM: Hide finish_arch_post_lock_switch() from modules
  sched/core: Provide a tsk_nr_cpus_allowed() helper
  sched/core: Use tsk_cpus_allowed() instead of accessing ->cpus_allowed
  sched/loadavg: Fix loadavg artifacts on fully idle and on fully loaded systems
  sched/fair: Correct unit of load_above_capacity
  sched/fair: Clean up scale confusion
  sched/nohz: Fix affine unpinned timers mess
  sched/fair: Fix fairness issue on migration
  sched/core: Kill sched_class::task_waking to clean up the migration logic
  sched/fair: Prepare to fix fairness problems on migration
  sched/fair: Move record_wakee()
  sched/core: Fix comment typo in wake_q_add()
  sched/core: Remove unused variable
  sched: Make hrtick_notifier an explicit call
  sched/fair: Make ilb_notifier an explicit call
  sched/hotplug: Make activate() the last hotplug step
  sched/hotplug: Move migration CPU_DYING to sched_cpu_dying()
  sched/migration: Move CPU_ONLINE into scheduler state
  sched/migration: Move calc_load_migrate() into CPU_DYING
  sched/migration: Move prepare transition to SCHED_STARTING state
  ...
2016-05-16 14:47:16 -07:00
Andrea Arcangeli
6d0a07edd1 mm: thp: calculate the mapcount correctly for THP pages during WP faults
This will provide fully accuracy to the mapcount calculation in the
write protect faults, so page pinning will not get broken by false
positive copy-on-writes.

total_mapcount() isn't the right calculation needed in
reuse_swap_page(), so this introduces a page_trans_huge_mapcount()
that is effectively the full accurate return value for page_mapcount()
if dealing with Transparent Hugepages, however we only use the
page_trans_huge_mapcount() during COW faults where it strictly needed,
due to its higher runtime cost.

This also provide at practical zero cost the total_mapcount
information which is needed to know if we can still relocate the page
anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we
can reuse the page no matter if it's a pte or a pmd_trans_huge
triggering the fault, but we can only relocate the page anon_vma to
the local vma->anon_vma if we're sure it's only this "vma" mapping the
whole THP physical range.

Kirill A. Shutemov discovered the problem with moving the page
anon_vma to the local vma->anon_vma in a previous version of this
patch and another problem in the way page_move_anon_rmap() was called.

Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a
previous version, because reuse_swap_page must be a macro to call
page_trans_huge_mapcount from swap.h, so this uses a macro again
instead of an inline function. With this change at least it's a less
dangerous usage than it was before, because "page" is used only once
now, while with the previous code reuse_swap_page(page++) would have
called page_mapcount on page+1 and it would have increased page twice
instead of just once.

Dean Luick noticed an uninitialized variable that could result in a
rmap inefficiency for the non-THP case in a previous version.

Mike Marciniszyn said:

: Our RDMA tests are seeing an issue with memory locking that bisects to
: commit 61f5d698cc ("mm: re-enable THP")
:
: The test program registers two rather large MRs (512M) and RDMA
: writes data to a passive peer using the first and RDMA reads it back
: into the second MR and compares that data.  The sizes are chosen randomly
: between 0 and 1024 bytes.
:
: The test will get through a few (<= 4 iterations) and then gets a
: compare error.
:
: Tracing indicates the kernel logical addresses associated with the individual
: pages at registration ARE correct , the data in the "RDMA read response only"
: packets ARE correct.
:
: The "corruption" occurs when the packet crosse two pages that are not physically
: contiguous.   The second page reads back as zero in the program.
:
: It looks like the user VA at the point of the compare error no longer points to
: the same physical address as was registered.
:
: This patch totally resolves the issue!

Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Reviewed-by: Dean Luick <dean.luick@intel.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Tested-by: Josh Collier <josh.d.collier@intel.com>
Cc: Marc Haber <mh+linux-kernel@zugschlus.de>
Cc: <stable@vger.kernel.org>	[4.5]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-12 15:52:50 -07:00
Zhou Chengming
7496fea9a6 ksm: fix conflict between mmput and scan_get_next_rmap_item
A concurrency issue about KSM in the function scan_get_next_rmap_item.

task A (ksmd):				|task B (the mm's task):
					|
mm = slot->mm;				|
down_read(&mm->mmap_sem);		|
					|
...					|
					|
spin_lock(&ksm_mmlist_lock);		|
					|
ksm_scan.mm_slot go to the next slot;	|
					|
spin_unlock(&ksm_mmlist_lock);		|
					|mmput() ->
					|	ksm_exit():
					|
					|spin_lock(&ksm_mmlist_lock);
					|if (mm_slot && ksm_scan.mm_slot != mm_slot) {
					|	if (!mm_slot->rmap_list) {
					|		easy_to_free = 1;
					|		...
					|
					|if (easy_to_free) {
					|	mmdrop(mm);
					|	...
					|
					|So this mm_struct may be freed in the mmput().
					|
up_read(&mm->mmap_sem);			|

As we can see above, the ksmd thread may access a mm_struct that already
been freed to the kmem_cache.  Suppose a fork will get this mm_struct from
the kmem_cache, the ksmd thread then call up_read(&mm->mmap_sem), will
cause mmap_sem.count to become -1.

As suggested by Andrea Arcangeli, unmerge_and_remove_all_rmap_items has
the same SMP race condition, so fix it too.  My prev fix in function
scan_get_next_rmap_item will introduce a different SMP race condition, so
just invert the up_read/spin_unlock order as Andrea Arcangeli said.

Link: http://lkml.kernel.org/r/1462708815-31301-1-git-send-email-zhouchengming1@huawei.com
Signed-off-by: Zhou Chengming <zhouchengming1@huawei.com>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Geliang Tang <geliangtang@163.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: Li Bin <huawei.libin@huawei.com>
Cc: Zhen Lei <thunder.leizhen@huawei.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-12 15:52:50 -07:00
Ingo Molnar
eb60b3e5e8 Merge branch 'sched/urgent' into sched/core to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12 09:18:13 +02:00
Sergey Senozhatsky
44f43e99fe zsmalloc: fix zs_can_compact() integer overflow
zs_can_compact() has two race conditions in its core calculation:

unsigned long obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
				zs_stat_get(class, OBJ_USED);

1) classes are not locked, so the numbers of allocated and used
   objects can change by the concurrent ops happening on other CPUs
2) shrinker invokes it from preemptible context

Depending on the circumstances, thus, OBJ_ALLOCATED can become
less than OBJ_USED, which can result in either very high or
negative `total_scan' value calculated later in do_shrink_slab().

do_shrink_slab() has some logic to prevent those cases:

 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-64
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62

However, due to the way `total_scan' is calculated, not every
shrinker->count_objects() overflow can be spotted and handled.
To demonstrate the latter, I added some debugging code to do_shrink_slab()
(x86_64) and the results were:

 vmscan: OVERFLOW: shrinker->count_objects() == -1 [18446744073709551615]
 vmscan: but total_scan > 0: 92679974445502
 vmscan: resulting total_scan: 92679974445502
[..]
 vmscan: OVERFLOW: shrinker->count_objects() == -1 [18446744073709551615]
 vmscan: but total_scan > 0: 22634041808232578
 vmscan: resulting total_scan: 22634041808232578

Even though shrinker->count_objects() has returned an overflowed value,
the resulting `total_scan' is positive, and, what is more worrisome, it
is insanely huge. This value is getting used later on in
shrinker->scan_objects() loop:

        while (total_scan >= batch_size ||
               total_scan >= freeable) {
                unsigned long ret;
                unsigned long nr_to_scan = min(batch_size, total_scan);

                shrinkctl->nr_to_scan = nr_to_scan;
                ret = shrinker->scan_objects(shrinker, shrinkctl);
                if (ret == SHRINK_STOP)
                        break;
                freed += ret;

                count_vm_events(SLABS_SCANNED, nr_to_scan);
                total_scan -= nr_to_scan;

                cond_resched();
        }

`total_scan >= batch_size' is true for a very-very long time and
'total_scan >= freeable' is also true for quite some time, because
`freeable < 0' and `total_scan' is large enough, for example,
22634041808232578. The only break condition, in the given scheme of
things, is shrinker->scan_objects() == SHRINK_STOP test, which is a
bit too weak to rely on, especially in heavy zsmalloc-usage scenarios.

To fix the issue, take a pool stat snapshot and use it instead of
racy zs_stat_get() calls.

Link: http://lkml.kernel.org/r/20160509140052.3389-1-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>        [4.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-09 17:40:59 -07:00
Dave Airlie
bafb86f5bc Linux 4.6-rc7
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJXL7HfAAoJEHm+PkMAQRiGYe8IAJBGaPUq38EJh2YOV+AQf9v6
 t/alhwB3DUE1E0zjLy7I7JJ+xDXtKjZh9fS6OFuIS8Q3RIrBteIJ/oH8TPpt7yZ/
 SnP6rYPvYD6CImTyrh7+ORL/udEwJX8+YqFYAgUAq167gvpDjYj8r26VzdIaIN4/
 oBbL8NrQNWfODieywYyhUoitVhwMz09zmBfLtGVks4vd2jUJk2Fdd9cOtGV5tRfk
 DPndPgyQtbr8W0mKovV8sT9WkQeV5TsUr4MLgf7hjnAGYQ8+0KamkzzVVLBeBiiw
 uazyrOCFkddZp+N7KbmbOmazV/yULRuLGgDjVKazoCsOaKOvoGCzrCk7daOPy6Q=
 =CegX
 -----END PGP SIGNATURE-----

Merge tag 'v4.6-rc7' into drm-next

Merge this back as we've built up a fair few conflicts, and I have
some newer trees to pull in.
2016-05-09 13:49:56 +10:00
Linus Torvalds
0783783104 Merge branch 'for-linus' of git://git.kernel.dk/linux-block
Pull writeback fix from Jens Axboe:
 "Just a single fix for domain aware writeback, fixing a regression that
  can cause balance_dirty_pages() to keep looping while not getting any
  work done"

* 'for-linus' of git://git.kernel.dk/linux-block:
  writeback: Fix performance regression in wb_over_bg_thresh()
2016-05-06 13:08:35 -07:00
Vlastimil Babka
172400c69c mm: fix kcompactd hang during memory offlining
Assume memory47 is the last online block left in node1.  This will hang:

  # echo offline > /sys/devices/system/node/node1/memory47/state

After a couple of minutes, the following pops up in dmesg:

  INFO: task bash:957 blocked for more than 120 seconds.
         Not tainted 4.6.0-rc6+ #6
  "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  bash            D ffff8800b7adbaf8     0   957    951 0x00000000
  Call Trace:
    schedule+0x35/0x80
    schedule_timeout+0x1ac/0x270
    wait_for_completion+0xe1/0x120
    kthread_stop+0x4f/0x110
    kcompactd_stop+0x26/0x40
    __offline_pages.constprop.28+0x7e6/0x840
    offline_pages+0x11/0x20
    memory_block_action+0x73/0x1d0
    memory_subsys_offline+0x47/0x60
    device_offline+0x86/0xb0
    store_mem_state+0xda/0xf0
    dev_attr_store+0x18/0x30
    sysfs_kf_write+0x37/0x40
    kernfs_fop_write+0x11d/0x170
    __vfs_write+0x37/0x120
    vfs_write+0xa9/0x1a0
    SyS_write+0x55/0xc0
    entry_SYSCALL_64_fastpath+0x1a/0xa4

kcompactd is waiting for kcompactd_max_order > 0 when it's woken up to
actually exit.  Check kthread_should_stop() to break out of the wait.

Fixes: 698b1b306 ("mm, compaction: introduce kcompactd").
Reported-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Dan Streetman
32a4e16903 mm/zswap: provide unique zpool name
Instead of using "zswap" as the name for all zpools created, add an
atomic counter and use "zswap%x" with the counter number for each zpool
created, to provide a unique name for each new zpool.

As zsmalloc, one of the zpool implementations, requires/expects a unique
name for each pool created, zswap should provide a unique name.  The
zsmalloc pool creation does not fail if a new pool with a conflicting
name is created, unless CONFIG_ZSMALLOC_STAT is enabled; in that case,
zsmalloc pool creation fails with -ENOMEM.  Then zswap will be unable to
change its compressor parameter if its zpool is zsmalloc; it also will
be unable to change its zpool parameter back to zsmalloc, if it has any
existing old zpool using zsmalloc with page(s) in it.  Attempts to
change the parameters will result in failure to create the zpool.  This
changes zswap to provide a unique name for each zpool creation.

Fixes: f1c54846ee ("zswap: dynamic pool creation")
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Hugh Dickins
14af4a5e9b mm, cma: prevent nr_isolated_* counters from going negative
/proc/sys/vm/stat_refresh warns nr_isolated_anon and nr_isolated_file go
increasingly negative under compaction: which would add delay when
should be none, or no delay when should delay.  The bug in compaction
was due to a recent mmotm patch, but much older instance of the bug was
also noticed in isolate_migratepages_range() which is used for CMA and
gigantic hugepage allocations.

The bug is caused by putback_movable_pages() in an error path
decrementing the isolated counters without them being previously
incremented by acct_isolated().  Fix isolate_migratepages_range() by
removing the error-path putback, thus reaching acct_isolated() with
migratepages still isolated, and leaving putback to caller like most
other places do.

Fixes: edc2ca6124 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()")
[vbabka@suse.cz: expanded the changelog]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Jason Baron
bc22af74f2 mm: update min_free_kbytes from khugepaged after core initialization
Khugepaged attempts to raise min_free_kbytes if its set too low.
However, on boot khugepaged sets min_free_kbytes first from
subsys_initcall(), and then the mm 'core' over-rides min_free_kbytes
after from init_per_zone_wmark_min(), via a module_init() call.

Khugepaged used to use a late_initcall() to set min_free_kbytes (such
that it occurred after the core initialization), however this was
removed when the initialization of min_free_kbytes was integrated into
the starting of the khugepaged thread.

The fix here is simply to invoke the core initialization using a
core_initcall() instead of module_init(), such that the previous
initialization ordering is restored.  I didn't restore the
late_initcall() since start_stop_khugepaged() already sets
min_free_kbytes via set_recommended_min_free_kbytes().

This was noticed when we had a number of page allocation failures when
moving a workload to a kernel with this new initialization ordering.  On
an 8GB system this restores min_free_kbytes back to 67584 from 11365
when CONFIG_TRANSPARENT_HUGEPAGE=y is set and either
CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS=y or
CONFIG_TRANSPARENT_HUGEPAGE_MADVISE=y.

Fixes: 79553da293 ("thp: cleanup khugepaged startup")
Signed-off-by: Jason Baron <jbaron@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Hugh Dickins
684283988f huge pagecache: mmap_sem is unlocked when truncation splits pmd
zap_pmd_range()'s CONFIG_DEBUG_VM !rwsem_is_locked(&mmap_sem) BUG() will
be invalid with huge pagecache, in whatever way it is implemented:
truncation of a hugely-mapped file to an unhugely-aligned size would
easily hit it.

(Although anon THP could in principle apply khugepaged to private file
mappings, which are not excluded by the MADV_HUGEPAGE restrictions, in
practice there's a vm_ops check which excludes them, so it never hits
this BUG() - there's no interface to "truncate" an anonymous mapping.)

We could complicate the test, to check i_mmap_rwsem also when there's a
vm_file; but my inclination was to make zap_pmd_range() more readable by
simply deleting this check.  A search has shown no report of the issue
in the years since commit e0897d75f0 ("mm, thp: print useful
information when mmap_sem is unlocked in zap_pmd_range") expanded it
from VM_BUG_ON() - though I cannot point to what commit I would say then
fixed the issue.

But there are a couple of other patches now floating around, neither yet
in the tree: let's agree to retain the check as a VM_BUG_ON_VMA(), as
Matthew Wilcox has done; but subject to a vma_is_anonymous() check, as
Kirill Shutemov has done.  And let's get this in, without waiting for
any particular huge pagecache implementation to reach the tree.

Matthew said "We can reproduce this BUG() in the current Linus tree with
DAX PMDs".

Signed-off-by: Hugh Dickins <hughd@google.com>
Tested-by: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Yang Shi
145bdaa150 mm: thp: correct split_huge_pages file permission
split_huge_pages doesn't support get method at all, so the read
permission sounds confusing, change the permission to write only.

And, add "\n" to the output of set method to make it more readable.

Signed-off-by: Yang Shi <yang.shi@linaro.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Howard Cochran
74d3694433 writeback: Fix performance regression in wb_over_bg_thresh()
Commit 947e9762a8 ("writeback: update wb_over_bg_thresh() to use
wb_domain aware operations") unintentionally changed this function's
meaning from "are there more dirty pages than the background writeback
threshold" to "are there more dirty pages than the writeback threshold".
The background writeback threshold is typically half of the writeback
threshold, so this had the effect of raising the number of dirty pages
required to cause a writeback worker to perform background writeout.

This can cause a very severe performance regression when a BDI uses
BDI_CAP_STRICTLIMIT because balance_dirty_pages() and the writeback worker
can now disagree on whether writeback should be initiated.

For example, in a system having 1GB of RAM, a single spinning disk, and a
"pass-through" FUSE filesystem mounted over the disk, application code
mmapped a 128MB file on the disk and was randomly dirtying pages in that
mapping.

Because FUSE uses strictlimit and has a default max_ratio of only 1%, in
balance_dirty_pages, thresh is ~200, bg_thresh is ~100, and the
dirty_freerun_ceiling is the average of those, ~150. So, it pauses the
dirtying processes when we have 151 dirty pages and wakes up a background
writeback worker. But the worker tests the wrong threshold (200 instead of
100), so it does not initiate writeback and just returns.

Thus, balance_dirty_pages keeps looping, sleeping and then waking up the
worker who will do nothing. It remains stuck in this state until the few
dirty pages that we have finally expire and we write them back for that
reason. Then the whole process repeats, resulting in near-zero throughput
through the FUSE BDI.

The fix is to call the parameterized variant of wb_calc_thresh, so that the
worker will do writeback if the bg_thresh is exceeded which was the
behavior before the referenced commit.

Fixes: 947e9762a8 ("writeback: update wb_over_bg_thresh() to use wb_domain aware operations")
Signed-off-by: Howard Cochran <hcochran@kernelspring.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: <stable@vger.kernel.org> # v4.2+
Tested-by Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-05-05 15:44:55 -06:00
Al Viro
84e710da2a parallel lookups machinery, part 2
We'll need to verify that there's neither a hashed nor in-lookup
dentry with desired parent/name before adding to in-lookup set.

One possible solution would be to hold the parent's ->d_lock through
both checks, but while the in-lookup set is relatively small at any
time, dcache is not.  And holding the parent's ->d_lock through
something like __d_lookup_rcu() would suck too badly.

So we leave the parent's ->d_lock alone, which means that we watch
out for the following scenario:
	* we verify that there's no hashed match
	* existing in-lookup match gets hashed by another process
	* we verify that there's no in-lookup matches and decide
that everything's fine.

Solution: per-directory kinda-sorta seqlock, bumped around the times
we hash something that used to be in-lookup or move (and hash)
something in place of in-lookup.  Then the above would turn into
	* read the counter
	* do dcache lookup
	* if no matches found, check for in-lookup matches
	* if there had been none of those either, check if the
counter has changed; repeat if it has.

The "kinda-sorta" part is due to the fact that we don't have much spare
space in inode.  There is a spare word (shared with i_bdev/i_cdev/i_pipe),
so the counter part is not a problem, but spinlock is a different story.

We could use the parent's ->d_lock, and it would be less painful in
terms of contention, for __d_add() it would be rather inconvenient to
grab; we could do that (using lock_parent()), but...

Fortunately, we can get serialization on the counter itself, and it
might be a good idea in general; we can use cmpxchg() in a loop to
get from even to odd and smp_store_release() from odd to even.

This commit adds the counter and updating logics; the readers will be
added in the next commit.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-02 19:49:26 -04:00
Al Viro
84695ffee7 Merge getxattr prototype change into work.lookups
The rest of work.xattr stuff isn't needed for this branch
2016-05-02 19:45:47 -04:00
Christoph Hellwig
e259221763 fs: simplify the generic_write_sync prototype
The kiocb already has the new position, so use that.  The only interesting
case is AIO, where we currently don't bother updating ki_pos.  We're about
to free the kiocb after we're done, so we might as well update it to make
everyone's life simpler.

While we're at it also return the bytes written argument passed in if
we were successful so that the boilerplate error switch code in the
callers can go away.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Christoph Hellwig
dde0c2e798 fs: add IOCB_SYNC and IOCB_DSYNC
This will allow us to do per-I/O sync file writes, as required by a lot
of fileservers or storage targets.

XXX: Will need a few additional audits for O_DSYNC

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Christoph Hellwig
c8b8e32d70 direct-io: eliminate the offset argument to ->direct_IO
Including blkdev_direct_IO and dax_do_io.  It has to be ki_pos to actually
work, so eliminate the superflous argument.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Christoph Hellwig
1af5bb491f filemap: remove the pos argument to generic_file_direct_write
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Christoph Hellwig
c64fb5c744 filemap: remove pos variables in generic_file_read_iter
Just use ki_pos directly to make everyones life easier.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Konstantin Khlebnikov
c2e7e00b71 mm/memory-failure: fix race with compound page split/merge
get_hwpoison_page() must recheck relation between head and tail pages.

n-horiguchi said: without this recheck, the race causes kernel to pin an
irrelevant page, and finally makes kernel crash for refcount mismatch.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Vlastimil Babka
fd901c9538 mm: wake kcompactd before kswapd's short sleep
When kswapd goes to sleep it checks if the node is balanced and at first
it sleeps only for HZ/10 time, then rechecks if the node is still
balanced and nobody has woken it during the initial sleep.  Only then it
goes fully sleep until an allocation slowpath wakes it up again.

For higher-order allocations, waking up kcompactd is done only before
the full sleep.  This turns out to be an issue in case another
high-order allocation fails during the initial sleep.  It will wake
kswapd up, however kswapd considers the zone balanced from the order-0
perspective, and will just quickly try to sleep again.  So if there's a
longer stream of high-order allocations hitting the slowpath and waking
up kswapd, it might never actually wake up kcompactd, which may be
considered a regression from kswapd-based compaction.  In the worst
case, it might be that a single allocation that cannot direct
reclaim/compact itself is waking kswapd in the retry loop and preventing
kcompactd from being woken up and unblocking it.

This patch makes sure kcompactd is woken up in such situations by simply
moving the wakeup before the short initial sleep.  More efficient
solution would be to wake kcompactd immediately instead of kswapd if the
node is already order-0 balanced, but in that case we should also move
reset_isolation_suitable() call to kcompactd so it's not adding to the
allocator's latency.  Since it's late in the 4.6 cycle, let's go with
the simpler change for now.

Fixes: accf62422b ("mm, kswapd: replace kswapd compaction with waking up kcompactd")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Minchan Kim
d7e69488bd mm/hwpoison: fix wrong num_poisoned_pages accounting
Currently, migration code increses num_poisoned_pages on *failed*
migration page as well as successfully migrated one at the trial of
memory-failure.  It will make the stat wrong.  As well, it marks the
page as PG_HWPoison even if the migration trial failed.  It would mean
we cannot recover the corrupted page using memory-failure facility.

This patches fixes it.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Minchan Kim
b06bad17c7 mm: call swap_slot_free_notify() with page lock held
Kyeongdon reported below error which is BUG_ON(!PageSwapCache(page)) in
page_swap_info.  The reason is that page_endio in rw_page unlocks the
page if read I/O is completed so we need to hold a PG_lock again to
check PageSwapCache.  Otherwise, the page can be removed from swapcache.

  Kernel BUG at c00f9040 [verbose debug info unavailable]
  Internal error: Oops - BUG: 0 [#1] PREEMPT SMP ARM
  Modules linked in:
  CPU: 4 PID: 13446 Comm: RenderThread Tainted: G        W 3.10.84-g9f14aec-dirty #73
  task: c3b73200 ti: dd192000 task.ti: dd192000
  PC is at page_swap_info+0x10/0x2c
  LR is at swap_slot_free_notify+0x18/0x6c
  pc : [<c00f9040>]    lr : [<c00f5560>]    psr: 400f0113
  sp : dd193d78  ip : c2deb1e4  fp : da015180
  r10: 00000000  r9 : 000200da  r8 : c120fe08
  r7 : 00000000  r6 : 00000000  r5 : c249a6c0  r4 : = c249a6c0
  r3 : 00000000  r2 : 40080009  r1 : 200f0113  r0 : = c249a6c0
  ..<snip> ..
  Call Trace:
    page_swap_info+0x10/0x2c
    swap_slot_free_notify+0x18/0x6c
    swap_readpage+0x90/0x11c
    read_swap_cache_async+0x134/0x1ac
    swapin_readahead+0x70/0xb0
    handle_pte_fault+0x320/0x6fc
    handle_mm_fault+0xc0/0xf0
    do_page_fault+0x11c/0x36c
    do_DataAbort+0x34/0x118

Fixes: 3f2b1a04f4 ("zram: revive swap_slot_free_notify")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Tested-by: Kyeongdon Kim <kyeongdon.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Minchan Kim
7bf52fb891 mm: vmscan: reclaim highmem zone if buffer_heads is over limit
We have been reclaimed highmem zone if buffer_heads is over limit but
commit 6b4f7799c6 ("mm: vmscan: invoke slab shrinkers from
shrink_zone()") changed the behavior so it doesn't reclaim highmem zone
although buffer_heads is over the limit.  This patch restores the logic.

Fixes: 6b4f7799c6 ("mm: vmscan: invoke slab shrinkers from shrink_zone()")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Gerald Schaefer
28093f9f34 numa: fix /proc/<pid>/numa_maps for THP
In gather_pte_stats() a THP pmd is cast into a pte, which is wrong
because the layouts may differ depending on the architecture.  On s390
this will lead to inaccurate numa_maps accounting in /proc because of
misguided pte_present() and pte_dirty() checks on the fake pte.

On other architectures pte_present() and pte_dirty() may work by chance,
but there may be an issue with direct-access (dax) mappings w/o
underlying struct pages when HAVE_PTE_SPECIAL is set and THP is
available.  In vm_normal_page() the fake pte will be checked with
pte_special() and because there is no "special" bit in a pmd, this will
always return false and the VM_PFNMAP | VM_MIXEDMAP checking will be
skipped.  On dax mappings w/o struct pages, an invalid struct page
pointer would then be returned that can crash the kernel.

This patch fixes the numa_maps THP handling by introducing new "_pmd"
variants of the can_gather_numa_stats() and vm_normal_page() functions.

Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>	[4.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Konstantin Khlebnikov
3486b85a29 mm/huge_memory: replace VM_NO_THP VM_BUG_ON with actual VMA check
Khugepaged detects own VMAs by checking vm_file and vm_ops but this way
it cannot distinguish private /dev/zero mappings from other special
mappings like /dev/hpet which has no vm_ops and popultes PTEs in mmap.

This fixes false-positive VM_BUG_ON and prevents installing THP where
they are not expected.

Link: http://lkml.kernel.org/r/CACT4Y+ZmuZMV5CjSFOeXviwQdABAgT7T+StKfTqan9YDtgEi5g@mail.gmail.com
Fixes: 78f11a2557 ("mm: thp: fix /dev/zero MAP_PRIVATE and vm_flags cleanups")
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Kirill A. Shutemov
aa88b68c3b thp: keep huge zero page pinned until tlb flush
Andrea has found[1] a race condition on MMU-gather based TLB flush vs
split_huge_page() or shrinker which frees huge zero under us (patch 1/2
and 2/2 respectively).

With new THP refcounting, we don't need patch 1/2: mmu_gather keeps the
page pinned until flush is complete and the pin prevents the page from
being split under us.

We still need patch 2/2.  This is simplified version of Andrea's patch.
We don't need fancy encoding.

[1] http://lkml.kernel.org/r/1447938052-22165-1-git-send-email-aarcange@redhat.com

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Ingo Molnar
8efd755ac2 mm/mmu_context, sched/core: Fix mmu_context.h assumption
Some architectures (such as Alpha) rely on include/linux/sched.h definitions
in their mmu_context.h files.

So include sched.h before mmu_context.h.

Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-28 11:44:19 +02:00
Tejun Heo
264a0ae164 memcg: relocate charge moving from ->attach to ->post_attach
Hello,

So, this ended up a lot simpler than I originally expected.  I tested
it lightly and it seems to work fine.  Petr, can you please test these
two patches w/o the lru drain drop patch and see whether the problem
is gone?

Thanks.
------ 8< ------
If charge moving is used, memcg performs relabeling of the affected
pages from its ->attach callback which is called under both
cgroup_threadgroup_rwsem and thus can't create new kthreads.  This is
fragile as various operations may depend on workqueues making forward
progress which relies on the ability to create new kthreads.

There's no reason to perform charge moving from ->attach which is deep
in the task migration path.  Move it to ->post_attach which is called
after the actual migration is finished and cgroup_threadgroup_rwsem is
dropped.

* move_charge_struct->mm is added and ->can_attach is now responsible
  for pinning and recording the target mm.  mem_cgroup_clear_mc() is
  updated accordingly.  This also simplifies mem_cgroup_move_task().

* mem_cgroup_move_task() is now called from ->post_attach instead of
  ->attach.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Debugged-and-tested-by: Petr Mladek <pmladek@suse.com>
Reported-by: Cyril Hrubis <chrubis@suse.cz>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Fixes: 1ed1328792 ("sched, cgroup: replace signal_struct->group_rwsem with a global percpu_rwsem")
Cc: <stable@vger.kernel.org> # 4.4+
2016-04-25 15:45:14 -04:00
Linus Torvalds
2e57259913 Merge branch 'for-linus' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
 "A few fixes for the current series. This contains:

   - Two fixes for NVMe:

     One fixes a reset race that can be triggered by repeated
     insert/removal of the module.

     The other fixes an issue on some platforms, where we get probe
     timeouts since legacy interrupts isn't working.  This used not to
     be a problem since we had the worker thread poll for completions,
     but since that was killed off, it means those poor souls can't
     successfully probe their NVMe device.  Use a proper IRQ check and
     probe (msi-x -> msi ->legacy), like most other drivers to work
     around this.  Both from Keith.

   - A loop corruption issue with offset in iters, from Ming Lei.

   - A fix for not having the partition stat per cpu ref count
     initialized before sending out the KOBJ_ADD, which could cause user
     space to access the counter prior to initialization.  Also from
     Ming Lei.

   - A fix for using the wrong congestion state, from Kaixu Xia"

* 'for-linus' of git://git.kernel.dk/linux-block:
  block: loop: fix filesystem corruption in case of aio/dio
  NVMe: Always use MSI/MSI-x interrupts
  NVMe: Fix reset/remove race
  writeback: fix the wrong congested state variable definition
  block: partition: initialize percpuref before sending out KOBJ_ADD
2016-04-15 15:44:10 -07:00
Linus Torvalds
a1f983174d Merge branch 'mm-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull mm gup cleanup from Ingo Molnar:
 "This removes the ugly get-user-pages API hack, now that all upstream
  code has been migrated to it"

("ugly" is putting it mildly. But it worked.. - Linus)

* 'mm-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  mm/gup: Remove the macro overload API migration helpers from the get_user*() APIs
2016-04-14 19:31:34 -07:00
Daniel Vetter
3970285319 Linux 4.6-rc3
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJXCva8AAoJEHm+PkMAQRiGXBoIAIkrjxdbuT2nS9A3tHwkiFXa
 6/Th1UjbNaoLuZ+MckQHayAD9NcWY9lVjOUmFsSiSWMCQK/rTWDl8x5ITputrY2V
 VuhrJCwI7huEtu6GpRaJaUgwtdOjhIHz1Ue2MCdNIbKX3l+LjVyyJ9Vo8rruvZcR
 fC7kiivH04fYX58oQ+SHymCg54ny3qJEPT8i4+g26686m11hvZLI3UAs2PAn6ut+
 atCjxdQ4yLN3DWsbjuA7wYGWhTgFloxL4TIoisuOUc3FXnSi/ivIbXZvu4lUfisz
 LA2JBhfII3AEMBWG9xfGbXPijJTT4q7yNlTD0oYcnMtAt/Roh2F04asqB1LetEY=
 =bri6
 -----END PGP SIGNATURE-----

Merge tag 'v4.6-rc3' into drm-intel-next-queued

Linux 4.6-rc3

Backmerge requested by Chris Wilson to make his patches apply cleanly.
Tiny conflict in vmalloc.c with the (properly acked and all) patch in
drm-intel-next:

commit 4da56b99d9
Author: Chris Wilson <chris@chris-wilson.co.uk>
Date:   Mon Apr 4 14:46:42 2016 +0100

    mm/vmap: Add a notifier for when we run out of vmap address space

and Linus' tree.

Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2016-04-11 19:25:13 +02:00
Al Viro
b296821a7c xattr_handler: pass dentry and inode as separate arguments of ->get()
... and do not assume they are already attached to each other

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-04-10 20:48:24 -04:00
Ingo Molnar
c12d2da56d mm/gup: Remove the macro overload API migration helpers from the get_user*() APIs
The pkeys changes brought about a truly hideous set of macros in:

  cde70140fe ("mm/gup: Overload get_user_pages() functions")

... which macros are (ab-)using the fact that __VA_ARGS__ can be used
to shift parameter positions in macro arguments without breaking the
build and so can be used to call separate C functions depending on
the number of arguments of the macro.

This allowed easy migration of these 3 GUP APIs, as both these variants
worked at the C level:

  old:
	ret = get_user_pages(current, current->mm, address, 1, 1, 0, &page, NULL);

  new:
	ret = get_user_pages(address, 1, 1, 0, &page, NULL);

... while we also generated a (functionally harmless but noticeable) build
time warning if the old API was used. As there are over 300 uses of these
APIs, this trick eased the migration of the API and avoided excessive
migration pain in linux-next.

Now, with its work done, get rid of all of that complication and ugliness:

    3 files changed, 16 insertions(+), 140 deletions(-)

... where the linecount of the migration hack was further inflated by the
fact that there are NOMMU variants of these GUP APIs as well.

Much of the conversion was done in linux-next over the past couple of months,
and Linus recently removed all remaining old API uses from the upstream tree
in the following upstrea commit:

  cb107161df ("Convert straggling drivers to new six-argument get_user_pages()")

There was one more old-API usage in mm/gup.c, in the CONFIG_HAVE_GENERIC_RCU_GUP
code path that ARM, ARM64 and PowerPC uses.

After this commit any old API usage will break the build.

[ Also fixed a PowerPC/HAVE_GENERIC_RCU_GUP warning reported by Stephen Rothwell. ]

Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-07 10:46:14 +02:00
Chris Wilson
4da56b99d9 mm/vmap: Add a notifier for when we run out of vmap address space
vmaps are temporary kernel mappings that may be of long duration.
Reusing a vmap on an object is preferrable for a driver as the cost of
setting up the vmap can otherwise dominate the operation on the object.
However, the vmap address space is rather limited on 32bit systems and
so we add a notification for vmap pressure in order for the driver to
release any cached vmappings.

The interface is styled after the oom-notifier where the callees are
passed a pointer to an unsigned long counter for them to indicate if they
have freed any space.

v2: Guard the blocking notifier call with gfpflags_allow_blocking()
v3: Correct typo in forward declaration and move to head of file

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Roman Peniaev <r.peniaev@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-mm@kvack.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Andrew Morton <akpm@linux-foundation.org> # for inclusion via DRM
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1459777603-23618-3-git-send-email-chris@chris-wilson.co.uk
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2016-04-05 11:12:04 +01:00
Linus Torvalds
4a2d057e4f Merge branch 'PAGE_CACHE_SIZE-removal'
Merge PAGE_CACHE_SIZE removal patches from Kirill Shutemov:
 "PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
  ago with promise that one day it will be possible to implement page
  cache with bigger chunks than PAGE_SIZE.

  This promise never materialized.  And unlikely will.

  Let's stop pretending that pages in page cache are special.  They are
  not.

  The first patch with most changes has been done with coccinelle.  The
  second is manual fixups on top.

  The third patch removes macros definition"

[ I was planning to apply this just before rc2, but then I spaced out,
  so here it is right _after_ rc2 instead.

  As Kirill suggested as a possibility, I could have decided to only
  merge the first two patches, and leave the old interfaces for
  compatibility, but I'd rather get it all done and any out-of-tree
  modules and patches can trivially do the converstion while still also
  working with older kernels, so there is little reason to try to
  maintain the redundant legacy model.    - Linus ]

* PAGE_CACHE_SIZE-removal:
  mm: drop PAGE_CACHE_* and page_cache_{get,release} definition
  mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage
  mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
2016-04-04 10:50:24 -07:00
Kirill A. Shutemov
ea1754a084 mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage
Mostly direct substitution with occasional adjustment or removing
outdated comments.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Kirill A. Shutemov
09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Neil Zhang
ec3b688250 mm/page_isolation.c: fix the function comments
Commit fea85cff11 ("mm/page_isolation.c: return last tested pfn rather
than failure indicator") changed the meaning of the return value.  Let's
change the function comments as well.

Signed-off-by: Neil Zhang <neilzhang1123@hotmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 17:03:37 -05:00
Michal Hocko
af8e15cc85 oom, oom_reaper: do not enqueue task if it is on the oom_reaper_list head
Commit bb29902a75 ("oom, oom_reaper: protect oom_reaper_list using
simpler way") has simplified the check for tasks already enqueued for
the oom reaper by checking tsk->oom_reaper_list != NULL.  This check is
not sufficient because the tsk might be the head of the queue without
any other tasks queued and then we would simply lockup looping on the
same task.  Fix the condition by checking for the head as well.

Fixes: bb29902a75 ("oom, oom_reaper: protect oom_reaper_list using simpler way")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 17:03:37 -05:00
Nadav Amit
858eaaa711 mm/rmap: batched invalidations should use existing api
The recently introduced batched invalidations mechanism uses its own
mechanism for shootdown.  However, it does wrong accounting of
interrupts (e.g., inc_irq_stat is called for local invalidations),
trace-points (e.g., TLB_REMOTE_SHOOTDOWN for local invalidations) and
may break some platforms as it bypasses the invalidation mechanisms of
Xen and SGI UV.

This patch reuses the existing TLB flushing mechnaisms instead.  We use
NULL as mm to indicate a global invalidation is required.

Fixes 72b252aed5 ("mm: send one IPI per CPU to TLB flush all entries after unmapping pages")
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 17:03:37 -05:00
Xishi Qiu
6f25a14a70 mm: fix invalid node in alloc_migrate_target()
It is incorrect to use next_node to find a target node, it will return
MAX_NUMNODES or invalid node.  This will lead to crash in buddy system
allocation.

Fixes: c8721bbbdd ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Laura Abbott" <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 17:03:37 -05:00
Alexander Potapenko
0b355eaaaa mm, kasan: fix compilation for CONFIG_SLAB
Add the missing argument to set_track().

Fixes: cd11016e5f ("mm, kasan: stackdepot implementation. Enable stackdepot for SLAB")
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 17:03:37 -05:00
Kaixu Xia
c877ef8ae7 writeback: fix the wrong congested state variable definition
The right variable definition should be wb_congested_state that
include WB_async_congested and WB_sync_congested. So fix it.

Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-03-31 12:26:25 -06:00
Kirill A. Shutemov
0fda2788b0 thp: fix typo in khugepaged_scan_pmd()
!PageLRU should lead to SCAN_PAGE_LRU, not SCAN_SCAN_ABORT result.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Nicolai Stange
e7080a439a mm/filemap: generic_file_read_iter(): check for zero reads unconditionally
If
 - generic_file_read_iter() gets called with a zero read length,
 - the read offset is at a page boundary,
 - IOCB_DIRECT is not set
-  and the page in question hasn't made it into the page cache yet,
then do_generic_file_read() will trigger a readahead with a req_size hint
of zero.

Since roundup_pow_of_two(0) is undefined, UBSAN reports

  UBSAN: Undefined behaviour in include/linux/log2.h:63:13
  shift exponent 64 is too large for 64-bit type 'long unsigned int'
  CPU: 3 PID: 1017 Comm: sa1 Tainted: G L 4.5.0-next-20160318+ #14
  [...]
  Call Trace:
   [...]
   [<ffffffff813ef61a>] ondemand_readahead+0x3aa/0x3d0
   [<ffffffff813ef61a>] ? ondemand_readahead+0x3aa/0x3d0
   [<ffffffff813c73bd>] ? find_get_entry+0x2d/0x210
   [<ffffffff813ef9c3>] page_cache_sync_readahead+0x63/0xa0
   [<ffffffff813cc04d>] do_generic_file_read+0x80d/0xf90
   [<ffffffff813cc955>] generic_file_read_iter+0x185/0x420
   [...]
   [<ffffffff81510b06>] __vfs_read+0x256/0x3d0
   [...]

when get_init_ra_size() gets called from ondemand_readahead().

The net effect is that the initial readahead size is arch dependent for
requested read lengths of zero: for example, since

  1UL << (sizeof(unsigned long) * 8)

evaluates to 1 on x86 while its result is 0 on ARMv7, the initial readahead
size becomes 4 on the former and 0 on the latter.

What's more, whether or not the file access timestamp is updated for zero
length reads is decided differently for the two cases of IOCB_DIRECT
being set or cleared: in the first case, generic_file_read_iter()
explicitly skips updating that timestamp while in the latter case, it is
always updated through the call to do_generic_file_read().

According to POSIX, zero length reads "do not modify the last data access
timestamp" and thus, the IOCB_DIRECT behaviour is POSIXly correct.

Let generic_file_read_iter() unconditionally check the requested read
length at its entry and return immediately with success if it is zero.

Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Alexander Potapenko
cd11016e5f mm, kasan: stackdepot implementation. Enable stackdepot for SLAB
Implement the stack depot and provide CONFIG_STACKDEPOT.  Stack depot
will allow KASAN store allocation/deallocation stack traces for memory
chunks.  The stack traces are stored in a hash table and referenced by
handles which reside in the kasan_alloc_meta and kasan_free_meta
structures in the allocated memory chunks.

IRQ stack traces are cut below the IRQ entry point to avoid unnecessary
duplication.

Right now stackdepot support is only enabled in SLAB allocator.  Once
KASAN features in SLAB are on par with those in SLUB we can switch SLUB
to stackdepot as well, thus removing the dependency on SLUB stack
bookkeeping, which wastes a lot of memory.

This patch is based on the "mm: kasan: stack depots" patch originally
prepared by Dmitry Chernenkov.

Joonsoo has said that he plans to reuse the stackdepot code for the
mm/page_owner.c debugging facility.

[akpm@linux-foundation.org: s/depot_stack_handle/depot_stack_handle_t]
[aryabinin@virtuozzo.com: comment style fixes]
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Alexander Potapenko
505f5dcb1c mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Alexander Potapenko
7ed2f9e663 mm, kasan: SLAB support
Add KASAN hooks to SLAB allocator.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Vlastimil Babka
d9dddbf556 mm/page_alloc: prevent merging between isolated and other pageblocks
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:

> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal:         204800 kB
> CmaFree:          195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal:         204800 kB
> CmaFree:         6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal:       16342016 kB
> MemFree:        22367268 kB
> MemAvailable:   22370528 kB

Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim.  Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:

> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.

This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.

It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks.  This should be prevented in
__free_one_page() since commit 3c605096d3 ("mm/page_alloc: restrict
max order of merging on isolated pageblock").  However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.

Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).

This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks.  The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.

This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d3 where buddies could be left
unmerged.

Fixes: 3c605096d3 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>	[3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Tetsuo Handa
bb29902a75 oom, oom_reaper: protect oom_reaper_list using simpler way
"oom, oom_reaper: disable oom_reaper for oom_kill_allocating_task" tried
to protect oom_reaper_list using MMF_OOM_KILLED flag.  But we can do it
by simply checking tsk->oom_reaper_list != NULL.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Michal Hocko
e26796066f oom: make oom_reaper freezable
After "oom: clear TIF_MEMDIE after oom_reaper managed to unmap the
address space" oom_reaper will call exit_oom_victim on the target task
after it is done.  This might however race with the PM freezer:

CPU0				CPU1				CPU2
freeze_processes
  try_to_freeze_tasks
  				# Allocation request
				out_of_memory
  oom_killer_disable
				  wake_oom_reaper(P1)
				  				__oom_reap_task
								  exit_oom_victim(P1)
    wait_event(oom_victims==0)
[...]
    				do_exit(P1)
				  perform IO/interfere with the freezer

which breaks the oom_killer_disable semantic.  We no longer have a
guarantee that the oom victim won't interfere with the freezer because
it might be anywhere on the way to do_exit while the freezer thinks the
task has already terminated.  It might trigger IO or touch devices which
are frozen already.

In order to close this race, make the oom_reaper thread freezable.  This
will work because
	a) already running oom_reaper will block freezer to enter the
	   quiescent state
	b) wake_oom_reaper will not wake up the reaper after it has been
	   frozen
	c) the only way to call exit_oom_victim after try_to_freeze_tasks
	   is from the oom victim's context when we know the further
	   interference shouldn't be possible

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Vladimir Davydov
29c696e1c6 oom: make oom_reaper_list single linked
Entries are only added/removed from oom_reaper_list at head so we can
use a single linked list and hence save a word in task_struct.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Michal Hocko
855b018325 oom, oom_reaper: disable oom_reaper for oom_kill_allocating_task
Tetsuo has reported that oom_kill_allocating_task=1 will cause
oom_reaper_list corruption because oom_kill_process doesn't follow
standard OOM exclusion (aka ignores TIF_MEMDIE) and allows to enqueue
the same task multiple times - e.g.  by sacrificing the same child
multiple times.

This patch fixes the issue by introducing a new MMF_OOM_KILLED mm flag
which is set in oom_kill_process atomically and oom reaper is disabled
if the flag was already set.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Michal Hocko
03049269de mm, oom_reaper: implement OOM victims queuing
wake_oom_reaper has allowed only 1 oom victim to be queued.  The main
reason for that was the simplicity as other solutions would require some
way of queuing.  The current approach is racy and that was deemed
sufficient as the oom_reaper is considered a best effort approach to
help with oom handling when the OOM victim cannot terminate in a
reasonable time.  The race could lead to missing an oom victim which can
get stuck

out_of_memory
  wake_oom_reaper
    cmpxchg // OK
    			oom_reaper
			  oom_reap_task
			    __oom_reap_task
oom_victim terminates
			      atomic_inc_not_zero // fail
out_of_memory
  wake_oom_reaper
    cmpxchg // fails
			  task_to_reap = NULL

This race requires 2 OOM invocations in a short time period which is not
very likely but certainly not impossible.  E.g.  the original victim
might have not released a lot of memory for some reason.

The situation would improve considerably if wake_oom_reaper used a more
robust queuing.  This is what this patch implements.  This means adding
oom_reaper_list list_head into task_struct (eat a hole before embeded
thread_struct for that purpose) and a oom_reaper_lock spinlock for
queuing synchronization.  wake_oom_reaper will then add the task on the
queue and oom_reaper will dequeue it.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Michal Hocko
bc448e897b mm, oom_reaper: report success/failure
Inform about the successful/failed oom_reaper attempts and dump all the
held locks to tell us more who is blocking the progress.

[akpm@linux-foundation.org: fix CONFIG_MMU=n build]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Michal Hocko
36324a990c oom: clear TIF_MEMDIE after oom_reaper managed to unmap the address space
When oom_reaper manages to unmap all the eligible vmas there shouldn't
be much of the freable memory held by the oom victim left anymore so it
makes sense to clear the TIF_MEMDIE flag for the victim and allow the
OOM killer to select another task.

The lack of TIF_MEMDIE also means that the victim cannot access memory
reserves anymore but that shouldn't be a problem because it would get
the access again if it needs to allocate and hits the OOM killer again
due to the fatal_signal_pending resp.  PF_EXITING check.  We can safely
hide the task from the OOM killer because it is clearly not a good
candidate anymore as everyhing reclaimable has been torn down already.

This patch will allow to cap the time an OOM victim can keep TIF_MEMDIE
and thus hold off further global OOM killer actions granted the oom
reaper is able to take mmap_sem for the associated mm struct.  This is
not guaranteed now but further steps should make sure that mmap_sem for
write should be blocked killable which will help to reduce such a lock
contention.  This is not done by this patch.

Note that exit_oom_victim might be called on a remote task from
__oom_reap_task now so we have to check and clear the flag atomically
otherwise we might race and underflow oom_victims or wake up waiters too
early.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Michal Hocko
aac4536355 mm, oom: introduce oom reaper
This patch (of 5):

This is based on the idea from Mel Gorman discussed during LSFMM 2015
and independently brought up by Oleg Nesterov.

The OOM killer currently allows to kill only a single task in a good
hope that the task will terminate in a reasonable time and frees up its
memory.  Such a task (oom victim) will get an access to memory reserves
via mark_oom_victim to allow a forward progress should there be a need
for additional memory during exit path.

It has been shown (e.g.  by Tetsuo Handa) that it is not that hard to
construct workloads which break the core assumption mentioned above and
the OOM victim might take unbounded amount of time to exit because it
might be blocked in the uninterruptible state waiting for an event (e.g.
lock) which is blocked by another task looping in the page allocator.

This patch reduces the probability of such a lockup by introducing a
specialized kernel thread (oom_reaper) which tries to reclaim additional
memory by preemptively reaping the anonymous or swapped out memory owned
by the oom victim under an assumption that such a memory won't be needed
when its owner is killed and kicked from the userspace anyway.  There is
one notable exception to this, though, if the OOM victim was in the
process of coredumping the result would be incomplete.  This is
considered a reasonable constrain because the overall system health is
more important than debugability of a particular application.

A kernel thread has been chosen because we need a reliable way of
invocation so workqueue context is not appropriate because all the
workers might be busy (e.g.  allocating memory).  Kswapd which sounds
like another good fit is not appropriate as well because it might get
blocked on locks during reclaim as well.

oom_reaper has to take mmap_sem on the target task for reading so the
solution is not 100% because the semaphore might be held or blocked for
write but the probability is reduced considerably wrt.  basically any
lock blocking forward progress as described above.  In order to prevent
from blocking on the lock without any forward progress we are using only
a trylock and retry 10 times with a short sleep in between.  Users of
mmap_sem which need it for write should be carefully reviewed to use
_killable waiting as much as possible and reduce allocations requests
done with the lock held to absolute minimum to reduce the risk even
further.

The API between oom killer and oom reaper is quite trivial.
wake_oom_reaper updates mm_to_reap with cmpxchg to guarantee only
NULL->mm transition and oom_reaper clear this atomically once it is done
with the work.  This means that only a single mm_struct can be reaped at
the time.  As the operation is potentially disruptive we are trying to
limit it to the ncessary minimum and the reaper blocks any updates while
it operates on an mm.  mm_struct is pinned by mm_count to allow parallel
exit_mmap and a race is detected by atomic_inc_not_zero(mm_users).

Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Piotr Kwapulinski
f138556daf mm/mprotect.c: don't imply PROT_EXEC on non-exec fs
The mprotect(PROT_READ) fails when called by the READ_IMPLIES_EXEC
binary on a memory mapped file located on non-exec fs.  The mprotect
does not check whether fs is _executable_ or not.  The PROT_EXEC flag is
set automatically even if a memory mapped file is located on non-exec
fs.  Fix it by checking whether a memory mapped file is located on a
non-exec fs.  If so the PROT_EXEC is not implied by the PROT_READ.  The
implementation uses the VM_MAYEXEC flag set properly in mmap.  Now it is
consistent with mmap.

I did the isolated tests (PT_GNU_STACK X/NX, multiple VMAs, X/NX fs).  I
also patched the official 3.19.0-47-generic Ubuntu 14.04 kernel and it
seems to work.

Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 15:36:02 -07:00
Dmitry Vyukov
5c9a8750a6 kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing).  Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system.  A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/).  However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.

kcov does not aim to collect as much coverage as possible.  It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g.  scheduler, locking).

Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes.  Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch).  I've
dropped the second mode for simplicity.

This patch adds the necessary support on kernel side.  The complimentary
compiler support was added in gcc revision 231296.

We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:

  https://github.com/google/syzkaller/wiki/Found-Bugs

We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation".  For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.

Why not gcov.  Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat.  A
typical coverage can be just a dozen of basic blocks (e.g.  an invalid
input).  In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M).  Cost of
kcov depends only on number of executed basic blocks/edges.  On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.

kcov exposes kernel PCs and control flow to user-space which is
insecure.  But debugfs should not be mapped as user accessible.

Based on a patch by Quentin Casasnovas.

[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 15:36:02 -07:00
Minchan Kim
3f2b1a04f4 zram: revive swap_slot_free_notify
Commit b430e9d1c6 ("remove compressed copy from zram in-memory")
applied swap_slot_free_notify call in *end_swap_bio_read* to remove
duplicated memory between zram and memory.

However, with the introduction of rw_page in zram: 8c7f01025f ("zram:
implement rw_page operation of zram"), it became void because rw_page
doesn't need bio.

Memory footprint is really important in embedded platforms which have
small memory, for example, 512M) recently because it could start to kill
processes if memory footprint exceeds some threshold by LMK or some
similar memory management modules.

This patch restores the function for rw_page, thereby eliminating this
duplication.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: karam.lee <karam.lee@lge.com>
Cc: <sangseok.lee@lge.com>
Cc: Chan Jeong <chan.jeong@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 15:36:02 -07:00
Linus Torvalds
266c73b777 Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
 "This is the main drm pull request for 4.6 kernel.

  Overall the coolest thing here for me is the nouveau maxwell signed
  firmware support from NVidia, it's taken a long while to extract this
  from them.

  I also wish the ARM vendors just designed one set of display IP, ARM
  display block proliferation is definitely increasing.

  Core:
     - drm_event cleanups
     - Internal API cleanup making mode_fixup optional.
     - Apple GMUX vga switcheroo support.
     - DP AUX testing interface

  Panel:
     - Refactoring of DSI core for use over more transports.

  New driver:
     - ARM hdlcd driver

  i915:
     - FBC/PSR (framebuffer compression, panel self refresh) enabled by default.
     - Ongoing atomic display support work
     - Ongoing runtime PM work
     - Pixel clock limit checks
     - VBT DSI description support
     - GEM fixes
     - GuC firmware scheduler enhancements

  amdkfd:
     - Deferred probing fixes to avoid make file or link ordering.

  amdgpu/radeon:
     - ACP support for i2s audio support.
     - Command Submission/GPU scheduler/GPUVM optimisations
     - Initial GPU reset support for amdgpu

  vmwgfx:
     - Support for DX10 gen mipmaps
     - Pageflipping and other fixes.

  exynos:
     - Exynos5420 SoC support for FIMD
     - Exynos5422 SoC support for MIPI-DSI

  nouveau:
     - GM20x secure boot support - adds acceleration for Maxwell GPUs.
     - GM200 support
     - GM20B clock driver support
     - Power sensors work

  etnaviv:
     - Correctness fixes for GPU cache flushing
     - Better support for i.MX6 systems.

  imx-drm:
     - VBlank IRQ support
     - Fence support
     - OF endpoint support

  msm:
     - HDMI support for 8996 (snapdragon 820)
     - Adreno 430 support
     - Timestamp queries support

  virtio-gpu:
     - Fixes for Android support.

  rockchip:
     - Add support for Innosilicion HDMI

  rcar-du:
     - Support for 4 crtcs
     - R8A7795 support
     - RCar Gen 3 support

  omapdrm:
     - HDMI interlace output support
     - dma-buf import support
     - Refactoring to remove a lot of legacy code.

  tilcdc:
     - Rewrite of pageflipping code
     - dma-buf support
     - pinctrl support

  vc4:
     - HDMI modesetting bug fixes
     - Significant 3D performance improvement.

  fsl-dcu (FreeScale):
     - Lots of fixes

  tegra:
     - Two small fixes

  sti:
     - Atomic support for planes
     - Improved HDMI support"

* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (1063 commits)
  drm/amdgpu: release_pages requires linux/pagemap.h
  drm/sti: restore mode_fixup callback
  drm/amdgpu/gfx7: add MTYPE definition
  drm/amdgpu: removing BO_VAs shouldn't be interruptible
  drm/amd/powerplay: show uvd/vce power gate enablement for tonga.
  drm/amd/powerplay: show uvd/vce power gate info for fiji
  drm/amdgpu: use sched fence if possible
  drm/amdgpu: move ib.fence to job.fence
  drm/amdgpu: give a fence param to ib_free
  drm/amdgpu: include the right version of gmc header files for iceland
  drm/radeon: fix indentation.
  drm/amd/powerplay: add uvd/vce dpm enabling flag to fix the performance issue for CZ
  drm/amdgpu: switch back to 32bit hw fences v2
  drm/amdgpu: remove amdgpu_fence_is_signaled
  drm/amdgpu: drop the extra fence range check v2
  drm/amdgpu: signal fences directly in amdgpu_fence_process
  drm/amdgpu: cleanup amdgpu_fence_wait_empty v2
  drm/amdgpu: keep all fences in an RCU protected array v2
  drm/amdgpu: add number of hardware submissions to amdgpu_fence_driver_init_ring
  drm/amdgpu: RCU protected amd_sched_fence_release
  ...
2016-03-21 13:48:00 -07:00
Linus Torvalds
643ad15d47 Merge branch 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 protection key support from Ingo Molnar:
 "This tree adds support for a new memory protection hardware feature
  that is available in upcoming Intel CPUs: 'protection keys' (pkeys).

  There's a background article at LWN.net:

      https://lwn.net/Articles/643797/

  The gist is that protection keys allow the encoding of
  user-controllable permission masks in the pte.  So instead of having a
  fixed protection mask in the pte (which needs a system call to change
  and works on a per page basis), the user can map a (handful of)
  protection mask variants and can change the masks runtime relatively
  cheaply, without having to change every single page in the affected
  virtual memory range.

  This allows the dynamic switching of the protection bits of large
  amounts of virtual memory, via user-space instructions.  It also
  allows more precise control of MMU permission bits: for example the
  executable bit is separate from the read bit (see more about that
  below).

  This tree adds the MM infrastructure and low level x86 glue needed for
  that, plus it adds a high level API to make use of protection keys -
  if a user-space application calls:

        mmap(..., PROT_EXEC);

  or

        mprotect(ptr, sz, PROT_EXEC);

  (note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
  this special case, and will set a special protection key on this
  memory range.  It also sets the appropriate bits in the Protection
  Keys User Rights (PKRU) register so that the memory becomes unreadable
  and unwritable.

  So using protection keys the kernel is able to implement 'true'
  PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
  PROT_READ as well.  Unreadable executable mappings have security
  advantages: they cannot be read via information leaks to figure out
  ASLR details, nor can they be scanned for ROP gadgets - and they
  cannot be used by exploits for data purposes either.

  We know about no user-space code that relies on pure PROT_EXEC
  mappings today, but binary loaders could start making use of this new
  feature to map binaries and libraries in a more secure fashion.

  There is other pending pkeys work that offers more high level system
  call APIs to manage protection keys - but those are not part of this
  pull request.

  Right now there's a Kconfig that controls this feature
  (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
  (like most x86 CPU feature enablement code that has no runtime
  overhead), but it's not user-configurable at the moment.  If there's
  any serious problem with this then we can make it configurable and/or
  flip the default"

* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
  x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
  mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
  x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
  mm/core, x86/mm/pkeys: Add execute-only protection keys support
  x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
  x86/mm/pkeys: Allow kernel to modify user pkey rights register
  x86/fpu: Allow setting of XSAVE state
  x86/mm: Factor out LDT init from context init
  mm/core, x86/mm/pkeys: Add arch_validate_pkey()
  mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
  x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
  x86/mm/pkeys: Add Kconfig prompt to existing config option
  x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
  x86/mm/pkeys: Dump PKRU with other kernel registers
  mm/core, x86/mm/pkeys: Differentiate instruction fetches
  x86/mm/pkeys: Optimize fault handling in access_error()
  mm/core: Do not enforce PKEY permissions on remote mm access
  um, pkeys: Add UML arch_*_access_permitted() methods
  mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
  x86/mm/gup: Simplify get_user_pages() PTE bit handling
  ...
2016-03-20 19:08:56 -07:00
Linus Torvalds
d5e2d00898 powerpc updates for 4.6
Highlights:
  - Restructure Linux PTE on Book3S/64 to Radix format from Paul Mackerras
  - Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh Kumar K.V
  - Add POWER9 cputable entry from Michael Neuling
  - FPU/Altivec/VSX save/restore optimisations from Cyril Bur
  - Add support for new ftrace ABI on ppc64le from Torsten Duwe
 
 Various cleanups & minor fixes from:
  - Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy, Cyril
    Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell Currey,
    Sukadev Bhattiprolu, Suraj Jitindar Singh.
 
 General:
  - atomics: Allow architectures to define their own __atomic_op_* helpers from
    Boqun Feng
  - Implement atomic{, 64}_*_return_* variants and acquire/release/relaxed
    variants for (cmp)xchg from Boqun Feng
  - Add powernv_defconfig from Jeremy Kerr
  - Fix BUG_ON() reporting in real mode from Balbir Singh
  - Add xmon command to dump OPAL msglog from Andrew Donnellan
  - Add xmon command to dump process/task similar to ps(1) from Douglas Miller
  - Clean up memory hotplug failure paths from David Gibson
 
 pci/eeh:
  - Redesign SR-IOV on PowerNV to give absolute isolation between VFs from Wei
    Yang.
  - EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
  - PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
  - PCI: Add pcibios_bus_add_device() weak function from Wei Yang
  - MAINTAINERS: Update EEH details and maintainership from Russell Currey
 
 cxl:
  - Support added to the CXL driver for running on both bare-metal and
    hypervisor systems, from Christophe Lombard and Frederic Barrat.
  - Ignore probes for virtual afu pci devices from Vaibhav Jain
 
 perf:
  - Export Power8 generic and cache events to sysfs from Sukadev Bhattiprolu
  - hv-24x7: Fix usage with chip events, display change in counter values,
    display domain indices in sysfs, eliminate domain suffix in event names,
    from Sukadev Bhattiprolu
 
 Freescale:
  - Updates from Scott: "Highlights include 8xx optimizations, 32-bit checksum
    optimizations, 86xx consolidation, e5500/e6500 cpu hotplug, more fman and
    other dt bits, and minor fixes/cleanup."
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJW69OrAAoJEFHr6jzI4aWAe5EQAJw/hE6WBQc6a7Tj70AnXOqR
 qk/m5pZjuTwQxfBteIvHR1pE5eXdlvtAjcD254LVkFkAbIn19W/h2k0VX/nlee7P
 n/VRHRifjtGmukqHrPYJJ7ua9mNlY7pxh3leGSixBFASnSWqMxNNNziNQtSTcuCs
 TjHiw6NkZ/kzeunA4bAfE4yHVUZjmL74oiS9JbLyaVHqoW4fqWLlh26AKo2yYMZI
 qPicBBG4HBi3FGvoexnKxlJNdcV4HO7LzDjJmCSfUKYCJi+Pw19T5qmhso0q0qVz
 vHg/A8HNeG4Hn83pNVmLeQSAIQRZ3DvTtcLgbjPo+TVwm/hzrRRBWipTeOVbkLW8
 2bcOXT4t7LWUq15EAJ1LYgYZGzcLrfRfUeOcuQ1TWd3+PcfY9pE7FmizsxAAfaVe
 E9j9mpz4XnIqBtWkFHneTIHkQ5OWptyKuZJEaYH0nut4VsP0k8NarkseafGqBPu7
 5eG83gbiQbCVixfOgblV9eocJ29JcwpjPAY4CZSGJimShg909FV7WRgZgJkKWrbK
 dBRco8Jcp4VglGfo2qymv7Uj4KwQoypBREOhiKUvrAsVlDxPfx+bcskhjGu9xGDC
 xs/+nme0/lKa/wg5K4C3mQ1GAlkMWHI0ojhJjsyODbetup5UbkEu03wjAaTdO9dT
 Y6ptGm0rYAJluPNlziFj
 =qkAt
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "This was delayed a day or two by some build-breakage on old toolchains
  which we've now fixed.

  There's two PCI commits both acked by Bjorn.

  There's one commit to mm/hugepage.c which is (co)authored by Kirill.

  Highlights:
   - Restructure Linux PTE on Book3S/64 to Radix format from Paul
     Mackerras
   - Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh
     Kumar K.V
   - Add POWER9 cputable entry from Michael Neuling
   - FPU/Altivec/VSX save/restore optimisations from Cyril Bur
   - Add support for new ftrace ABI on ppc64le from Torsten Duwe

  Various cleanups & minor fixes from:
   - Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy,
     Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell
     Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh.

  General:
   - atomics: Allow architectures to define their own __atomic_op_*
     helpers from Boqun Feng
   - Implement atomic{, 64}_*_return_* variants and acquire/release/
     relaxed variants for (cmp)xchg from Boqun Feng
   - Add powernv_defconfig from Jeremy Kerr
   - Fix BUG_ON() reporting in real mode from Balbir Singh
   - Add xmon command to dump OPAL msglog from Andrew Donnellan
   - Add xmon command to dump process/task similar to ps(1) from Douglas
     Miller
   - Clean up memory hotplug failure paths from David Gibson

  pci/eeh:
   - Redesign SR-IOV on PowerNV to give absolute isolation between VFs
     from Wei Yang.
   - EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
   - PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
   - PCI: Add pcibios_bus_add_device() weak function from Wei Yang
   - MAINTAINERS: Update EEH details and maintainership from Russell
     Currey

  cxl:
   - Support added to the CXL driver for running on both bare-metal and
     hypervisor systems, from Christophe Lombard and Frederic Barrat.
   - Ignore probes for virtual afu pci devices from Vaibhav Jain

  perf:
   - Export Power8 generic and cache events to sysfs from Sukadev
     Bhattiprolu
   - hv-24x7: Fix usage with chip events, display change in counter
     values, display domain indices in sysfs, eliminate domain suffix in
     event names, from Sukadev Bhattiprolu

  Freescale:
   - Updates from Scott: "Highlights include 8xx optimizations, 32-bit
     checksum optimizations, 86xx consolidation, e5500/e6500 cpu
     hotplug, more fman and other dt bits, and minor fixes/cleanup"

* tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits)
  powerpc: Fix unrecoverable SLB miss during restore_math()
  powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers
  powerpc/rcpm: Fix build break when SMP=n
  powerpc/book3e-64: Use hardcoded mttmr opcode
  powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible
  powerpc/T104xRDB: add tdm riser card node to device tree
  powerpc32: PAGE_EXEC required for inittext
  powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree
  powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s)
  powerpc/86xx: Introduce and use common dtsi
  powerpc/86xx: Update device tree
  powerpc/86xx: Move dts files to fsl directory
  powerpc/86xx: Switch to kconfig fragments approach
  powerpc/86xx: Update defconfigs
  powerpc/86xx: Consolidate common platform code
  powerpc32: Remove one insn in mulhdu
  powerpc32: small optimisation in flush_icache_range()
  powerpc: Simplify test in __dma_sync()
  powerpc32: move xxxxx_dcache_range() functions inline
  powerpc32: Remove clear_pages() and define clear_page() inline
  ...
2016-03-19 15:38:41 -07:00
Linus Torvalds
814a2bf957 Merge branch 'akpm' (patches from Andrew)
Merge second patch-bomb from Andrew Morton:

 - a couple of hotfixes

 - the rest of MM

 - a new timer slack control in procfs

 - a couple of procfs fixes

 - a few misc things

 - some printk tweaks

 - lib/ updates, notably to radix-tree.

 - add my and Nick Piggin's old userspace radix-tree test harness to
   tools/testing/radix-tree/.  Matthew said it was a godsend during the
   radix-tree work he did.

 - a few code-size improvements, switching to __always_inline where gcc
   screwed up.

 - partially implement character sets in sscanf

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (118 commits)
  sscanf: implement basic character sets
  lib/bug.c: use common WARN helper
  param: convert some "on"/"off" users to strtobool
  lib: add "on"/"off" support to kstrtobool
  lib: update single-char callers of strtobool()
  lib: move strtobool() to kstrtobool()
  include/linux/unaligned: force inlining of byteswap operations
  include/uapi/linux/byteorder, swab: force inlining of some byteswap operations
  include/asm-generic/atomic-long.h: force inlining of some atomic_long operations
  usb: common: convert to use match_string() helper
  ide: hpt366: convert to use match_string() helper
  ata: hpt366: convert to use match_string() helper
  power: ab8500: convert to use match_string() helper
  power: charger_manager: convert to use match_string() helper
  drm/edid: convert to use match_string() helper
  pinctrl: convert to use match_string() helper
  device property: convert to use match_string() helper
  lib/string: introduce match_string() helper
  radix-tree tests: add test for radix_tree_iter_next
  radix-tree tests: add regression3 test
  ...
2016-03-18 19:26:54 -07:00
Linus Torvalds
49dc2b7173 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull trivial tree updates from Jiri Kosina.

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
  drivers/rtc: broken link fix
  drm/i915 Fix typos in i915_gem_fence.c
  Docs: fix missing word in REPORTING-BUGS
  lib+mm: fix few spelling mistakes
  MAINTAINERS: add git URL for APM driver
  treewide: Fix typo in printk
2016-03-17 21:38:27 -07:00
Matthew Wilcox
7165092fe5 radix-tree,shmem: introduce radix_tree_iter_next()
shmem likes to occasionally drop the lock, schedule, then reacqire the
lock and continue with the iteration from the last place it left off.
This is currently done with a pretty ugly goto.  Introduce
radix_tree_iter_next() and use it throughout shmem.c.

[koct9i@gmail.com: fix bug in radix_tree_iter_next() for tagged iteration]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Matthew Wilcox
2cf938aae1 mm: use radix_tree_iter_retry()
Instead of a 'goto restart', we can now use radix_tree_iter_retry() to
restart from our current position.  This will make a difference when
there are more ways to happen across an indirect pointer.  And it
eliminates some confusing gotos.

[vbabka@suse.cz: remove now-obsolete-and-misleading comment]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Matthew Wilcox
e614523653 radix_tree: add support for multi-order entries
With huge pages, it is convenient to have the radix tree be able to
return an entry that covers multiple indices.  Previous attempts to deal
with the problem have involved inserting N duplicate entries, which is a
waste of memory and leads to problems trying to handle aliased tags, or
probing the tree multiple times to find alternative entries which might
cover the requested index.

This approach inserts one canonical entry into the tree for a given
range of indices, and may also insert other entries in order to ensure
that lookups find the canonical entry.

This solution only tolerates inserting powers of two that are greater
than the fanout of the tree.  If we wish to expand the radix tree's
abilities to support large-ish pages that is less than the fanout at the
penultimate level of the tree, then we would need to add one more step
in lookup to ensure that any sibling nodes in the final level of the
tree are dereferenced and we return the canonical entry that they
reference.

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Christoph Lameter
93e205a728 fix Christoph's email addresses
There are various email addresses for me throughout the kernel.  Use the
one that will always be valid.

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Tetsuo Handa
0a687aace3 mm,oom: do not loop !__GFP_FS allocation if the OOM killer is disabled
After the OOM killer is disabled during suspend operation, any
!__GFP_NOFAIL && __GFP_FS allocations are forced to fail.  Thus, any
!__GFP_NOFAIL && !__GFP_FS allocations should be forced to fail as well.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Tetsuo Handa
6afcf2895e mm,oom: make oom_killer_disable() killable
While oom_killer_disable() is called by freeze_processes() after all
user threads except the current thread are frozen, it is possible that
kernel threads invoke the OOM killer and sends SIGKILL to the current
thread due to sharing the thawed victim's memory.  Therefore, checking
for SIGKILL is preferable than TIF_MEMDIE.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Sergey Senozhatsky
1120ed5483 mm/zsmalloc: add `freeable' column to pool stat
Add a new column to pool stats, which will tell how many pages ideally
can be freed by class compaction, so it will be easier to analyze
zsmalloc fragmentation.

At the moment, we have only numbers of FULL and ALMOST_EMPTY classes,
but they don't tell us how badly the class is fragmented internally.

The new /sys/kernel/debug/zsmalloc/zramX/classes output look as follows:

 class  size almost_full almost_empty obj_allocated   obj_used pages_used pages_per_zspage freeable
[..]
    12   224           0            2           146          5          8                4        4
    13   240           0            0             0          0          0                1        0
    14   256           1           13          1840       1672        115                1       10
    15   272           0            0             0          0          0                1        0
[..]
    49   816           0            3           745        735        149                1        2
    51   848           3            4           361        306         76                4        8
    52   864          12           14           378        268         81                3       21
    54   896           1           12           117         57         26                2       12
    57   944           0            0             0          0          0                3        0
[..]
 Total                26          131         12709      10994       1071                       134

For example, from this particular output we can easily conclude that
class-896 is heavily fragmented -- it occupies 26 pages, 12 can be freed
by compaction.

Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
YiPing Xu
a82cbf0713 zsmalloc: drop unused member 'mapping_area->huge'
When unmapping a huge class page in zs_unmap_object, the page will be
unmapped by kmap_atomic.  the "!area->huge" branch in __zs_unmap_object
is alway true, and no code set "area->huge" now, so we can drop it.

Signed-off-by: YiPing Xu <xuyiping@huawei.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Shawn Lin
a1c0b1a074 mm/vmalloc: use PAGE_ALIGNED() to check PAGE_SIZE alignment
We have PAGE_ALIGNED() in mm.h, so let's use it instead of IS_ALIGNED()
for checking PAGE_SIZE aligned case.

Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
e0775d10f1 mm: memcontrol: zap oom_info_lock
mem_cgroup_print_oom_info is always called under oom_lock, so
oom_info_lock is redundant.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
8b5926560f mm: memcontrol: clarify the uncharge_list() loop
uncharge_list() does an unusual list walk because the function can take
regular lists with dedicated list_heads as well as singleton lists where
a single page is passed via the page->lru list node.

This can sometimes lead to confusion as well as suggestions to replace
the loop with a list_for_each_entry(), which wouldn't work.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
b6e6edcfa4 mm: memcontrol: reclaim and OOM kill when shrinking memory.max below usage
Setting the original memory.limit_in_bytes hardlimit is subject to a
race condition when the desired value is below the current usage.  The
code tries a few times to first reclaim and then see if the usage has
dropped to where we would like it to be, but there is no locking, and
the workload is free to continue making new charges up to the old limit.
Thus, attempting to shrink a workload relies on pure luck and hope that
the workload happens to cooperate.

To fix this in the cgroup2 memory.max knob, do it the other way round:
set the limit first, then try enforcement.  And if reclaim is not able
to succeed, trigger OOM kills in the group.  Keep going until the new
limit is met, we run out of OOM victims and there's only unreclaimable
memory left, or the task writing to memory.max is killed.  This allows
users to shrink groups reliably, and the behavior is consistent with
what happens when new charges are attempted in excess of memory.max.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
588083bb37 mm: memcontrol: reclaim when shrinking memory.high below usage
When setting memory.high below usage, nothing happens until the next
charge comes along, and then it will only reclaim its own charge and not
the now potentially huge excess of the new memory.high.  This can cause
groups to stay in excess of their memory.high indefinitely.

To fix that, when shrinking memory.high, kick off a reclaim cycle that
goes after the delta.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Li Zhang
987b3095c2 mm: meminit: initialise more memory for inode/dentry hash tables in early boot
Upstream has supported page parallel initialisation for X86 and the boot
time is improved greately.  Some tests have been done for Power.

Here is the result I have done with different memory size.

* 4GB memory:
    boot time is as the following:
    with patch vs without patch: 10.4s vs 24.5s
    boot time is improved 57%
* 200GB memory:
    boot time looks the same with and without patches.
    boot time is about 38s
* 32TB memory:
    boot time looks the same with and without patches
    boot time is about 160s.
    The boot time is much shorter than X86 with 24TB memory.
    From community discussion, it costs about 694s for X86 24T system.

Parallel initialisation improves the performance by deferring memory
initilisation to kswap with N kthreads, it should improve the performance
therotically.

In testing on X86, performance is improved greatly with huge memory.  But
on Power platform, it is improved greatly with less than 100GB memory.
For huge memory, it is not improved greatly.  But it saves the time with
several threads at least, as the following information shows(32TB system
log):

[   22.648169] node 9 initialised, 16607461 pages in 280ms
[   22.783772] node 3 initialised, 23937243 pages in 410ms
[   22.858877] node 6 initialised, 29179347 pages in 490ms
[   22.863252] node 2 initialised, 29179347 pages in 490ms
[   22.907545] node 0 initialised, 32049614 pages in 540ms
[   22.920891] node 15 initialised, 32212280 pages in 550ms
[   22.923236] node 4 initialised, 32306127 pages in 550ms
[   22.923384] node 12 initialised, 32314319 pages in 550ms
[   22.924754] node 8 initialised, 32314319 pages in 550ms
[   22.940780] node 13 initialised, 33353677 pages in 570ms
[   22.940796] node 11 initialised, 33353677 pages in 570ms
[   22.941700] node 5 initialised, 33353677 pages in 570ms
[   22.941721] node 10 initialised, 33353677 pages in 570ms
[   22.941876] node 7 initialised, 33353677 pages in 570ms
[   22.944946] node 14 initialised, 33353677 pages in 570ms
[   22.946063] node 1 initialised, 33345485 pages in 580ms

It saves the time about 550*16 ms at least, although it can be ignore to
compare the boot time about 160 seconds.  What's more, the boot time is
much shorter on Power even without patches than x86 for huge memory
machine.

So this patchset is still necessary to be enabled for Power.

This patch (of 2):

This patch is based on Mel Gorman's old patch in the mailing list,
https://lkml.org/lkml/2015/5/5/280 which is discussed but it is fixed with
a completion to wait for all memory initialised in page_alloc_init_late().
It is to fix the OOM problem on X86 with 24TB memory which allocates
memory in late initialisation.  But for Power platform with 32TB memory,
it causes a call trace in vfs_caches_init->inode_init() and inode hash
table needs more memory.  So this patch allocates 1GB for 0.25TB/node for
large system as it is mentioned in https://lkml.org/lkml/2015/5/1/627

This call trace is found on Power with 32TB memory, 1024CPUs, 16nodes.
Currently, it only allocates 2GB*16=32GB for early initialisation.  But
Dentry cache hash table needes 16GB and Inode cache hash table needs 16GB.
So the system have no enough memory for it.  The log from dmesg as the
following:

  Dentry cache hash table entries: 2147483648 (order: 18,17179869184 bytes)
  vmalloc: allocation failure, allocated 16021913600 of 17179934720 bytes
  swapper/0: page allocation failure: order:0,mode:0x2080020
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.4.0-0-ppc64
  Call Trace:
    .dump_stack+0xb4/0xb664 (unreliable)
    .warn_alloc_failed+0x114/0x160
    .__vmalloc_area_node+0x1a4/0x2b0
    .__vmalloc_node_range+0xe4/0x110
    .__vmalloc_node+0x40/0x50
    .alloc_large_system_hash+0x134/0x2a4
    .inode_init+0xa4/0xf0
    .vfs_caches_init+0x80/0x144
    .start_kernel+0x40c/0x4e0
    start_here_common+0x20/0x4a4

Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov
5f7377147c thp: fix deadlock in split_huge_pmd()
split_huge_pmd() tries to munlock page with munlock_vma_page().  That
requires the page to locked.

If the is locked by caller, we would get a deadlock:

	Unable to find swap-space signature
	INFO: task trinity-c85:1907 blocked for more than 120 seconds.
	      Not tainted 4.4.0-00032-gf19d0bdced41-dirty #1606
	"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
	trinity-c85     D ffff88084d997608     0  1907    309 0x00000000
	Call Trace:
	  schedule+0x9f/0x1c0
	  schedule_timeout+0x48e/0x600
	  io_schedule_timeout+0x1c3/0x390
	  bit_wait_io+0x29/0xd0
	  __wait_on_bit_lock+0x94/0x140
	  __lock_page+0x1d4/0x280
	  __split_huge_pmd+0x5a8/0x10f0
	  split_huge_pmd_address+0x1d9/0x230
	  try_to_unmap_one+0x540/0xc70
	  rmap_walk_anon+0x284/0x810
	  rmap_walk_locked+0x11e/0x190
	  try_to_unmap+0x1b1/0x4b0
	  split_huge_page_to_list+0x49d/0x18a0
	  follow_page_mask+0xa36/0xea0
	  SyS_move_pages+0xaf3/0x1570
	  entry_SYSCALL_64_fastpath+0x12/0x6b
	2 locks held by trinity-c85/1907:
	 #0:  (&mm->mmap_sem){++++++}, at:  SyS_move_pages+0x933/0x1570
	 #1:  (&anon_vma->rwsem){++++..}, at:  split_huge_page_to_list+0x402/0x18a0

I don't think the deadlock is triggerable without split_huge_page()
simplifilcation patchset.

But munlock_vma_page() here is wrong: we want to munlock the page
unconditionally, no need in rmap lookup, that munlock_vma_page() does.

Let's use clear_page_mlock() instead.  It can be called under ptl.

Fixes: e90309c9f7 ("thp: allow mlocked THP again")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov
fec89c109f thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers
freeze_page() and unfreeze_page() helpers evolved in rather complex
beasts.  It would be nice to cut complexity of this code.

This patch rewrites freeze_page() using standard try_to_unmap().
unfreeze_page() is rewritten with remove_migration_ptes().

The result is much simpler.

But the new variant is somewhat slower for PTE-mapped THPs.  Current
helpers iterates over VMAs the compound page is mapped to, and then over
ptes within this VMA.  New helpers iterates over small page, then over
VMA the small page mapped to, and only then find relevant pte.

We have short cut for PMD-mapped THP: we directly install migration
entries on PMD split.

I don't think the slowdown is critical, considering how much simpler
result is and that split_huge_page() is quite rare nowadays.  It only
happens due memory pressure or migration.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov
e388466de4 mm: make remove_migration_ptes() beyond mm/migration.c
Make remove_migration_ptes() available to be used in split_huge_page().

New parameter 'locked' added: as with try_to_umap() we need a way to
indicate that caller holds rmap lock.

We also shouldn't try to mlock() pte-mapped huge pages: pte-mapeed THP
pages are never mlocked.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov
2a52bcbcc6 rmap: extend try_to_unmap() to be usable by split_huge_page()
Add support for two ttu_flags:

  - TTU_SPLIT_HUGE_PMD would split PMD if it's there, before trying to
    unmap page;

  - TTU_RMAP_LOCKED indicates that caller holds relevant rmap lock;

Also, change rwc->done to !page_mapcount() instead of !page_mapped().
try_to_unmap() works on pte level, so we are really interested in the
mappedness of this small page rather than of the compound page it's a
part of.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov
b97731992d rmap: introduce rmap_walk_locked()
This patchset rewrites freeze_page() and unfreeze_page() using
try_to_unmap() and remove_migration_ptes().  Result is much simpler, but
somewhat slower.

Migration 8GiB worth of PMD-mapped THP:

  Baseline	20.21 +/- 0.393
  Patched	20.73 +/- 0.082
  Slowdown	1.03x

It's 3% slower, comparing to 14% in v1.  I don't it should be a stopper.

Splitting of PTE-mapped pages slowed more.  But this is not a common
case.

Migration 8GiB worth of PMD-mapped THP:

  Baseline	20.39 +/- 0.225
  Patched	22.43 +/- 0.496
  Slowdown	1.10x

rmap_walk_locked() is the same as rmap_walk(), but the caller takes care
of the relevant rmap lock.

This is preparation for switching THP splitting from custom rmap walk in
freeze_page()/unfreeze_page() to the generic one.

There is no support for KSM pages for now: not clear which lock is
implied.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Dan Williams
99490f16f8 mm: ZONE_DEVICE depends on SPARSEMEM_VMEMMAP
The primary use case for devm_memremap_pages() is to allocate an memmap
array from persistent memory.  That capabilty requires vmem_altmap which
requires SPARSEMEM_VMEMMAP.

Also, without SPARSEMEM_VMEMMAP the addition of ZONE_DEVICE expands
ZONES_WIDTH and triggers the:

"Unfortunate NUMA and NUMA Balancing config, growing page-frame for
last_cpupid."

...warning in mm/memory.c.  SPARSEMEM_VMEMMAP=n && ZONE_DEVICE=y is not
a configuration we should worry about supporting.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
870d4b12ad mm: percpu: use pr_fmt to prefix output
Use the normal mechanism to make the logging output consistently
"percpu:" instead of a mix of "PERCPU:" and "percpu:"

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
1170532bb4 mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent.

Miscellanea:

 - Realign arguments
 - Add missing newline to format
 - kmemleak-test.c has a "kmemleak: " prefix added to the
   "Kmemleak testing" logging message via pr_fmt

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
598d80914e mm: convert pr_warning to pr_warn
There are a mixture of pr_warning and pr_warn uses in mm.  Use pr_warn
consistently.

Miscellanea:

 - Coalesce formats
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Dan Williams
b11a7b9410 mm: exclude ZONE_DEVICE from GFP_ZONE_TABLE
ZONE_DEVICE (merged in 4.3) and ZONE_CMA (proposed) are examples of new
mm zones that are bumping up against the current maximum limit of 4
zones, i.e.  2 bits in page->flags for the GFP_ZONE_TABLE.

The GFP_ZONE_TABLE poses an interesting constraint since
include/linux/gfp.h gets included by the 32-bit portion of a 64-bit
build.  We need to be careful to only build the table for zones that
have a corresponding gfp_t flag.  GFP_ZONES_SHIFT is introduced for this
purpose.  This patch does not attempt to solve the problem of adding a
new zone that also has a corresponding GFP_ flag.

Vlastimil points out that ZONE_DEVICE, by depending on x86_64 and
SPARSEMEM_VMEMMAP implies that SECTIONS_WIDTH is zero.  In other words
even though ZONE_DEVICE does not fit in GFP_ZONE_TABLE it is free to
consume another bit in page->flags (expand ZONES_WIDTH) with room to
spare.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=110931
Fixes: 033fbae988 ("mm: ZONE_DEVICE for "device memory"")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Mark <markk@clara.co.uk>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
d334c9bcb4 mm: memcontrol: cleanup css_reset callback
- Do not take memcg_limit_mutex for resetting limits - the cgroup cannot
  be altered from userspace anymore, so no need to protect them.

- Use plain page_counter_limit() for resetting ->memory and ->memsw
  limits instead of mem_cgrouop_resize_* helpers - we enlarge the limits,
  so no need in special handling.

- Reset ->swap and ->tcpmem limits as well.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Chen Yucong
e33e33b4d1 mm, memory hotplug: print debug message in the proper way for online_pages
online_pages() simply returns an error value if
memory_notify(MEM_GOING_ONLINE, &arg) return a value that is not what we
want for successfully onlining target pages.  This patch arms to print
more failure information like offline_pages() in online_pages.

This patch also converts printk(KERN_<LEVEL>) to pr_<level>(), and moves
__offline_pages() to not print failure information with KERN_INFO
according to David Rientjes's suggestion[1].

[1] https://lkml.org/lkml/2016/2/24/1094

Signed-off-by: Chen Yucong <slaoub@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Michal Hocko
0f352e5392 mm: remove __GFP_NOFAIL is deprecated comment
Commit 647757197c ("mm: clarify __GFP_NOFAIL deprecation status") was
incomplete and didn't remove the comment about __GFP_NOFAIL being
deprecated in buffered_rmqueue.

Let's get rid of this leftover but keep the WARN_ON_ONCE for order > 1
because we should really discourage from using __GFP_NOFAIL with higher
order allocations because those are just too subtle.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
95813b8faa mm/page_ref: add tracepoint to track down page reference manipulation
CMA allocation should be guaranteed to succeed by definition, but,
unfortunately, it would be failed sometimes.  It is hard to track down
the problem, because it is related to page reference manipulation and we
don't have any facility to analyze it.

This patch adds tracepoints to track down page reference manipulation.
With it, we can find exact reason of failure and can fix the problem.
Following is an example of tracepoint output.  (note: this example is
stale version that printing flags as the number.  Recent version will
print it as human readable string.)

<...>-9018  [004]    92.678375: page_ref_set:         pfn=0x17ac9 flags=0x0 count=1 mapcount=0 mapping=(nil) mt=4 val=1
<...>-9018  [004]    92.678378: kernel_stack:
 => get_page_from_freelist (ffffffff81176659)
 => __alloc_pages_nodemask (ffffffff81176d22)
 => alloc_pages_vma (ffffffff811bf675)
 => handle_mm_fault (ffffffff8119e693)
 => __do_page_fault (ffffffff810631ea)
 => trace_do_page_fault (ffffffff81063543)
 => do_async_page_fault (ffffffff8105c40a)
 => async_page_fault (ffffffff817581d8)
[snip]
<...>-9018  [004]    92.678379: page_ref_mod:         pfn=0x17ac9 flags=0x40048 count=2 mapcount=1 mapping=0xffff880015a78dc1 mt=4 val=1
[snip]
...
...
<...>-9131  [001]    93.174468: test_pages_isolated:  start_pfn=0x17800 end_pfn=0x17c00 fin_pfn=0x17ac9 ret=fail
[snip]
<...>-9018  [004]    93.174843: page_ref_mod_and_test: pfn=0x17ac9 flags=0x40068 count=0 mapcount=0 mapping=0xffff880015a78dc1 mt=4 val=-1 ret=1
 => release_pages (ffffffff8117c9e4)
 => free_pages_and_swap_cache (ffffffff811b0697)
 => tlb_flush_mmu_free (ffffffff81199616)
 => tlb_finish_mmu (ffffffff8119a62c)
 => exit_mmap (ffffffff811a53f7)
 => mmput (ffffffff81073f47)
 => do_exit (ffffffff810794e9)
 => do_group_exit (ffffffff81079def)
 => SyS_exit_group (ffffffff81079e74)
 => entry_SYSCALL_64_fastpath (ffffffff817560b6)

This output shows that problem comes from exit path.  In exit path, to
improve performance, pages are not freed immediately.  They are gathered
and processed by batch.  During this process, migration cannot be
possible and CMA allocation is failed.  This problem is hard to find
without this page reference tracepoint facility.

Enabling this feature bloat kernel text 30 KB in my configuration.

   text    data     bss     dec     hex filename
12127327        2243616 1507328 15878271         f2487f vmlinux_disabled
12157208        2258880 1507328 15923416         f2f8d8 vmlinux_enabled

Note that, due to header file dependency problem between mm.h and
tracepoint.h, this feature has to open code the static key functions for
tracepoints.  Proposed by Steven Rostedt in following link.

https://lkml.org/lkml/2015/12/9/699

[arnd@arndb.de: crypto/async_pq: use __free_page() instead of put_page()]
[iamjoonsoo.kim@lge.com: fix build failure for xtensa]
[akpm@linux-foundation.org: tweak Kconfig text, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
fe896d1878 mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count.  Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it.  Then, it is hard to find actual
reason of CMA allocation failure.  CMA allocation should be guaranteed
to succeed so finding offending place is really important.

In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function.  This is preparation step to
add tracepoint to each page reference manipulation function.  With this
facility, we can easily find reason of CMA allocation failure.  There is
no functional change in this patch.

In addition, this patch also converts reference read sites.  It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Mel Gorman
444eb2a449 mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure.  The problem is that
THP allocation requests potentially enter reclaim/compaction.  This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses.  While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so.  Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM.  It's been years and
it's time to throw in the towel.

First, this patch defines THP defrag as follows;

 madvise: A failed allocation will direct reclaim/compact if the application requests it
 never:   Neither reclaim/compact nor wake kswapd
 defer:   A failed allocation will wake kswapd/kcompactd
 always:  A failed allocation will direct reclaim/compact (historical behaviour)
          khugepaged defrag will enter direct/reclaim but not wake kswapd.

Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.

Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work.  The callers that
really cares are slub/slab and they are updated accordingly.  The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.

This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available.  There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary.  THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.

After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future.  In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.

The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times.  The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete.  It uses multiple threads to see
if that is a factor.  On UMA, the performance is almost identical so is
not reported but on NUMA, we see this

usemem
                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Amean    System-1       102.86 (  0.00%)       46.81 ( 54.50%)
Amean    System-4        37.85 (  0.00%)       34.02 ( 10.12%)
Amean    System-7        48.12 (  0.00%)       46.89 (  2.56%)
Amean    System-12       51.98 (  0.00%)       56.96 ( -9.57%)
Amean    System-21       80.16 (  0.00%)       79.05 (  1.39%)
Amean    System-30      110.71 (  0.00%)      107.17 (  3.20%)
Amean    System-48      127.98 (  0.00%)      124.83 (  2.46%)
Amean    Elapsd-1       185.84 (  0.00%)      105.51 ( 43.23%)
Amean    Elapsd-4        26.19 (  0.00%)       25.58 (  2.33%)
Amean    Elapsd-7        21.65 (  0.00%)       21.62 (  0.16%)
Amean    Elapsd-12       18.58 (  0.00%)       17.94 (  3.43%)
Amean    Elapsd-21       17.53 (  0.00%)       16.60 (  5.33%)
Amean    Elapsd-30       17.45 (  0.00%)       17.13 (  1.84%)
Amean    Elapsd-48       15.40 (  0.00%)       15.27 (  0.82%)

For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases.  Similar,
notice the large reduction in most cases in system CPU usage.  The
overall CPU time is

               4.4.0       4.4.0
        kcompactd-v1r1 nodefrag-v1r3
User        10357.65    10438.33
System       3988.88     3543.94
Elapsed      2203.01     1634.41

Which is substantial. Now, the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 128458477   278352931
Major Faults                   2174976         225
Swap Ins                      16904701           0
Swap Outs                     17359627           0
Allocation stalls                43611           0
DMA allocs                           0           0
DMA32 allocs                  19832646    19448017
Normal allocs                614488453   580941839
Movable allocs                       0           0
Direct pages scanned          24163800           0
Kswapd pages scanned                 0           0
Kswapd pages reclaimed               0           0
Direct pages reclaimed        20691346           0
Compaction stalls                42263           0
Compaction success                 938           0
Compaction failures              41325           0

This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.

I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used

thpscale Fault Latencies
                                       4.4.0                 4.4.0
                              kcompactd-v1r1         nodefrag-v1r3
Amean    fault-base-1      5288.84 (  0.00%)     2817.12 ( 46.73%)
Amean    fault-base-3      6365.53 (  0.00%)     3499.11 ( 45.03%)
Amean    fault-base-5      6526.19 (  0.00%)     4363.06 ( 33.15%)
Amean    fault-base-7      7142.25 (  0.00%)     4858.08 ( 31.98%)
Amean    fault-base-12    13827.64 (  0.00%)    10292.11 ( 25.57%)
Amean    fault-base-18    18235.07 (  0.00%)    13788.84 ( 24.38%)
Amean    fault-base-24    21597.80 (  0.00%)    24388.03 (-12.92%)
Amean    fault-base-30    26754.15 (  0.00%)    19700.55 ( 26.36%)
Amean    fault-base-32    26784.94 (  0.00%)    19513.57 ( 27.15%)
Amean    fault-huge-1      4223.96 (  0.00%)     2178.57 ( 48.42%)
Amean    fault-huge-3      2194.77 (  0.00%)     2149.74 (  2.05%)
Amean    fault-huge-5      2569.60 (  0.00%)     2346.95 (  8.66%)
Amean    fault-huge-7      3612.69 (  0.00%)     2997.70 ( 17.02%)
Amean    fault-huge-12     3301.75 (  0.00%)     6727.02 (-103.74%)
Amean    fault-huge-18     6696.47 (  0.00%)     6685.72 (  0.16%)
Amean    fault-huge-24     8000.72 (  0.00%)     9311.43 (-16.38%)
Amean    fault-huge-30    13305.55 (  0.00%)     9750.45 ( 26.72%)
Amean    fault-huge-32     9981.71 (  0.00%)    10316.06 ( -3.35%)

The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload

                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Percentage huge-1         0.71 (  0.00%)       14.04 (1865.22%)
Percentage huge-3        10.77 (  0.00%)       33.05 (206.85%)
Percentage huge-5        60.39 (  0.00%)       38.51 (-36.23%)
Percentage huge-7        45.97 (  0.00%)       34.57 (-24.79%)
Percentage huge-12       68.12 (  0.00%)       40.07 (-41.17%)
Percentage huge-18       64.93 (  0.00%)       47.82 (-26.35%)
Percentage huge-24       62.69 (  0.00%)       44.23 (-29.44%)
Percentage huge-30       43.49 (  0.00%)       55.38 ( 27.34%)
Percentage huge-32       50.72 (  0.00%)       51.90 (  2.35%)

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                  37429143    47564000
Major Faults                      1916        1558
Swap Ins                          1466        1079
Swap Outs                      2936863      149626
Allocation stalls                62510           3
DMA allocs                           0           0
DMA32 allocs                   6566458     6401314
Normal allocs                216361697   216538171
Movable allocs                       0           0
Direct pages scanned          25977580       17998
Kswapd pages scanned                 0     3638931
Kswapd pages reclaimed               0      207236
Direct pages reclaimed         8833714          88
Compaction stalls               103349           5
Compaction success                 270           4
Compaction failures             103079           1

Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.

I also tried the stutter benchmark.  For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available

stutter
                                 4.4.0                 4.4.0
                        kcompactd-v1r1         nodefrag-v1r3
Min         mmap      7.3571 (  0.00%)      7.3438 (  0.18%)
1st-qrtle   mmap      7.5278 (  0.00%)     17.9200 (-138.05%)
2nd-qrtle   mmap      7.6818 (  0.00%)     21.6055 (-181.25%)
3rd-qrtle   mmap     11.0889 (  0.00%)     21.8881 (-97.39%)
Max-90%     mmap     27.8978 (  0.00%)     22.1632 ( 20.56%)
Max-93%     mmap     28.3202 (  0.00%)     22.3044 ( 21.24%)
Max-95%     mmap     28.5600 (  0.00%)     22.4580 ( 21.37%)
Max-99%     mmap     29.6032 (  0.00%)     25.5216 ( 13.79%)
Max         mmap   4109.7289 (  0.00%)   4813.9832 (-17.14%)
Mean        mmap     12.4474 (  0.00%)     19.3027 (-55.07%)

This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently.  This shows a mix because the ideal case of mapping with THP
is not hit as often.  However, note that 99% of the mappings complete
13.79% faster.  The CPU usage here is particularly interesting

               4.4.0       4.4.0
        kcompactd-v1r1nodefrag-v1r3
User           67.50        0.99
System       1327.88       91.30
Elapsed      2079.00     2128.98

And once again we look at the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 335241922  1314582827
Major Faults                       715         819
Swap Ins                             0           0
Swap Outs                            0           0
Allocation stalls               532723           0
DMA allocs                           0           0
DMA32 allocs                1822364341  1177950222
Normal allocs               1815640808  1517844854
Movable allocs                       0           0
Direct pages scanned          21892772           0
Kswapd pages scanned          20015890    41879484
Kswapd pages reclaimed        19961986    41822072
Direct pages reclaimed        21892741           0
Compaction stalls              1065755           0
Compaction success                 514           0
Compaction failures            1065241           0

Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.

THP gives impressive gains in some cases but only if they are quickly
available.  We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
David Rientjes
f9054c70d2 mm, mempool: only set __GFP_NOMEMALLOC if there are free elements
If an oom killed thread calls mempool_alloc(), it is possible that it'll
loop forever if there are no elements on the freelist since
__GFP_NOMEMALLOC prevents it from accessing needed memory reserves in
oom conditions.

Only set __GFP_NOMEMALLOC if there are elements on the freelist.  If
there are no free elements, allow allocations without the bit set so
that memory reserves can be accessed if needed.

Additionally, using mempool_alloc() with __GFP_NOMEMALLOC is not
supported since the implementation can loop forever without accessing
memory reserves when needed.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
795ae7a0de mm: scale kswapd watermarks in proportion to memory
In machines with 140G of memory and enterprise flash storage, we have
seen read and write bursts routinely exceed the kswapd watermarks and
cause thundering herds in direct reclaim.  Unfortunately, the only way
to tune kswapd aggressiveness is through adjusting min_free_kbytes - the
system's emergency reserves - which is entirely unrelated to the
system's latency requirements.  In order to get kswapd to maintain a
250M buffer of free memory, the emergency reserves need to be set to 1G.
That is a lot of memory wasted for no good reason.

On the other hand, it's reasonable to assume that allocation bursts and
overall allocation concurrency scale with memory capacity, so it makes
sense to make kswapd aggressiveness a function of that as well.

Change the kswapd watermark scale factor from the currently fixed 25% of
the tunable emergency reserve to a tunable 0.1% of memory.

Beyond 1G of memory, this will produce bigger watermark steps than the
current formula in default settings.  Ensure that the new formula never
chooses steps smaller than that, i.e.  25% of the emergency reserve.

On a 140G machine, this raises the default watermark steps - the
distance between min and low, and low and high - from 16M to 143M.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov
3ed3a4f0dd mm: cleanup *pte_alloc* interfaces
There are few things about *pte_alloc*() helpers worth cleaning up:

 - 'vma' argument is unused, let's drop it;

 - most __pte_alloc() callers do speculative check for pmd_none(),
   before taking ptl: let's introduce pte_alloc() macro which does
   the check.

   The only direct user of __pte_alloc left is userfaultfd, which has
   different expectation about atomicity wrt pmd.

 - pte_alloc_map() and pte_alloc_map_lock() are redefined using
   pte_alloc().

[sudeep.holla@arm.com: fix build for arm64 hugetlbpage]
[sfr@canb.auug.org.au: fix arch/arm/mm/mmu.c some more]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Igor Redko
d02bd27bd3 mm/page_alloc.c: calculate 'available' memory in a separate function
Add a new field, VIRTIO_BALLOON_S_AVAIL, to virtio_balloon memory
statistics protocol, corresponding to 'Available' in /proc/meminfo.

It indicates to the hypervisor how big the balloon can be inflated
without pushing the guest system to swap.  This metric would be very
useful in VM orchestration software to improve memory management of
different VMs under overcommit.

This patch (of 2):

Factor out calculation of the available memory counter into a separate
exportable function, in order to be able to use it in other parts of the
kernel.

In particular, it appears a relevant metric to report to the hypervisor
via virtio-balloon statistics interface (in a followup patch).

Signed-off-by: Igor Redko <redkoi@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Yang Shi
7eb50292d7 mm/Kconfig: remove redundant arch depend for memory hotplug
MEMORY_HOTPLUG already depends on ARCH_ENABLE_MEMORY_HOTPLUG which is
selected by the supported architectures, so the following arch depend is
unnecessary.

Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Aneesh Kumar K.V
458aa76d13 mm/thp/migration: switch from flush_tlb_range to flush_pmd_tlb_range
We remove one instace of flush_tlb_range here.  That was added by commit
f714f4f20e ("mm: numa: call MMU notifiers on THP migration").  But the
pmdp_huge_clear_flush_notify should have done the require flush for us.
Hence remove the extra flush.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Andrey Ryabinin
39a1aa8e19 mm: deduplicate memory overcommitment code
Currently we have two copies of the same code which implements memory
overcommitment logic.  Let's move it into mm/util.c and hence avoid
duplication.  No functional changes here.

Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Andrey Ryabinin
ea606cf5d8 mm: move max_map_count bits into mm.h
max_map_count sysctl unrelated to scheduler. Move its bits from
include/linux/sched/sysctl.h to include/linux/mm.h.

Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov
f9719a03de thp, vmstats: count deferred split events
Count how many times we put a THP in split queue.  Currently, it happens
on partial unmap of a THP.

Rapidly growing value can indicate that an application behaves
unfriendly wrt THP: often fault in huge page and then unmap part of it.
This leads to unnecessary memory fragmentation and the application may
require tuning.

The event also can help with debugging kernel [mis-]behaviour.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
0a6b76dd23 mm: workingset: make shadow node shrinker memcg aware
Workingset code was recently made memcg aware, but shadow node shrinker
is still global.  As a result, one small cgroup can consume all memory
available for shadow nodes, possibly hurting other cgroups by reclaiming
their shadow nodes, even though reclaim distances stored in its shadow
nodes have no effect.  To avoid this, we need to make shadow node
shrinker memcg aware.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
cdcbb72ebf mm: workingset: size shadow nodes lru basing on file cache size
A page is activated on refault if the refault distance stored in the
corresponding shadow entry is less than the number of active file pages.
Since active file pages can't occupy more than half memory, we assume
that the maximal effective refault distance can't be greater than half
the number of present pages and size the shadow nodes lru list
appropriately.  Generally speaking, this assumption is correct, but it
can result in wasting a considerable chunk of memory on stale shadow
nodes in case the portion of file pages is small, e.g.  if a workload
mostly uses anonymous memory.

To sort this out, we need to compute the size of shadow nodes lru basing
not on the maximal possible, but the current size of file cache.  We
could take the size of active file lru for the maximal refault distance,
but active lru is pretty unstable - it can shrink dramatically at
runtime possibly disrupting workingset detection logic.

Instead we assume that the maximal refault distance equals half the
total number of file cache pages.  This will protect us against active
file lru size fluctuations while still being correct, because size of
active lru is normally maintained lower than size of inactive lru.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
b6ecd2dea4 mm: memcontrol: zap memcg_kmem_online helper
As kmem accounting is now either enabled for all cgroups or disabled
system-wide, there's no point in having memcg_kmem_online() helper -
instead one can use memcg_kmem_enabled() and mem_cgroup_online(), as
shrink_slab() now does.

There are only two places left where this helper is used -
__memcg_kmem_charge() and memcg_create_kmem_cache().  The former can
only be called if memcg_kmem_enabled() returned true.  Since the cgroup
it operates on is online, mem_cgroup_is_root() check will be enough.

memcg_create_kmem_cache() can't use mem_cgroup_online() helper instead
of memcg_kmem_online(), because it relies on the fact that in
memcg_offline_kmem() memcg->kmem_state is changed before
memcg_deactivate_kmem_caches() is called, but there we can just
open-code the check.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
0fc9f58a90 mm: vmscan: pass root_mem_cgroup instead of NULL to memcg aware shrinker
It's just convenient to implement a memcg aware shrinker when you know
that shrink_control->memcg != NULL unless memcg_kmem_enabled() returns
false.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
b313aeee25 mm: memcontrol: enable kmem accounting for all cgroups in the legacy hierarchy
Workingset code was recently made memcg aware, but shadow node shrinker
is still global.  As a result, one small cgroup can consume all memory
available for shadow nodes, possibly hurting other cgroups by reclaiming
their shadow nodes, even though reclaim distances stored in its shadow
nodes have no effect.  To avoid this, we need to make shadow node
shrinker memcg aware.

The actual work is done in patch 6 of the series.  Patches 1 and 2
prepare memcg/shrinker infrastructure for the change.  Patch 3 is just a
collateral cleanup.  Patch 4 makes radix_tree_node accounted, which is
necessary for making shadow node shrinker memcg aware.  Patch 5 reduces
shadow nodes overhead in case workload mostly uses anonymous pages.

This patch:

Currently, in the legacy hierarchy kmem accounting is off for all
cgroups by default and must be enabled explicitly by writing something
to memory.kmem.limit_in_bytes.  Since we don't support reclaim on
hitting kmem limit, nor do we have any plans to implement it, this is
likely to be -1, just to enable kmem accounting and limit kernel memory
consumption by the memory.limit_in_bytes along with user memory.

This user API was introduced when the implementation of kmem accounting
lacked slab shrinker support and hence was useless in practice.  Things
have changed since then - slab shrinkers were made memcg aware, the
accounting overhead seems to be negligible, and a failure to charge a
kmem allocation should not have critical consequences, because we only
account those kernel objects that should be safe to fail.  That's why
kmem accounting is enabled by default for all cgroups in the default
hierarchy, which will eventually replace the legacy one.

The ability to enable kmem accounting for some cgroups while keeping it
disabled for others is getting difficult to maintain.  E.g.  to make
shadow node shrinker memcg aware (see mm/workingset.c), we need to know
the relationship between the number of shadow nodes allocated for a
cgroup and the size of its lru list.  If kmem accounting is enabled for
all cgroups there is no problem, but what should we do if kmem
accounting is enabled only for half of cgroups? We've no other choice
but use global lru stats while scanning root cgroup's shadow nodes, but
that would be wrong if kmem accounting was enabled for all cgroups
(which is the case if the unified hierarchy is used), in which case we
should use lru stats of the root cgroup's lruvec.

That being said, let's enable kmem accounting for all memory cgroups by
default.  If one finds it unstable or too costly, it can always be
disabled system-wide by passing cgroup.memory=nokmem to the kernel at
boot time.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
accf62422b mm, kswapd: replace kswapd compaction with waking up kcompactd
Similarly to direct reclaim/compaction, kswapd attempts to combine
reclaim and compaction to attempt making memory allocation of given
order available.

The details differ from direct reclaim e.g. in having high watermark as
a goal.  The code involved in kswapd's reclaim/compaction decisions has
evolved to be quite complex.

Testing reveals that it doesn't actually work in at least one scenario,
and closer inspection suggests that it could be greatly simplified
without compromising on the goal (make high-order page available) or
efficiency (don't reclaim too much).  The simplification relieas of
doing all compaction in kcompactd, which is simply woken up when high
watermarks are reached by kswapd's reclaim.

The scenario where kswapd compaction doesn't work was found with mmtests
test stress-highalloc configured to attempt order-9 allocations without
direct reclaim, just waking up kswapd.  There was no compaction attempt
from kswapd during the whole test.  Some added instrumentation shows
what happens:

 - balance_pgdat() sets end_zone to Normal, as it's not balanced
 - reclaim is attempted on DMA zone, which sets nr_attempted to 99, but
   it cannot reclaim anything, so sc.nr_reclaimed is 0
 - for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so
   it merely checks if high watermarks were reached for base pages.
   This is true, so no reclaim is attempted.  For DMA, testorder=0
   wasn't used, as compaction_suitable() returned COMPACT_SKIPPED
 - even though the pgdat_needs_compaction flag wasn't set to false, no
   compaction happens due to the condition sc.nr_reclaimed >
   nr_attempted being false (as 0 < 99)
 - priority-- due to nr_reclaimed being 0, repeat until priority reaches
   0 pgdat_balanced() is false as only the small zone DMA appears
   balanced (curiously in that check, watermark appears OK and
   compaction_suitable() returns COMPACT_PARTIAL, because a lower
   classzone_idx is used there)

Now, even if it was decided that reclaim shouldn't be attempted on the
DMA zone, the scenario would be the same, as (sc.nr_reclaimed=0 >
nr_attempted=0) is also false.  The condition really should use >= as
the comment suggests.  Then there is a mismatch in the check for setting
pgdat_needs_compaction to false using low watermark, while the rest uses
high watermark, and who knows what other subtlety.  Hopefully this
demonstrates that this is unsustainable.

Luckily we can simplify this a lot.  The reclaim/compaction decisions
make sense for direct reclaim scenario, but in kswapd, our primary goal
is to reach high watermark in order-0 pages.  Afterwards we can attempt
compaction just once.  Unlike direct reclaim, we don't reclaim extra
pages (over the high watermark), the current code already disallows it
for good reasons.

After this patch, we simply wake up kcompactd to process the pgdat,
after we have either succeeded or failed to reach the high watermarks in
kswapd, which goes to sleep.  We pass kswapd's order and classzone_idx,
so kcompactd can apply the same criteria to determine which zones are
worth compacting.  Note that we use the classzone_idx from
wakeup_kswapd(), not balanced_classzone_idx which can include higher
zones that kswapd tried to balance too, but didn't consider them in
pgdat_balanced().

Since kswapd now cannot create high-order pages itself, we need to
adjust how it determines the zones to be balanced.  The key element here
is adding a "highorder" parameter to zone_balanced, which, when set to
false, makes it consider only order-0 watermark instead of the desired
higher order (this was done previously by kswapd_shrink_zone(), but not
elsewhere).  This false is passed for example in pgdat_balanced().
Importantly, wakeup_kswapd() uses true to make sure kswapd and thus
kcompactd are woken up for a high-order allocation failure.

The last thing is to decide what to do with pageblock_skip bitmap
handling.  Compaction maintains a pageblock_skip bitmap to record
pageblocks where isolation recently failed.  This bitmap can be reset by
three ways:

1) direct compaction is restarting after going through the full deferred cycle

2) kswapd goes to sleep, and some other direct compaction has previously
   finished scanning the whole zone and set zone->compact_blockskip_flush.
   Note that a successful direct compaction clears this flag.

3) compaction was invoked manually via trigger in /proc

The case 2) is somewhat fuzzy to begin with, but after introducing
kcompactd we should update it.  The check for direct compaction in 1),
and to set the flush flag in 2) use current_is_kswapd(), which doesn't
work for kcompactd.  Thus, this patch adds bool direct_compaction to
compact_control to use in 2).  For the case 1) we remove the check
completely - unlike the former kswapd compaction, kcompactd does use the
deferred compaction functionality, so flushing tied to restarting from
deferred compaction makes sense here.

Note that when kswapd goes to sleep, kcompactd is woken up, so it will
see the flushed pageblock_skip bits.  This is different from when the
former kswapd compaction observed the bits and I believe it makes more
sense.  Kcompactd can afford to be more thorough than a direct
compaction trying to limit allocation latency, or kswapd whose primary
goal is to reclaim.

For testing, I used stress-highalloc configured to do order-9
allocations with GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just
on kswapd/kcompactd reclaim/compaction (the interfering kernel builds in
phases 1 and 2 work as usual):

stress-highalloc
                        4.5-rc1+before          4.5-rc1+after
                             -nodirect              -nodirect
Success 1 Min          1.00 (  0.00%)         5.00 (-66.67%)
Success 1 Mean         1.40 (  0.00%)         6.20 (-55.00%)
Success 1 Max          2.00 (  0.00%)         7.00 (-16.67%)
Success 2 Min          1.00 (  0.00%)         5.00 (-66.67%)
Success 2 Mean         1.80 (  0.00%)         6.40 (-52.38%)
Success 2 Max          3.00 (  0.00%)         7.00 (-16.67%)
Success 3 Min         34.00 (  0.00%)        62.00 (  1.59%)
Success 3 Mean        41.80 (  0.00%)        63.80 (  1.24%)
Success 3 Max         53.00 (  0.00%)        65.00 (  2.99%)

User                          3166.67        3181.09
System                        1153.37        1158.25
Elapsed                       1768.53        1799.37

                            4.5-rc1+before   4.5-rc1+after
                                 -nodirect    -nodirect
Direct pages scanned                32938        32797
Kswapd pages scanned              2183166      2202613
Kswapd pages reclaimed            2152359      2143524
Direct pages reclaimed              32735        32545
Percentage direct scans                1%           1%
THP fault alloc                       579          612
THP collapse alloc                    304          316
THP splits                              0            0
THP fault fallback                    793          778
THP collapse fail                      11           16
Compaction stalls                    1013         1007
Compaction success                     92           67
Compaction failures                   920          939
Page migrate success               238457       721374
Page migrate failure                23021        23469
Compaction pages isolated          504695      1479924
Compaction migrate scanned         661390      8812554
Compaction free scanned          13476658     84327916
Compaction cost                       262          838

After this patch we see improvements in allocation success rate
(especially for phase 3) along with increased compaction activity.  The
compaction stalls (direct compaction) in the interfering kernel builds
(probably THP's) also decreased somewhat thanks to kcompactd activity,
yet THP alloc successes improved a bit.

Note that elapsed and user time isn't so useful for this benchmark,
because of the background interference being unpredictable.  It's just
to quickly spot some major unexpected differences.  System time is
somewhat more useful and that didn't increase.

Also (after adjusting mmtests' ftrace monitor):

Time kswapd awake               2547781     2269241
Time kcompactd awake                  0      119253
Time direct compacting           939937      557649
Time kswapd compacting                0           0
Time kcompactd compacting             0      119099

The decrease of overal time spent compacting appears to not match the
increased compaction stats.  I suspect the tasks get rescheduled and
since the ftrace monitor doesn't see that, the reported time is wall
time, not CPU time.  But arguably direct compactors care about overall
latency anyway, whether busy compacting or waiting for CPU doesn't
matter.  And that latency seems to almost halved.

It's also interesting how much time kswapd spent awake just going
through all the priorities and failing to even try compacting, over and
over.

We can also configure stress-highalloc to perform both direct
reclaim/compaction and wakeup kswapd/kcompactd, by using
GFP_KERNEL|__GFP_HIGH|__GFP_COMP:

stress-highalloc
                        4.5-rc1+before         4.5-rc1+after
                               -direct               -direct
Success 1 Min          4.00 (  0.00%)        9.00 (-50.00%)
Success 1 Mean         8.00 (  0.00%)       10.00 (-19.05%)
Success 1 Max         12.00 (  0.00%)       11.00 ( 15.38%)
Success 2 Min          4.00 (  0.00%)        9.00 (-50.00%)
Success 2 Mean         8.20 (  0.00%)       10.00 (-16.28%)
Success 2 Max         13.00 (  0.00%)       11.00 (  8.33%)
Success 3 Min         75.00 (  0.00%)       74.00 (  1.33%)
Success 3 Mean        75.60 (  0.00%)       75.20 (  0.53%)
Success 3 Max         77.00 (  0.00%)       76.00 (  0.00%)

User                          3344.73       3246.04
System                        1194.24       1172.29
Elapsed                       1838.04       1836.76

                            4.5-rc1+before  4.5-rc1+after
                                   -direct     -direct
Direct pages scanned               125146      120966
Kswapd pages scanned              2119757     2135012
Kswapd pages reclaimed            2073183     2108388
Direct pages reclaimed             124909      120577
Percentage direct scans                5%          5%
THP fault alloc                       599         652
THP collapse alloc                    323         354
THP splits                              0           0
THP fault fallback                    806         793
THP collapse fail                      17          16
Compaction stalls                    2457        2025
Compaction success                    906         518
Compaction failures                  1551        1507
Page migrate success              2031423     2360608
Page migrate failure                32845       40852
Compaction pages isolated         4129761     4802025
Compaction migrate scanned       11996712    21750613
Compaction free scanned         214970969   344372001
Compaction cost                      2271        2694

In this scenario, this patch doesn't change the overall success rate as
direct compaction already tries all it can.  There's however significant
reduction in direct compaction stalls (that is, the number of
allocations that went into direct compaction).  The number of successes
(i.e.  direct compaction stalls that ended up with successful
allocation) is reduced by the same number.  This means the offload to
kcompactd is working as expected, and direct compaction is reduced
either due to detecting contention, or compaction deferred by kcompactd.
In the previous version of this patchset there was some apparent
reduction of success rate, but the changes in this version (such as
using sync compaction only), new baseline kernel, and/or averaging
results from 5 executions (my bet), made this go away.

Ftrace-based stats seem to roughly agree:

Time kswapd awake               2532984     2326824
Time kcompactd awake                  0      257916
Time direct compacting           864839      735130
Time kswapd compacting                0           0
Time kcompactd compacting             0      257585

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
e888ca3545 mm, memory hotplug: small cleanup in online_pages()
We can reuse the nid we've determined instead of repeated pfn_to_nid()
usages.  Also zone_to_nid() should be a bit cheaper in general than
pfn_to_nid().

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
698b1b3064 mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts:

 - kswapd balancing a zone after a high-order allocation failure
 - direct compaction to satisfy a high-order allocation, including THP
   page fault attemps
 - khugepaged trying to collapse a hugepage
 - manually from /proc

The purpose of compaction is two-fold.  The obvious purpose is to
satisfy a (pending or future) high-order allocation, and is easy to
evaluate.  The other purpose is to keep overal memory fragmentation low
and help the anti-fragmentation mechanism.  The success wrt the latter
purpose is more

The current situation wrt the purposes has a few drawbacks:

 - compaction is invoked only when a high-order page or hugepage is not
   available (or manually).  This might be too late for the purposes of
   keeping memory fragmentation low.
 - direct compaction increases latency of allocations.  Again, it would
   be better if compaction was performed asynchronously to keep
   fragmentation low, before the allocation itself comes.
 - (a special case of the previous) the cost of compaction during THP
   page faults can easily offset the benefits of THP.
 - kswapd compaction appears to be complex, fragile and not working in
   some scenarios.  It could also end up compacting for a high-order
   allocation request when it should be reclaiming memory for a later
   order-0 request.

To improve the situation, we should be able to benefit from an
equivalent of kswapd, but for compaction - i.e. a background thread
which responds to fragmentation and the need for high-order allocations
(including hugepages) somewhat proactively.

One possibility is to extend the responsibilities of kswapd, which could
however complicate its design too much.  It should be better to let
kswapd handle reclaim, as order-0 allocations are often more critical
than high-order ones.

Another possibility is to extend khugepaged, but this kthread is a
single instance and tied to THP configs.

This patch goes with the option of a new set of per-node kthreads called
kcompactd, and lays the foundations, without introducing any new
tunables.  The lifecycle mimics kswapd kthreads, including the memory
hotplug hooks.

For compaction, kcompactd uses the standard compaction_suitable() and
ompact_finished() criteria and the deferred compaction functionality.
Unlike direct compaction, it uses only sync compaction, as there's no
allocation latency to minimize.

This patch doesn't yet add a call to wakeup_kcompactd.  The kswapd
compact/reclaim loop for high-order pages will be replaced by waking up
kcompactd in the next patch with the description of what's wrong with
the old approach.

Waking up of the kcompactd threads is also tied to kswapd activity and
follows these rules:
 - we don't want to affect any fastpaths, so wake up kcompactd only from
   the slowpath, as it's done for kswapd
 - if kswapd is doing reclaim, it's more important than compaction, so
   don't invoke kcompactd until kswapd goes to sleep
 - the target order used for kswapd is passed to kcompactd

Future possible future uses for kcompactd include the ability to wake up
kcompactd on demand in special situations, such as when hugepages are
not available (currently not done due to __GFP_NO_KSWAPD) or when a
fragmentation event (i.e.  __rmqueue_fallback()) occurs.  It's also
possible to perform periodic compaction with kcompactd.

[arnd@arndb.de: fix build errors with kcompactd]
[paul.gortmaker@windriver.com: don't use modular references for non modular code]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
81c5857b27 mm, kswapd: remove bogus check of balance_classzone_idx
During work on kcompactd integration I have spotted a confusing check of
balance_classzone_idx, which I believe is bogus.

The balanced_classzone_idx is filled by balance_pgdat() as the highest
zone it attempted to balance.  This was introduced by commit dc83edd941
("mm: kswapd: use the classzone idx that kswapd was using for
sleeping_prematurely()").

The intention is that (as expressed in today's function names), the
value used for kswapd_shrink_zone() calls in balance_pgdat() is the same
as for the decisions in kswapd_try_to_sleep().

An unwanted side-effect of that commit was breaking the checks in
kswapd() whether there was another kswapd_wakeup with a tighter (=lower)
classzone_idx.  Commits 215ddd6664 ("mm: vmscan: only read
new_classzone_idx from pgdat when reclaiming successfully") and
d2ebd0f6b8 ("kswapd: avoid unnecessary rebalance after an unsuccessful
balancing") tried to fixed, but apparently introduced a bogus check that
this patch removes.

Consider zone indexes X < Y < Z, where:
- Z is the value used for the first kswapd wakeup.
- Y is returned as balanced_classzone_idx, which means zones with index higher
  than Y (including Z) were found to be unreclaimable.
- X is the value used for the second kswapd wakeup

The new wakeup with value X means that kswapd is now supposed to balance
harder all zones with index <= X.  But instead, due to Y < Z, it will go
sleep and won't read the new value X.  This is subtly wrong.

The effect of this patch is that kswapd will react better in some
situations, where e.g.  the first wakeup is for ZONE_DMA32, the second is
for ZONE_DMA, and due to unreclaimable ZONE_NORMAL.  Before this patch,
kswapd would go sleep instead of reclaiming ZONE_DMA harder.  I expect
these situations are very rare, and more value is in better
maintainability due to the removal of confusing and bogus check.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
505f6d22db sound: query dynamic DEBUG_PAGEALLOC setting
We can disable debug_pagealloc processing even if the code is compiled
with CONFIG_DEBUG_PAGEALLOC.  This patch changes the code to query
whether it is enabled or not in runtime.

[akpm@linux-foundation.org: export _debug_pagealloc_enabled to modules]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Takashi Iwai <tiwai@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
922d566cdc mm/slub: query dynamic DEBUG_PAGEALLOC setting
We can disable debug_pagealloc processing even if the code is compiled
with CONFIG_DEBUG_PAGEALLOC.  This patch changes the code to query
whether it is enabled or not in runtime.

[akpm@linux-foundation.org: clean up code, per Christian]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Takashi Iwai <tiwai@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
f48d97f340 mm/vmalloc: query dynamic DEBUG_PAGEALLOC setting
As CONFIG_DEBUG_PAGEALLOC can be enabled/disabled via kernel parameters
we can optimize some cases by checking the enablement state.

This is follow-up work for Christian's Optimize CONFIG_DEBUG_PAGEALLOC:

  https://lkml.org/lkml/2016/1/27/194

Remaining work is to make sparc to be aware of this but it looks not
easy for me so I skip that in this series.

This patch (of 5):

We can disable debug_pagealloc processing even if the code is complied
with CONFIG_DEBUG_PAGEALLOC.  This patch changes the code to query
whether it is enabled or not in runtime.

[akpm@linux-foundation.org: update comment, per David.  Adjust comment to use 80 cols]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Naoya Horiguchi
832fc1de01 /proc/kpageflags: return KPF_BUDDY for "tail" buddy pages
Currently /proc/kpageflags returns nothing for "tail" buddy pages, which
is inconvenient when grasping how free pages are distributed.  This
patch sets KPF_BUDDY for such pages.

With this patch:

  $ grep MemFree /proc/meminfo ; tools/vm/page-types -b buddy
  MemFree:         3134992 kB
               flags      page-count       MB  symbolic-flags                     long-symbolic-flags
  0x0000000000000400          779272     3044  __________B_______________________________ buddy
  0x0000000000000c00            4385       17  __________BM______________________________ buddy,mmap
               total          783657     3061

783657 pages is 3134628 kB (roughly consistent with the global counter,)
so it's OK.

[akpm@linux-foundation.org: update comment, per Naoya]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
12580e4b54 mm: memcontrol: report kernel stack usage in cgroup2 memory.stat
Show how much memory is allocated to kernel stacks.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
27ee57c93f mm: memcontrol: report slab usage in cgroup2 memory.stat
Show how much memory is used for storing reclaimable and unreclaimable
in-kernel data structures allocated from slab caches.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
72b54e7314 mm: memcontrol: make tree_{stat,events} fetch all stats
Currently, tree_{stat,events} helpers can only get one stat index at a
time, so when there are a lot of stats to be reported one has to call it
over and over again (see memory_stat_show).  This is neither effective,
nor does it look good.  Instead, let's make these helpers take a
snapshot of all available counters.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
fcff7d7eeb mm: memcontrol: do not bypass slab charge if memcg is offline
Slab pages are charged in two steps.  First, an appropriate per memcg
cache is selected (see memcg_kmem_get_cache) basing on the current
context, then the new slab page is charged to the memory cgroup which
the selected cache was created for (see memcg_charge_slab ->
__memcg_kmem_charge_memcg).  It is OK to bypass kmemcg charge at step 1,
but if step 1 succeeded and we successfully allocated a new slab page,
step 2 must be performed, otherwise we would get a per memcg kmem cache
which contains a slab that does not hold a reference to the memory
cgroup owning the cache.  Since per memcg kmem caches are destroyed on
memcg css free, this could result in freeing a cache while there are
still active objects in it.

However, currently we will bypass slab page charge if the memory cgroup
owning the cache is offline (see __memcg_kmem_charge_memcg).  This is
very unlikely to occur in practice, because for this to happen a process
must be migrated to a different cgroup and the old cgroup must be
removed while the process is in kmalloc somewhere between steps 1 and 2
(e.g.  trying to allocate a new page).  Nevertheless, it's still better
to eliminate such a possibility.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
6a618957ad mm: oom_kill: don't ignore oom score on exiting tasks
When the OOM killer scans tasks and encounters a PF_EXITING one, it
force-selects that task regardless of the score.  The problem is that if
that task got stuck waiting for some state the allocation site is
holding, the OOM reaper can not move on to the next best victim.

Frankly, I don't even know why we check for exiting tasks in the OOM
killer.  We've tried direct reclaim at least 15 times by the time we
decide the system is OOM, there was plenty of time to exit and free
memory; and a task might exit voluntarily right after we issue a kill.
This is testing pure noise.  Remove it.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Linus Torvalds
271ecc5253 Merge branch 'akpm' (patches from Andrew)
Merge first patch-bomb from Andrew Morton:

 - some misc things

 - ofs2 updates

 - about half of MM

 - checkpatch updates

 - autofs4 update

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (120 commits)
  autofs4: fix string.h include in auto_dev-ioctl.h
  autofs4: use pr_xxx() macros directly for logging
  autofs4: change log print macros to not insert newline
  autofs4: make autofs log prints consistent
  autofs4: fix some white space errors
  autofs4: fix invalid ioctl return in autofs4_root_ioctl_unlocked()
  autofs4: fix coding style line length in autofs4_wait()
  autofs4: fix coding style problem in autofs4_get_set_timeout()
  autofs4: coding style fixes
  autofs: show pipe inode in mount options
  kallsyms: add support for relative offsets in kallsyms address table
  kallsyms: don't overload absolute symbol type for percpu symbols
  x86: kallsyms: disable absolute percpu symbols on !SMP
  checkpatch: fix another left brace warning
  checkpatch: improve UNSPECIFIED_INT test for bare signed/unsigned uses
  checkpatch: warn on bare unsigned or signed declarations without int
  checkpatch: exclude asm volatile from complex macro check
  mm: memcontrol: drop unnecessary lru locking from mem_cgroup_migrate()
  mm: migrate: consolidate mem_cgroup_migrate() calls
  mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
  ...
2016-03-16 11:51:08 -07:00
Johannes Weiner
9cf7666ace mm: memcontrol: drop unnecessary lru locking from mem_cgroup_migrate()
Migration accounting in the memory controller used to have to handle
both oldpage and newpage being on the LRU already; fuse's page cache
replacement used to pass a recycled newpage that had been uncharged but
not freed and removed from the LRU, and the memcg migration code used to
uncharge oldpage to "pass on" the existing charge to newpage.

Nowadays, pages are no longer uncharged when truncated from the page
cache, but rather only at free time, so if a LRU page is recycled in
page cache replacement it'll also still be charged.  And we bail out of
the charge transfer altogether in that case.  Tell commit_charge() that
we know newpage is not on the LRU, to avoid taking the zone->lru_lock
unnecessarily from the migration path.

But also, oldpage is no longer uncharged inside migration.  We only use
oldpage for its page->mem_cgroup and page size, so we don't care about
its LRU state anymore either.  Remove any mention from the kernel doc.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mateusz Guzik <mguzik@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
74485cf2bc mm: migrate: consolidate mem_cgroup_migrate() calls
Rather than scattering mem_cgroup_migrate() calls all over the place,
have a single call from a safe place where every migration operation
eventually ends up in - migrate_page_copy().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mateusz Guzik <mguzik@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
7cf91a98e6 mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
There is a performance drop report due to hugepage allocation and in
there half of cpu time are spent on pageblock_pfn_to_page() in
compaction [1].

In that workload, compaction is triggered to make hugepage but most of
pageblocks are un-available for compaction due to pageblock type and
skip bit so compaction usually fails.  Most costly operations in this
case is to find valid pageblock while scanning whole zone range.  To
check if pageblock is valid to compact, valid pfn within pageblock is
required and we can obtain it by calling pageblock_pfn_to_page().  This
function checks whether pageblock is in a single zone and return valid
pfn if possible.  Problem is that we need to check it every time before
scanning pageblock even if we re-visit it and this turns out to be very
expensive in this workload.

Although we have no way to skip this pageblock check in the system where
hole exists at arbitrary position, we can use cached value for zone
continuity and just do pfn_to_page() in the system where hole doesn't
exist.  This optimization considerably speeds up in above workload.

Before vs After
  Max: 1096 MB/s vs 1325 MB/s
  Min: 635 MB/s 1015 MB/s
  Avg: 899 MB/s 1194 MB/s

Avg is improved by roughly 30% [2].

[1]: http://www.spinics.net/lists/linux-mm/msg97378.html
[2]: https://lkml.org/lkml/2015/12/9/23

[akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
e1409c325f mm/compaction: pass only pageblock aligned range to pageblock_pfn_to_page
pageblock_pfn_to_page() is used to check there is valid pfn and all
pages in the pageblock is in a single zone.  If there is a hole in the
pageblock, passing arbitrary position to pageblock_pfn_to_page() could
cause to skip whole pageblock scanning, instead of just skipping the
hole page.  For deterministic behaviour, it's better to always pass
pageblock aligned range to pageblock_pfn_to_page().  It will also help
further optimization on pageblock_pfn_to_page() in the following patch.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
623446e4dc mm/compaction: fix invalid free_pfn and compact_cached_free_pfn
free_pfn and compact_cached_free_pfn are the pointer that remember
restart position of freepage scanner.  When they are reset or invalid,
we set them to zone_end_pfn because freepage scanner works in reverse
direction.  But, because zone range is defined as [zone_start_pfn,
zone_end_pfn), zone_end_pfn is invalid to access.  Therefore, we should
not store it to free_pfn and compact_cached_free_pfn.  Instead, we need
to store zone_end_pfn - 1 to them.  There is one more thing we should
consider.  Freepage scanner scan reversely by pageblock unit.  If
free_pfn and compact_cached_free_pfn are set to middle of pageblock, it
regards that sitiation as that it already scans front part of pageblock
so we lose opportunity to scan there.  To fix-up, this patch do
round_down() to guarantee that reset position will be pageblock aligned.

Note that thanks to the current pageblock_pfn_to_page() implementation,
actual access to zone_end_pfn doesn't happen until now.  But, following
patch will change pageblock_pfn_to_page() so this patch is needed from
now on.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Alexander Kuleshov
5aa174801f mm/memblock.c: remove unnecessary memblock_type variable
We define struct memblock_type *type in the memblock_add_region() and
memblock_reserve_region() functions only for passing it to the
memlock_add_range() and memblock_reserve_range() functions.  Let's
remove these variables and will pass a type directly.

Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Kirill A. Shutemov
8df651c705 thp: cleanup split_huge_page()
After one of bugfixes to freeze_page(), we don't have freezed pages in
rmap, therefore mapcount of all subpages of freezed THP is zero.  And we
have assert for that.

Let's drop code which deal with non-zero mapcount of subpages.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Matthew Wilcox
88193f7ce6 mm: use linear_page_index() in do_fault()
do_fault() assumes that PAGE_SIZE is the same as PAGE_CACHE_SIZE.  Use
linear_page_index() to calculate pgoff in the correct units.

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
fdf1cdb91b mm: remove unnecessary uses of lock_page_memcg()
There are several users that nest lock_page_memcg() inside lock_page()
to prevent page->mem_cgroup from changing.  But the page lock prevents
pages from moving between cgroups, so that is unnecessary overhead.

Remove lock_page_memcg() in contexts with locked contexts and fix the
debug code in the page stat functions to be okay with the page lock.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
62cccb8c8e mm: simplify lock_page_memcg()
Now that migration doesn't clear page->mem_cgroup of live pages anymore,
it's safe to make lock_page_memcg() and the memcg stat functions take
pages, and spare the callers from memcg objects.

[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
6a93ca8fde mm: migrate: do not touch page->mem_cgroup of live pages
Changing a page's memcg association complicates dealing with the page,
so we want to limit this as much as possible.  Page migration e.g.  does
not have to do that.  Just like page cache replacement, it can forcibly
charge a replacement page, and then uncharge the old page when it gets
freed.  Temporarily overcharging the cgroup by a single page is not an
issue in practice, and charging is so cheap nowadays that this is much
preferrable to the headache of messing with live pages.

The only place that still changes the page->mem_cgroup binding of live
pages is when pages move along with a task to another cgroup.  But that
path isolates the page from the LRU, takes the page lock, and the move
lock (lock_page_memcg()).  That means page->mem_cgroup is always stable
in callers that have the page isolated from the LRU or locked.  Lighter
unlocked paths, like writeback accounting, can use lock_page_memcg().

[akpm@linux-foundation.org: fix build]
[vdavydov@virtuozzo.com: fix lockdep splat]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
23047a96d7 mm: workingset: per-cgroup cache thrash detection
Cache thrash detection (see a528910e12 "mm: thrash detection-based
file cache sizing" for details) currently only works on the system
level, not inside cgroups.  Worse, as the refaults are compared to the
global number of active cache, cgroups might wrongfully get all their
refaults activated when their pages are hotter than those of others.

Move the refault machinery from the zone to the lruvec, and then tag
eviction entries with the memcg ID.  This makes the thrash detection
work correctly inside cgroups.

[sergey.senozhatsky@gmail.com: do not return from workingset_activation() with locked rcu and page]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
612e44939c mm: workingset: eviction buckets for bigmem/lowbit machines
For per-cgroup thrash detection, we need to store the memcg ID inside
the radix tree cookie as well.  However, on 32 bit that doesn't leave
enough bits for the eviction timestamp to cover the necessary range of
recently evicted pages.  The radix tree entry would look like this:

[ RADIX_TREE_EXCEPTIONAL(2) | ZONEID(2) | MEMCGID(16) | EVICTION(12) ]

12 bits means 4096 pages, means 16M worth of recently evicted pages.
But refaults are actionable up to distances covering half of memory.  To
not miss refaults, we have to stretch out the range at the cost of how
precisely we can tell when a page was evicted.  This way we can shave
off lower bits from the eviction timestamp until the necessary range is
covered.  E.g.  grouping evictions into 1M buckets (256 pages) will
stretch the longest representable refault distance to 4G.

This patch implements eviction buckets that are automatically sized
according to the available bits and the necessary refault range, in
preparation for per-cgroup thrash detection.

The maximum actionable distance is currently half of memory, but to
support memory hotplug of up to 200% of boot-time memory, we size the
buckets to cover double the distance.  Beyond that, thrashing won't be
detectable anymore.

During boot, the kernel will print out the exact parameters, like so:

  [    0.113929] workingset: timestamp_bits=12 max_order=18 bucket_order=6

In this example, there are 12 radix entry bits available for the
eviction timestamp, to cover a maximum distance of 2^18 pages (this is a
1G machine).  Consequently, evictions must be grouped into buckets of
2^6 pages, or 256K.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
162453bfbd mm: workingset: separate shadow unpacking and refault calculation
Per-cgroup thrash detection will need to derive a live memcg from the
eviction cookie, and doing that inside unpack_shadow() will get nasty
with the reference handling spread over two functions.

In preparation, make unpack_shadow() clearly about extracting static
data, and let workingset_refault() do all the higher-level handling.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
689c94f03a mm: workingset: #define radix entry eviction mask
This is a compile-time constant, no need to calculate it on refault.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
81f8c3a461 mm: memcontrol: generalize locking for the page->mem_cgroup binding
These patches tag the page cache radix tree eviction entries with the
memcg an evicted page belonged to, thus making per-cgroup LRU reclaim
work properly and be as adaptive to new cache workingsets as global
reclaim already is.

This should have been part of the original thrash detection patch
series, but was deferred due to the complexity of those patches.

This patch (of 5):

So far the only sites that needed to exclude charge migration to
stabilize page->mem_cgroup have been per-cgroup page statistics, hence
the name mem_cgroup_begin_page_stat().  But per-cgroup thrash detection
will add another site that needs to ensure page->mem_cgroup lifetime.

Rename these locking functions to the more generic lock_page_memcg() and
unlock_page_memcg().  Since charge migration is a cgroup1 feature only,
we might be able to delete it at some point, and these now easy to
identify locking sites along with it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Michal Hocko
0db2cb8da8 mm, vmscan: make zone_reclaimable_pages more precise
zone_reclaimable_pages() is used in should_reclaim_retry() which uses it
to calculate the target for the watermark check.  This means that
precise numbers are important for the correct decision.
zone_reclaimable_pages uses zone_page_state which can contain stale data
with per-cpu diffs not synced yet (the last vmstat_update might have run
1s in the past).

Use zone_page_state_snapshot() in zone_reclaimable_pages() instead.
None of the current callers is in a hot path where getting the precise
value (which involves per-cpu iteration) would cause an unreasonable
overhead.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Naoya Horiguchi
d7206a70af mm/madvise: update comment on sys_madvise()
Some new MADV_* advices are not documented in sys_madvise() comment.  So
let's update it.

[akpm@linux-foundation.org: modifications suggested by Michal]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vladimir Davydov
cecf257b62 mm: vmscan: do not clear SHRINKER_NUMA_AWARE if nr_node_ids == 1
Currently, on shrinker registration we clear SHRINKER_NUMA_AWARE if
there's the only NUMA node present.  The comment states that this will
allow us to save some small loop time later.  It used to be true when
this code was added (see commit 1d3d4437ea ("vmscan: per-node
deferred work")), but since commit 6b4f7799c6 ("mm: vmscan: invoke
slab shrinkers from shrink_zone()") it doesn't make any difference.
Anyway, running on non-NUMA machine shouldn't make a shrinker NUMA
unaware, so zap this hunk.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vitaly Kuznetsov
31bc3858ea memory-hotplug: add automatic onlining policy for the newly added memory
Currently, all newly added memory blocks remain in 'offline' state
unless someone onlines them, some linux distributions carry special udev
rules like:

  SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online"

to make this happen automatically.  This is not a great solution for
virtual machines where memory hotplug is being used to address high
memory pressure situations as such onlining is slow and a userspace
process doing this (udev) has a chance of being killed by the OOM killer
as it will probably require to allocate some memory.

Introduce default policy for the newly added memory blocks in
/sys/devices/system/memory/auto_online_blocks file with two possible
values: "offline" which preserves the current behavior and "online"
which causes all newly added memory blocks to go online as soon as
they're added.  The default is "offline".

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Kay Sievers <kay@vrfy.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Mika Penttilä
9cb65bc3b1 mm/memory.c: make apply_to_page_range() more robust
Arm and arm64 used to trigger this BUG_ON() - this has now been fixed.

But a WARN_ON() here is sufficient to catch future buggy callers.

Signed-off-by: Mika Penttilä <mika.penttila@nextfour.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Liang Chen
4355c018c2 mm/mempolicy.c: skip VM_HUGETLB and VM_MIXEDMAP VMA for lazy mbind
VM_HUGETLB and VM_MIXEDMAP vma needs to be excluded to avoid compound
pages being marked for migration and unexpected COWs when handling
hugetlb fault.

Thanks to Naoya Horiguchi for reminding me on these checks.

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: SeongJae Park <sj38.park@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Wang Xiaoqiang
0b94f17507 mm/memory-failure.c: remove useless "undef"s
Remove the useless #undef, since the corresponding #define has already
been removed.

Signed-off-by: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Naoya Horiguchi
23a003bfd2 mm/madvise: pass return code of memory_failure() to userspace
Currently the return value of memory_failure() is not passed to
userspace when madvise(MADV_HWPOISON) is used.  This is inconvenient for
test programs that want to know the result of error handling.  So let's
return it to the caller as we already do in the MADV_SOFT_OFFLINE case.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
5b3810e5c6 mm, sl[au]b: print gfp_flags as strings in slab_out_of_memory()
We can now print gfp_flags more human-readable.  Make use of this in
slab_out_of_memory() for SLUB and SLAB.  Also convert the SLAB variant
it to pr_warn() along the way.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Laura Abbott
1414c7f4f7 mm/page_poisoning.c: allow for zero poisoning
By default, page poisoning uses a poison value (0xaa) on free.  If this
is changed to 0, the page is not only sanitized but zeroing on alloc
with __GFP_ZERO can be skipped as well.  The tradeoff is that detecting
corruption from the poisoning is harder to detect.  This feature also
cannot be used with hibernation since pages are not guaranteed to be
zeroed after hibernation.

Credit to Grsecurity/PaX team for inspiring this work

Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Laura Abbott
8823b1dbc0 mm/page_poison.c: enable PAGE_POISONING as a separate option
Page poisoning is currently set up as a feature if architectures don't
have architecture debug page_alloc to allow unmapping of pages.  It has
uses apart from that though.  Clearing of the pages on free provides an
increase in security as it helps to limit the risk of information leaks.
Allow page poisoning to be enabled as a separate option independent of
kernel_map pages since the two features do separate work.  Because of
how hiberanation is implemented, the checks on alloc cannot occur if
hibernation is enabled.  The runtime alloc checks can also be enabled
with an option when !HIBERNATION.

Credit to Grsecurity/PaX team for inspiring this work

Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
ff8e811638 mm, debug: move bad flags printing to bad_page()
Since bad_page() is the only user of the badflags parameter of
dump_page_badflags(), we can move the code to bad_page() and simplify a
bit.

The dump_page_badflags() function is renamed to __dump_page() and can
still be called separately from dump_page() for temporary debug prints
where page_owner info is not desired.

The only user-visible change is that page->mem_cgroup is printed before
the bad flags.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
4e462112e9 mm, page_owner: dump page owner info from dump_page()
The page_owner mechanism is useful for dealing with memory leaks.  By
reading /sys/kernel/debug/page_owner one can determine the stack traces
leading to allocations of all pages, and find e.g.  a buggy driver.

This information might be also potentially useful for debugging, such as
the VM_BUG_ON_PAGE() calls to dump_page().  So let's print the stored
info from dump_page().

Example output:

  page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d
  flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk)
  page dumped because: VM_BUG_ON_PAGE(1)
  page->mem_cgroup:ffff8801392c5000
  page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY)
   [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230
   [<ffffffff811b40c8>] alloc_pages_current+0x88/0x120
   [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120
   [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240
   [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260
   [<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70
   [<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760
   [<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0
  page has been migrated, last migrate reason: compaction

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
7cd12b4abf mm, page_owner: track and print last migrate reason
During migration, page_owner info is now copied with the rest of the
page, so the stacktrace leading to free page allocation during migration
is overwritten.  For debugging purposes, it might be however useful to
know that the page has been migrated since its initial allocation.  This
might happen many times during the lifetime for different reasons and
fully tracking this, especially with stacktraces would incur extra
memory costs.  As a compromise, store and print the migrate_reason of
the last migration that occurred to the page.  This is enough to
distinguish compaction, numa balancing etc.

Example page_owner entry after the patch:

  Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE)
  PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked)
   [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230
   [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250
   [<ffffffff81177491>] shmem_alloc_page+0x61/0x90
   [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960
   [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440
   [<ffffffff811de600>] vfs_fallocate+0x140/0x230
   [<ffffffff811df434>] SyS_fallocate+0x44/0x70
   [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71
  Page has been migrated, last migrate reason: compaction

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
d435edca92 mm, page_owner: copy page owner info during migration
The page_owner mechanism stores gfp_flags of an allocation and stack
trace that lead to it.  During page migration, the original information
is practically replaced by the allocation of free page as the migration
target.  Arguably this is less useful and might lead to all the
page_owner info for migratable pages gradually converge towards
compaction or numa balancing migrations.  It has also lead to
inaccuracies such as one fixed by commit e2cfc91120 ("mm/page_owner:
set correct gfp_mask on page_owner").

This patch thus introduces copying the page_owner info during migration.
However, since the fact that the page has been migrated from its
original place might be useful for debugging, the next patch will
introduce a way to track that information as well.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
7dd80b8af0 mm, page_owner: convert page_owner_inited to static key
CONFIG_PAGE_OWNER attempts to impose negligible runtime overhead when
enabled during compilation, but not actually enabled during runtime by
boot param page_owner=on.  This overhead can be further reduced using
the static key mechanism, which this patch does.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
60f30350fd mm, page_owner: print migratetype of page and pageblock, symbolic flags
The information in /sys/kernel/debug/page_owner includes the migratetype
of the pageblock the page belongs to.  This is also checked against the
page's migratetype (as declared by gfp_flags during its allocation), and
the page is reported as Fallback if its migratetype differs from the
pageblock's one.  t This is somewhat misleading because in fact fallback
allocation is not the only reason why these two can differ.  It also
doesn't direcly provide the page's migratetype, although it's possible
to derive that from the gfp_flags.

It's arguably better to print both page and pageblock's migratetype and
leave the interpretation to the consumer than to suggest fallback
allocation as the only possible reason.  While at it, we can print the
migratetypes as string the same way as /proc/pagetypeinfo does, as some
of the numeric values depend on kernel configuration.  For that, this
patch moves the migratetype_names array from #ifdef CONFIG_PROC_FS part
of mm/vmstat.c to mm/page_alloc.c and exports it.

With the new format strings for flags, we can now also provide symbolic
page and gfp flags in the /sys/kernel/debug/page_owner file.  This
replaces the positional printing of page flags as single letters, which
might have looked nicer, but was limited to a subset of flags, and
required the user to remember the letters.

Example page_owner entry after the patch:

  Page allocated via order 0, mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY)
  PFN 520 type Movable Block 1 type Movable Flags 0xfffff8001006c(referenced|uptodate|lru|active|mappedtodisk)
   [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230
   [<ffffffff811b4058>] alloc_pages_current+0x88/0x120
   [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120
   [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240
   [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260
   [<ffffffff8116bfb1>] page_cache_sync_readahead+0x31/0x50
   [<ffffffff81160523>] generic_file_read_iter+0x453/0x760
   [<ffffffff811e0d57>] __vfs_read+0xa7/0xd0

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
a0795cd416 mm, oom: print symbolic gfp_flags in oom warning
It would be useful to translate gfp_flags into string representation
when printing in case of an OOM, especially as the flags have been
undergoing some changes recently and the script ./scripts/gfp-translate
needs a matching source version to be accurate.

Example output:

  a.out invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|GFP_ZERO), order=0, om_score_adj=0

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
c5c990e8a1 mm, page_alloc: print symbolic gfp_flags on allocation failure
It would be useful to translate gfp_flags into string representation
when printing in case of an allocation failure, especially as the flags
have been undergoing some changes recently and the script
./scripts/gfp-translate needs a matching source version to be accurate.

Example output:

  stapio: page allocation failure: order:9, mode:0x2080020(GFP_ATOMIC)

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
b8eceeb990 mm, debug: replace dump_flags() with the new printk formats
With the new printk format strings for flags, we can get rid of
dump_flags() in mm/debug.c.

This also fixes dump_vma() which used dump_flags() for printing vma
flags.  However dump_flags() did a page-flags specific filtering of bits
higher than NR_PAGEFLAGS in order to remove the zone id part.  For
dump_vma() this resulted in removing several VM_* flags from the
symbolic translation.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
edf14cdbf9 mm, printk: introduce new format string for flags
In mm we use several kinds of flags bitfields that are sometimes printed
for debugging purposes, or exported to userspace via sysfs.  To make
them easier to interpret independently on kernel version and config, we
want to dump also the symbolic flag names.  So far this has been done
with repeated calls to pr_cont(), which is unreliable on SMP, and not
usable for e.g.  sysfs export.

To get a more reliable and universal solution, this patch extends
printk() format string for pointers to handle the page flags (%pGp),
gfp_flags (%pGg) and vma flags (%pGv).  Existing users of
dump_flag_names() are converted and simplified.

It would be possible to pass flags by value instead of pointer, but the
%p format string for pointers already has extensions for various kernel
structures, so it's a good fit, and the extra indirection in a
non-critical path is negligible.

[linux@rasmusvillemoes.dk: lots of good implementation suggestions]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
420adbe9fc mm, tracing: unify mm flags handling in tracepoints and printk
In tracepoints, it's possible to print gfp flags in a human-friendly
format through a macro show_gfp_flags(), which defines a translation
array and passes is to __print_flags().  Since the following patch will
introduce support for gfp flags printing in printk(), it would be nice
to reuse the array.  This is not straightforward, since __print_flags()
can't simply reference an array defined in a .c file such as mm/debug.c
- it has to be a macro to allow the macro magic to communicate the
format to userspace tools such as trace-cmd.

The solution is to create a macro __def_gfpflag_names which is used both
in show_gfp_flags(), and to define the gfpflag_names[] array in
mm/debug.c.

On the other hand, mm/debug.c also defines translation tables for page
flags and vma flags, and desire was expressed (but not implemented in
this series) to use these also from tracepoints.  Thus, this patch also
renames the events/gfpflags.h file to events/mmflags.h and moves the
table definitions there, using the same macro approach as for gfpflags.
This allows translating all three kinds of mm-specific flags both in
tracepoints and printk.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Mel Gorman
ebded02788 mm: filemap: avoid unnecessary calls to lock_page when waiting for IO to complete during a read
In the generic read paths the kernel looks up a page in the page cache
and if it's up to date, it is used.  If not, the page lock is acquired
to wait for IO to complete and then check the page.  If multiple
processes are waiting on IO, they all serialise against the lock and
duplicate the checks.  This is unnecessary.

The page lock in itself does not give any guarantees to the callers
about the page state as it can be immediately truncated or reclaimed
after the page is unlocked.  It's sufficient to wait_on_page_locked and
then continue if the page is up to date on wakeup.

It is possible that a truncated but up-to-date page is returned but the
reference taken during read prevents it disappearing underneath the
caller and the data is still valid if PageUptodate.

The overall impact is small as even if processes serialise on the lock,
the lock section is tiny once the IO is complete.  Profiles indicated
that unlock_page and friends are generally a tiny portion of a
read-intensive workload.  An artificial test was created that had
instances of dd access a cache-cold file on an ext4 filesystem and
measure how long the read took.

paralleldd
                                    4.4.0                 4.4.0
                                  vanilla             avoidlock
Amean    Elapsd-1          5.28 (  0.00%)        5.15 (  2.50%)
Amean    Elapsd-4          5.29 (  0.00%)        5.17 (  2.12%)
Amean    Elapsd-7          5.28 (  0.00%)        5.18 (  1.78%)
Amean    Elapsd-12         5.20 (  0.00%)        5.33 ( -2.50%)
Amean    Elapsd-21         5.14 (  0.00%)        5.21 ( -1.41%)
Amean    Elapsd-30         5.30 (  0.00%)        5.12 (  3.38%)
Amean    Elapsd-48         5.78 (  0.00%)        5.42 (  6.21%)
Amean    Elapsd-79         6.78 (  0.00%)        6.62 (  2.46%)
Amean    Elapsd-110        9.09 (  0.00%)        8.99 (  1.15%)
Amean    Elapsd-128       10.60 (  0.00%)       10.43 (  1.66%)

The impact is small but intuitively, it makes sense to avoid unnecessary
calls to lock_page.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Mel Gorman
32b635298f mm: filemap: remove redundant code in do_read_cache_page
do_read_cache_page and __read_cache_page duplicate page filler code when
filling the page for the first time.  This patch simply removes the
duplicate logic.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Christian Borntraeger
ea6eabb05b mm/debug_pagealloc: ask users for default setting of debug_pagealloc
Since commit 031bc5743f ("mm/debug-pagealloc: make debug-pagealloc
boottime configurable") CONFIG_DEBUG_PAGEALLOC is by default not adding
any page debugging.

This resulted in several unnoticed bugs, e.g.

    https://lkml.kernel.org/g/<569F5E29.3090107@de.ibm.com>
or
    https://lkml.kernel.org/g/<56A20F30.4050705@de.ibm.com>

as this behaviour change was not even documented in Kconfig.

Let's provide a new Kconfig symbol that allows to change the default
back to enabled, e.g.  for debug kernels.  This also makes the change
obvious to kernel packagers.

Let's also change the Kconfig description for CONFIG_DEBUG_PAGEALLOC, to
indicate that there are two stages of overhead.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Andrey Ryabinin
d59b1087a9 mm/page-writeback: fix dirty_ratelimit calculation
Calculation of dirty_ratelimit sometimes is not correct.  E.g.  initial
values of dirty_ratelimit == INIT_BW and step == 0, lead to the
following result:

   UBSAN: Undefined behaviour in ../mm/page-writeback.c:1286:7
   shift exponent 25600 is too large for 64-bit type 'long unsigned int'

The fix is straightforward - make step 0 if the shift exponent is too
big.

Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Andrew Morton
b72d0ffb5d mm/page_alloc.c: rework code layout in memmap_init_zone()
This function is getting full of weird tricks to avoid word-wrapping.
Use a goto to eliminate a tab stop then use the new space

Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Taku Izumi
342332e6a9 mm/page_alloc.c: introduce kernelcore=mirror option
This patch extends existing "kernelcore" option and introduces
kernelcore=mirror option.  By specifying "mirror" instead of specifying
the amount of memory, non-mirrored (non-reliable) region will be
arranged into ZONE_MOVABLE.

[akpm@linux-foundation.org: fix build with CONFIG_HAVE_MEMBLOCK_NODE_MAP=n]
Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Taku Izumi
d91749c1dd mm/page_alloc.c: calculate zone_start_pfn at zone_spanned_pages_in_node()
Xeon E7 v3 based systems supports Address Range Mirroring and UEFI BIOS
complied with UEFI spec 2.5 can notify which ranges are mirrored
(reliable) via EFI memory map.  Now Linux kernel utilize its information
and allocates boot time memory from reliable region.

My requirement is:
  - allocate kernel memory from mirrored region
  - allocate user memory from non-mirrored region

In order to meet my requirement, ZONE_MOVABLE is useful.  By arranging
non-mirrored range into ZONE_MOVABLE, mirrored memory is used for kernel
allocations.

My idea is to extend existing "kernelcore" option and introduces
kernelcore=mirror option.  By specifying "mirror" instead of specifying
the amount of memory, non-mirrored region will be arranged into
ZONE_MOVABLE.

Earlier discussions are at:
 https://lkml.org/lkml/2015/10/9/24
 https://lkml.org/lkml/2015/10/15/9
 https://lkml.org/lkml/2015/11/27/18
 https://lkml.org/lkml/2015/12/8/836

For example, suppose 2-nodes system with the following memory range:

  node 0 [mem 0x0000000000001000-0x000000109fffffff]
  node 1 [mem 0x00000010a0000000-0x000000209fffffff]
and the following ranges are marked as reliable (mirrored):
  [0x0000000000000000-0x0000000100000000]
  [0x0000000100000000-0x0000000180000000]
  [0x0000000800000000-0x0000000880000000]
  [0x00000010a0000000-0x0000001120000000]
  [0x00000017a0000000-0x0000001820000000]

If you specify kernelcore=mirror, ZONE_NORMAL and ZONE_MOVABLE are
arranged like bellow:

 - node 0:
  ZONE_NORMAL : [0x0000000100000000-0x00000010a0000000]
  ZONE_MOVABLE: [0x0000000180000000-0x00000010a0000000]
 - node 1:
  ZONE_NORMAL : [0x00000010a0000000-0x00000020a0000000]
  ZONE_MOVABLE: [0x0000001120000000-0x00000020a0000000]

In overlapped range, pages to be ZONE_MOVABLE in ZONE_NORMAL are treated
as absent pages, and vice versa.

This patch (of 2):

Currently each zone's zone_start_pfn is calculated at
free_area_init_core().  However zone's range is fixed at the time when
invoking zone_spanned_pages_in_node().

This patch changes how each zone->zone_start_pfn is calculated in
zone_spanned_pages_in_node().

Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
d86bd1bece mm/slub: support left redzone
SLUB already has a redzone debugging feature.  But it is only positioned
at the end of object (aka right redzone) so it cannot catch left oob.
Although current object's right redzone acts as left redzone of next
object, first object in a slab cannot take advantage of this effect.
This patch explicitly adds a left red zone to each object to detect left
oob more precisely.

Background:

Someone complained to me that left OOB doesn't catch even if KASAN is
enabled which does page allocation debugging.  That page is out of our
control so it would be allocated when left OOB happens and, in this
case, we can't find OOB.  Moreover, SLUB debugging feature can be
enabled without page allocator debugging and, in this case, we will miss
that OOB.

Before trying to implement, I expected that changes would be too
complex, but, it doesn't look that complex to me now.  Almost changes
are applied to debug specific functions so I feel okay.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Laura Abbott
149daaf3a0 slub: relax CMPXCHG consistency restrictions
When debug options are enabled, cmpxchg on the page is disabled.  This
is because the page must be locked to ensure there are no false
positives when performing consistency checks.  Some debug options such
as poisoning and red zoning only act on the object itself.  There is no
need to protect other CPUs from modification on only the object.  Allow
cmpxchg to happen with poisoning and red zoning are set on a slab.

Credit to Mathias Krause for the original work which inspired this
series

Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Laura Abbott
becfda68ab slub: convert SLAB_DEBUG_FREE to SLAB_CONSISTENCY_CHECKS
SLAB_DEBUG_FREE allows expensive consistency checks at free to be turned
on or off.  Expand its use to be able to turn off all consistency
checks.  This gives a nice speed up if you only want features such as
poisoning or tracing.

Credit to Mathias Krause for the original work which inspired this
series

Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Laura Abbott
804aa132d3 slub: fix/clean free_debug_processing return paths
Since commit 19c7ff9ecd ("slub: Take node lock during object free
checks") check_object has been incorrectly returning success as it
follows the out label which just returns the node.

Thanks to refactoring, the out and fail paths are now basically the
same.  Combine the two into one and just use a single label.

Credit to Mathias Krause for the original work which inspired this
series

Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Laura Abbott
282acb4361 slub: drop lock at the end of free_debug_processing
This series takes the suggestion of Christoph Lameter and only focuses
on optimizing the slow path where the debug processing runs.  The two
main optimizations in this series are letting the consistency checks be
skipped and relaxing the cmpxchg restrictions when we are not doing
consistency checks.  With hackbench -g 20 -l 1000 averaged over 100
runs:

Before slub_debug=P
  mean 15.607
  variance .086
  stdev .294

After slub_debug=P
  mean 10.836
  variance .155
  stdev .394

This still isn't as fast as what is in grsecurity unfortunately so there's
still work to be done.  Profiling ___slab_alloc shows that 25-50% of time
is spent in deactivate_slab.  I haven't looked too closely to see if this
is something that can be optimized.  My plan for now is to focus on
getting all of this merged (if appropriate) before digging in to another
task.

This patch (of 4):

Currently, free_debug_processing has a comment "Keep node_lock to preserve
integrity until the object is actually freed".  In actuallity, the lock is
dropped immediately in __slab_free.  Rather than wait until __slab_free
and potentially throw off the unlikely marking, just drop the lock in
__slab_free.  This also lets free_debug_processing take its own copy of
the spinlock flags rather than trying to share the ones from __slab_free.
Since there is no use for the node afterwards, change the return type of
free_debug_processing to return an int like alloc_debug_processing.

Credit to Mathias Krause for the original work which inspired this series

[akpm@linux-foundation.org: fix build]
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
f68f8dddb5 mm/slab: re-implement pfmemalloc support
Current implementation of pfmemalloc handling in SLAB has some problems.

1) pfmemalloc_active is set to true when there is just one or more
   pfmemalloc slabs in the system, but it is cleared when there is no
   pfmemalloc slab in one arbitrary kmem_cache.  So, pfmemalloc_active
   could be wrongly cleared.

2) Search to partial and free list doesn't happen when non-pfmemalloc
   object are not found in cpu cache.  Instead, allocating new slab
   happens and it is not optimal.

3) Even after sk_memalloc_socks() is disabled, cpu cache would keep
   pfmemalloc objects tagged with SLAB_OBJ_PFMEMALLOC.  It isn't cleared
   if sk_memalloc_socks() is disabled so it could cause problem.

4) If cpu cache is filled with pfmemalloc objects, it would cause slow
   down non-pfmemalloc allocation.

To me, current pointer tagging approach looks complex and fragile so this
patch re-implement whole thing instead of fixing problems one by one.

Design principle for new implementation is that

1) Don't disrupt non-pfmemalloc allocation in fast path even if
   sk_memalloc_socks() is enabled.  It's more likely case than pfmemalloc
   allocation.

2) Ensure that pfmemalloc slab is used only for pfmemalloc allocation.

3) Don't consider performance of pfmemalloc allocation in memory
   deficiency state.

As a result, all pfmemalloc alloc/free in memory tight state will be
handled in slow-path.  If there is non-pfmemalloc free object, it will be
returned first even for pfmemalloc user in fast-path so that performance
of pfmemalloc user isn't affected in normal case and pfmemalloc objects
will be kept as long as possible.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
70f75067b1 mm/slab: avoid returning values by reference
Returing values by reference is bad practice.  Instead, just use
function return value.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Suggested-by: Christoph Lameter <cl@linux.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
b03a017beb mm/slab: introduce new slab management type, OBJFREELIST_SLAB
SLAB needs an array to manage freed objects in a slab.  It is only used
if some objects are freed so we can use free object itself as this
array.  This requires additional branch in somewhat critical lock path
to check if it is first freed object or not but that's all we need.
Benefits is that we can save extra memory usage and reduce some
computational overhead by allocating a management array when new slab is
created.

Code change is rather complex than what we can expect from the idea, in
order to handle debugging feature efficiently.  If you want to see core
idea only, please remove '#if DEBUG' block in the patch.

Although this idea can apply to all caches whose size is larger than
management array size, it isn't applied to caches which have a
constructor.  If such cache's object is used for management array,
constructor should be called for it before that object is returned to
user.  I guess that overhead overwhelm benefit in that case so this idea
doesn't applied to them at least now.

For summary, from now on, slab management type is determined by
following logic.

1) if management array size is smaller than object size and no ctor, it
   becomes OBJFREELIST_SLAB.

2) if management array size is smaller than leftover, it becomes
   NORMAL_SLAB which uses leftover as a array.

3) if OFF_SLAB help to save memory than way 4), it becomes OFF_SLAB.
   It allocate a management array from the other cache so memory waste
   happens.

4) others become NORMAL_SLAB.  It uses dedicated internal memory in a
   slab as a management array so it causes memory waste.

In my system, without enabling CONFIG_DEBUG_SLAB, Almost caches become
OBJFREELIST_SLAB and NORMAL_SLAB (using leftover) which doesn't waste
memory.  Following is the result of number of caches with specific slab
management type.

TOTAL = OBJFREELIST + NORMAL(leftover) + NORMAL + OFF

/Before/
126 = 0 + 60 + 25 + 41

/After/
126 = 97 + 12 + 15 + 2

Result shows that number of caches that doesn't waste memory increase
from 60 to 109.

I did some benchmarking and it looks that benefit are more than loss.

Kmalloc: Repeatedly allocate then free test

/Before/
[    0.286809] 1. Kmalloc: Repeatedly allocate then free test
[    1.143674] 100000 times kmalloc(32) -> 116 cycles kfree -> 78 cycles
[    1.441726] 100000 times kmalloc(64) -> 121 cycles kfree -> 80 cycles
[    1.815734] 100000 times kmalloc(128) -> 168 cycles kfree -> 85 cycles
[    2.380709] 100000 times kmalloc(256) -> 287 cycles kfree -> 95 cycles
[    3.101153] 100000 times kmalloc(512) -> 370 cycles kfree -> 117 cycles
[    3.942432] 100000 times kmalloc(1024) -> 413 cycles kfree -> 156 cycles
[    5.227396] 100000 times kmalloc(2048) -> 622 cycles kfree -> 248 cycles
[    7.519793] 100000 times kmalloc(4096) -> 1102 cycles kfree -> 452 cycles

/After/
[    1.205313] 100000 times kmalloc(32) -> 117 cycles kfree -> 78 cycles
[    1.510526] 100000 times kmalloc(64) -> 124 cycles kfree -> 81 cycles
[    1.827382] 100000 times kmalloc(128) -> 130 cycles kfree -> 84 cycles
[    2.226073] 100000 times kmalloc(256) -> 177 cycles kfree -> 92 cycles
[    2.814747] 100000 times kmalloc(512) -> 286 cycles kfree -> 112 cycles
[    3.532952] 100000 times kmalloc(1024) -> 344 cycles kfree -> 141 cycles
[    4.608777] 100000 times kmalloc(2048) -> 519 cycles kfree -> 210 cycles
[    6.350105] 100000 times kmalloc(4096) -> 789 cycles kfree -> 391 cycles

In fact, I tested another idea implementing OBJFREELIST_SLAB with
extendable linked array through another freed object.  It can remove
memory waste completely but it causes more computational overhead in
critical lock path and it seems that overhead outweigh benefit.  So, this
patch doesn't include it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
10b2e9e8e8 mm/slab: factor out debugging initialization in cache_init_objs()
cache_init_objs() will be changed in following patch and current form
doesn't fit well for that change.  So, before doing it, this patch
separates debugging initialization.  This would cause two loop iteration
when debugging is enabled, but, this overhead seems too light than debug
feature itself so effect may not be visible.  This patch will greatly
simplify changes in cache_init_objs() in following patch.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
d8410234db mm/slab: factor out slab list fixup code
Slab list should be fixed up after object is detached from the slab and
this happens at two places.  They do exactly same thing.  They will be
changed in the following patch, so, to reduce code duplication, this
patch factor out them and make it common function.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
3217fd9bdf mm/slab: make criteria for off slab determination robust and simple
To become an off slab, there are some constraints to avoid bootstrapping
problem and recursive call.  This can be avoided differently by simply
checking that corresponding kmalloc cache is ready and it's not a off
slab.  It would be more robust because static size checking can be
affected by cache size change or architecture type but dynamic checking
isn't.

One check 'freelist_cache->size > cachep->size / 2' is added to check
benefit of choosing off slab, because, now, there is no size constraint
which ensures enough advantage when selecting off slab.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
f3a3c320d5 mm/slab: do not change cache size if debug pagealloc isn't possible
We can fail to setup off slab in some conditions.  Even in this case,
debug pagealloc increases cache size to PAGE_SIZE in advance and it is
waste because debug pagealloc cannot work for it when it isn't the off
slab.  To improve this situation, this patch checks first that this
cache with increased size is suitable for off slab.  It actually
increases cache size when it is suitable for off-slab, so possible waste
is removed.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
158e319bba mm/slab: clean up cache type determination
Current cache type determination code is open-code and looks not
understandable.  Following patch will introduce one more cache type and
it would make code more complex.  So, before it happens, this patch
abstracts these codes.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
832a15d209 mm/slab: align cache size first before determination of OFF_SLAB candidate
Finding suitable OFF_SLAB candidate is more related to aligned cache
size rather than original size.  Same reasoning can be applied to the
debug pagealloc candidate.  So, this patch moves up alignment fixup to
proper position.  From that point, size is aligned so we can remove some
alignment fixups.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
2e6b360216 mm/slab: put the freelist at the end of slab page
Currently, the freelist is at the front of slab page.  This requires
extra space to meet object alignment requirement.  If we put the
freelist at the end of a slab page, objects could start at page boundary
and will be at correct alignment.  This is possible because freelist has
no alignment constraint itself.

This gives us two benefits: It removes extra memory space for the
freelist alignment and remove complex calculation at cache
initialization step.  I can't think notable drawback here.

I mentioned that this would reduce extra memory space, but, this benefit
is rather theoretical because it can be applied to very few cases.
Following is the example cache type that can get benefit from this
change.

  size align num before after
    32    8  124  4100  4092
    64    8   63  4103  4095
    88    8   46  4102  4094
   272    8   15  4103  4095
   408    8   10  4098  4090
    32   16  124  4108  4092
    64   16   63  4111  4095
    32   32  124  4124  4092
    64   32   63  4127  4095
    96   32   42  4106  4074

before means whole size for objects and aligned freelist before applying
patch and after shows the result of this patch.

Since before is more than 4096, number of object should decrease and
memory waste happens.

Anyway, this patch removes complex calculation so looks beneficial to
me.

[akpm@linux-foundation.org: fix kerneldoc]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
249247b6f8 mm/slab: remove object status buffer for DEBUG_SLAB_LEAK
Now, we don't use object status buffer in any setup. Remove it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
d31676dfde mm/slab: alternative implementation for DEBUG_SLAB_LEAK
DEBUG_SLAB_LEAK is a debug option.  It's current implementation requires
status buffer so we need more memory to use it.  And, it cause
kmem_cache initialization step more complex.

To remove this extra memory usage and to simplify initialization step,
this patch implement this feature with another way.

When user requests to get slab object owner information, it marks that
getting information is started.  And then, all free objects in caches
are flushed to corresponding slab page.  Now, we can distinguish all
freed object so we can know all allocated objects, too.  After
collecting slab object owner information on allocated objects, mark is
checked that there is no free during the processing.  If true, we can be
sure that our information is correct so information is returned to user.

Although this way is rather complex, it has two important benefits
mentioned above.  So, I think it is worth changing.

There is one drawback that it takes more time to get slab object owner
information but it is just a debug option so it doesn't matter at all.

To help review, this patch implements new way only.  Following patch
will remove useless code.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
40b4413797 mm/slab: clean up DEBUG_PAGEALLOC processing code
Currently, open code for checking DEBUG_PAGEALLOC cache is spread to
some sites.  It makes code unreadable and hard to change.

This patch cleans up this code.  The following patch will change the
criteria for DEBUG_PAGEALLOC cache so this clean-up will help it, too.

[akpm@linux-foundation.org: fix build with CONFIG_DEBUG_PAGEALLOC=n]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
40323278b5 mm/slab: use more appropriate condition check for debug_pagealloc
debug_pagealloc debugging is related to SLAB_POISON flag rather than
FORCED_DEBUG option, although FORCED_DEBUG option will enable
SLAB_POISON.  Fix it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
a307ebd468 mm/slab: activate debug_pagealloc in SLAB when it is actually enabled
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
260b61dd46 mm/slab: remove the checks for slab implementation bug
Some of "#if DEBUG" are for reporting slab implementation bug rather
than user usecase bug.  It's not really needed because slab is stable
for a quite long time and it makes code too dirty.  This patch remove
it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
6fb924304a mm/slab: remove useless structure define
It is obsolete so remove it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
12c61fe9b7 mm/slab: fix stale code comment
This patchset implements a new freed object management way, that is,
OBJFREELIST_SLAB.  Purpose of it is to reduce memory overhead in SLAB.

SLAB needs a array to manage freed objects in a slab.  If there is
leftover after objects are packed into a slab, we can use it as a
management array, and, in this case, there is no memory waste.  But, in
the other cases, we need to allocate extra memory for a management array
or utilize dedicated internal memory in a slab for it.  Both cases
causes memory waste so it's not good.

With this patchset, freed object itself can be used for a management
array.  So, memory waste could be reduced.  Detailed idea and numbers
are described in last patch's commit description.  Please refer it.

In fact, I tested another idea implementing OBJFREELIST_SLAB with
extendable linked array through another freed object.  It can remove
memory waste completely but it causes more computational overhead in
critical lock path and it seems that overhead outweigh benefit.  So,
this patchset doesn't include it.  I will attach prototype just for a
reference.

This patch (of 16):

We use freelist_idx_t type for free object management whose size would be
smaller than size of unsigned int.  Fix it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
9f706d6820 mm: fix some spelling
Fix up trivial spelling errors, noticed while reading the code.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
ca25719551 mm: new API kfree_bulk() for SLAB+SLUB allocators
This patch introduce a new API call kfree_bulk() for bulk freeing memory
objects not bound to a single kmem_cache.

Christoph pointed out that it is possible to implement freeing of
objects, without knowing the kmem_cache pointer as that information is
available from the object's page->slab_cache.  Proposing to remove the
kmem_cache argument from the bulk free API.

Jesper demonstrated that these extra steps per object comes at a
performance cost.  It is only in the case CONFIG_MEMCG_KMEM is compiled
in and activated runtime that these steps are done anyhow.  The extra
cost is most visible for SLAB allocator, because the SLUB allocator does
the page lookup (virt_to_head_page()) anyhow.

Thus, the conclusion was to keep the kmem_cache free bulk API with a
kmem_cache pointer, but we can still implement a kfree_bulk() API fairly
easily.  Simply by handling if kmem_cache_free_bulk() gets called with a
kmem_cache NULL pointer.

This does increase the code size a bit, but implementing a separate
kfree_bulk() call would likely increase code size even more.

Below benchmarks cost of alloc+free (obj size 256 bytes) on CPU i7-4790K
@ 4.00GHz, no PREEMPT and CONFIG_MEMCG_KMEM=y.

Code size increase for SLAB:

 add/remove: 0/0 grow/shrink: 1/0 up/down: 74/0 (74)
 function                                     old     new   delta
 kmem_cache_free_bulk                         660     734     +74

SLAB fastpath: 87 cycles(tsc) 21.814
  sz - fallback             - kmem_cache_free_bulk - kfree_bulk
   1 - 103 cycles 25.878 ns -  41 cycles 10.498 ns - 81 cycles 20.312 ns
   2 -  94 cycles 23.673 ns -  26 cycles  6.682 ns - 42 cycles 10.649 ns
   3 -  92 cycles 23.181 ns -  21 cycles  5.325 ns - 39 cycles 9.950 ns
   4 -  90 cycles 22.727 ns -  18 cycles  4.673 ns - 26 cycles 6.693 ns
   8 -  89 cycles 22.270 ns -  14 cycles  3.664 ns - 23 cycles 5.835 ns
  16 -  88 cycles 22.038 ns -  14 cycles  3.503 ns - 22 cycles 5.543 ns
  30 -  89 cycles 22.284 ns -  13 cycles  3.310 ns - 20 cycles 5.197 ns
  32 -  88 cycles 22.249 ns -  13 cycles  3.420 ns - 20 cycles 5.166 ns
  34 -  88 cycles 22.224 ns -  14 cycles  3.643 ns - 20 cycles 5.170 ns
  48 -  88 cycles 22.088 ns -  14 cycles  3.507 ns - 20 cycles 5.203 ns
  64 -  88 cycles 22.063 ns -  13 cycles  3.428 ns - 20 cycles 5.152 ns
 128 -  89 cycles 22.483 ns -  15 cycles  3.891 ns - 23 cycles 5.885 ns
 158 -  89 cycles 22.381 ns -  15 cycles  3.779 ns - 22 cycles 5.548 ns
 250 -  91 cycles 22.798 ns -  16 cycles  4.152 ns - 23 cycles 5.967 ns

SLAB when enabling MEMCG_KMEM runtime:
 - kmemcg fastpath: 130 cycles(tsc) 32.684 ns (step:0)
 1 - 148 cycles 37.220 ns -  66 cycles 16.622 ns - 66 cycles 16.583 ns
 2 - 141 cycles 35.510 ns -  51 cycles 12.820 ns - 58 cycles 14.625 ns
 3 - 140 cycles 35.017 ns -  37 cycles 9.326 ns - 33 cycles 8.474 ns
 4 - 137 cycles 34.507 ns -  31 cycles 7.888 ns - 33 cycles 8.300 ns
 8 - 140 cycles 35.069 ns -  25 cycles 6.461 ns - 25 cycles 6.436 ns
 16 - 138 cycles 34.542 ns -  23 cycles 5.945 ns - 22 cycles 5.670 ns
 30 - 136 cycles 34.227 ns -  22 cycles 5.502 ns - 22 cycles 5.587 ns
 32 - 136 cycles 34.253 ns -  21 cycles 5.475 ns - 21 cycles 5.324 ns
 34 - 136 cycles 34.254 ns -  21 cycles 5.448 ns - 20 cycles 5.194 ns
 48 - 136 cycles 34.075 ns -  21 cycles 5.458 ns - 21 cycles 5.367 ns
 64 - 135 cycles 33.994 ns -  21 cycles 5.350 ns - 21 cycles 5.259 ns
 128 - 137 cycles 34.446 ns -  23 cycles 5.816 ns - 22 cycles 5.688 ns
 158 - 137 cycles 34.379 ns -  22 cycles 5.727 ns - 22 cycles 5.602 ns
 250 - 138 cycles 34.755 ns -  24 cycles 6.093 ns - 23 cycles 5.986 ns

Code size increase for SLUB:
 function                                     old     new   delta
 kmem_cache_free_bulk                         717     799     +82

SLUB benchmark:
 SLUB fastpath: 46 cycles(tsc) 11.691 ns (step:0)
  sz - fallback             - kmem_cache_free_bulk - kfree_bulk
   1 -  61 cycles 15.486 ns -  53 cycles 13.364 ns - 57 cycles 14.464 ns
   2 -  54 cycles 13.703 ns -  32 cycles  8.110 ns - 33 cycles 8.482 ns
   3 -  53 cycles 13.272 ns -  25 cycles  6.362 ns - 27 cycles 6.947 ns
   4 -  51 cycles 12.994 ns -  24 cycles  6.087 ns - 24 cycles 6.078 ns
   8 -  50 cycles 12.576 ns -  21 cycles  5.354 ns - 22 cycles 5.513 ns
  16 -  49 cycles 12.368 ns -  20 cycles  5.054 ns - 20 cycles 5.042 ns
  30 -  49 cycles 12.273 ns -  18 cycles  4.748 ns - 19 cycles 4.758 ns
  32 -  49 cycles 12.401 ns -  19 cycles  4.821 ns - 19 cycles 4.810 ns
  34 -  98 cycles 24.519 ns -  24 cycles  6.154 ns - 24 cycles 6.157 ns
  48 -  83 cycles 20.833 ns -  21 cycles  5.446 ns - 21 cycles 5.429 ns
  64 -  75 cycles 18.891 ns -  20 cycles  5.247 ns - 20 cycles 5.238 ns
 128 -  93 cycles 23.271 ns -  27 cycles  6.856 ns - 27 cycles 6.823 ns
 158 - 102 cycles 25.581 ns -  30 cycles  7.714 ns - 30 cycles 7.695 ns
 250 - 107 cycles 26.917 ns -  38 cycles  9.514 ns - 38 cycles 9.506 ns

SLUB when enabling MEMCG_KMEM runtime:
 - kmemcg fastpath: 71 cycles(tsc) 17.897 ns (step:0)
 1 - 85 cycles 21.484 ns -  78 cycles 19.569 ns - 75 cycles 18.938 ns
 2 - 81 cycles 20.363 ns -  45 cycles 11.258 ns - 44 cycles 11.076 ns
 3 - 78 cycles 19.709 ns -  33 cycles 8.354 ns - 32 cycles 8.044 ns
 4 - 77 cycles 19.430 ns -  28 cycles 7.216 ns - 28 cycles 7.003 ns
 8 - 101 cycles 25.288 ns -  23 cycles 5.849 ns - 23 cycles 5.787 ns
 16 - 76 cycles 19.148 ns -  20 cycles 5.162 ns - 20 cycles 5.081 ns
 30 - 76 cycles 19.067 ns -  19 cycles 4.868 ns - 19 cycles 4.821 ns
 32 - 76 cycles 19.052 ns -  19 cycles 4.857 ns - 19 cycles 4.815 ns
 34 - 121 cycles 30.291 ns -  25 cycles 6.333 ns - 25 cycles 6.268 ns
 48 - 108 cycles 27.111 ns -  21 cycles 5.498 ns - 21 cycles 5.458 ns
 64 - 100 cycles 25.164 ns -  20 cycles 5.242 ns - 20 cycles 5.229 ns
 128 - 155 cycles 38.976 ns -  27 cycles 6.886 ns - 27 cycles 6.892 ns
 158 - 132 cycles 33.034 ns -  30 cycles 7.711 ns - 30 cycles 7.728 ns
 250 - 130 cycles 32.612 ns -  38 cycles 9.560 ns - 38 cycles 9.549 ns

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
e6cdb58d1c slab: implement bulk free in SLAB allocator
This patch implements the free side of bulk API for the SLAB allocator
kmem_cache_free_bulk(), and concludes the implementation of optimized
bulk API for SLAB allocator.

Benchmarked[1] cost of alloc+free (obj size 256 bytes) on CPU i7-4790K @
4.00GHz, with no debug options, no PREEMPT and CONFIG_MEMCG_KMEM=y but
no active user of kmemcg.

SLAB single alloc+free cost: 87 cycles(tsc) 21.814 ns with this
optimized config.

bulk- Current fallback          - optimized SLAB bulk
  1 - 102 cycles(tsc) 25.747 ns - 41 cycles(tsc) 10.490 ns - improved 59.8%
  2 -  94 cycles(tsc) 23.546 ns - 26 cycles(tsc)  6.567 ns - improved 72.3%
  3 -  92 cycles(tsc) 23.127 ns - 20 cycles(tsc)  5.244 ns - improved 78.3%
  4 -  90 cycles(tsc) 22.663 ns - 18 cycles(tsc)  4.588 ns - improved 80.0%
  8 -  88 cycles(tsc) 22.242 ns - 14 cycles(tsc)  3.656 ns - improved 84.1%
 16 -  88 cycles(tsc) 22.010 ns - 13 cycles(tsc)  3.480 ns - improved 85.2%
 30 -  89 cycles(tsc) 22.305 ns - 13 cycles(tsc)  3.303 ns - improved 85.4%
 32 -  89 cycles(tsc) 22.277 ns - 13 cycles(tsc)  3.309 ns - improved 85.4%
 34 -  88 cycles(tsc) 22.246 ns - 13 cycles(tsc)  3.294 ns - improved 85.2%
 48 -  88 cycles(tsc) 22.121 ns - 13 cycles(tsc)  3.492 ns - improved 85.2%
 64 -  88 cycles(tsc) 22.052 ns - 13 cycles(tsc)  3.411 ns - improved 85.2%
128 -  89 cycles(tsc) 22.452 ns - 15 cycles(tsc)  3.841 ns - improved 83.1%
158 -  89 cycles(tsc) 22.403 ns - 14 cycles(tsc)  3.746 ns - improved 84.3%
250 -  91 cycles(tsc) 22.775 ns - 16 cycles(tsc)  4.111 ns - improved 82.4%

Notice it is not recommended to do very large bulk operation with
this bulk API, because local IRQs are disabled in this period.

[1] https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/slab_bulk_test01.c

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
7b0501dd6b slab: avoid running debug SLAB code with IRQs disabled for alloc_bulk
Move the call to cache_alloc_debugcheck_after() outside the IRQ disabled
section in kmem_cache_alloc_bulk().

When CONFIG_DEBUG_SLAB is disabled the compiler should remove this code.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
2a777eac17 slab: implement bulk alloc in SLAB allocator
This patch implements the alloc side of bulk API for the SLAB allocator.

Further optimization are still possible by changing the call to
__do_cache_alloc() into something that can return multiple objects.
This optimization is left for later, given end results already show in
the area of 80% speedup.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
d5e3ed66d6 slab: use slab_post_alloc_hook in SLAB allocator shared with SLUB
Reviewers notice that the order in slab_post_alloc_hook() of
kmemcheck_slab_alloc() and kmemleak_alloc_recursive() gets swapped
compared to slab.c / SLAB allocator.

Also notice memset now occurs before calling kmemcheck_slab_alloc() and
kmemleak_alloc_recursive().

I assume this reordering of kmemcheck, kmemleak and memset is okay
because this is the order they are used by the SLUB allocator.

This patch completes the sharing of alloc_hook's between SLUB and SLAB.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
0142eae3ae mm: kmemcheck skip object if slab allocation failed
In the SLAB allocator kmemcheck_slab_alloc() is guarded against being
called in case the object is NULL.  In SLUB allocator this NULL pointer
invocation can happen, which seems like an oversight.

Move the NULL pointer check into kmemcheck code (kmemcheck_slab_alloc)
so the check gets moved out of the fastpath, when not compiled with
CONFIG_KMEMCHECK.

This is a step towards sharing post_alloc_hook between SLUB and SLAB,
because slab_post_alloc_hook() does not perform this check before
calling kmemcheck_slab_alloc().

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
011eceaf0a slab: use slab_pre_alloc_hook in SLAB allocator shared with SLUB
Deduplicate code in SLAB allocator functions slab_alloc() and
slab_alloc_node() by using the slab_pre_alloc_hook() call, which is now
shared between SLUB and SLAB.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
fab9963a69 mm: fault-inject take over bootstrap kmem_cache check
Remove the SLAB specific function slab_should_failslab(), by moving the
check against fault-injection for the bootstrap slab, into the shared
function should_failslab() (used by both SLAB and SLUB).

This is a step towards sharing alloc_hook's between SLUB and SLAB.

This bootstrap slab "kmem_cache" is used for allocating struct
kmem_cache objects to the allocator itself.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
11c7aec2a9 mm/slab: move SLUB alloc hooks to common mm/slab.h
First step towards sharing alloc_hook's between SLUB and SLAB
allocators.  Move the SLUB allocators *_alloc_hook to the common
mm/slab.h for internal slab definitions.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
376bf125ac slub: clean up code for kmem cgroup support to kmem_cache_free_bulk
This change is primarily an attempt to make it easier to realize the
optimizations the compiler performs in-case CONFIG_MEMCG_KMEM is not
enabled.

Performance wise, even when CONFIG_MEMCG_KMEM is compiled in, the
overhead is zero.  This is because, as long as no process have enabled
kmem cgroups accounting, the assignment is replaced by asm-NOP
operations.  This is possible because memcg_kmem_enabled() uses a
static_key_false() construct.

It also helps readability as it avoid accessing the p[] array like:
p[size - 1] which "expose" that the array is processed backwards inside
helper function build_detached_freelist().

Lastly this also makes the code more robust, in error case like passing
NULL pointers in the array.  Which were previously handled before commit
033745189b ("slub: add missing kmem cgroup support to
kmem_cache_free_bulk").

Fixes: 033745189b ("slub: add missing kmem cgroup support to kmem_cache_free_bulk")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Linus Torvalds
ba33ea811e Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar:
 "This is another big update. Main changes are:

   - lots of x86 system call (and other traps/exceptions) entry code
     enhancements.  In particular the complex parts of the 64-bit entry
     code have been migrated to C code as well, and a number of dusty
     corners have been refreshed.  (Andy Lutomirski)

   - vDSO special mapping robustification and general cleanups (Andy
     Lutomirski)

   - cpufeature refactoring, cleanups and speedups (Borislav Petkov)

   - lots of other changes ..."

* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
  x86/cpufeature: Enable new AVX-512 features
  x86/entry/traps: Show unhandled signal for i386 in do_trap()
  x86/entry: Call enter_from_user_mode() with IRQs off
  x86/entry/32: Change INT80 to be an interrupt gate
  x86/entry: Improve system call entry comments
  x86/entry: Remove TIF_SINGLESTEP entry work
  x86/entry/32: Add and check a stack canary for the SYSENTER stack
  x86/entry/32: Simplify and fix up the SYSENTER stack #DB/NMI fixup
  x86/entry: Only allocate space for tss_struct::SYSENTER_stack if needed
  x86/entry: Vastly simplify SYSENTER TF (single-step) handling
  x86/entry/traps: Clear DR6 early in do_debug() and improve the comment
  x86/entry/traps: Clear TIF_BLOCKSTEP on all debug exceptions
  x86/entry/32: Restore FLAGS on SYSEXIT
  x86/entry/32: Filter NT and speed up AC filtering in SYSENTER
  x86/entry/compat: In SYSENTER, sink AC clearing below the existing FLAGS test
  selftests/x86: In syscall_nt, test NT|TF as well
  x86/asm-offsets: Remove PARAVIRT_enabled
  x86/entry/32: Introduce and use X86_BUG_ESPFIX instead of paravirt_enabled
  uprobes: __create_xol_area() must nullify xol_mapping.fault
  x86/cpufeature: Create a new synthetic cpu capability for machine check recovery
  ...
2016-03-15 09:32:27 -07:00
Linus Torvalds
d37a14bb5f Merge branch 'core-resources-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull ram resource handling changes from Ingo Molnar:
 "Core kernel resource handling changes to support NVDIMM error
  injection.

  This tree introduces a new I/O resource type, IORESOURCE_SYSTEM_RAM,
  for System RAM while keeping the current IORESOURCE_MEM type bit set
  for all memory-mapped ranges (including System RAM) for backward
  compatibility.

  With this resource flag it no longer takes a strcmp() loop through the
  resource tree to find "System RAM" resources.

  The new resource type is then used to extend ACPI/APEI error injection
  facility to also support NVDIMM"

* 'core-resources-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  ACPI/EINJ: Allow memory error injection to NVDIMM
  resource: Kill walk_iomem_res()
  x86/kexec: Remove walk_iomem_res() call with GART type
  x86, kexec, nvdimm: Use walk_iomem_res_desc() for iomem search
  resource: Add walk_iomem_res_desc()
  memremap: Change region_intersects() to take @flags and @desc
  arm/samsung: Change s3c_pm_run_res() to use System RAM type
  resource: Change walk_system_ram() to use System RAM type
  drivers: Initialize resource entry to zero
  xen, mm: Set IORESOURCE_SYSTEM_RAM to System RAM
  kexec: Set IORESOURCE_SYSTEM_RAM for System RAM
  arch: Set IORESOURCE_SYSTEM_RAM flag for System RAM
  ia64: Set System RAM type and descriptor
  x86/e820: Set System RAM type and descriptor
  resource: Add I/O resource descriptor
  resource: Handle resource flags properly
  resource: Add System RAM resource type
2016-03-14 15:15:51 -07:00
Dave Airlie
9b61c0fcdf Merge drm-fixes into drm-next.
Nouveau wanted this to avoid some worse conflicts when I merge that.
2016-03-14 09:46:02 +10:00
Matthew Dawson
7640131032 mm/mempool: avoid KASAN marking mempool poison checks as use-after-free
When removing an element from the mempool, mark it as unpoisoned in KASAN
before verifying its contents for SLUB/SLAB debugging.  Otherwise KASAN
will flag the reads checking the element use-after-free writes as
use-after-free reads.

Signed-off-by: Matthew Dawson <matthew@mjdsystems.ca>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-11 16:17:47 -08:00
Jan Stancek
86613628b3 mm/hugetlb: use EOPNOTSUPP in hugetlb sysctl handlers
Replace ENOTSUPP with EOPNOTSUPP.  If hugepages are not supported, this
value is propagated to userspace.  EOPNOTSUPP is part of uapi and is
widely supported by libc libraries.

It gives nicer message to user, rather than:

  # cat /proc/sys/vm/nr_hugepages
  cat: /proc/sys/vm/nr_hugepages: Unknown error 524

And also LTP's proc01 test was failing because this ret code (524)
was unexpected:

  proc01      1  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_hugepages: errno=???(524): Unknown error 524
  proc01      2  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_hugepages_mempolicy: errno=???(524): Unknown error 524
  proc01      3  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_overcommit_hugepages: errno=???(524): Unknown error 524

Signed-off-by: Jan Stancek <jstancek@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Kirill A. Shutemov
0a2e280b6d mm, thp: fix migration of PTE-mapped transparent huge pages
We don't have native support of THP migration, so we have to split huge
page into small pages in order to migrate it to different node.  This
includes PTE-mapped huge pages.

I made mistake in refcounting patchset: we don't actually split
PTE-mapped huge page in queue_pages_pte_range(), if we step on head
page.

The result is that the head page is queued for migration, but none of
tail pages: putting head page on queue takes pin on the page and any
subsequent attempts of split_huge_pages() would fail and we skip queuing
tail pages.

unmap_and_move_huge_page() will eventually split the huge pages, but
only one of 512 pages would get migrated.

Let's fix the situation.

Fixes: 248db92da1 ("migrate_pages: try to split pages on queuing")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Mark Rutland
e3ae116339 kasan: add functions to clear stack poison
Functions which the compiler has instrumented for ASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.

In some cases (e.g. hotplug and idle), CPUs may exit the kernel a
number of levels deep in C code.  If there are any instrumented
functions on this critical path, these will leave portions of the idle
thread stack shadow poisoned.

If a CPU returns to the kernel via a different path (e.g. a cold
entry), then depending on stack frame layout subsequent calls to
instrumented functions may use regions of the stack with stale poison,
resulting in (spurious) KASAN splats to the console.

Contemporary GCCs always add stack shadow poisoning when ASAN is
enabled, even when asked to not instrument a function [1], so we can't
simply annotate functions on the critical path to avoid poisoning.

Instead, this series explicitly removes any stale poison before it can
be hit.  In the common hotplug case we clear the entire stack shadow in
common code, before a CPU is brought online.

On architectures which perform a cold return as part of cpu idle may
retain an architecture-specific amount of stack contents.  To retain the
poison for this retained context, the arch code must call the core KASAN
code, passing a "watermark" stack pointer value beyond which shadow will
be cleared.  Architectures which don't perform a cold return as part of
idle do not need any additional code.

This patch (of 3):

Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poision prior to returning.

In some cases (e.g.  hotplug and idle), CPUs may exit the kernel a number
of levels deep in C code.  If there are any instrumented functions on this
critical path, these will leave portions of the stack shadow poisoned.

If a CPU returns to the kernel via a different path (e.g.  a cold entry),
then depending on stack frame layout subsequent calls to instrumented
functions may use regions of the stack with stale poison, resulting in
(spurious) KASAN splats to the console.

To avoid this, we must clear stale poison from the stack prior to
instrumented functions being called.  This patch adds functions to the
KASAN core for removing poison from (portions of) a task's stack.  These
will be used by subsequent patches to avoid problems with hotplug and
idle.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Hugh Dickins
06b241f32c mm: __delete_from_page_cache show Bad page if mapped
Commit e1534ae950 ("mm: differentiate page_mapped() from
page_mapcount() for compound pages") changed the famous
BUG_ON(page_mapped(page)) in __delete_from_page_cache() to
VM_BUG_ON_PAGE(page_mapped(page)): which gives us more info when
CONFIG_DEBUG_VM=y, but nothing at all when not.

Although it has not usually been very helpul, being hit long after the
error in question, we do need to know if it actually happens on users'
systems; but reinstating a crash there is likely to be opposed :)

In the non-debug case, pr_alert("BUG: Bad page cache") plus dump_page(),
dump_stack(), add_taint() - I don't really believe LOCKDEP_NOW_UNRELIABLE,
but that seems to be the standard procedure now.  Move that, or the
VM_BUG_ON_PAGE(), up before the deletion from tree: so that the
unNULLified page->mapping gives a little more information.

If the inode is being evicted (rather than truncated), it won't have any
vmas left, so it's safe(ish) to assume that the raised mapcount is
erroneous, and we can discount it from page_count to avoid leaking the
page (I'm less worried by leaking the occasional 4kB, than losing a
potential 2MB page with each 4kB page leaked).

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00