Implemented PERF_RECORD_COMPRESSED event, related data types, header
feature and functions to write, read and print feature attributes from
the trace header section.
comp_mmap_len preserves the size of mmaped kernel buffer that was used
during collection. comp_mmap_len size is used on loading stage as the
size of decomp buffer for decompression of COMPRESSED events content.
Committer notes:
Fixed up conflict with BPF_PROG_INFO and BTF_BTF header features.
Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Reviewed-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/ebbaf031-8dda-3864-ebc6-7922d43ee515@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Several places were using definitions found in symbols.h but not
including it, getting it by sheer luck from some other headers that now
are in the process of removing that include because they don't need it
or because simply having struct forward declarations is enough, fix it.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/n/tip-xbcvvx296d70kpg9wb0qmeq9@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Lots of places get the map.h file indirectly, and since we're going to
remove it from machine.h, then those need to include it directly, do it
now, before we remove that dep.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/n/tip-ob8jehdjda8h5jsrv9dqj9tf@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This patch adds basic handling of PERF_RECORD_BPF_EVENT. Tracking of
PERF_RECORD_BPF_EVENT is OFF by default. Option --bpf-event is added to
turn it on.
Committer notes:
Add dummy machine__process_bpf_event() variant that returns zero for
systems without HAVE_LIBBPF_SUPPORT, such as Alpine Linux, unbreaking
the build in such systems.
Remove the needless include <machine.h> from bpf->event.h, provide just
forward declarations for the structs and unions in the parameters, to
reduce compilation time and needless rebuilds when machine.h gets
changed.
Committer testing:
When running with:
# perf record --bpf-event
On an older kernel where PERF_RECORD_BPF_EVENT and PERF_RECORD_KSYMBOL
is not present, we fallback to removing those two bits from
perf_event_attr, making the tool to continue to work on older kernels:
perf_event_attr:
size 112
{ sample_period, sample_freq } 4000
sample_type IP|TID|TIME|PERIOD
read_format ID
disabled 1
inherit 1
mmap 1
comm 1
freq 1
enable_on_exec 1
task 1
precise_ip 3
sample_id_all 1
exclude_guest 1
mmap2 1
comm_exec 1
ksymbol 1
bpf_event 1
------------------------------------------------------------
sys_perf_event_open: pid 5779 cpu 0 group_fd -1 flags 0x8
sys_perf_event_open failed, error -22
switching off bpf_event
------------------------------------------------------------
perf_event_attr:
size 112
{ sample_period, sample_freq } 4000
sample_type IP|TID|TIME|PERIOD
read_format ID
disabled 1
inherit 1
mmap 1
comm 1
freq 1
enable_on_exec 1
task 1
precise_ip 3
sample_id_all 1
exclude_guest 1
mmap2 1
comm_exec 1
ksymbol 1
------------------------------------------------------------
sys_perf_event_open: pid 5779 cpu 0 group_fd -1 flags 0x8
sys_perf_event_open failed, error -22
switching off ksymbol
------------------------------------------------------------
perf_event_attr:
size 112
{ sample_period, sample_freq } 4000
sample_type IP|TID|TIME|PERIOD
read_format ID
disabled 1
inherit 1
mmap 1
comm 1
freq 1
enable_on_exec 1
task 1
precise_ip 3
sample_id_all 1
exclude_guest 1
mmap2 1
comm_exec 1
------------------------------------------------------------
And then proceeds to work without those two features.
As passing --bpf-event is an explicit action performed by the user, perhaps we
should emit a warning telling that the kernel has no such feature, but this can
be done on top of this patch.
Now with a kernel that supports these events, start the 'record --bpf-event -a'
and then run 'perf trace sleep 10000' that will use the BPF
augmented_raw_syscalls.o prebuilt (for another kernel version even) and thus
should generate PERF_RECORD_BPF_EVENT events:
[root@quaco ~]# perf record -e dummy -a --bpf-event
^C[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.713 MB perf.data ]
[root@quaco ~]# bpftool prog
13: cgroup_skb tag 7be49e3934a125ba gpl
loaded_at 2019-01-19T09:09:43-0300 uid 0
xlated 296B jited 229B memlock 4096B map_ids 13,14
14: cgroup_skb tag 2a142ef67aaad174 gpl
loaded_at 2019-01-19T09:09:43-0300 uid 0
xlated 296B jited 229B memlock 4096B map_ids 13,14
15: cgroup_skb tag 7be49e3934a125ba gpl
loaded_at 2019-01-19T09:09:43-0300 uid 0
xlated 296B jited 229B memlock 4096B map_ids 15,16
16: cgroup_skb tag 2a142ef67aaad174 gpl
loaded_at 2019-01-19T09:09:43-0300 uid 0
xlated 296B jited 229B memlock 4096B map_ids 15,16
17: cgroup_skb tag 7be49e3934a125ba gpl
loaded_at 2019-01-19T09:09:44-0300 uid 0
xlated 296B jited 229B memlock 4096B map_ids 17,18
18: cgroup_skb tag 2a142ef67aaad174 gpl
loaded_at 2019-01-19T09:09:44-0300 uid 0
xlated 296B jited 229B memlock 4096B map_ids 17,18
21: cgroup_skb tag 7be49e3934a125ba gpl
loaded_at 2019-01-19T09:09:45-0300 uid 0
xlated 296B jited 229B memlock 4096B map_ids 21,22
22: cgroup_skb tag 2a142ef67aaad174 gpl
loaded_at 2019-01-19T09:09:45-0300 uid 0
xlated 296B jited 229B memlock 4096B map_ids 21,22
31: tracepoint name sys_enter tag 12504ba9402f952f gpl
loaded_at 2019-01-19T09:19:56-0300 uid 0
xlated 512B jited 374B memlock 4096B map_ids 30,29,28
32: tracepoint name sys_exit tag c1bd85c092d6e4aa gpl
loaded_at 2019-01-19T09:19:56-0300 uid 0
xlated 256B jited 191B memlock 4096B map_ids 30,29
# perf report -D | grep PERF_RECORD_BPF_EVENT | nl
1 0 55834574849 0x4fc8 [0x18]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 13
2 0 60129542145 0x5118 [0x18]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 14
3 0 64424509441 0x5268 [0x18]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 15
4 0 68719476737 0x53b8 [0x18]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 16
5 0 73014444033 0x5508 [0x18]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 17
6 0 77309411329 0x5658 [0x18]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 18
7 0 90194313217 0x57a8 [0x18]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 21
8 0 94489280513 0x58f8 [0x18]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 22
9 7 620922484360 0xb6390 [0x30]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 29
10 7 620922486018 0xb6410 [0x30]: PERF_RECORD_BPF_EVENT bpf event with type 2, flags 0, id 29
11 7 620922579199 0xb6490 [0x30]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 30
12 7 620922580240 0xb6510 [0x30]: PERF_RECORD_BPF_EVENT bpf event with type 2, flags 0, id 30
13 7 620922765207 0xb6598 [0x30]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 31
14 7 620922874543 0xb6620 [0x30]: PERF_RECORD_BPF_EVENT bpf event with type 1, flags 0, id 32
#
There, the 31 and 32 tracepoint BPF programs put in place by 'perf trace'.
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kernel-team@fb.com
Cc: netdev@vger.kernel.org
Link: http://lkml.kernel.org/r/20190117161521.1341602-7-songliubraving@fb.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This patch handles PERF_RECORD_KSYMBOL in perf record/report.
Specifically, map and symbol are created for ksymbol register, and
removed for ksymbol unregister.
This patch also sets perf_event_attr.ksymbol properly. The flag is ON by
default.
Committer notes:
Use proper inttypes.h for u64, fixing the build in some environments
like in the android NDK r15c targetting ARM 32-bit.
I.e. fixing this build error:
util/event.c: In function 'perf_event__fprintf_ksymbol':
util/event.c:1489:10: error: format '%lx' expects argument of type 'long unsigned int', but argument 3 has type 'u64' [-Werror=format=]
event->ksymbol_event.flags, event->ksymbol_event.name);
^
cc1: all warnings being treated as errors
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kernel-team@fb.com
Cc: netdev@vger.kernel.org
Link: http://lkml.kernel.org/r/20190117161521.1341602-6-songliubraving@fb.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The default timeout of 500ms for parsing /proc/<pid>/maps files is too
short for profiling many of our services.
This can be overridden by passing --proc-map-timeout to the relevant
command but it'd be nice to globally increase our default value.
This patch permits setting a different default with the
core.proc-map-timeout config file parameter.
Signed-off-by: Mark Drayton <mbd@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20181204203420.1683114-1-mbd@fb.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
thread__resolve() is used in the sample_addr_correlates_sym() cases
where 'addr' is a destination of a branch which does not necessarily
have the same cpumode as the 'ip'. Use the fallback function in that
case.
This patch depends on patch "perf tools: Add fallback functions for
cases where cpumode is insufficient".
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: stable@vger.kernel.org # 4.19
Link: http://lkml.kernel.org/r/20181106210712.12098-3-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
For branch stacks or branch samples, the sample cpumode might not be
correct because it applies only to the sample 'ip' and not necessary to
'addr' or branch stack addresses. Add fallback functions that can be
used to deal with those cases
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: stable@vger.kernel.org # 4.19
Link: http://lkml.kernel.org/r/20181106210712.12098-2-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
When synthesizing FORK events, we are trying to create thread objects
for the already running tasks on the machine.
Normally, for a kernel FORK event, we want to clone the parent's maps
because that is what the kernel just did.
But when synthesizing, this should not be done. If we do, we end up
with overlapping maps as we process the sythesized MMAP2 events that
get delivered shortly thereafter.
Use the FORK event misc flags in an internal way to signal this
situation, so we can elide the map clone when appropriate.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joe Mario <jmario@redhat.com>
Link: http://lkml.kernel.org/r/20181030.222404.2085088822877051075.davem@davemloft.net
[ Added comment about flag use in machine__process_fork_event(),
use ternary op in thread__clone_map_groups() as suggested by Jiri ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
David reports that:
<quote>
Perf has this hack where it uses the kernel symbol map as a backup when
a symbol can't be found in the user's symbol table(s).
This causes problems because the tests driving this code path use
machine__kernel_ip(), and that is completely meaningless on Sparc. On
sparc64 the kernel and user live in physically separate virtual address
spaces, rather than a shared one. And the kernel lives at a virtual
address that overlaps common userspace addresses. So this test passes
almost all the time when a user symbol lookup fails.
The consequence of this is that, if the unfound user virtual address in
the sample doesn't match up to a kernel symbol either, we trigger things
like this code in builtin-top.c:
if (al.sym == NULL && al.map != NULL) {
const char *msg = "Kernel samples will not be resolved.\n";
/*
* As we do lazy loading of symtabs we only will know if the
* specified vmlinux file is invalid when we actually have a
* hit in kernel space and then try to load it. So if we get
* here and there are _no_ symbols in the DSO backing the
* kernel map, bail out.
*
* We may never get here, for instance, if we use -K/
* --hide-kernel-symbols, even if the user specifies an
* invalid --vmlinux ;-)
*/
if (!machine->kptr_restrict_warned && !top->vmlinux_warned &&
__map__is_kernel(al.map) && map__has_symbols(al.map)) {
if (symbol_conf.vmlinux_name) {
char serr[256];
dso__strerror_load(al.map->dso, serr, sizeof(serr));
ui__warning("The %s file can't be used: %s\n%s",
symbol_conf.vmlinux_name, serr, msg);
} else {
ui__warning("A vmlinux file was not found.\n%s",
msg);
}
if (use_browser <= 0)
sleep(5);
top->vmlinux_warned = true;
}
}
When I fire up a compilation on sparc, this triggers immediately.
I'm trying to figure out what the "backup to kernel map" code is
accomplishing.
I see some language in the current code and in the changes that have
happened in this area talking about vdso. Does that really happen?
The vdso is mapped into userspace virtual addresses, not kernel ones.
More history. This didn't cause problems on sparc some time ago,
because the kernel IP check used to be "ip < 0" :-) Sparc kernel
addresses are not negative. But now with machine__kernel_ip(), which
works using the symbol table determined kernel address range, it does
trigger.
What it all boils down to is that on architectures like sparc,
machine__kernel_ip() should always return false in this scenerio, and
therefore this kind of logic:
if (cpumode == PERF_RECORD_MISC_USER && machine &&
mg != &machine->kmaps &&
machine__kernel_ip(machine, al->addr)) {
is basically invalid. PERF_RECORD_MISC_USER implies no kernel address
can possibly match for the sample/event in question (no matter how
hard you try!) :-)
</>
So, I thought something had changed and in the past we would somehow
find that address in the kallsyms, but I couldn't find anything to back
that up, the patch introducing this is over a decade old, lots of things
changed, so I was just thinking I was missing something.
I tried a gtod busy loop to generate vdso activity and added a 'perf
probe' at that branch, on x86_64 to see if it ever gets hit:
Made thread__find_map() noinline, as 'perf probe' in lines of inline
functions seems to not be working, only at function start. (Masami?)
# perf probe -x ~/bin/perf -L thread__find_map:57
<thread__find_map@/home/acme/git/perf/tools/perf/util/event.c:57>
57 if (cpumode == PERF_RECORD_MISC_USER && machine &&
58 mg != &machine->kmaps &&
59 machine__kernel_ip(machine, al->addr)) {
60 mg = &machine->kmaps;
61 load_map = true;
62 goto try_again;
}
} else {
/*
* Kernel maps might be changed when loading
* symbols so loading
* must be done prior to using kernel maps.
*/
69 if (load_map)
70 map__load(al->map);
71 al->addr = al->map->map_ip(al->map, al->addr);
# perf probe -x ~/bin/perf thread__find_map:60
Added new event:
probe_perf:thread__find_map (on thread__find_map:60 in /home/acme/bin/perf)
You can now use it in all perf tools, such as:
perf record -e probe_perf:thread__find_map -aR sleep 1
#
Then used this to see if, system wide, those probe points were being hit:
# perf trace -e *perf:thread*/max-stack=8/
^C[root@jouet ~]#
No hits when running 'perf top' and:
# cat gtod.c
#include <sys/time.h>
int main(void)
{
struct timeval tv;
while (1)
gettimeofday(&tv, 0);
return 0;
}
[root@jouet c]# ./gtod
^C
Pressed 'P' in 'perf top' and the [vdso] samples are there:
62.84% [vdso] [.] __vdso_gettimeofday
8.13% gtod [.] main
7.51% [vdso] [.] 0x0000000000000914
5.78% [vdso] [.] 0x0000000000000917
5.43% gtod [.] _init
2.71% [vdso] [.] 0x000000000000092d
0.35% [kernel] [k] native_io_delay
0.33% libc-2.26.so [.] __memmove_avx_unaligned_erms
0.20% [vdso] [.] 0x000000000000091d
0.17% [i2c_i801] [k] i801_access
0.06% firefox [.] free
0.06% libglib-2.0.so.0.5400.3 [.] g_source_iter_next
0.05% [vdso] [.] 0x0000000000000919
0.05% libpthread-2.26.so [.] __pthread_mutex_lock
0.05% libpixman-1.so.0.34.0 [.] 0x000000000006d3a7
0.04% [kernel] [k] entry_SYSCALL_64_trampoline
0.04% libxul.so [.] style::dom_apis::query_selector_slow
0.04% [kernel] [k] module_get_kallsym
0.04% firefox [.] malloc
0.04% [vdso] [.] 0x0000000000000910
I added a 'perf probe' to thread__find_map:69, and that surely got tons
of hits, i.e. for every map found, just to make sure the 'perf probe'
command was really working.
In the process I noticed a bug, we're only have records for '[vdso]' for
pre-existing commands, i.e. ones that are running when we start 'perf top',
when we will generate the PERF_RECORD_MMAP by looking at /perf/PID/maps.
I.e. like this, for preexisting processes with a vdso map, again,
tracing for all the system, only pre-existing processes get a [vdso] map
(when having one):
[root@jouet ~]# perf probe -x ~/bin/perf __machine__addnew_vdso
Added new event:
probe_perf:__machine__addnew_vdso (on __machine__addnew_vdso in /home/acme/bin/perf)
You can now use it in all perf tools, such as:
perf record -e probe_perf:__machine__addnew_vdso -aR sleep 1
[root@jouet ~]# perf trace -e probe_perf:__machine__addnew_vdso/max-stack=8/
0.000 probe_perf:__machine__addnew_vdso:(568eb3)
__machine__addnew_vdso (/home/acme/bin/perf)
map__new (/home/acme/bin/perf)
machine__process_mmap2_event (/home/acme/bin/perf)
machine__process_event (/home/acme/bin/perf)
perf_event__process (/home/acme/bin/perf)
perf_tool__process_synth_event (/home/acme/bin/perf)
perf_event__synthesize_mmap_events (/home/acme/bin/perf)
__event__synthesize_thread (/home/acme/bin/perf)
The kernel is generating a PERF_RECORD_MMAP for vDSOs, but somehow
'perf top' is not getting those records while 'perf record' is:
# perf record ~acme/c/gtod
^C[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.076 MB perf.data (1499 samples) ]
# perf report -D | grep PERF_RECORD_MMAP2
71293612401913 0x11b48 [0x70]: PERF_RECORD_MMAP2 25484/25484: [0x400000(0x1000) @ 0 fd:02 1137 541179306]: r-xp /home/acme/c/gtod
71293612419012 0x11be0 [0x70]: PERF_RECORD_MMAP2 25484/25484: [0x7fa4a2783000(0x227000) @ 0 fd:00 3146370 854107250]: r-xp /usr/lib64/ld-2.26.so
71293612432110 0x11c50 [0x60]: PERF_RECORD_MMAP2 25484/25484: [0x7ffcdb53a000(0x2000) @ 0 00:00 0 0]: r-xp [vdso]
71293612509944 0x11cb0 [0x70]: PERF_RECORD_MMAP2 25484/25484: [0x7fa4a23cd000(0x3b6000) @ 0 fd:00 3149723 262067164]: r-xp /usr/lib64/libc-2.26.so
#
# perf script | grep vdso | head
gtod 25484 71293.612768: 2485554 cycles:ppp: 7ffcdb53a914 [unknown] ([vdso])
gtod 25484 71293.613576: 2149343 cycles:ppp: 7ffcdb53a917 [unknown] ([vdso])
gtod 25484 71293.614274: 1814652 cycles:ppp: 7ffcdb53aca8 __vdso_gettimeofday+0x98 ([vdso])
gtod 25484 71293.614862: 1669070 cycles:ppp: 7ffcdb53acc5 __vdso_gettimeofday+0xb5 ([vdso])
gtod 25484 71293.615404: 1451589 cycles:ppp: 7ffcdb53acc5 __vdso_gettimeofday+0xb5 ([vdso])
gtod 25484 71293.615999: 1269941 cycles:ppp: 7ffcdb53ace6 __vdso_gettimeofday+0xd6 ([vdso])
gtod 25484 71293.616405: 1177946 cycles:ppp: 7ffcdb53a914 [unknown] ([vdso])
gtod 25484 71293.616775: 1121290 cycles:ppp: 7ffcdb53ac47 __vdso_gettimeofday+0x37 ([vdso])
gtod 25484 71293.617150: 1037721 cycles:ppp: 7ffcdb53ace6 __vdso_gettimeofday+0xd6 ([vdso])
gtod 25484 71293.617478: 994526 cycles:ppp: 7ffcdb53ace6 __vdso_gettimeofday+0xd6 ([vdso])
#
The patch is the obvious one and with it we also continue to resolve
vdso symbols for pre-existing processes in 'perf top' and for all
processes in 'perf record' + 'perf report/script'.
Suggested-by: David Miller <davem@davemloft.net>
Acked-by: David Miller <davem@davemloft.net>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-cs7skq9pp0kjypiju6o7trse@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The size of the resulting cpu map can be smaller than a multiple of
sizeof(u64), resulting in SIGBUS on cpus like Sparc as the next event
will not be aligned properly.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@intel.com>
Fixes: 6c872901af ("perf cpu_map: Add cpu_map event synthesize function")
Link: http://lkml.kernel.org/r/20181011.224655.716771175766946817.davem@davemloft.net
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Threads share map_groups, all map events are merged into it.
Thus we could send mmaps only for thread group leader. Otherwise it
took ages to attach and record something from processes with many vmas
and threads.
Thread group leader could be already dead, but it seems perf cannot
handle this case anyway.
Testing dummy:
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <pthread.h>
#include <unistd.h>
void *thread(void *arg) {
pause();
}
int main(int argc, char **argv) {
int threads = 10000;
int vmas = 50000;
pthread_t th;
for (int i = 0; i < threads; i++)
pthread_create(&th, NULL, thread, NULL);
for (int i = 0; i < vmas; i++)
mmap(NULL, 4096, (i & 1) ? PROT_READ : PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);
sleep(60);
return 0;
}
Comment by Jiri Olsa:
We actualy synthesize the group leader (if we found one) for the thread
even if it's not present in the thread_map, so the process maps are
always in data.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/153363294102.396323.6277944760215058174.stgit@buzz
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Like the kernel text, the location of x86 PTI entry trampolines must be
recorded in the perf.data file. Like the kernel, synthesize a mmap event
for that, and add processing for it.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/1526986485-6562-10-git-send-email-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Identify extra kernel maps by name so that they can be distinguished
from the kernel map and module maps.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/1526986485-6562-8-git-send-email-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Remove the split of symbol tables for data (MAP__VARIABLE) and for
functions (MAP__FUNCTION), its unneeded and there were various places
doing two lookups to find a symbol, so simplify this.
We still will consider only the symbols that matched the filters in
place, i.e. see the (elf_(sec,sym)|symbol_type)__filter() routines in
the patch, just so that we consider only the same symbols as before,
to reduce the possibility of regressions.
All the tests on 50-something build environments, in varios versions
of lots of distros and cross build environments were performed without
build regressions, as usual with all pull requests the other tests were
also performed: 'perf test' and 'make -C tools/perf build-test'.
Also this was done at a great granularity so that regressions can be
bisected more easily.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-hiq0fy2rsleupnqqwuojo1ne@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
We still have the split internally, but users don't see it anymore,
simplifying the growing number of cases where we end up searching
in the MAP__VARIABLE maps.
This further paves the way for ditching the split.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-86mfxrztf310konutxvhr5ua@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Simulate having all symbols in just one tree by searching the still
existing two trees.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-uss70e8tvzzbzs326330t83q@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Replacing equivalent, the equivalent and longer variation:
symbol__is_a(type, MAP__FUNCTION);
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-9t3dqogher54owfl9o2mir52@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Removing the map_type, that is going away.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-18iiiw25r75xn7zlppjldk48@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
That returns the a data structure contained the ordered list of kernel
modules + the main kernel maps, one more step in removing the
MAP__{FUNCTION,VARIABLE} split.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-qsgbxfyaohc80c9ma049dubm@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Instead of just returning it in al.sym, allowing for some simplification
in its users, and to make it consistent with thread__find_map().
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-4axi2sigslffdixzxbehvgoj@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
It was returning the searched map just on the addr_location passed, with
the function itself returning void.
Make it return the map so that we can make the code more compact.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-tzlrrzdeoof4i6ktyqv1t6ks@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Out of thread__find_addr_location(..., MAP__FUNCTION, ...), idea here is to
continue removing references to MAP__{FUNCTION,VARIABLE} ahead of
getting both types of symbols in the same rbtree, as various places do
two lookups, looking first at MAP__FUNCTION, then at MAP__VARIABLE.
So thread__find_symbol() will eventually do just that, and 'struct
symbol' will have the symbol type, for code that cares about that.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-n7528en9e08yd3flzmb26tth@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Out of thread__find_add_map(..., MAP__FUNCTION, ...), idea here is to
continue removing references to MAP__{FUNCTION,VARIABLE} ahead of
getting both types of symbols in the same rbtree, as various places do
two lookups, looking first at MAP__FUNCTION, then at MAP__VARIABLE.
So thread__find_map() will eventually do just that, and 'struct symbol'
will have the symbol type, for code that cares about that.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-q27xee34l4izpfau49w103s6@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
There's no need for kernel maps to be allocated at this point - sample
processing.
We search for kernel maps using the kernel map_groups in machine::kmaps
which is static. If vmlinux maps for any reason still don't exist, the
search correctly fails because they are not in the map group.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180215122635.24029-9-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
It simplifies and centralizes the code. The kernel mmap name is set for
machine type, which we know from the beginning, so there's no reason to
generate it every time we need it.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180215122635.24029-5-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The proc files which is sorted with alphabetical order are evenly
assigned to several synthesize threads to be processed in parallel.
For 'perf top', the threads number hard code to online CPU number. The
following patch will introduce an option to set it.
For other perf tools, the thread number is 1. Because the process
function is not ready for multithreading, e.g.
process_synthesized_event.
This patch series only support event synthesize multithreading for 'perf
top'. For other tools, it can be done separately later.
With multithread applied, the total processing time can get up to 1.56x
speedup on Knights Mill for 'perf top'.
For specific single event processing, the processing time could increase
because of the lock contention. So proc_map_timeout may need to be
increased. Otherwise some proc maps will be truncated.
Based on my test, increasing the proc_map_timeout has small impact
on the total processing time. The total processing time still get 1.49x
speedup on Knights Mill after increasing the proc_map_timeout.
The patch itself doesn't increase the proc_map_timeout.
Doesn't need to implement multithreading for per task monitoring,
perf_event__synthesize_thread_map. It doesn't have performance issue.
Committer testing:
# getconf _NPROCESSORS_ONLN
4
# perf trace --no-inherit -e clone -o /tmp/output perf top
# tail -4 /tmp/bla
0.124 ( 0.041 ms): clone(flags: VM|FS|FILES|SIGHAND|THREAD|SYSVSEM|SETTLS|PARENT_SETTID|CHILD_CLEARTID, child_stack: 0x7fc3eb3a8f30, parent_tidptr: 0x7fc3eb3a99d0, child_tidptr: 0x7fc3eb3a99d0, tls: 0x7fc3eb3a9700) = 9548 (perf)
0.246 ( 0.023 ms): clone(flags: VM|FS|FILES|SIGHAND|THREAD|SYSVSEM|SETTLS|PARENT_SETTID|CHILD_CLEARTID, child_stack: 0x7fc3eaba7f30, parent_tidptr: 0x7fc3eaba89d0, child_tidptr: 0x7fc3eaba89d0, tls: 0x7fc3eaba8700) = 9549 (perf)
0.286 ( 0.019 ms): clone(flags: VM|FS|FILES|SIGHAND|THREAD|SYSVSEM|SETTLS|PARENT_SETTID|CHILD_CLEARTID, child_stack: 0x7fc3ea3a6f30, parent_tidptr: 0x7fc3ea3a79d0, child_tidptr: 0x7fc3ea3a79d0, tls: 0x7fc3ea3a7700) = 9550 (perf)
246.540 ( 0.047 ms): clone(flags: VM|FS|FILES|SIGHAND|THREAD|SYSVSEM|SETTLS|PARENT_SETTID|CHILD_CLEARTID, child_stack: 0x7fc3ea3a6f30, parent_tidptr: 0x7fc3ea3a79d0, child_tidptr: 0x7fc3ea3a79d0, tls: 0x7fc3ea3a7700) = 9551 (perf)
#
Signed-off-by: Kan Liang <kan.liang@intel.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Lukasz Odzioba <lukasz.odzioba@intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/r/1506696477-146932-4-git-send-email-kan.liang@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
There are no usage outside util.c and this is the only remaining reason
for fcntl.h to be included in util.h, to get the loff_t definition in
Alpine Linux, so make it static.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-2dzlsao7k6ihozs5karw6kpx@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
In perf_event__synthesize_threads() perf goes through all proc files
serially by readdir.
scandir() does a snapshoot of /proc, which is multithreading friendly.
It's possible that some threads which are added during event synthesize.
But the number of lost threads should be small. They should not impact
the final analysis.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Lukasz Odzioba <lukasz.odzioba@intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1504806954-150842-3-git-send-email-kan.liang@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Add header record types to pipe-mode, reusing the functions
used in file-mode and leveraging the new struct feat_fd.
For alignment, check that synthesized events don't exceed
pagesize.
Add the perf_event__synthesize_feature event call back to
process the new header records.
Before this patch:
$ perf record -o - -e cycles sleep 1 | perf report --stdio --header
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.000 MB - ]
...
After this patch:
$ perf record -o - -e cycles sleep 1 | perf report --stdio --header
# ========
# captured on: Mon May 22 16:33:43 2017
# ========
#
# hostname : my_hostname
# os release : 4.11.0-dbx-up_perf
# perf version : 4.11.rc6.g6277c80
# arch : x86_64
# nrcpus online : 72
# nrcpus avail : 72
# cpudesc : Intel(R) Xeon(R) CPU E5-2696 v3 @ 2.30GHz
# cpuid : GenuineIntel,6,63,2
# total memory : 263457192 kB
# cmdline : /root/perf record -o - -e cycles -c 100000 sleep 1
# HEADER_CPU_TOPOLOGY info available, use -I to display
# HEADER_NUMA_TOPOLOGY info available, use -I to display
# pmu mappings: intel_bts = 6, uncore_imc_4 = 22, uncore_sbox_1 = 47, uncore_cbox_5 = 33, uncore_ha_0 = 16, uncore_cbox
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.000 MB - ]
...
Support added for the subcommands: report, inject, annotate and script.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Acked-by: David Ahern <dsahern@gmail.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Simon Que <sque@chromium.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/r/20170718042549.145161-16-davidcc@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
That is the case of _text on s390, and we have some functions that return an
address, using address zero to report problems, oops.
This would lead the symbol loading routines to not use "_text" as the reference
relocation symbol, or the first symbol for the kernel, but use instead
"_stext", that is at the same address on x86_64 and others, but not on s390:
[acme@localhost perf-4.11.0-rc6]$ head -15 /proc/kallsyms
0000000000000000 T _text
0000000000000418 t iplstart
0000000000000800 T start
000000000000080a t .base
000000000000082e t .sk8x8
0000000000000834 t .gotr
0000000000000842 t .cmd
0000000000000846 t .parm
000000000000084a t .lowcase
0000000000010000 T startup
0000000000010010 T startup_kdump
0000000000010214 t startup_kdump_relocated
0000000000011000 T startup_continue
00000000000112a0 T _ehead
0000000000100000 T _stext
[acme@localhost perf-4.11.0-rc6]$
Which in turn would make 'perf test vmlinux' to fail because it wouldn't find
the symbols before "_stext" in kallsyms.
Fix it by using the return value only for errors and storing the
address, when the symbol is successfully found, in a provided pointer
arg.
Before this patch:
After:
[acme@localhost perf-4.11.0-rc6]$ tools/perf/perf test -v 1
1: vmlinux symtab matches kallsyms :
--- start ---
test child forked, pid 40693
Looking at the vmlinux_path (8 entries long)
Using /usr/lib/debug/lib/modules/3.10.0-654.el7.s390x/vmlinux for symbols
ERR : 0: _text not on kallsyms
ERR : 0x418: iplstart not on kallsyms
ERR : 0x800: start not on kallsyms
ERR : 0x80a: .base not on kallsyms
ERR : 0x82e: .sk8x8 not on kallsyms
ERR : 0x834: .gotr not on kallsyms
ERR : 0x842: .cmd not on kallsyms
ERR : 0x846: .parm not on kallsyms
ERR : 0x84a: .lowcase not on kallsyms
ERR : 0x10000: startup not on kallsyms
ERR : 0x10010: startup_kdump not on kallsyms
ERR : 0x10214: startup_kdump_relocated not on kallsyms
ERR : 0x11000: startup_continue not on kallsyms
ERR : 0x112a0: _ehead not on kallsyms
<SNIP warnings>
test child finished with -1
---- end ----
vmlinux symtab matches kallsyms: FAILED!
[acme@localhost perf-4.11.0-rc6]$
After:
[acme@localhost perf-4.11.0-rc6]$ tools/perf/perf test -v 1
1: vmlinux symtab matches kallsyms :
--- start ---
test child forked, pid 47160
<SNIP warnings>
test child finished with 0
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@localhost perf-4.11.0-rc6]$
Reported-by: Michael Petlan <mpetlan@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-9x9bwgd3btwdk1u51xie93fz@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
More needs to be done to have the actual functions and variables in a
smaller .c file that can then be included in the python binding,
avoiding dragging more stuff into it.
Link: http://lkml.kernel.org/n/tip-uecxz7cqkssouj7tlxrkqpl4@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Recent commit broke command name strip in perf_event__get_comm_ids
function. It replaced left to right search for '\n' with rtrim, which
actually does right to left search. It occasionally caught earlier '\n'
and kept trash in the command name.
Keeping the ltrim, but moving back the left to right '\n' search
instead of the rtrim.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Taeung Song <treeze.taeung@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Yao Jin <yao.jin@linux.intel.com>
Fixes: bdd97ca63f ("perf tools: Refactor the code to strip command name with {l,r}trim()")
Link: http://lkml.kernel.org/r/20170420092430.29657-1-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The files using the dirent.h routines should instead include it,
reducing the includes hell that lead to longer build times.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-42g2f4z6nfg7mdb2ae97n7tj@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Removing it from util.h, part of an effort to disentangle the includes
hell, that makes changes to util.h or something included by it to cause
a complete rebuild of the tools.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-ztrjy52q1rqcchuy3rubfgt2@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Moving them from util.h, where they don't belong. Since libc already
have string.h, name it slightly differently, as string2.h.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-eh3vz5sqxsrdd8lodoro4jrw@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
More stuff that came from git, out of the hodge-podge that is util.h
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-e3lana4gctz3ub4hn4y29hkw@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Needed to use the PRI[xu](32,64) formatting macros.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-wkbho8kaw24q67dd11q0j39f@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
To pave the way for further cleanups where linux/kernel.h may stop being
included in some header.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-qqxan6tfsl6qx3l0v3nwgjvk@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
In https://lkml.org/lkml/2017/2/2/16 I reported a build error that I
believed was caused by wrong uapi includes. The synthom was fixed by
Arnaldo in:
commit 2f7db55579 ("perf tools: Fix include of linux/mman.h")
but I was wrong attributing the problem to the uapi include.
The root cause was that I was using ARCH=x86_64, hence using the wrong
uapi include path. This explains why no one else ran into this build
problem.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Simon Que <sque@chromium.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/r/20170412064919.92449-8-davidcc@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
After reading command name from /proc/<pid>/status, use ltrim() and
rtrim() to strip command name, not using just while loop, isspace() and
etc.
Signed-off-by: Taeung Song <treeze.taeung@gmail.com>
Acked-by: David Ahern <dsahern@gmail.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/r/1491575061-704-6-git-send-email-treeze.taeung@gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This patch decodes the 'partial' flag in AUX records and prints
a warning to the user, so that they don't have to guess why their
PT traces contain gaps (or missing altogether):
Warning:
AUX data had gaps in it 8 times out of 8!
Are you running a KVM guest in the background?
Trying to be even more helpful, we will detect if the user's kvm driver sets up
exclusive VMX root mode for the entire lifespan of the kvm process:
Reloading kvm_intel module with vmm_exclusive=0
will reduce the gaps to only guest's timeslices.
Note however, that you'll still have gaps in cpu-wide traces even with
vmm_exclusive=0, but the number of gaps will be below 100% (as opposed to the
above example).
Currently this is the only reason for partial records.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vince@deater.net>
Link: http://lkml.kernel.org/r/8760j941ig.fsf@ashishki-desk.ger.corp.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This patch significantly improves the execution time of
perf_event__synthesize_mmap_events() when running perf record on systems
where processes have lots of threads.
It just happens that cat /proc/pid/maps support uses a O(N^2) algorithm to
generate each map line in the maps file. If you have 1000 threads, then you
have necessarily 1000 stacks. For each vma, you need to check if it
corresponds to a thread's stack. With a large number of threads, this can take
a very long time. I have seen latencies >> 10mn.
As of today, perf does not use the fact that a mapping is a stack, therefore we
can work around the issue by using /proc/pid/tasks/pid/maps. This entry does
not try to map a vma to stack and is thus much faster with no loss of
functonality.
The proc-map-timeout logic is kept in case users still want some upper limit.
In V2, we fix the file path from /proc/pid/tasks/pid/maps to actual
/proc/pid/task/pid/maps, tasks -> task. Thanks Arnaldo for catching this.
Committer note:
This problem seems to have been elliminated in the kernel since commit :
b18cb64ead ("fs/proc: Stop trying to report thread stacks").
Signed-off-by: Stephane Eranian <eranian@google.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20170315135059.GC2177@redhat.com
Link: http://lkml.kernel.org/r/1489598233-25586-1-git-send-email-eranian@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>