Pull networking updates from David Miller:
1) Add Maglev hashing scheduler to IPVS, from Inju Song.
2) Lots of new TC subsystem tests from Roman Mashak.
3) Add TCP zero copy receive and fix delayed acks and autotuning with
SO_RCVLOWAT, from Eric Dumazet.
4) Add XDP_REDIRECT support to mlx5 driver, from Jesper Dangaard
Brouer.
5) Add ttl inherit support to vxlan, from Hangbin Liu.
6) Properly separate ipv6 routes into their logically independant
components. fib6_info for the routing table, and fib6_nh for sets of
nexthops, which thus can be shared. From David Ahern.
7) Add bpf_xdp_adjust_tail helper, which can be used to generate ICMP
messages from XDP programs. From Nikita V. Shirokov.
8) Lots of long overdue cleanups to the r8169 driver, from Heiner
Kallweit.
9) Add BTF ("BPF Type Format"), from Martin KaFai Lau.
10) Add traffic condition monitoring to iwlwifi, from Luca Coelho.
11) Plumb extack down into fib_rules, from Roopa Prabhu.
12) Add Flower classifier offload support to igb, from Vinicius Costa
Gomes.
13) Add UDP GSO support, from Willem de Bruijn.
14) Add documentation for eBPF helpers, from Quentin Monnet.
15) Add TLS tx offload to mlx5, from Ilya Lesokhin.
16) Allow applications to be given the number of bytes available to read
on a socket via a control message returned from recvmsg(), from
Soheil Hassas Yeganeh.
17) Add x86_32 eBPF JIT compiler, from Wang YanQing.
18) Add AF_XDP sockets, with zerocopy support infrastructure as well.
From Björn Töpel.
19) Remove indirect load support from all of the BPF JITs and handle
these operations in the verifier by translating them into native BPF
instead. From Daniel Borkmann.
20) Add GRO support to ipv6 gre tunnels, from Eran Ben Elisha.
21) Allow XDP programs to do lookups in the main kernel routing tables
for forwarding. From David Ahern.
22) Allow drivers to store hardware state into an ELF section of kernel
dump vmcore files, and use it in cxgb4. From Rahul Lakkireddy.
23) Various RACK and loss detection improvements in TCP, from Yuchung
Cheng.
24) Add TCP SACK compression, from Eric Dumazet.
25) Add User Mode Helper support and basic bpfilter infrastructure, from
Alexei Starovoitov.
26) Support ports and protocol values in RTM_GETROUTE, from Roopa
Prabhu.
27) Support bulking in ->ndo_xdp_xmit() API, from Jesper Dangaard
Brouer.
28) Add lots of forwarding selftests, from Petr Machata.
29) Add generic network device failover driver, from Sridhar Samudrala.
* ra.kernel.org:/pub/scm/linux/kernel/git/davem/net-next: (1959 commits)
strparser: Add __strp_unpause and use it in ktls.
rxrpc: Fix terminal retransmission connection ID to include the channel
net: hns3: Optimize PF CMDQ interrupt switching process
net: hns3: Fix for VF mailbox receiving unknown message
net: hns3: Fix for VF mailbox cannot receiving PF response
bnx2x: use the right constant
Revert "net: sched: cls: Fix offloading when ingress dev is vxlan"
net: dsa: b53: Fix for brcm tag issue in Cygnus SoC
enic: fix UDP rss bits
netdev-FAQ: clarify DaveM's position for stable backports
rtnetlink: validate attributes in do_setlink()
mlxsw: Add extack messages for port_{un, }split failures
netdevsim: Add extack error message for devlink reload
devlink: Add extack to reload and port_{un, }split operations
net: metrics: add proper netlink validation
ipmr: fix error path when ipmr_new_table fails
ip6mr: only set ip6mr_table from setsockopt when ip6mr_new_table succeeds
net: hns3: remove unused hclgevf_cfg_func_mta_filter
netfilter: provide udp*_lib_lookup for nf_tproxy
qed*: Utilize FW 8.37.2.0
...
Hopefully the last pull request to 4.18 before the merge window.
Nothing major here, we have smaller new features and of course a lots
of fixes.
Major changes:
ath10k
* add memory dump support for QCA9888 and QCA99X0
* add support to configure channel dwell time
* support new DFS host confirmation feature in the firmware
ath
* update various regulatory mappings
wcn36xx
* various fixes to improve reliability
* add Factory Test Mode support
brmfmac
* add debugfs file for reading firmware capabilities
mwifiex
* support sysfs initiated device coredump
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJbD/3rAAoJEG4XJFUm622b1ZwH/1xe1IqcwJXzfoDsYPlXVnSh
TiLExjKkD0ty5M0//844FxpxE1sSYJKOJ11uz/COzyG2qi4+5lgpUdjnDoINuKfH
ycqrXGssW7ogPWkVvnxKtlEYvkHNRYLQtxvd26umT77C69jVJLD0x9uihhh2En/C
EKs+OK1Pp0SRvTfB4AblWzoAnpEe1wHJFFh4i3F5H0lMGxLQz/YjFl5aeAjjR406
0vSKLGy2wKIydp8Pe4cAqBEeUWDJurn8ufkk7bmAET5zaXTH1qgZzLH3OWtx/ksz
mcPQq9/ctv35G2917t3Sn69SIUCDGfYkP5DiZV+ti0Hz2gIV0zOg7mGYCU8uHaU=
=11X5
-----END PGP SIGNATURE-----
Merge tag 'wireless-drivers-next-for-davem-2018-05-31' of git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/wireless-drivers-next
Kalle Valo says:
====================
wireless-drivers-next patches for 4.18
Hopefully the last pull request to 4.18 before the merge window.
Nothing major here, we have smaller new features and of course a lots
of fixes.
Major changes:
ath10k
* add memory dump support for QCA9888 and QCA99X0
* add support to configure channel dwell time
* support new DFS host confirmation feature in the firmware
ath
* update various regulatory mappings
wcn36xx
* various fixes to improve reliability
* add Factory Test Mode support
brmfmac
* add debugfs file for reading firmware capabilities
mwifiex
* support sysfs initiated device coredump
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce infrastructure for supporting Factory Test Mode (FTM) of the
wireless LAN subsystem. In order for the user space to access the
firmware in test mode the relevant netlink channel needs to be exposed
from the kernel driver.
The above is achieved as follows:
1) Register wcn36xx driver to testmode callback from netlink
2) Add testmode callback implementation to handle incoming FTM commands
3) Add FTM command packet structure
4) Add handling for GET_BUILD_RELEASE_NUMBER (msgid=0x32A2)
5) Add generic handling for all PTT_MSG packets
Signed-off-by: Eyal Ilsar <eilsar@codeaurora.org>
Signed-off-by: Ramon Fried <ramon.fried@linaro.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
In the 10.4-3.6 firmware branch there's a new DFS Host confirmation
feature which is advertised using WMI_SERVICE_HOST_DFS_CHECK_SUPPORT flag.
This new features enables the ath10k host to send information to the
firmware on the specifications of detected radar type. This allows the
firmware to validate if the host's radar pattern detector unit is
operational and check if the radar information shared by host matches
the radar pulses sent as phy error events from firmware. If the check
fails the firmware won't allow use of DFS channels on AP mode when using
FCC regulatory region.
Hence this patch is mandatory when using a firmware from 10.4-3.6 branch.
Else, DFS channels on FCC regions cannot be used.
Supported Chipsets : QCA9984/QCA9888/QCA4019
Firmware Version : 10.4-3.6-00104
Signed-off-by: Sriram R <srirrama@codeaurora.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This enables ath10k/ath9k drivers to collect the specifications of the
radar type once it is detected by the dfs pattern detector unit.
Usage of the collected info is specific to driver implementation.
For example, collected radar info could be used by the host driver
to send to co-processors for additional processing/validation.
Note: 'radar_detector_specs' data containing the specifications of
different radar types which was private within dfs_pattern_detector/
dfs_pri_detector is now shared with drivers as well for making use
of this information.
Signed-off-by: Sriram R <srirrama@codeaurora.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Add a missing newline in wcn36xx_smd_send_and_wait() and also log the
command request and response type that was processed.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Drop the extra warning about failed allocations, both the core and the
only caller of this function will warn loud enough in such cases.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
When the interface is shut down, wcn36xx_smd_close() potentially races
against the queue worker. Make sure to cancel the work, and then free all
the remnants in hal_ind_queue manually.
This is again just a theoretical issue, not something that was triggered in
the wild.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
When a BSSID is joined, set the link status to 'preassoc', and set it to
'idle' when the BSS is deleted.
This is what the downstream driver is doing, and it seems to improve the
reliability during connect/disconnect stress tests.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
In reap_tx_dxes(), when we iterate over the linked descriptors, only
consider such valid that have WCN36xx_DXE_CTRL_EOP set.
This is what the prima downstream driver is doing as well.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
On RX and TX interrupts, check for the WCN36XX_CH_STAT_INT_ED_MASK or
WCN36XX_CH_STAT_INT_DONE_MASK in the interrupt reason register, and
only handle packets when it is set. This way, reap_tx_dxes() is only
invoked when needed.
This brings the dequeing logic in line with what the prima downstream
driver is doing.
While at it, also log the interrupt reason.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Like on the TX side, check for the interrupt reason when the RX interrupt
is latched and clear the ERR, DONE and ED masks.
This seems to help with connection timeouts and network stream
starvatations. And FWIW, the downstream driver does the same thing.
Note that in analogy to the TX side, WCN36XX_DXE_0_INT_CLR should be set to
WCN36XX_INT_MASK_CHAN_RX_{L,H} rather than WCN36XX_DXE_INT_CH{1,3}_MASK. It
did the right thing however, as the defines happen to have identical values.
Also, instead of determining register addresses and values inside
wcn36xx_rx_handle_packets(), pass them as arguments.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
There's no need to disable the IRQ from inside its handler.
Instead just grab the spinlock of the channel that is being processed.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The device takes 32-bit addresses only, so inform the DMA API about it.
This is the default on msm8016, so that doesn't change anything, but
it's best practice to be explicit.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
When wcn36xx_dxe_tx_frame() is entered while the device is still processing
the queue asyncronously, we are racing against the firmware code with
updates to the buffer descriptors. Presumably, the firmware scans the ring
buffer that holds the descriptors and scans for a valid control descriptor,
and then assumes that the next descriptor contains the payload. If, however,
the control descriptor is marked valid, but the payload descriptor isn't,
the packet is not sent out.
Another issue with the current code is that is lacks memory barriers before
descriptors are marked valid. This is important because the CPU may reorder
writes to memory, even if it is allocated as coherent DMA area, and hence
the device may see incompletely written data.
To fix this, the code in wcn36xx_dxe_tx_frame() was restructured a bit so
that the payload descriptor is made valid before the control descriptor.
Memory barriers are added to ensure coherency of shared memory areas.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
clk_disable_unprepare() already checks that the clock pointer is valid.
No need to test it before calling it.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: ETSI -> FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: ETSI -> FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: FCC -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: FCC
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: FCC
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>