Commit Graph

5 Commits

Author SHA1 Message Date
Theodore Ts'o
d848e5f8e1 random: add new ioctl RNDRESEEDCRNG
Add a new ioctl which forces the the crng to be reseeded.

Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
2018-04-14 11:59:31 -04:00
Greg Kroah-Hartman
6f52b16c5b License cleanup: add SPDX license identifier to uapi header files with no license
Many user space API headers are missing licensing information, which
makes it hard for compliance tools to determine the correct license.

By default are files without license information under the default
license of the kernel, which is GPLV2.  Marking them GPLV2 would exclude
them from being included in non GPLV2 code, which is obviously not
intended. The user space API headers fall under the syscall exception
which is in the kernels COPYING file:

   NOTE! This copyright does *not* cover user programs that use kernel
   services by normal system calls - this is merely considered normal use
   of the kernel, and does *not* fall under the heading of "derived work".

otherwise syscall usage would not be possible.

Update the files which contain no license information with an SPDX
license identifier.  The chosen identifier is 'GPL-2.0 WITH
Linux-syscall-note' which is the officially assigned identifier for the
Linux syscall exception.  SPDX license identifiers are a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.  See the previous patch in this series for the
methodology of how this patch was researched.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:19:54 +01:00
Theodore Ts'o
c6e9d6f388 random: introduce getrandom(2) system call
The getrandom(2) system call was requested by the LibreSSL Portable
developers.  It is analoguous to the getentropy(2) system call in
OpenBSD.

The rationale of this system call is to provide resiliance against
file descriptor exhaustion attacks, where the attacker consumes all
available file descriptors, forcing the use of the fallback code where
/dev/[u]random is not available.  Since the fallback code is often not
well-tested, it is better to eliminate this potential failure mode
entirely.

The other feature provided by this new system call is the ability to
request randomness from the /dev/urandom entropy pool, but to block
until at least 128 bits of entropy has been accumulated in the
/dev/urandom entropy pool.  Historically, the emphasis in the
/dev/urandom development has been to ensure that urandom pool is
initialized as quickly as possible after system boot, and preferably
before the init scripts start execution.

This is because changing /dev/urandom reads to block represents an
interface change that could potentially break userspace which is not
acceptable.  In practice, on most x86 desktop and server systems, in
general the entropy pool can be initialized before it is needed (and
in modern kernels, we will printk a warning message if not).  However,
on an embedded system, this may not be the case.  And so with this new
interface, we can provide the functionality of blocking until the
urandom pool has been initialized.  Any userspace program which uses
this new functionality must take care to assure that if it is used
during the boot process, that it will not cause the init scripts or
other portions of the system startup to hang indefinitely.

SYNOPSIS
	#include <linux/random.h>

	int getrandom(void *buf, size_t buflen, unsigned int flags);

DESCRIPTION
	The system call getrandom() fills the buffer pointed to by buf
	with up to buflen random bytes which can be used to seed user
	space random number generators (i.e., DRBG's) or for other
	cryptographic uses.  It should not be used for Monte Carlo
	simulations or other programs/algorithms which are doing
	probabilistic sampling.

	If the GRND_RANDOM flags bit is set, then draw from the
	/dev/random pool instead of the /dev/urandom pool.  The
	/dev/random pool is limited based on the entropy that can be
	obtained from environmental noise, so if there is insufficient
	entropy, the requested number of bytes may not be returned.
	If there is no entropy available at all, getrandom(2) will
	either block, or return an error with errno set to EAGAIN if
	the GRND_NONBLOCK bit is set in flags.

	If the GRND_RANDOM bit is not set, then the /dev/urandom pool
	will be used.  Unlike using read(2) to fetch data from
	/dev/urandom, if the urandom pool has not been sufficiently
	initialized, getrandom(2) will block (or return -1 with the
	errno set to EAGAIN if the GRND_NONBLOCK bit is set in flags).

	The getentropy(2) system call in OpenBSD can be emulated using
	the following function:

            int getentropy(void *buf, size_t buflen)
            {
                    int     ret;

                    if (buflen > 256)
                            goto failure;
                    ret = getrandom(buf, buflen, 0);
                    if (ret < 0)
                            return ret;
                    if (ret == buflen)
                            return 0;
            failure:
                    errno = EIO;
                    return -1;
            }

RETURN VALUE
       On success, the number of bytes that was filled in the buf is
       returned.  This may not be all the bytes requested by the
       caller via buflen if insufficient entropy was present in the
       /dev/random pool, or if the system call was interrupted by a
       signal.

       On error, -1 is returned, and errno is set appropriately.

ERRORS
	EINVAL		An invalid flag was passed to getrandom(2)

	EFAULT		buf is outside the accessible address space.

	EAGAIN		The requested entropy was not available, and
			getentropy(2) would have blocked if the
			GRND_NONBLOCK flag was not set.

	EINTR		While blocked waiting for entropy, the call was
			interrupted by a signal handler; see the description
			of how interrupted read(2) calls on "slow" devices
			are handled with and without the SA_RESTART flag
			in the signal(7) man page.

NOTES
	For small requests (buflen <= 256) getrandom(2) will not
	return EINTR when reading from the urandom pool once the
	entropy pool has been initialized, and it will return all of
	the bytes that have been requested.  This is the recommended
	way to use getrandom(2), and is designed for compatibility
	with OpenBSD's getentropy() system call.

	However, if you are using GRND_RANDOM, then getrandom(2) may
	block until the entropy accounting determines that sufficient
	environmental noise has been gathered such that getrandom(2)
	will be operating as a NRBG instead of a DRBG for those people
	who are working in the NIST SP 800-90 regime.  Since it may
	block for a long time, these guarantees do *not* apply.  The
	user may want to interrupt a hanging process using a signal,
	so blocking until all of the requested bytes are returned
	would be unfriendly.

	For this reason, the user of getrandom(2) MUST always check
	the return value, in case it returns some error, or if fewer
	bytes than requested was returned.  In the case of
	!GRND_RANDOM and small request, the latter should never
	happen, but the careful userspace code (and all crypto code
	should be careful) should check for this anyway!

	Finally, unless you are doing long-term key generation (and
	perhaps not even then), you probably shouldn't be using
	GRND_RANDOM.  The cryptographic algorithms used for
	/dev/urandom are quite conservative, and so should be
	sufficient for all purposes.  The disadvantage of GRND_RANDOM
	is that it can block, and the increased complexity required to
	deal with partially fulfilled getrandom(2) requests.

Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Zach Brown <zab@zabbo.net>
2014-08-05 16:41:22 -04:00
Daniel Borkmann
38e9efcdb3 random32: move rnd_state to linux/random.h
struct rnd_state got mistakenly pulled into uapi header. It is not
used anywhere and does also not belong there!

Commit 5960164fde ("lib/random32: export pseudo-random number
generator for modules"), the last commit on rnd_state before it
got moved to uapi, says:

  This patch moves the definition of struct rnd_state and the inline
  __seed() function to linux/random.h.  It renames the static __random32()
  function to prandom32() and exports it for use in modules.

Hence, the structure was moved from lib/random32.c to linux/random.h
so that it can be used within modules (FCoE-related code in this
case), but not from user space. However, it seems to have been
mistakenly moved to uapi header through the uapi script. Since no-one
should make use of it from the linux headers, move the structure back
to the kernel for internal use, so that it can be modified on demand.

Joint work with Hannes Frederic Sowa.

Cc: Joe Eykholt <jeykholt@cisco.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-11 14:32:14 -05:00
David Howells
607ca46e97 UAPI: (Scripted) Disintegrate include/linux
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
2012-10-13 10:46:48 +01:00