Commit Graph

1280 Commits

Author SHA1 Message Date
Ralph Campbell
9a137153fc mm/memcg: fix device private memcg accounting
The code in mc_handle_swap_pte() checks for non_swap_entry() and returns
NULL before checking is_device_private_entry() so device private pages are
never handled.  Fix this by checking for non_swap_entry() after handling
device private swap PTEs.

I assume the memory cgroup accounting would be off somehow when moving
a process to another memory cgroup.  Currently, the device private page
is charged like a normal anonymous page when allocated and is uncharged
when the page is freed so I think that path is OK.

Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Link: https://lkml.kernel.org/r/20201009215952.2726-1-rcampbell@nvidia.com
xFixes: c733a82874 ("mm/memcontrol: support MEMORY_DEVICE_PRIVATE")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:31 -07:00
Miaohe Lin
7a52d4d88a mm: memcontrol: reword obsolete comment of mem_cgroup_unmark_under_oom()
Since commit 79dfdaccd1 ("memcg: make oom_lock 0 and 1 based rather than
counter"), the mem_cgroup_unmark_under_oom() is added and the comment of
the mem_cgroup_oom_unlock() is moved here.  But this comment make no sense
here because mem_cgroup_oom_lock() does not operate on under_oom field.
So we reword the comment as this would be helpful.  [Thanks Michal Hocko
for rewording this comment.]

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/20200930095336.21323-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Muchun Song
5f9a4f4a70 mm: memcontrol: add the missing numa_stat interface for cgroup v2
In the cgroup v1, we have a numa_stat interface.  This is useful for
providing visibility into the numa locality information within an memcg
since the pages are allowed to be allocated from any physical node.  One
of the use cases is evaluating application performance by combining this
information with the application's CPU allocation.  But the cgroup v2 does
not.  So this patch adds the missing information.

Suggested-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: https://lkml.kernel.org/r/20200916100030.71698-2-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long
bd0b230fe1 mm/memcg: unify swap and memsw page counters
The swap page counter is v2 only while memsw is v1 only.  As v1 and v2
controllers cannot be active at the same time, there is no point to keep
both swap and memsw page counters in mem_cgroup.  The previous patch has
made sure that memsw page counter is updated and accessed only when in v1
code paths.  So it is now safe to alias the v1 memsw page counter to v2
swap page counter.  This saves 14 long's in the size of mem_cgroup.  This
is a saving of 112 bytes for 64-bit archs.

While at it, also document which page counters are used in v1 and/or v2.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-4-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long
8d387a5f17 mm/memcg: simplify mem_cgroup_get_max()
mem_cgroup_get_max() used to get memory+swap max from both the v1 memsw
and v2 memory+swap page counters & return the maximum of these 2 values.
This is redundant and it is more efficient to just get either the v1 or
the v2 values depending on which one is currently in use.

[longman@redhat.com: v4]
  Link: https://lkml.kernel.org/r/20200914150928.7841-1-longman@redhat.com

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long
f9f84ec56f mm/memcg: clean up obsolete enum charge_type
Patch series "mm/memcg: Miscellaneous cleanups and streamlining", v2.

This patch (of 3):

Since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API") and
commit 00501b531c ("mm: memcontrol: rewrite charge API") in v3.17, the
enum charge_type was no longer used anywhere.  However, the enum itself
was not removed at that time.  Remove the obsolete enum charge_type now.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20200914024452.19167-2-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Miaohe Lin
05bdc520b3 mm: memcontrol: correct the comment of mem_cgroup_iter()
Since commit bbec2e1517 ("mm: rename page_counter's count/limit into
usage/max"), the arg @reclaim has no priority field anymore.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/20200913094129.44558-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Roman Gushchin
19b629c979 mm: memcg/slab: fix racy access to page->mem_cgroup in mem_cgroup_from_obj()
mem_cgroup_from_obj() checks the lowest bit of the page->mem_cgroup
pointer to determine if the page has an attached obj_cgroup vector instead
of a regular memcg pointer.  If it's not set, it simple returns the
page->mem_cgroup value as a struct mem_cgroup pointer.

The commit 10befea91b ("mm: memcg/slab: use a single set of kmem_caches
for all allocations") changed the moment when this bit is set: if
previously it was set on the allocation of the slab page, now it can be
set well after, when the first accounted object is allocated on this page.

It opened a race: if page->mem_cgroup is set concurrently after the first
page_has_obj_cgroups(page) check, a pointer to the obj_cgroups array can
be returned as a memory cgroup pointer.

A simple check for page->mem_cgroup pointer for NULL before the
page_has_obj_cgroups() check fixes the race.  Indeed, if the pointer is
not NULL, it's either a simple mem_cgroup pointer or a pointer to
obj_cgroup vector.  The pointer can be asynchronously changed from NULL to
(obj_cgroup_vec | 0x1UL), but can't be changed from a valid memcg pointer
to objcg vector or back.

If the object passed to mem_cgroup_from_obj() is a slab object and
page->mem_cgroup is NULL, it means that the object is not accounted, so
the function must return NULL.

I've discovered the race looking at the code, so far I haven't seen it in
the wild.

Fixes: 10befea91b ("mm: memcg/slab: use a single set of kmem_caches for all allocations")
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: https://lkml.kernel.org/r/20200910022435.2773735-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Gustavo A. R. Silva
61e604e636 mm: memcontrol: use the preferred form for passing the size of a structure type
Use the preferred form for passing the size of a structure type.  The
alternative form where the structure type is spelled out hurts readability
and introduces an opportunity for a bug when the object type is changed
but the corresponding object identifier to which the sizeof operator is
applied is not.

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/773e013ff2f07fe2a0b47153f14dea054c0c04f1.1596214831.git.gustavoars@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Gustavo A. R. Silva
e90342e6d2 mm: memcontrol: use flex_array_size() helper in memcpy()
Make use of the flex_array_size() helper to calculate the size of a
flexible array member within an enclosing structure.

This helper offers defense-in-depth against potential integer overflows,
while at the same time makes it explicitly clear that we are dealing with
a flexible array member.

Also, remove unnecessary braces.

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/ddd60dae2d9aea1ccdd2be66634815c93696125e.1596214831.git.gustavoars@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Matthew Wilcox (Oracle)
f5df8635c5 mm: use find_get_incore_page in memcontrol
The current code does not protect against swapoff of the underlying
swap device, so this is a bug fix as well as a worthwhile reduction in
code complexity.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Link: https://lkml.kernel.org/r/20200910183318.20139-3-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:29 -07:00
Linus Torvalds
3ad11d7ac8 block-5.10-2020-10-12
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+EWUgQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpnoxEADCVSNBRkpV0OVkOEC3wf8EGhXhk01Jnjtl
 u5Mg2V55hcgJ0thQxBV/V28XyqmsEBrmAVi0Yf8Vr9Qbq4Ze08Wae4ChS4rEOyh1
 jTcGYWx5aJB3ChLvV/HI0nWQ3bkj03mMrL3SW8rhhf5DTyKHsVeTenpx42Qu/FKf
 fRzi09FSr3Pjd0B+EX6gunwJnlyXQC5Fa4AA0GhnXJzAznANXxHkkcXu8a6Yw75x
 e28CfhIBliORsK8sRHLoUnPpeTe1vtxCBhBMsE+gJAj9ZUOWMzvNFIPP4FvfawDy
 6cCQo2m1azJ/IdZZCDjFUWyjh+wxdKMp+NNryEcoV+VlqIoc3n98rFwrSL+GIq5Z
 WVwEwq+AcwoMCsD29Lu1ytL2PQ/RVqcJP5UheMrbL4vzefNfJFumQVZLIcX0k943
 8dFL2QHL+H/hM9Dx5y5rjeiWkAlq75v4xPKVjh/DHb4nehddCqn/+DD5HDhNANHf
 c1kmmEuYhvLpIaC4DHjE6DwLh8TPKahJjwsGuBOTr7D93NUQD+OOWsIhX6mNISIl
 FFhP8cd0/ZZVV//9j+q+5B4BaJsT+ZtwmrelKFnPdwPSnh+3iu8zPRRWO+8P8fRC
 YvddxuJAmE6BLmsAYrdz6Xb/wqfyV44cEiyivF0oBQfnhbtnXwDnkDWSfJD1bvCm
 ZwfpDh2+Tg==
 =LzyE
 -----END PGP SIGNATURE-----

Merge tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:

 - Series of merge handling cleanups (Baolin, Christoph)

 - Series of blk-throttle fixes and cleanups (Baolin)

 - Series cleaning up BDI, seperating the block device from the
   backing_dev_info (Christoph)

 - Removal of bdget() as a generic API (Christoph)

 - Removal of blkdev_get() as a generic API (Christoph)

 - Cleanup of is-partition checks (Christoph)

 - Series reworking disk revalidation (Christoph)

 - Series cleaning up bio flags (Christoph)

 - bio crypt fixes (Eric)

 - IO stats inflight tweak (Gabriel)

 - blk-mq tags fixes (Hannes)

 - Buffer invalidation fixes (Jan)

 - Allow soft limits for zone append (Johannes)

 - Shared tag set improvements (John, Kashyap)

 - Allow IOPRIO_CLASS_RT for CAP_SYS_NICE (Khazhismel)

 - DM no-wait support (Mike, Konstantin)

 - Request allocation improvements (Ming)

 - Allow md/dm/bcache to use IO stat helpers (Song)

 - Series improving blk-iocost (Tejun)

 - Various cleanups (Geert, Damien, Danny, Julia, Tetsuo, Tian, Wang,
   Xianting, Yang, Yufen, yangerkun)

* tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block: (191 commits)
  block: fix uapi blkzoned.h comments
  blk-mq: move cancel of hctx->run_work to the front of blk_exit_queue
  blk-mq: get rid of the dead flush handle code path
  block: get rid of unnecessary local variable
  block: fix comment and add lockdep assert
  blk-mq: use helper function to test hw stopped
  block: use helper function to test queue register
  block: remove redundant mq check
  block: invoke blk_mq_exit_sched no matter whether have .exit_sched
  percpu_ref: don't refer to ref->data if it isn't allocated
  block: ratelimit handle_bad_sector() message
  blk-throttle: Re-use the throtl_set_slice_end()
  blk-throttle: Open code __throtl_de/enqueue_tg()
  blk-throttle: Move service tree validation out of the throtl_rb_first()
  blk-throttle: Move the list operation after list validation
  blk-throttle: Fix IO hang for a corner case
  blk-throttle: Avoid tracking latency if low limit is invalid
  blk-throttle: Avoid getting the current time if tg->last_finish_time is 0
  blk-throttle: Remove a meaningless parameter for throtl_downgrade_state()
  block: Remove redundant 'return' statement
  ...
2020-10-13 12:12:44 -07:00
Muchun Song
8d3fe09d8d mm: memcontrol: fix missing suffix of workingset_restore
We forget to add the suffix to the workingset_restore string, so fix it.

And also update the documentation of cgroup-v2.rst.

Fixes: 170b04b7ae ("mm/workingset: prepare the workingset detection infrastructure for anon LRU")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: https://lkml.kernel.org/r/20200916100030.71698-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-26 10:33:57 -07:00
Christoph Hellwig
f56753ac2a bdi: replace BDI_CAP_NO_{WRITEBACK,ACCT_DIRTY} with a single flag
Replace the two negative flags that are always used together with a
single positive flag that indicates the writeback capability instead
of two related non-capabilities.  Also remove the pointless wrappers
to just check the flag.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-09-24 13:43:39 -06:00
Michal Hocko
f1796544a0 memcg: fix use-after-free in uncharge_batch
syzbot has reported an use-after-free in the uncharge_batch path

  BUG: KASAN: use-after-free in instrument_atomic_write include/linux/instrumented.h:71 [inline]
  BUG: KASAN: use-after-free in atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline]
  BUG: KASAN: use-after-free in atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline]
  BUG: KASAN: use-after-free in page_counter_cancel mm/page_counter.c:54 [inline]
  BUG: KASAN: use-after-free in page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155
  Write of size 8 at addr ffff8880371c0148 by task syz-executor.0/9304

  CPU: 0 PID: 9304 Comm: syz-executor.0 Not tainted 5.8.0-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Call Trace:
    __dump_stack lib/dump_stack.c:77 [inline]
    dump_stack+0x1f0/0x31e lib/dump_stack.c:118
    print_address_description+0x66/0x620 mm/kasan/report.c:383
    __kasan_report mm/kasan/report.c:513 [inline]
    kasan_report+0x132/0x1d0 mm/kasan/report.c:530
    check_memory_region_inline mm/kasan/generic.c:183 [inline]
    check_memory_region+0x2b5/0x2f0 mm/kasan/generic.c:192
    instrument_atomic_write include/linux/instrumented.h:71 [inline]
    atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline]
    atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline]
    page_counter_cancel mm/page_counter.c:54 [inline]
    page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155
    uncharge_batch+0x6c/0x350 mm/memcontrol.c:6764
    uncharge_page+0x115/0x430 mm/memcontrol.c:6796
    uncharge_list mm/memcontrol.c:6835 [inline]
    mem_cgroup_uncharge_list+0x70/0xe0 mm/memcontrol.c:6877
    release_pages+0x13a2/0x1550 mm/swap.c:911
    tlb_batch_pages_flush mm/mmu_gather.c:49 [inline]
    tlb_flush_mmu_free mm/mmu_gather.c:242 [inline]
    tlb_flush_mmu+0x780/0x910 mm/mmu_gather.c:249
    tlb_finish_mmu+0xcb/0x200 mm/mmu_gather.c:328
    exit_mmap+0x296/0x550 mm/mmap.c:3185
    __mmput+0x113/0x370 kernel/fork.c:1076
    exit_mm+0x4cd/0x550 kernel/exit.c:483
    do_exit+0x576/0x1f20 kernel/exit.c:793
    do_group_exit+0x161/0x2d0 kernel/exit.c:903
    get_signal+0x139b/0x1d30 kernel/signal.c:2743
    arch_do_signal+0x33/0x610 arch/x86/kernel/signal.c:811
    exit_to_user_mode_loop kernel/entry/common.c:135 [inline]
    exit_to_user_mode_prepare+0x8d/0x1b0 kernel/entry/common.c:166
    syscall_exit_to_user_mode+0x5e/0x1a0 kernel/entry/common.c:241
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Commit 1a3e1f4096 ("mm: memcontrol: decouple reference counting from
page accounting") reworked the memcg lifetime to be bound the the struct
page rather than charges.  It also removed the css_put_many from
uncharge_batch and that is causing the above splat.

uncharge_batch() is supposed to uncharge accumulated charges for all
pages freed from the same memcg.  The queuing is done by uncharge_page
which however drops the memcg reference after it adds charges to the
batch.  If the current page happens to be the last one holding the
reference for its memcg then the memcg is OK to go and the next page to
be freed will trigger batched uncharge which needs to access the memcg
which is gone already.

Fix the issue by taking a reference for the memcg in the current batch.

Fixes: 1a3e1f4096 ("mm: memcontrol: decouple reference counting from page accounting")
Reported-by: syzbot+b305848212deec86eabe@syzkaller.appspotmail.com
Reported-by: syzbot+b5ea6fb6f139c8b9482b@syzkaller.appspotmail.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Link: https://lkml.kernel.org/r/20200820090341.GC5033@dhcp22.suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-05 12:14:29 -07:00
Matthew Wilcox (Oracle)
6c357848b4 mm: replace hpage_nr_pages with thp_nr_pages
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.

[akpm@linux-foundation.org: fix mm/migrate.c]

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00
Johannes Weiner
9f45717924 mm: memcontrol: fix warning when allocating the root cgroup
Commit 3e38e0aaca ("mm: memcg: charge memcg percpu memory to the
parent cgroup") adds memory tracking to the memcg kernel structures
themselves to make cgroups liable for the memory they are consuming
through the allocation of child groups (which can be significant).

This code is a bit awkward as it's spread out through several functions:
The outermost function does memalloc_use_memcg(parent) to set up
current->active_memcg, which designates which cgroup to charge, and the
inner functions pass GFP_ACCOUNT to request charging for specific
allocations.  To make sure this dependency is satisfied at all times -
to make sure we don't randomly charge whoever is calling the functions -
the inner functions warn on !current->active_memcg.

However, this triggers a false warning when the root memcg itself is
allocated.  No parent exists in this case, and so current->active_memcg
is rightfully NULL.  It's a false positive, not indicative of a bug.

Delete the warnings for now, we can revisit this later.

Fixes: 3e38e0aaca ("mm: memcg: charge memcg percpu memory to the parent cgroup")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-13 12:15:21 -07:00
Randy Dunlap
ac5ddd0fce mm/memcontrol.c: delete duplicated words
Drop the repeated word "down".

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-6-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:58 -07:00
Joonsoo Kim
170b04b7ae mm/workingset: prepare the workingset detection infrastructure for anon LRU
To prepare the workingset detection for anon LRU, this patch splits
workingset event counters for refault, activate and restore into anon and
file variants, as well as the refaults counter in struct lruvec.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Roman Gushchin
3e38e0aaca mm: memcg: charge memcg percpu memory to the parent cgroup
Memory cgroups are using large chunks of percpu memory to store vmstat
data.  Yet this memory is not accounted at all, so in the case when there
are many (dying) cgroups, it's not exactly clear where all the memory is.

Because the size of memory cgroup internal structures can dramatically
exceed the size of object or page which is pinning it in the memory, it's
not a good idea to simply ignore it.  It actually breaks the isolation
between cgroups.

Let's account the consumed percpu memory to the parent cgroup.

[guro@fb.com: add WARN_ON_ONCE()s, per Johannes]
  Link: http://lkml.kernel.org/r/20200811170611.GB1507044@carbon.DHCP.thefacebook.com

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Waiman Long <longman@redhat.com>
Cc: Bixuan Cui <cuibixuan@huawei.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200623184515.4132564-5-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Roman Gushchin
772616b031 mm: memcg/percpu: per-memcg percpu memory statistics
Percpu memory can represent a noticeable chunk of the total memory
consumption, especially on big machines with many CPUs.  Let's track
percpu memory usage for each memcg and display it in memory.stat.

A percpu allocation is usually scattered over multiple pages (and nodes),
and can be significantly smaller than a page.  So let's add a byte-sized
counter on the memcg level: MEMCG_PERCPU_B.  Byte-sized vmstat infra
created for slabs can be perfectly reused for percpu case.

[guro@fb.com: v3]
  Link: http://lkml.kernel.org/r/20200623184515.4132564-4-guro@fb.com

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Waiman Long <longman@redhat.com>
Cc: Bixuan Cui <cuibixuan@huawei.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200608230819.832349-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Johannes Weiner
e22c6ed90a mm: memcontrol: don't count limit-setting reclaim as memory pressure
When an outside process lowers one of the memory limits of a cgroup (or
uses the force_empty knob in cgroup1), direct reclaim is performed in the
context of the write(), in order to directly enforce the new limit and
have it being met by the time the write() returns.

Currently, this reclaim activity is accounted as memory pressure in the
cgroup that the writer(!) belongs to.  This is unexpected.  It
specifically causes problems for senpai
(https://github.com/facebookincubator/senpai), which is an agent that
routinely adjusts the memory limits and performs associated reclaim work
in tens or even hundreds of cgroups running on the host.  The cgroup that
senpai is running in itself will report elevated levels of memory
pressure, even though it itself is under no memory shortage or any sort of
distress.

Move the psi annotation from the central cgroup reclaim function to
callsites in the allocation context, and thereby no longer count any
limit-setting reclaim as memory pressure.  If the newly set limit causes
the workload inside the cgroup into direct reclaim, that of course will
continue to count as memory pressure.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200728135210.379885-2-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:26 -07:00
Johannes Weiner
19ce33acbb mm: memcontrol: restore proper dirty throttling when memory.high changes
Commit 8c8c383c04 ("mm: memcontrol: try harder to set a new
memory.high") inadvertently removed a callback to recalculate the
writeback cache size in light of a newly configured memory.high limit.

Without letting the writeback cache know about a potentially heavily
reduced limit, it may permit too many dirty pages, which can cause
unnecessary reclaim latencies or even avoidable OOM situations.

This was spotted while reading the code, it hasn't knowingly caused any
problems in practice so far.

Fixes: 8c8c383c04 ("mm: memcontrol: try harder to set a new memory.high")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200728135210.379885-1-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:26 -07:00
Yafang Shao
1378b37d03 memcg, oom: check memcg margin for parallel oom
Memcg oom killer invocation is synchronized by the global oom_lock and
tasks are sleeping on the lock while somebody is selecting the victim or
potentially race with the oom_reaper is releasing the victim's memory.
This can result in a pointless oom killer invocation because a waiter
might be racing with the oom_reaper

        P1              oom_reaper              P2
                        oom_reap_task           mutex_lock(oom_lock)
                                                out_of_memory # no victim because we have one already
                        __oom_reap_task_mm      mute_unlock(oom_lock)
 mutex_lock(oom_lock)
                        set MMF_OOM_SKIP
 select_bad_process
 # finds a new victim

The page allocator prevents from this race by trying to allocate after the
lock can be acquired (in __alloc_pages_may_oom) which acts as a last
minute check.  Moreover page allocator simply doesn't block on the
oom_lock and simply retries the whole reclaim process.

Memcg oom killer should do the last minute check as well.  Call
mem_cgroup_margin to do that.  Trylock on the oom_lock could be done as
well but this doesn't seem to be necessary at this stage.

[mhocko@kernel.org: commit log]

Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/1594735034-19190-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down
45c7f7e1ef mm, memcg: decouple e{low,min} state mutations from protection checks
mem_cgroup_protected currently is both used to set effective low and min
and return a mem_cgroup_protection based on the result.  As a user, this
can be a little unexpected: it appears to be a simple predicate function,
if not for the big warning in the comment above about the order in which
it must be executed.

This change makes it so that we separate the state mutations from the
actual protection checks, which makes it more obvious where we need to be
careful mutating internal state, and where we are simply checking and
don't need to worry about that.

[mhocko@suse.com - don't check protection on root memcgs]

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: http://lkml.kernel.org/r/ff3f915097fcee9f6d7041c084ef92d16aaeb56a.1594638158.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Yafang Shao
22f7496f0b mm, memcg: avoid stale protection values when cgroup is above protection
Patch series "mm, memcg: memory.{low,min} reclaim fix & cleanup", v4.

This series contains a fix for a edge case in my earlier protection
calculation patches, and a patch to make the area overall a little more
robust to hopefully help avoid this in future.

This patch (of 2):

A cgroup can have both memory protection and a memory limit to isolate it
from its siblings in both directions - for example, to prevent it from
being shrunk below 2G under high pressure from outside, but also from
growing beyond 4G under low pressure.

Commit 9783aa9917 ("mm, memcg: proportional memory.{low,min} reclaim")
implemented proportional scan pressure so that multiple siblings in excess
of their protection settings don't get reclaimed equally but instead in
accordance to their unprotected portion.

During limit reclaim, this proportionality shouldn't apply of course:
there is no competition, all pressure is from within the cgroup and should
be applied as such.  Reclaim should operate at full efficiency.

However, mem_cgroup_protected() never expected anybody to look at the
effective protection values when it indicated that the cgroup is above its
protection.  As a result, a query during limit reclaim may return stale
protection values that were calculated by a previous reclaim cycle in
which the cgroup did have siblings.

When this happens, reclaim is unnecessarily hesitant and potentially slow
to meet the desired limit.  In theory this could lead to premature OOM
kills, although it's not obvious this has occurred in practice.

Workaround the problem by special casing reclaim roots in
mem_cgroup_protection.  These memcgs are never participating in the
reclaim protection because the reclaim is internal.

We have to ignore effective protection values for reclaim roots because
mem_cgroup_protected might be called from racing reclaim contexts with
different roots.  Calculation is relying on root -> leaf tree traversal
therefore top-down reclaim protection invariants should hold.  The only
exception is the reclaim root which should have effective protection set
to 0 but that would be problematic for the following setup:

 Let's have global and A's reclaim in parallel:
  |
  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
  |\
  | C (low = 1G, usage = 2.5G)
  B (low = 1G, usage = 0.5G)

 for A reclaim we have
 B.elow = B.low
 C.elow = C.low

 For the global reclaim
 A.elow = A.low
 B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 C.elow = min(C.usage, C.low)

 With the effective values resetting we have A reclaim
 A.elow = 0
 B.elow = B.low
 C.elow = C.low

 and global reclaim could see the above and then
 B.elow = C.elow = 0 because children_low_usage > A.elow

Which means that protected memcgs would get reclaimed.

In future we would like to make mem_cgroup_protected more robust against
racing reclaim contexts but that is likely more complex solution than this
simple workaround.

[hannes@cmpxchg.org - large part of the changelog]
[mhocko@suse.com - workaround explanation]
[chris@chrisdown.name - retitle]

Fixes: 9783aa9917 ("mm, memcg: proportional memory.{low,min} reclaim")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/cover.1594638158.git.chris@chrisdown.name
Link: http://lkml.kernel.org/r/044fb8ecffd001c7905d27c0c2ad998069fdc396.1594638158.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down
d977aa939f mm, memcg: unify reclaim retry limits with page allocator
Reclaim retries have been set to 5 since the beginning of time in
commit 66e1707bc3 ("Memory controller: add per cgroup LRU and
reclaim").  However, we now have a generally agreed-upon standard for
page reclaim: MAX_RECLAIM_RETRIES (currently 16), added many years later
in commit 0a0337e0d1 ("mm, oom: rework oom detection").

In the absence of a compelling reason to declare an OOM earlier in memcg
context than page allocator context, it seems reasonable to supplant
MEM_CGROUP_RECLAIM_RETRIES with MAX_RECLAIM_RETRIES, making the page
allocator and memcg internals more similar in semantics when reclaim
fails to produce results, avoiding premature OOMs or throttling.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/da557856c9c7654308eaff4eedc1952a95e8df5f.1594640214.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down
b3ff92916a mm, memcg: reclaim more aggressively before high allocator throttling
Patch series "mm, memcg: reclaim harder before high throttling", v2.

This patch (of 2):

In Facebook production, we've seen cases where cgroups have been put into
allocator throttling even when they appear to have a lot of slack file
caches which should be trivially reclaimable.

Looking more closely, the problem is that we only try a single cgroup
reclaim walk for each return to usermode before calculating whether or not
we should throttle.  This single attempt doesn't produce enough pressure
to shrink for cgroups with a rapidly growing amount of file caches prior
to entering allocator throttling.

As an example, we see that threads in an affected cgroup are stuck in
allocator throttling:

    # for i in $(cat cgroup.threads); do
    >     grep over_high "/proc/$i/stack"
    > done
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150

...however, there is no I/O pressure reported by PSI, despite a lot of
slack file pages:

    # cat memory.pressure
    some avg10=78.50 avg60=84.99 avg300=84.53 total=5702440903
    full avg10=78.50 avg60=84.99 avg300=84.53 total=5702116959
    # cat io.pressure
    some avg10=0.00 avg60=0.00 avg300=0.00 total=78051391
    full avg10=0.00 avg60=0.00 avg300=0.00 total=78049640
    # grep _file memory.stat
    inactive_file 1370939392
    active_file 661635072

This patch changes the behaviour to retry reclaim either until the current
task goes below the 10ms grace period, or we are making no reclaim
progress at all.  In the latter case, we enter reclaim throttling as
before.

To a user, there's no intuitive reason for the reclaim behaviour to differ
from hitting memory.high as part of a new allocation, as opposed to
hitting memory.high because someone lowered its value.  As such this also
brings an added benefit: it unifies the reclaim behaviour between the two.

There's precedent for this behaviour: we already do reclaim retries when
writing to memory.{high,max}, in max reclaim, and in the page allocator
itself.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/cover.1594640214.git.chris@chrisdown.name
Link: http://lkml.kernel.org/r/a4e23b59e9ef499b575ae73a8120ee089b7d3373.1594640214.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin
536d3bf261 mm: memcontrol: avoid workload stalls when lowering memory.high
Memory.high limit is implemented in a way such that the kernel penalizes
all threads which are allocating a memory over the limit.  Forcing all
threads into the synchronous reclaim and adding some artificial delays
allows to slow down the memory consumption and potentially give some time
for userspace oom handlers/resource control agents to react.

It works nicely if the memory usage is hitting the limit from below,
however it works sub-optimal if a user adjusts memory.high to a value way
below the current memory usage.  It basically forces all workload threads
(doing any memory allocations) into the synchronous reclaim and sleep.
This makes the workload completely unresponsive for a long period of time
and can also lead to a system-wide contention on lru locks.  It can happen
even if the workload is not actually tight on memory and has, for example,
a ton of cold pagecache.

In the current implementation writing to memory.high causes an atomic
update of page counter's high value followed by an attempt to reclaim
enough memory to fit into the new limit.  To fix the problem described
above, all we need is to change the order of execution: try to push the
memory usage under the limit first, and only then set the new high limit.

Reported-by: Domas Mituzas <domas@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Link: http://lkml.kernel.org/r/20200709194718.189231-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Shakeel Butt
991e767385 mm: memcontrol: account kernel stack per node
Currently the kernel stack is being accounted per-zone.  There is no need
to do that.  In addition due to being per-zone, memcg has to keep a
separate MEMCG_KERNEL_STACK_KB.  Make the stat per-node and deprecate
MEMCG_KERNEL_STACK_KB as memcg_stat_item is an extension of
node_stat_item.  In addition localize the kernel stack stats updates to
account_kernel_stack().

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200630161539.1759185-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin
10befea91b mm: memcg/slab: use a single set of kmem_caches for all allocations
Instead of having two sets of kmem_caches: one for system-wide and
non-accounted allocations and the second one shared by all accounted
allocations, we can use just one.

The idea is simple: space for obj_cgroup metadata can be allocated on
demand and filled only for accounted allocations.

It allows to remove a bunch of code which is required to handle kmem_cache
clones for accounted allocations.  There is no more need to create them,
accumulate statistics, propagate attributes, etc.  It's a quite
significant simplification.

Also, because the total number of slab_caches is reduced almost twice (not
all kmem_caches have a memcg clone), some additional memory savings are
expected.  On my devvm it additionally saves about 3.5% of slab memory.

[guro@fb.com: fix build on MIPS]
  Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin
272911a4ad mm: memcg/slab: remove memcg_kmem_get_cache()
The memcg_kmem_get_cache() function became really trivial, so let's just
inline it into the single call point: memcg_slab_pre_alloc_hook().

It will make the code less bulky and can also help the compiler to
generate a better code.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-15-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin
d797b7d054 mm: memcg/slab: simplify memcg cache creation
Because the number of non-root kmem_caches doesn't depend on the number of
memory cgroups anymore and is generally not very big, there is no more
need for a dedicated workqueue.

Also, as there is no more need to pass any arguments to the
memcg_create_kmem_cache() except the root kmem_cache, it's possible to
just embed the work structure into the kmem_cache and avoid the dynamic
allocation of the work structure.

This will also simplify the synchronization: for each root kmem_cache
there is only one work.  So there will be no more concurrent attempts to
create a non-root kmem_cache for a root kmem_cache: the second and all
following attempts to queue the work will fail.

On the kmem_cache destruction path there is no more need to call the
expensive flush_workqueue() and wait for all pending works to be finished.
Instead, cancel_work_sync() can be used to cancel/wait for only one work.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-14-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin
9855609bde mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
This is fairly big but mostly red patch, which makes all accounted slab
allocations use a single set of kmem_caches instead of creating a separate
set for each memory cgroup.

Because the number of non-root kmem_caches is now capped by the number of
root kmem_caches, there is no need to shrink or destroy them prematurely.
They can be perfectly destroyed together with their root counterparts.
This allows to dramatically simplify the management of non-root
kmem_caches and delete a ton of code.

This patch performs the following changes:
1) introduces memcg_params.memcg_cache pointer to represent the
   kmem_cache which will be used for all non-root allocations
2) reuses the existing memcg kmem_cache creation mechanism
   to create memcg kmem_cache on the first allocation attempt
3) memcg kmem_caches are named <kmemcache_name>-memcg,
   e.g. dentry-memcg
4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache
   or schedule it's creation and return the root cache
5) removes almost all non-root kmem_cache management code
   (separate refcounter, reparenting, shrinking, etc)
6) makes slab debugfs to display root_mem_cgroup css id and never
   show :dead and :deact flags in the memcg_slabinfo attribute.

Following patches in the series will simplify the kmem_cache creation.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin
0f876e4dc5 mm: memcg/slab: move memcg_kmem_bypass() to memcontrol.h
To make the memcg_kmem_bypass() function available outside of the
memcontrol.c, let's move it to memcontrol.h.  The function is small and
nicely fits into static inline sort of functions.

It will be used from the slab code.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-12-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
4330a26bc4 mm: memcg/slab: deprecate memory.kmem.slabinfo
Deprecate memory.kmem.slabinfo.

An empty file will be presented if corresponding config options are
enabled.

The interface is implementation dependent, isn't present in cgroup v2, and
is generally useful only for core mm debugging purposes.  In other words,
it doesn't provide any value for the absolute majority of users.

A drgn-based replacement can be found in
tools/cgroup/memcg_slabinfo.py.  It does support cgroup v1 and v2,
mimics memory.kmem.slabinfo output and also allows to get any
additional information without a need to recompile the kernel.

If a drgn-based solution is too slow for a task, a bpf-based tracing tool
can be used, which can easily keep track of all slab allocations belonging
to a memory cgroup.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-11-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
964d4bd370 mm: memcg/slab: save obj_cgroup for non-root slab objects
Store the obj_cgroup pointer in the corresponding place of
page->obj_cgroups for each allocated non-root slab object.  Make sure that
each allocated object holds a reference to obj_cgroup.

Objcg pointer is obtained from the memcg->objcg dereferencing in
memcg_kmem_get_cache() and passed from pre_alloc_hook to post_alloc_hook.
Then in case of successful allocation(s) it's getting stored in the
page->obj_cgroups vector.

The objcg obtaining part look a bit bulky now, but it will be simplified
by next commits in the series.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-9-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
286e04b8ed mm: memcg/slab: allocate obj_cgroups for non-root slab pages
Allocate and release memory to store obj_cgroup pointers for each non-root
slab page. Reuse page->mem_cgroup pointer to store a pointer to the
allocated space.

This commit temporarily increases the memory footprint of the kernel memory
accounting. To store obj_cgroup pointers we'll need a place for an
objcg_pointer for each allocated object. However, the following patches
in the series will enable sharing of slab pages between memory cgroups,
which will dramatically increase the total slab utilization. And the final
memory footprint will be significantly smaller than before.

To distinguish between obj_cgroups and memcg pointers in case when it's
not obvious which one is used (as in page_cgroup_ino()), let's always set
the lowest bit in the obj_cgroup case. The original obj_cgroups
pointer is marked to be ignored by kmemleak, which otherwise would
report a memory leak for each allocated vector.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-8-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
bf4f059954 mm: memcg/slab: obj_cgroup API
Obj_cgroup API provides an ability to account sub-page sized kernel
objects, which potentially outlive the original memory cgroup.

The top-level API consists of the following functions:
  bool obj_cgroup_tryget(struct obj_cgroup *objcg);
  void obj_cgroup_get(struct obj_cgroup *objcg);
  void obj_cgroup_put(struct obj_cgroup *objcg);

  int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
  void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);

  struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg);
  struct obj_cgroup *get_obj_cgroup_from_current(void);

Object cgroup is basically a pointer to a memory cgroup with a per-cpu
reference counter.  It substitutes a memory cgroup in places where it's
necessary to charge a custom amount of bytes instead of pages.

All charged memory rounded down to pages is charged to the corresponding
memory cgroup using __memcg_kmem_charge().

It implements reparenting: on memcg offlining it's getting reattached to
the parent memory cgroup.  Each online memory cgroup has an associated
active object cgroup to handle new allocations and the list of all
attached object cgroups.  On offlining of a cgroup this list is reparented
and for each object cgroup in the list the memcg pointer is swapped to the
parent memory cgroup.  It prevents long-living objects from pinning the
original memory cgroup in the memory.

The implementation is based on byte-sized per-cpu stocks.  A sub-page
sized leftover is stored in an atomic field, which is a part of obj_cgroup
object.  So on cgroup offlining the leftover is automatically reparented.

memcg->objcg is rcu protected.  objcg->memcg is a raw pointer, which is
always pointing at a memory cgroup, but can be atomically swapped to the
parent memory cgroup.  So a user must ensure the lifetime of the
cgroup, e.g.  grab rcu_read_lock or css_set_lock.

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200623174037.3951353-7-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Johannes Weiner
1a3e1f4096 mm: memcontrol: decouple reference counting from page accounting
The reference counting of a memcg is currently coupled directly to how
many 4k pages are charged to it.  This doesn't work well with Roman's new
slab controller, which maintains pools of objects and doesn't want to keep
an extra balance sheet for the pages backing those objects.

This unusual refcounting design (reference counts usually track pointers
to an object) is only for historical reasons: memcg used to not take any
css references and simply stalled offlining until all charges had been
reparented and the page counters had dropped to zero.  When we got rid of
the reparenting requirement, the simple mechanical translation was to take
a reference for every charge.

More historical context can be found in commit e8ea14cc6e ("mm:
memcontrol: take a css reference for each charged page"), commit
64f2199389 ("mm: memcontrol: remove obsolete kmemcg pinning tricks") and
commit b2052564e6 ("mm: memcontrol: continue cache reclaim from offlined
groups").

The new slab controller exposes the limitations in this scheme, so let's
switch it to a more idiomatic reference counting model based on actual
kernel pointers to the memcg:

- The per-cpu stock holds a reference to the memcg its caching

- User pages hold a reference for their page->mem_cgroup. Transparent
  huge pages will no longer acquire tail references in advance, we'll
  get them if needed during the split.

- Kernel pages hold a reference for their page->mem_cgroup

- Pages allocated in the root cgroup will acquire and release css
  references for simplicity. css_get() and css_put() optimize that.

- The current memcg_charge_slab() already hacked around the per-charge
  references; this change gets rid of that as well.

- tcp accounting will handle reference in mem_cgroup_sk_{alloc,free}

Roman:
1) Rebased on top of the current mm tree: added css_get() in
   mem_cgroup_charge(), dropped mem_cgroup_try_charge() part
2) I've reformatted commit references in the commit log to make
   checkpatch.pl happy.

[hughd@google.com: remove css_put_many() from __mem_cgroup_clear_mc()]
  Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007302011450.2347@eggly.anvils

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200623174037.3951353-6-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
d42f3245c7 mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert
NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes.

To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and
NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB).

Internally global and per-node counters are stored in pages, however memcg
and lruvec counters are stored in bytes.  This scheme may look weird, but
only for now.  As soon as slab pages will be shared between multiple
cgroups, global and node counters will reflect the total number of slab
pages.  However memcg and lruvec counters will be used for per-memcg slab
memory tracking, which will take separate kernel objects in the account.
Keeping global and node counters in pages helps to avoid additional
overhead.

The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it
will fit into atomic_long_t we use for vmstats.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
ea426c2a7d mm: memcg: prepare for byte-sized vmstat items
To implement per-object slab memory accounting, we need to convert slab
vmstat counters to bytes.  Actually, out of 4 levels of counters: global,
per-node, per-memcg and per-lruvec only two last levels will require
byte-sized counters.  It's because global and per-node counters will be
counting the number of slab pages, and per-memcg and per-lruvec will be
counting the amount of memory taken by charged slab objects.

Converting all vmstat counters to bytes or even all slab counters to bytes
would introduce an additional overhead.  So instead let's store global and
per-node counters in pages, and memcg and lruvec counters in bytes.

To make the API clean all access helpers (both on the read and write
sides) are dealing with bytes.

To avoid back-and-forth conversions a new flavor of read-side helpers is
introduced, which always returns values in pages: node_page_state_pages()
and global_node_page_state_pages().

Actually new helpers are just reading raw values.  Old helpers are simple
wrappers, which will complain on an attempt to read byte value, because at
the moment no one actually needs bytes.

Thanks to Johannes Weiner for the idea of having the byte-sized API on top
of the page-sized internal storage.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
eedc4e5a14 mm: memcg: factor out memcg- and lruvec-level changes out of __mod_lruvec_state()
Patch series "The new cgroup slab memory controller", v7.

The patchset moves the accounting from the page level to the object level.
It allows to share slab pages between memory cgroups.  This leads to a
significant win in the slab utilization (up to 45%) and the corresponding
drop in the total kernel memory footprint.  The reduced number of
unmovable slab pages should also have a positive effect on the memory
fragmentation.

The patchset makes the slab accounting code simpler: there is no more need
in the complicated dynamic creation and destruction of per-cgroup slab
caches, all memory cgroups use a global set of shared slab caches.  The
lifetime of slab caches is not more connected to the lifetime of memory
cgroups.

The more precise accounting does require more CPU, however in practice the
difference seems to be negligible.  We've been using the new slab
controller in Facebook production for several months with different
workloads and haven't seen any noticeable regressions.  What we've seen
were memory savings in order of 1 GB per host (it varied heavily depending
on the actual workload, size of RAM, number of CPUs, memory pressure,
etc).

The third version of the patchset added yet another step towards the
simplification of the code: sharing of slab caches between accounted and
non-accounted allocations.  It comes with significant upsides (most
noticeable, a complete elimination of dynamic slab caches creation) but
not without some regression risks, so this change sits on top of the
patchset and is not completely merged in.  So in the unlikely event of a
noticeable performance regression it can be reverted separately.

The slab memory accounting works in exactly the same way for SLAB and
SLUB.  With both allocators the new controller shows significant memory
savings, with SLUB the difference is bigger.  On my 16-core desktop
machine running Fedora 32 the size of the slab memory measured after the
start of the system was lower by 58% and 38% with SLUB and SLAB
correspondingly.

As an estimation of a potential CPU overhead, below are results of
slab_bulk_test01 test, kindly provided by Jesper D.  Brouer.  He also
helped with the evaluation of results.

The test can be found here: https://github.com/netoptimizer/prototype-kernel/
The smallest number in each row should be picked for a comparison.

SLUB-patched - bulk-API
 - SLUB-patched : bulk_quick_reuse objects=1 : 187 -  90 - 224  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=2 : 110 -  53 - 133  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=3 :  88 -  95 -  42  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=4 :  91 -  85 -  36  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=8 :  32 -  66 -  32  cycles(tsc)

SLUB-original -  bulk-API
 - SLUB-original: bulk_quick_reuse objects=1 :  87 -  87 - 142  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=2 :  52 -  53 -  53  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=3 :  42 -  42 -  91  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=4 :  91 -  37 -  37  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=8 :  31 -  79 -  76  cycles(tsc)

SLAB-patched -  bulk-API
 - SLAB-patched : bulk_quick_reuse objects=1 :  67 -  67 - 140  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=2 :  55 -  46 -  46  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=3 :  93 -  94 -  39  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=4 :  35 -  88 -  85  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=8 :  30 -  30 -  30  cycles(tsc)

SLAB-original-  bulk-API
 - SLAB-original: bulk_quick_reuse objects=1 : 143 - 136 -  67  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=2 :  45 -  46 -  46  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=3 :  38 -  39 -  39  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=4 :  35 -  87 -  87  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=8 :  29 -  66 -  30  cycles(tsc)

This patch (of 19):

To convert memcg and lruvec slab counters to bytes there must be a way to
change these counters without touching node counters.  Factor out
__mod_memcg_lruvec_state() out of __mod_lruvec_state().

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-1-guro@fb.com
Link: http://lkml.kernel.org/r/20200623174037.3951353-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
d648bcc7fe mm: kmem: make memcg_kmem_enabled() irreversible
Historically the kernel memory accounting was an opt-in feature, which
could be enabled for individual cgroups.  But now it's not true, and it's
on by default both on cgroup v1 and cgroup v2.  And as long as a user has
at least one non-root memory cgroup, the kernel memory accounting is on.
So in most setups it's either always on (if memory cgroups are in use and
kmem accounting is not disabled), either always off (otherwise).

memcg_kmem_enabled() is used in many places to guard the kernel memory
accounting code.  If memcg_kmem_enabled() can reverse from returning true
to returning false (as now), we can't rely on it on release paths and have
to check if it was on before.

If we'll make memcg_kmem_enabled() irreversible (always returning true
after returning it for the first time), it'll make the general logic more
simple and robust.  It also will allow to guard some checks which
otherwise would stay unguarded.

Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200702180926.1330769-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Linus Torvalds
99ea1521a0 Remove uninitialized_var() macro for v5.9-rc1
- Clean up non-trivial uses of uninitialized_var()
 - Update documentation and checkpatch for uninitialized_var() removal
 - Treewide removal of uninitialized_var()
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl8oYLQWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJsfjEACvf0D3WL3H7sLHtZ2HeMwOgAzq
 il08t6vUscINQwiIIK3Be43ok3uQ1Q+bj8sr2gSYTwunV2IYHFferzgzhyMMno3o
 XBIGd1E+v1E4DGBOiRXJvacBivKrfvrdZ7AWiGlVBKfg2E0fL1aQbe9AYJ6eJSbp
 UGqkBkE207dugS5SQcwrlk1tWKUL089lhDAPd7iy/5RK76OsLRCJFzIerLHF2ZK2
 BwvA+NWXVQI6pNZ0aRtEtbbxwEU4X+2J/uaXH5kJDszMwRrgBT2qoedVu5LXFPi8
 +B84IzM2lii1HAFbrFlRyL/EMueVFzieN40EOB6O8wt60Y4iCy5wOUzAdZwFuSTI
 h0xT3JI8BWtpB3W+ryas9cl9GoOHHtPA8dShuV+Y+Q2bWe1Fs6kTl2Z4m4zKq56z
 63wQCdveFOkqiCLZb8s6FhnS11wKtAX4czvXRXaUPgdVQS1Ibyba851CRHIEY+9I
 AbtogoPN8FXzLsJn7pIxHR4ADz+eZ0dQ18f2hhQpP6/co65bYizNP5H3h+t9hGHG
 k3r2k8T+jpFPaddpZMvRvIVD8O2HvJZQTyY6Vvneuv6pnQWtr2DqPFn2YooRnzoa
 dbBMtpon+vYz6OWokC5QNWLqHWqvY9TmMfcVFUXE4AFse8vh4wJ8jJCNOFVp8On+
 drhmmImUr1YylrtVOw==
 =xHmk
 -----END PGP SIGNATURE-----

Merge tag 'uninit-macro-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull uninitialized_var() macro removal from Kees Cook:
 "This is long overdue, and has hidden too many bugs over the years. The
  series has several "by hand" fixes, and then a trivial treewide
  replacement.

   - Clean up non-trivial uses of uninitialized_var()

   - Update documentation and checkpatch for uninitialized_var() removal

   - Treewide removal of uninitialized_var()"

* tag 'uninit-macro-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  compiler: Remove uninitialized_var() macro
  treewide: Remove uninitialized_var() usage
  checkpatch: Remove awareness of uninitialized_var() macro
  mm/debug_vm_pgtable: Remove uninitialized_var() usage
  f2fs: Eliminate usage of uninitialized_var() macro
  media: sur40: Remove uninitialized_var() usage
  KVM: PPC: Book3S PR: Remove uninitialized_var() usage
  clk: spear: Remove uninitialized_var() usage
  clk: st: Remove uninitialized_var() usage
  spi: davinci: Remove uninitialized_var() usage
  ide: Remove uninitialized_var() usage
  rtlwifi: rtl8192cu: Remove uninitialized_var() usage
  b43: Remove uninitialized_var() usage
  drbd: Remove uninitialized_var() usage
  x86/mm/numa: Remove uninitialized_var() usage
  docs: deprecated.rst: Add uninitialized_var()
2020-08-04 13:49:43 -07:00
Hugh Dickins
8d22a93510 mm/memcg: fix refcount error while moving and swapping
It was hard to keep a test running, moving tasks between memcgs with
move_charge_at_immigrate, while swapping: mem_cgroup_id_get_many()'s
refcount is discovered to be 0 (supposedly impossible), so it is then
forced to REFCOUNT_SATURATED, and after thousands of warnings in quick
succession, the test is at last put out of misery by being OOM killed.

This is because of the way moved_swap accounting was saved up until the
task move gets completed in __mem_cgroup_clear_mc(), deferred from when
mem_cgroup_move_swap_account() actually exchanged old and new ids.
Concurrent activity can free up swap quicker than the task is scanned,
bringing id refcount down 0 (which should only be possible when
offlining).

Just skip that optimization: do that part of the accounting immediately.

Fixes: 615d66c37c ("mm: memcontrol: fix memcg id ref counter on swap charge move")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007071431050.4726@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-24 12:42:41 -07:00
Bhupesh Sharma
82ff165cd3 mm/memcontrol: fix OOPS inside mem_cgroup_get_nr_swap_pages()
Prabhakar reported an OOPS inside mem_cgroup_get_nr_swap_pages()
function in a corner case seen on some arm64 boards when kdump kernel
runs with "cgroup_disable=memory" passed to the kdump kernel via
bootargs.

The root-cause behind the same is that currently mem_cgroup_swap_init()
function is implemented as a subsys_initcall() call instead of a
core_initcall(), this means 'cgroup_memory_noswap' still remains set to
the default value (false) even when memcg is disabled via
"cgroup_disable=memory" boot parameter.

This may result in premature OOPS inside mem_cgroup_get_nr_swap_pages()
function in corner cases:

  Unable to handle kernel NULL pointer dereference at virtual address 0000000000000188
  Mem abort info:
    ESR = 0x96000006
    EC = 0x25: DABT (current EL), IL = 32 bits
    SET = 0, FnV = 0
    EA = 0, S1PTW = 0
  Data abort info:
    ISV = 0, ISS = 0x00000006
    CM = 0, WnR = 0
  [0000000000000188] user address but active_mm is swapper
  Internal error: Oops: 96000006 [#1] SMP
  Modules linked in:
  <..snip..>
  Call trace:
    mem_cgroup_get_nr_swap_pages+0x9c/0xf4
    shrink_lruvec+0x404/0x4f8
    shrink_node+0x1a8/0x688
    do_try_to_free_pages+0xe8/0x448
    try_to_free_pages+0x110/0x230
    __alloc_pages_slowpath.constprop.106+0x2b8/0xb48
    __alloc_pages_nodemask+0x2ac/0x2f8
    alloc_page_interleave+0x20/0x90
    alloc_pages_current+0xdc/0xf8
    atomic_pool_expand+0x60/0x210
    __dma_atomic_pool_init+0x50/0xa4
    dma_atomic_pool_init+0xac/0x158
    do_one_initcall+0x50/0x218
    kernel_init_freeable+0x22c/0x2d0
    kernel_init+0x18/0x110
    ret_from_fork+0x10/0x18
  Code: aa1403e3 91106000 97f82a27 14000011 (f940c663)
  ---[ end trace 9795948475817de4 ]---
  Kernel panic - not syncing: Fatal exception
  Rebooting in 10 seconds..

Fixes: eccb52e788 ("mm: memcontrol: prepare swap controller setup for integration")
Reported-by: Prabhakar Kushwaha <pkushwaha@marvell.com>
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/r/1593641660-13254-2-git-send-email-bhsharma@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-24 12:42:41 -07:00
Kees Cook
3f649ab728 treewide: Remove uninitialized_var() usage
Using uninitialized_var() is dangerous as it papers over real bugs[1]
(or can in the future), and suppresses unrelated compiler warnings
(e.g. "unused variable"). If the compiler thinks it is uninitialized,
either simply initialize the variable or make compiler changes.

In preparation for removing[2] the[3] macro[4], remove all remaining
needless uses with the following script:

git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \
	xargs perl -pi -e \
		's/\buninitialized_var\(([^\)]+)\)/\1/g;
		 s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;'

drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid
pathological white-space.

No outstanding warnings were found building allmodconfig with GCC 9.3.0
for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64,
alpha, and m68k.

[1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/
[2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/
[4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/

Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5
Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB
Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers
Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs
Signed-off-by: Kees Cook <keescook@chromium.org>
2020-07-16 12:35:15 -07:00
Chris Down
03960e3318 mm/memcontrol.c: prevent missed memory.low load tears
Looks like one of these got missed when massaging in f86b810c26 ("mm,
memcg: prevent memory.low load/store tearing") with other linux-mm
changes.

Link: http://lkml.kernel.org/r/20200612174437.GA391453@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Reported-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Muchun Song
3a98990ae2 mm/memcontrol.c: add missed css_put()
We should put the css reference when memory allocation failed.

Link: http://lkml.kernel.org/r/20200614122653.98829-1-songmuchun@bytedance.com
Fixes: f0a3a24b53 ("mm: memcg/slab: rework non-root kmem_cache lifecycle management")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00