When a device is surprise removed while undergoing IO we will probably
get an EEH PE freeze due to MMIO timeouts and other errors. When a freeze
is detected we send a recovery event to the EEH worker thread which will
notify drivers, and perform recovery as needed.
In the event of a hot-remove we don't want recovery to occur since there
isn't a device to recover. The recovery process is fairly long due to
the number of wait states (required by PCIe) which causes problems when
devices are removed and replaced (e.g. hot swapping of U.2 NVMe drives).
To determine if we need to skip the recovery process we can use the
get_adapter_state() operation of the hotplug_slot to determine if the
slot contains a device or not, and if the slot is empty we can skip
recovery entirely.
One thing to note is that the slot being EEH frozen does not prevent the
hotplug driver from working. We don't have the EEH recovery thread
remove any of the devices since it's assumed that the hotplug driver
will handle tearing down the slot state.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-5-oohall@gmail.com
If a device is torn down by a hotplug slot driver it's marked as removed
and marked as permaantly failed. There's no point in trying to recover a
permernantly failed device so it should be considered un-actionable.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-4-oohall@gmail.com
When hot-adding devices we rely on the hotplug driver to create pci_dn's
for the devices under the hotplug slot. Converse, when hot-removing the
driver will remove the pci_dn's that it created. This is a problem because
the pci_dev is still live until it's refcount drops to zero. This can
happen if the driver is slow to tear down it's internal state. Ideally, the
driver would not attempt to perform any config accesses to the device once
it's been marked as removed, but sometimes it happens. As a result, we
might attempt to access the pci_dn for a device that has been torn down and
the kernel may crash as a result.
To fix this, don't free the pci_dn unless the corresponding pci_dev has
been released. If the pci_dev is still live, then we mark the pci_dn with
a flag that indicates the pci_dev's release function should free it.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-3-oohall@gmail.com
When the last device in an eeh_pe is removed the eeh_pe structure itself
(and any empty parents) are freed since they are no longer needed. This
results in a crash when a hotplug driver is involved since the following
may occur:
1. Device is suprise removed.
2. Driver performs an MMIO, which fails and queues and eeh_event.
3. Hotplug driver receives a hotplug interrupt and removes any
pci_devs that were under the slot.
4. pci_dev is torn down and the eeh_pe is freed.
5. The EEH event handler thread processes the eeh_event and crashes
since the eeh_pe pointer in the eeh_event structure is no
longer valid.
Crashing is generally considered poor form. Instead of doing that use
the fact PEs are marked as EEH_PE_INVALID to keep them around until the
end of the recovery cycle, at which point we can safely prune any empty
PEs.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190903101605.2890-2-oohall@gmail.com
CONFIG_SHELL falls back to sh when bash is not installed on the system,
but nobody is testing such a case since bash is usually installed.
So, shell scripts invoked by CONFIG_SHELL are only tested with bash.
It makes it difficult to test whether the hashbang #!/bin/sh is real.
For example, #!/bin/sh in arch/powerpc/kernel/prom_init_check.sh is
false. (I fixed it up)
Besides, some shell scripts invoked by CONFIG_SHELL use bash-extension
and #!/bin/bash is specified as the hashbang, while CONFIG_SHELL may
not always be set to bash.
Probably, the right thing to do is to introduce BASH, which is bash by
default, and always set CONFIG_SHELL to sh. Replace $(CONFIG_SHELL)
with $(BASH) for bash scripts.
If somebody tries to add bash-extension to a #!/bin/sh script, it will
be caught in testing because /bin/sh is a symlink to dash on some major
distributions.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
When in userspace and MSR FP=0 the hardware FP state is unrelated to
the current process. This is extended for transactions where if tbegin
is run with FP=0, the hardware checkpoint FP state will also be
unrelated to the current process. Due to this, we need to ensure this
hardware checkpoint is updated with the correct state before we enable
FP for this process.
Unfortunately we get this wrong when returning to a process from a
hardware interrupt. A process that starts a transaction with FP=0 can
take an interrupt. When the kernel returns back to that process, we
change to FP=1 but with hardware checkpoint FP state not updated. If
this transaction is then rolled back, the FP registers now contain the
wrong state.
The process looks like this:
Userspace: Kernel
Start userspace
with MSR FP=0 TM=1
< -----
...
tbegin
bne
Hardware interrupt
---- >
<do_IRQ...>
....
ret_from_except
restore_math()
/* sees FP=0 */
restore_fp()
tm_active_with_fp()
/* sees FP=1 (Incorrect) */
load_fp_state()
FP = 0 -> 1
< -----
Return to userspace
with MSR TM=1 FP=1
with junk in the FP TM checkpoint
TM rollback
reads FP junk
When returning from the hardware exception, tm_active_with_fp() is
incorrectly making restore_fp() call load_fp_state() which is setting
FP=1.
The fix is to remove tm_active_with_fp().
tm_active_with_fp() is attempting to handle the case where FP state
has been changed inside a transaction. In this case the checkpointed
and transactional FP state is different and hence we must restore the
FP state (ie. we can't do lazy FP restore inside a transaction that's
used FP). It's safe to remove tm_active_with_fp() as this case is
handled by restore_tm_state(). restore_tm_state() detects if FP has
been using inside a transaction and will set load_fp and call
restore_math() to ensure the FP state (checkpoint and transaction) is
restored.
This is a data integrity problem for the current process as the FP
registers are corrupted. It's also a security problem as the FP
registers from one process may be leaked to another.
Similarly for VMX.
A simple testcase to replicate this will be posted to
tools/testing/selftests/powerpc/tm/tm-poison.c
This fixes CVE-2019-15031.
Fixes: a7771176b4 ("powerpc: Don't enable FP/Altivec if not checkpointed")
Cc: stable@vger.kernel.org # 4.15+
Signed-off-by: Gustavo Romero <gromero@linux.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190904045529.23002-2-gromero@linux.vnet.ibm.com
When we take an FP unavailable exception in a transaction we have to
account for the hardware FP TM checkpointed registers being
incorrect. In this case for this process we know the current and
checkpointed FP registers must be the same (since FP wasn't used
inside the transaction) hence in the thread_struct we copy the current
FP registers to the checkpointed ones.
This copy is done in tm_reclaim_thread(). We use thread->ckpt_regs.msr
to determine if FP was on when in userspace. thread->ckpt_regs.msr
represents the state of the MSR when exiting userspace. This is setup
by check_if_tm_restore_required().
Unfortunatley there is an optimisation in giveup_all() which returns
early if tsk->thread.regs->msr (via local variable `usermsr`) has
FP=VEC=VSX=SPE=0. This optimisation means that
check_if_tm_restore_required() is not called and hence
thread->ckpt_regs.msr is not updated and will contain an old value.
This can happen if due to load_fp=255 we start a userspace process
with MSR FP=1 and then we are context switched out. In this case
thread->ckpt_regs.msr will contain FP=1. If that same process is then
context switched in and load_fp overflows, MSR will have FP=0. If that
process now enters a transaction and does an FP instruction, the FP
unavailable will not update thread->ckpt_regs.msr (the bug) and MSR
FP=1 will be retained in thread->ckpt_regs.msr. tm_reclaim_thread()
will then not perform the required memcpy and the checkpointed FP regs
in the thread struct will contain the wrong values.
The code path for this happening is:
Userspace: Kernel
Start userspace
with MSR FP/VEC/VSX/SPE=0 TM=1
< -----
...
tbegin
bne
fp instruction
FP unavailable
---- >
fp_unavailable_tm()
tm_reclaim_current()
tm_reclaim_thread()
giveup_all()
return early since FP/VMX/VSX=0
/* ckpt MSR not updated (Incorrect) */
tm_reclaim()
/* thread_struct ckpt FP regs contain junk (OK) */
/* Sees ckpt MSR FP=1 (Incorrect) */
no memcpy() performed
/* thread_struct ckpt FP regs not fixed (Incorrect) */
tm_recheckpoint()
/* Put junk in hardware checkpoint FP regs */
....
< -----
Return to userspace
with MSR TM=1 FP=1
with junk in the FP TM checkpoint
TM rollback
reads FP junk
This is a data integrity problem for the current process as the FP
registers are corrupted. It's also a security problem as the FP
registers from one process may be leaked to another.
This patch moves up check_if_tm_restore_required() in giveup_all() to
ensure thread->ckpt_regs.msr is updated correctly.
A simple testcase to replicate this will be posted to
tools/testing/selftests/powerpc/tm/tm-poison.c
Similarly for VMX.
This fixes CVE-2019-15030.
Fixes: f48e91e87e ("powerpc/tm: Fix FP and VMX register corruption")
Cc: stable@vger.kernel.org # 4.12+
Signed-off-by: Gustavo Romero <gromero@linux.vnet.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190904045529.23002-1-gromero@linux.vnet.ibm.com
While the default ->mmap and ->get_sgtable implementations work for the
majority of our dma_map_ops impementations they are inherently safe
for others that don't use the page allocator or CMA and/or use their
own way of remapping not covered by the common code. So remove the
defaults if these methods are not wired up, but instead wire up the
default implementations for all safe instances.
Fixes: e1c7e32453 ("dma-mapping: always provide the dma_map_ops based implementation")
Signed-off-by: Christoph Hellwig <hch@lst.de>
This avoids 3 loads in the radix page fault case, 1 load in the
hash fault case, and 2 loads in the hash miss page fault case.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-37-npiggin@gmail.com
It is clever, but the small code saving is not worth the spaghetti of
jumping to a label in an expanded macro, particularly when the label
is just a number rather than a descriptive name.
So expand the INT_COMMON macro twice, once for the stack and no stack
cases, and branch to those. The slight code size increase is worth
the improved clarity of branches for this non-performance critical
code.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-35-npiggin@gmail.com
This better reflects the order in which the code is executed.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-34-npiggin@gmail.com
Move DAR and DSISR saving to pt_regs into INT_COMMON. Also add an
option to expand RECONCILE_IRQ_STATE.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-33-npiggin@gmail.com
Merge EXCEPTION_PROLOG_COMMON_3 into EXCEPTION_PROLOG_COMMON_2.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-29-npiggin@gmail.com
Replace the 4 variants of cpp macros with one gas macro.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-27-npiggin@gmail.com
All other virt handlers have the prolog code in the virt vector rather
than branch to the real vector. Follow this pattern in the denorm virt
handler.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-25-npiggin@gmail.com
EXCEPTION_PROLOG_0 and _1 have only a single caller, so expand them
into it.
Rename EXCEPTION_PROLOG_2_REAL to INT_SAVE_SRR_AND_JUMP and
EXCEPTION_PROLOG_2_VIRT to INT_VIRT_SAVE_SRR_AND_JUMP, which are
more descriptive.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-24-npiggin@gmail.com
This creates a single macro that generates the exception prolog code,
with variants specified by arguments, rather than assorted nested
macros for different variants.
The increasing length of macro argument list is not nice to read or
modify, but this is a temporary condition that will be improved in
later changes.
No generated code change except BUG line number constants and label
names.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-23-npiggin@gmail.com
This vector is not used by any supported processor, and has been
implemented as an unknown exception going back to 2.6. There is
nothing special about 0xb00, so remove it like other unused
vectors.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-22-npiggin@gmail.com
The perf virt handler uses EXCEPTION_PROLOG_2_REAL rather than _VIRT.
In practice this is okay because the _REAL variant is usable by virt
mode interrupts, but should be fixed (and is a performance win).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-21-npiggin@gmail.com
Add EXC_HV_OR_STD and use it to consolidate the 0x500 external
interrupt.
Executed code is unchanged.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-20-npiggin@gmail.com
The head-64.h code should deal only with the head code sections
and offset calculations.
No generated code change except BUG line number constants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-19-npiggin@gmail.com
This buglet goes back to before the 64/32 arch merge, but it does not
seem to have had practical consequences because bad_page_fault does
not use the 2nd argument, but rather regs->dar/nip.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-18-npiggin@gmail.com
Short forward and backward branches can be given number labels,
but larger significant divergences in code path a more readable
if they're given descriptive names.
Also adjusts a comment to account for guest delivery.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-17-npiggin@gmail.com
machine_check_early_common now branches to machine_check_handle_early
which is its only caller.
Move interleaving code out of the way, and remove the branch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-16-npiggin@gmail.com
Similarly to the previous change, all callers of the unrecoverable
handler run relocated so can reach it with a direct branch. This makes
it easy to move out of line, which makes the "normal" path less
cluttered and easier to follow.
MSR[ME] manipulation still requires the rfi, so that is moved out of
line to its own function.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-15-npiggin@gmail.com
machine_check_handle_early_common can reach machine_check_handle_early
directly now that it runs at the relocated address, so just branch
directly.
The rfi sequence is required to enable MSR[ME] but that step is moved
into a helper function, making the code easier to follow.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-14-npiggin@gmail.com
Following convention, move the tramp code (unrelocated) above the
common handlers (relocated).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-13-npiggin@gmail.com
Follow the pattern of sreset and HMI handlers more closely: use
EXCEPTION_PROLOG_COMMON_1 rather than open-coding it, and run the
handler at the relocated location.
This helps later simplification and code sharing.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-12-npiggin@gmail.com
The powernv machine check handler copes with taking a MCE from one of
three contexts, guest, kernel, and user. In each case the early
handler runs first on a special stack, then:
- The guest case branches to the KVM interrupt handler (via standard
interrupt macros).
- The user case will run the "late" handler which is like a normal
interrupt that runs in virtual mode and uses the regular kernel
stack.
- The kernel case queues the event and schedules it for processing
with irq work.
The last case is important, it must not enable virtual memory because
the MMU state may not be set up to deal with that (e.g., SLB might be
clear), it must not use the regular kernel stack for similar reasons
(e.g., might be in OPAL with OPAL stack in r1), and the kernel does
not expect anything to touch its stack if interrupts are disabled.
The pseries handler does not do this queueing, but instead it always
runs the late handler for host MCEs, which has some of the same
problems.
Now that pseries is using machine_check_events, change it to do the
same as powernv and queue events for kernel MCEs.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-11-npiggin@gmail.com
The common machine_check_event data structures and queues are mostly
platform independent, with powernv decoding SRR1/DSISR/etc., into
machine_check_event objects.
This patch converts pseries to use this infrastructure by decoding
fwnmi/rtas data into machine_check_event objects.
This allows queueing to be used by a subsequent change to delay the
virtual mode handling of machine checks that occur in kernel space
where it is unsafe to switch immediately to virtual mode, similarly
to powernv.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix implicit fallthrough warnings in mce_handle_error()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-10-npiggin@gmail.com
Re-use the code introduced in pseries to save and dump the contents
of the SLB in the case of an SLB involved machine check exception.
This patch also avoids allocating the SLB save array on pseries radix.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-9-npiggin@gmail.com
Bare metal machine checks run an "early" handler in real mode before
running the main handler which reports the event.
The main handler runs exactly as a normal interrupt handler, after the
"windup" which sets registers back as they were at interrupt entry.
CFAR does not get restored by the windup code, so that will be wrong
when the handler is run.
Restore the CFAR to the saved value before running the late handler.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-8-npiggin@gmail.com
This label has only one caller, so unwind the branch and move it
inline. The location of the comment is adjusted to match similar
one in system reset.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-7-npiggin@gmail.com
Now that pseries with fwnmi registered runs the early machine check
handler, there is no good reason to special case the non-fwnmi case
and skip the early handler. Reducing the code and number of paths is
a top priority for asm code, it's better to handle this in C where
possible (and the pseries early handler is a no-op if fwnmi is not
registered).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-6-npiggin@gmail.com
The host kernel delivery case for powernv does RFI_TO_USER_OR_KERNEL,
but should just use RFI_TO_KERNEL which makes it clear this is not a
user case.
This is not a bug because RFI_TO_USER_OR_KERNEL deals with kernel
returns just fine.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-5-npiggin@gmail.com
The machine_check_handle_early hypervisor guest test is skipped if
!HVMODE or MSR[HV]=0, which is wrong for PR or nested hypervisors
that could be running a guest in this state.
Test HSTATE_IN_GUEST up front and use that to branch out to the KVM
handler, then MSR[PR] alone can test for this kernel's userspace.
This matches all other interrupt handling.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802105709.27696-4-npiggin@gmail.com
User space might want to know it's running in a secure VM. It can't do
a mfmsr because mfmsr is a privileged instruction.
The solution here is to create a cpu attribute:
/sys/devices/system/cpu/svm
which will read 0 or 1 based on the S bit of the current CPU.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-12-bauerman@linux.ibm.com
A new kernel deserves a clean slate. Any pages shared with the hypervisor
is unshared before invoking the new kernel. However there are exceptions.
If the new kernel is invoked to dump the current kernel, or if there is a
explicit request to preserve the state of the current kernel, unsharing
of pages is skipped.
NOTE: While testing crashkernel, make sure at least 256M is reserved for
crashkernel. Otherwise SWIOTLB allocation will fail and crash kernel will
fail to boot.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-11-bauerman@linux.ibm.com
LPPACA structures need to be shared with the host. Hence they need to be in
shared memory. Instead of allocating individual chunks of memory for a
given structure from memblock, a contiguous chunk of memory is allocated
and then converted into shared memory. Subsequent allocation requests will
come from the contiguous chunk which will be always shared memory for all
structures.
While we are able to use a kmem_cache constructor for the Debug Trace Log,
LPPACAs are allocated very early in the boot process (before SLUB is
available) so we need to use a simpler scheme here.
Introduce helper is_svm_platform() which uses the S bit of the MSR to tell
whether we're running as a secure guest.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-9-bauerman@linux.ibm.com
Helps document what the hard-coded number means.
Also take the opportunity to fix an #endif comment.
Suggested-by: Alexey Kardashevskiy <aik@linux.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-8-bauerman@linux.ibm.com
Make the Enter-Secure-Mode (ESM) ultravisor call to switch the VM to secure
mode. Pass kernel base address and FDT address so that the Ultravisor is
able to verify the integrity of the VM using information from the ESM blob.
Add "svm=" command line option to turn on switching to secure mode.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[ andmike: Generate an RTAS os-term hcall when the ESM ucall fails. ]
Signed-off-by: Michael Anderson <andmike@linux.ibm.com>
[ bauerman: Cleaned up the code a bit. ]
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-5-bauerman@linux.ibm.com
Introduce CONFIG_PPC_SVM to control support for secure guests and include
Ultravisor-related helpers when it is selected
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-3-bauerman@linux.ibm.com
When an SVM makes an hypercall or incurs some other exception, the
Ultravisor usually forwards (a.k.a. reflects) the exceptions to the
Hypervisor. After processing the exception, Hypervisor uses the
UV_RETURN ultracall to return control back to the SVM.
The expected register state on entry to this ultracall is:
* Non-volatile registers are restored to their original values.
* If returning from an hypercall, register R0 contains the return value
(unlike other ultracalls) and, registers R4 through R12 contain any
output values of the hypercall.
* R3 contains the ultracall number, i.e UV_RETURN.
* If returning with a synthesized interrupt, R2 contains the
synthesized interrupt number.
Thanks to input from Paul Mackerras, Ram Pai and Mike Anderson.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-8-cclaudio@linux.ibm.com
In PEF enabled systems, some of the resources which were previously
hypervisor privileged are now ultravisor privileged and controlled by
the ultravisor firmware.
This adds FW_FEATURE_ULTRAVISOR to indicate if PEF is enabled.
The host kernel can use FW_FEATURE_ULTRAVISOR, for instance, to skip
accessing resources (e.g. PTCR and LDBAR) in case PEF is enabled.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
[ andmike: Device node name to "ibm,ultravisor" ]
Signed-off-by: Michael Anderson <andmike@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-4-cclaudio@linux.ibm.com
The ultracalls (ucalls for short) allow the Secure Virtual Machines
(SVM)s and hypervisor to request services from the ultravisor such as
accessing a register or memory region that can only be accessed when
running in ultravisor-privileged mode.
This patch adds the ucall_norets() ultravisor call handler.
The specific service needed from an ucall is specified in register
R3 (the first parameter to the ucall). Other parameters to the
ucall, if any, are specified in registers R4 through R12.
Return value of all ucalls is in register R3. Other output values
from the ucall, if any, are returned in registers R4 through R12.
Each ucall returns specific error codes, applicable in the context
of the ucall. However, like with the PowerPC Architecture Platform
Reference (PAPR), if no specific error code is defined for a particular
situation, then the ucall will fallback to an erroneous
parameter-position based code. i.e U_PARAMETER, U_P2, U_P3 etc depending
on the ucall parameter that may have caused the error.
Every host kernel (powernv) needs to be able to do ucalls in case it
ends up being run in a machine with ultravisor enabled. Otherwise, the
kernel may crash early in boot trying to access ultravisor resources,
for instance, trying to set the partition table entry 0. Secure guests
also need to be able to do ucalls and its kernel may not have
CONFIG_PPC_POWERNV=y. For that reason, the ucall.S file is placed under
arch/powerpc/kernel.
If ultravisor is not enabled, the ucalls will be redirected to the
hypervisor which must handle/fail the call.
Thanks to inputs from Ram Pai and Michael Anderson.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-3-cclaudio@linux.ibm.com
Add the PowerPC name and the PPC_ELFNOTE_CAPABILITIES type in the
kernel binary ELF note. This type is a bitmap that can be used to
advertise kernel capabilities to userland.
This patch also defines PPCCAP_ULTRAVISOR_BIT as being the bit zero.
Suggested-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
[ maxiwell: Define the 'PowerPC' type in the elfnote.h ]
Signed-off-by: Maxiwell S. Garcia <maxiwell@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829155021.2915-2-maxiwell@linux.ibm.com
As now we have xchg_no_kill/tce_kill, these are not used anymore so
remove them.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-6-aik@ozlabs.ru
At the moment updates in a TCE table are made by iommu_table_ops::exchange
which update one TCE and invalidates an entry in the PHB/NPU TCE cache
via set of registers called "TCE Kill" (hence the naming).
Writing a TCE is a simple xchg() but invalidating the TCE cache is
a relatively expensive OPAL call. Mapping a 100GB guest with PCI+NPU
passed through devices takes about 20s.
Thankfully we can do better. Since such big mappings happen at the boot
time and when memory is plugged/onlined (i.e. not often), these requests
come in 512 pages so we call call OPAL 512 times less which brings 20s
from the above to less than 10s. Also, since TCE caches can be flushed
entirely, calling OPAL for 512 TCEs helps skiboot [1] to decide whether
to flush the entire cache or not.
This implements 2 new iommu_table_ops callbacks:
- xchg_no_kill() to update a single TCE with no TCE invalidation;
- tce_kill() to invalidate multiple TCEs.
This uses the same xchg_no_kill() callback for IODA1/2.
This implements 2 new wrappers on top of the new callbacks similar to
the existing iommu_tce_xchg().
This does not use the new callbacks yet, the next patches will;
so this should not cause any behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-2-aik@ozlabs.ru
The existing code uses bunch of hardcoded values from the PCI Bus
Binding to IEEE Std 1275 spec; and it does so in quite non-obvious
way.
This defines fields from the cell#0 of the "reg" property of a PCI
device and uses them for parsing.
This should cause no behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[mpe: Unsplit some 80/81 char lines, space the code with some newlines]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829084417.71873-1-aik@ozlabs.ru
There is support for the kernel to execute the 'sc 0' instruction and
make a system call to itself. This is a relic that is unused in the
tree, therefore untested. It's also highly questionable for modules to
be doing this.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190827033010.28090-3-npiggin@gmail.com
Commit 3033f14ab7 ("clone: support passing tls argument via C rather
than pt_regs magic") introduced the HAVE_COPY_THREAD_TLS option. Use it
to avoid a subtle assumption about the argument ordering of clone type
syscalls.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190827033010.28090-2-npiggin@gmail.com
The code which fixups the DAR on TLB errors for dbcX instructions
has a self-modifying code alternative that has never been used.
Drop it.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Joakim Tjernlund <joakim.tjernlund@infinera.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b095e12c82fcba1ac4c09fc3b85d969f36614746.1566417610.git.christophe.leroy@c-s.fr
Prior to commit 1bd98d7fbaf5 ("ppc64: Update BUG handling based on
ppc32"), BUG() family was using BUG_ILLEGAL_INSTRUCTION which
was an invalid instruction opcode to trap into program check
exception.
That commit converted them to using standard trap instructions,
but prom/prom_init and their PROM_BUG() macro were left over.
head_64.S and exception-64s.S were left aside as well.
Convert them to using the standard BUG infrastructure.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/cdaf4bbbb64c288a077845846f04b12683f8875a.1566817807.git.christophe.leroy@c-s.fr
Today LOAD_REG_IMMEDIATE() is a basic #define which loads all
parts on a value into a register, including the parts that are NUL.
This means always 2 instructions on PPC32 and always 5 instructions
on PPC64. And those instructions cannot run in parallele as they are
updating the same register.
Ex: LOAD_REG_IMMEDIATE(r1,THREAD_SIZE) in head_64.S results in:
3c 20 00 00 lis r1,0
60 21 00 00 ori r1,r1,0
78 21 07 c6 rldicr r1,r1,32,31
64 21 00 00 oris r1,r1,0
60 21 40 00 ori r1,r1,16384
Rewrite LOAD_REG_IMMEDIATE() with GAS macro in order to skip
the parts that are NUL.
Rename existing LOAD_REG_IMMEDIATE() as LOAD_REG_IMMEDIATE_SYM()
and use that one for loading value of symbols which are not known
at compile time.
Now LOAD_REG_IMMEDIATE(r1,THREAD_SIZE) in head_64.S results in:
38 20 40 00 li r1,16384
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/d60ce8dd3a383c7adbfc322bf1d53d81724a6000.1566311636.git.christophe.leroy@c-s.fr
ppc_md.ioremap() is only used for I/O workaround on CELL platform,
so indirect function call can be avoided.
This patch reworks the io-workaround and ioremap() functions to
use the global 'io_workaround_inited' flag for the activation
of io-workaround.
When CONFIG_PPC_IO_WORKAROUNDS or CONFIG_PPC_INDIRECT_MMIO are not
selected, the I/O workaround ioremap() voids and the global flag is
not used.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/5fa3ef069fbd0f152512afaae19e7a60161454cf.1566309262.git.christophe.leroy@c-s.fr
Add support for disabling the kernel implemented spectre v2 mitigation
(count cache flush on context switch) via the nospectre_v2 and
mitigations=off cmdline options.
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Christopher M. Riedl <cmr@informatik.wtf>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190524024647.381-1-cmr@informatik.wtf
We still treat devices without a DMA mask as defaulting to 32-bits for
both mask, but a few releases ago we've started warning about such
cases, as they require special cases to work around this sloppyness.
Add a dma_mask field to struct platform_device so that we can initialize
the dma_mask pointer in struct device and initialize both masks to
32-bits by default, replacing similar functionality in m68k and
powerpc. The arch_setup_pdev_archdata hooks is now unused and removed.
Note that the code looks a little odd with the various conditionals
because we have to support platform_device structures that are
statically allocated.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Link: https://lore.kernel.org/r/20190816062435.881-7-hch@lst.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If a PCI device is removed during eeh_pe_report_edev(), between the
calls to device_lock() and device_unlock(), edev->pdev will change and
cause a crash as the wrong mutex is released.
To correct this, hold the PCI rescan/remove lock while taking a copy
of edev->pdev and performing a get_device() on it. Use this value to
release the mutex, but also pass it through to the device driver's EEH
handlers so that they always see the same device.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/3c590579a0faa24d20c826dcd26c739eb4d454e6.1565930772.git.sbobroff@linux.ibm.com
Convert existing messages, where appropriate, to use the eeh_edev_*
logging macros.
The only effect should be minor adjustments to the log messages, apart
from:
- A new message in pseries_eeh_probe() "Probing device" to match the
powernv case.
- The "Probing device" message in pnv_eeh_probe() is now generated
slightly later, which will mean that it is no longer emitted for
devices that aren't probed due to the initial checks.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/ce505a0a7a4a5b0367f0f40f8b26e7c0a9cf4cb7.1565930772.git.sbobroff@linux.ibm.com
Now that struct eeh_dev includes the BDFN of it's PCI device, make use
of it to replace eeh_edev_info() with a set of dev_dbg()-style macros
that only need a struct edev.
With the BDFN available without the struct pci_dev, eeh_pci_name() is
now unnecessary, so remove it.
While only the "info" level function is used here, the others will be
used in followup work.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f90ae9a53d762be7b0ccbad79e62b5a1b4f4996e.1565930772.git.sbobroff@linux.ibm.com
Preparation for removing pci_dn from the powernv EEH code. The only
thing we really use pci_dn for is to get the bdfn of the device for
config space accesses, so adding that information to eeh_dev reduces
the need to carry around the pci_dn.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
[SB: Re-wrapped commit message, fixed whitespace damage.]
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/e458eb69a1f591d8a120782f23a8506b15d3c654.1565930772.git.sbobroff@linux.ibm.com
Now that EEH support for all devices (on PowerNV and pSeries) is
provided by the pcibios bus add device hooks, eeh_probe_devices() and
eeh_addr_cache_build() are redundant and can be removed.
Move the EEH enabled message into it's own function so that it can be
called from multiple places.
Note that previously on pSeries, useless EEH sysfs files were created
for some devices that did not have EEH support and this change
prevents them from being created.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/33b0a6339d5ac88693de092d6fba984f2a5add66.1565930772.git.sbobroff@linux.ibm.com
On PowerNV and pSeries, devices currently acquire EEH support from
several different places: Boot-time devices from eeh_probe_devices()
and eeh_addr_cache_build(), Virtual Function devices from the pcibios
bus add device hooks and hot plugged devices from pci_hp_add_devices()
(with other platforms using other methods as well). Unfortunately,
pSeries machines currently discover hot plugged devices using
pci_rescan_bus(), not pci_hp_add_devices(), and so those devices do
not receive EEH support.
Rather than adding another case for pci_rescan_bus(), this change
widens the scope of the pcibios bus add device hooks so that they can
handle all devices. As a side effect this also supports devices
discovered after manually rescanning via /sys/bus/pci/rescan.
Note that on PowerNV, this change allows the EEH subsystem to become
enabled after boot as long as it has not been forced off, which was
not previously possible (it was already possible on pSeries).
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/72ae8ae9c54097158894a52de23690448de38ea9.1565930772.git.sbobroff@linux.ibm.com
The EEH address cache is currently initialized and populated by a
single function: eeh_addr_cache_build(). While the initial population
of the cache can only be done once resources are allocated,
initialization (just setting up a spinlock) could be done much
earlier.
So move the initialization step into a separate function and call it
from a core_initcall (rather than a subsys initcall).
This will allow future work to make use of the cache during boot time
PCI scanning.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/0557206741bffee76cdfff042f65321f6f7a5b41.1565930772.git.sbobroff@linux.ibm.com
The EEH_DEV_NO_HANDLER flag is used by the EEH system to prevent the
use of driver callbacks in drivers that have been bound part way
through the recovery process. This is necessary to prevent later stage
handlers from being called when the earlier stage handlers haven't,
which can be confusing for drivers.
However, the flag is set for all devices that are added after boot
time and only cleared at the end of the EEH recovery process. This
results in hot plugged devices erroneously having the flag set during
the first recovery after they are added (causing their driver's
handlers to be incorrectly ignored).
To remedy this, clear the flag at the beginning of recovery
processing. The flag is still cleared at the end of recovery
processing, although it is no longer really necessary.
Also clear the flag during eeh_handle_special_event(), for the same
reasons.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b8ca5629d27de74c957d4f4b250177d1b6fc4bbd.1565930772.git.sbobroff@linux.ibm.com
The pcibios_init() function for PowerPC 64 currently calls
pci_bus_add_devices() before pcibios_resource_survey(). This means
that at boot time, when the pcibios_bus_add_device() hooks are called
by pci_bus_add_devices(), device resources have not been allocated and
they are unable to perform EEH setup, so a separate pass is needed.
This patch adjusts that order so that it will become possible to
consolidate the EEH setup work into a single location.
The only functional change is to execute pcibios_resource_survey()
(excepting ppc_md.pcibios_fixup(), see below) before
pci_bus_add_devices() instead of after it.
Because pcibios_scan_phb() and pci_bus_add_devices() are called
together in a loop, this must be broken into one loop for each call.
Then the call to pcibios_resource_survey() is moved up in between
them. This changes the ordering but because pcibios_resource_survey()
also calls ppc_md.pcibios_fixup(), that call is extracted out into
pcibios_init() to where pcibios_resource_survey() was, so that it is
not moved.
The only other caller of pcibios_resource_survey() is the PowerPC 32
version of pcibios_init(), and therefore, that is modified to call
ppc_md.pcibios_fixup() right after pcibios_resource_survey() so that
there is no functional change there at all.
The re-arrangement will cause very few side-effects because at this
stage in the boot, pci_bus_add_devices() does very little:
- pci_create_sysfs_dev_files() does nothing (no sysfs yet)
- pci_proc_attach_device() does nothing (no proc yet)
- device_attach() does nothing (no drivers yet)
This leaves only the pci_final_fixup calls, D3 support, and marking
the device as added. Of those, only the pci_final_fixup calls have the
potential to be affected by resource allocation.
The only pci_final_fixup handlers that touch resources seem to be one
for x86 (pci_amd_enable_64bit_bar()), and a PowerPC 32 platform driver
(quirk_final_uli1575()), neither of which use this pcibios_init()
function. Even if they did, it would almost certainly be a bug, under
the current ordering, to rely on or make changes to resources before
they were allocated.
Signed-off-by: Sam Bobroff <sbobroff@linux.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4506b0489eabd0921a3587d90bd44c7683f3472d.1565930772.git.sbobroff@linux.ibm.com
If we take a UE on one of the instructions with a fixup entry, set nip
to continue execution at the fixup entry. Stop processing the event
further or print it.
Co-developed-by: Reza Arbab <arbab@linux.ibm.com>
Signed-off-by: Reza Arbab <arbab@linux.ibm.com>
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Santosh Sivaraj <santosh@fossix.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820081352.8641-6-santosh@fossix.org
The function doesn't get used outside this file, so make it static.
Signed-off-by: Reza Arbab <arbab@linux.ibm.com>
Signed-off-by: Santosh Sivaraj <santosh@fossix.org>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820081352.8641-4-santosh@fossix.org
The current code would fail on huge pages addresses, since the shift would
be incorrect. Use the correct page shift value returned by
__find_linux_pte() to get the correct physical address. The code is more
generic and can handle both regular and compound pages.
Fixes: ba41e1e1cc ("powerpc/mce: Hookup derror (load/store) UE errors")
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
[arbab@linux.ibm.com: Fixup pseries_do_memory_failure()]
Signed-off-by: Reza Arbab <arbab@linux.ibm.com>
Tested-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Santosh Sivaraj <santosh@fossix.org>
Cc: stable@vger.kernel.org # v4.15+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820081352.8641-3-santosh@fossix.org
rtas_cpu_state_change_mask() potentially operates on scores of cpus,
so explicitly allow rescheduling in the loop body.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802192926.19277-3-nathanl@linux.ibm.com
The LPAR migration implementation and userspace-initiated cpu hotplug
can interleave their executions like so:
1. Set cpu 7 offline via sysfs.
2. Begin a partition migration, whose implementation requires the OS
to ensure all present cpus are online; cpu 7 is onlined:
rtas_ibm_suspend_me -> rtas_online_cpus_mask -> cpu_up
This sets cpu 7 online in all respects except for the cpu's
corresponding struct device; dev->offline remains true.
3. Set cpu 7 online via sysfs. _cpu_up() determines that cpu 7 is
already online and returns success. The driver core (device_online)
sets dev->offline = false.
4. The migration completes and restores cpu 7 to offline state:
rtas_ibm_suspend_me -> rtas_offline_cpus_mask -> cpu_down
This leaves cpu7 in a state where the driver core considers the cpu
device online, but in all other respects it is offline and
unused. Attempts to online the cpu via sysfs appear to succeed but the
driver core actually does not pass the request to the lower-level
cpuhp support code. This makes the cpu unusable until the cpu device
is manually set offline and then online again via sysfs.
Instead of directly calling cpu_up/cpu_down, the migration code should
use the higher-level device core APIs to maintain consistent state and
serialize operations.
Fixes: 120496ac2d ("powerpc: Bring all threads online prior to migration/hibernation")
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190802192926.19277-2-nathanl@linux.ibm.com
If a page is already mapped RW without the DIRTY flag, the DIRTY
flag is never set and a TLB store miss exception is taken forever.
This is easily reproduced with the following app:
void main(void)
{
volatile char *ptr = mmap(0, 4096, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
*ptr = *ptr;
}
When DIRTY flag is not set, bail out of TLB miss handler and take
a minor page fault which will set the DIRTY flag.
Fixes: f8b58c64ea ("powerpc/603: let's handle PAGE_DIRTY directly")
Cc: stable@vger.kernel.org # v5.1+
Reported-by: Doug Crawford <doug.crawford@intelight-its.com>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/80432f71194d7ee75b2f5043ecf1501cf1cca1f3.1566196646.git.christophe.leroy@c-s.fr
copy_page() and clear_page() expect page aligned destination, and
use dcbz instruction to clear entire cache lines based on the
assumption that the destination is cache aligned.
As shown during analysis of a bug in BTRFS filesystem, a misaligned
copy_page() can create bugs that are difficult to locate (see Link).
Add an explicit WARNING when copy_page() or clear_page() are called
with misaligned destination.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=204371
Link: https://lore.kernel.org/r/c6cea38f90480268d439ca44a645647e260fff09.1565941808.git.christophe.leroy@c-s.fr
When KASAN is selected, the definitive hash table has to be
set up later, but there is already an early temporary one.
When KASAN is not selected, there is no early hash table,
so the setup of the definitive hash table cannot be delayed.
Fixes: 72f208c6a8 ("powerpc/32s: move hash code patching out of MMU_init_hw()")
Cc: stable@vger.kernel.org # v5.2+
Reported-by: Jonathan Neuschafer <j.neuschaefer@gmx.net>
Tested-by: Jonathan Neuschafer <j.neuschaefer@gmx.net>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b7860c5e1e784d6b96ba67edf47dd6cbc2e78ab6.1565776892.git.christophe.leroy@c-s.fr
On 8xx, breakpoints stop after executing the instruction, so
stepping/emulation is not needed. Move it into a sub-function and
remove the #ifdefs.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f8cdc3f1c66ad3c43ebc568abcc6c39ed4676284.1561737231.git.christophe.leroy@c-s.fr
At the moment we create a small window only for 32bit devices, the window
maps 0..2GB of the PCI space only. For other devices we either use
a sketchy bypass or hardware bypass but the former can only work if
the amount of RAM is no bigger than the device's DMA mask and the latter
requires devices to support at least 59bit DMA.
This extends the default DMA window to the maximum size possible to allow
a wider DMA mask than just 32bit. The default window size is now limited
by the the iommu_table::it_map allocation bitmap which is a contiguous
array, 1 bit per an IOMMU page.
This increases the default IOMMU page size from hard coded 4K to
the system page size to allow wider DMA masks.
This increases the level number to not exceed the max order allocation
limit per TCE level. By the same time, this keeps minimal levels number
as 2 in order to save memory.
As the extended window now overlaps the 32bit MMIO region, this adds
an area reservation to iommu_init_table().
After this change the default window size is 0x80000000000==1<<43 so
devices limited to DMA mask smaller than the amount of system RAM can
still use more than just 2GB of memory for DMA.
This is an optimization and not a bug fix for DMA API usage.
With the on-demand allocation of indirect TCE table levels enabled and
2 levels, the first TCE level size is just
1<<ceil((log2(0x7ffffffffff+1)-16)/2)=16384 TCEs or 2 system pages.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190718051139.74787-5-aik@ozlabs.ru
POWER8 and newer support a bypass mode which maps all host memory to
PCI buses so an IOMMU table is not always required. However if we fail to
create such a table, the DMA setup fails and the kernel does not boot.
This skips the 32bit DMA setup check if the bypass is selected.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190718051139.74787-3-aik@ozlabs.ru