When CONFIG_RELOCATABLE=n, the Linux real mode interrupt handlers call
into KVM using real address. This needs to be translated to the kernel
linear effective address before the MMU is switched on.
kvmppc_bad_host_intr misses adding these bits, so when it is used to
handle a system reset interrupt (that always gets delivered in real
mode), it results in an instruction access fault immediately after
the MMU is turned on.
Fix this by ensuring the top 2 address bits are set when the MMU is
turned on.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The radix guest code can has fewer restrictions about what context it
can run in, so move this flushing out of assembly and have it use the
Linux TLB flush implementations introduced previously.
This allows powerpc:tlbie trace events to be used.
This changes the tlbiel sequence to only execute RIC=2 flush once on
the first set flushed, then RIC=0 for the rest of the sets. The end
result of the flush should be unchanged. This matches the local PID
flush pattern that was introduced in a5998fcb92 ("powerpc/mm/radix:
Optimise tlbiel flush all case").
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
A radix guest can execute tlbie instructions to invalidate TLB entries.
After a tlbie or a group of tlbies, it must then do the architected
sequence eieio; tlbsync; ptesync to ensure that the TLB invalidation
has been processed by all CPUs in the system before it can rely on
no CPU using any translation that it just invalidated.
In fact it is the ptesync which does the actual synchronization in
this sequence, and hardware has a requirement that the ptesync must
be executed on the same CPU thread as the tlbies which it is expected
to order. Thus, if a vCPU gets moved from one physical CPU to
another after it has done some tlbies but before it can get to do the
ptesync, the ptesync will not have the desired effect when it is
executed on the second physical CPU.
To fix this, we do a ptesync in the exit path for radix guests. If
there are any pending tlbies, this will wait for them to complete.
If there aren't, then ptesync will just do the same as sync.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the HV KVM guest entry/exit code adds the timebase offset
from the vcore struct to the timebase on guest entry, and subtracts
it on guest exit. Which is fine, except that it is possible for
userspace to change the offset using the SET_ONE_REG interface while
the vcore is running, as there is only one timebase offset per vcore
but potentially multiple VCPUs in the vcore. If that were to happen,
KVM would subtract a different offset on guest exit from that which
it had added on guest entry, leading to the timebase being out of sync
between cores in the host, which then leads to bad things happening
such as hangs and spurious watchdog timeouts.
To fix this, we add a new field 'tb_offset_applied' to the vcore struct
which stores the offset that is currently applied to the timebase.
This value is set from the vcore tb_offset field on guest entry, and
is what is subtracted from the timebase on guest exit. Since it is
zero when the timebase offset is not applied, we can simplify the
logic in kvmhv_start_timing and kvmhv_accumulate_time.
In addition, we had secondary threads reading the timebase while
running concurrently with code on the primary thread which would
eventually add or subtract the timebase offset from the timebase.
This occurred while saving or restoring the DEC register value on
the secondary threads. Although no specific incorrect behaviour has
been observed, this is a race which should be fixed. To fix it, we
move the DEC saving code to just before we call kvmhv_commence_exit,
and the DEC restoring code to after the point where we have waited
for the primary thread to switch the MMU context and add the timebase
offset. That way we are sure that the timebase contains the guest
timebase value in both cases.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Notable changes:
- Support for 4PB user address space on 64-bit, opt-in via mmap().
- Removal of POWER4 support, which was accidentally broken in 2016 and no one
noticed, and blocked use of some modern instructions.
- Workarounds so that the hypervisor can enable Transactional Memory on Power9.
- A series to disable the DAWR (Data Address Watchpoint Register) on Power9.
- More information displayed in the meltdown/spectre_v1/v2 sysfs files.
- A vpermxor (Power8 Altivec) implementation for the raid6 Q Syndrome.
- A big series to make the allocation of our pacas (per cpu area), kernel page
tables, and per-cpu stacks NUMA aware when using the Radix MMU on Power9.
And as usual many fixes, reworks and cleanups.
Thanks to:
Aaro Koskinen, Alexandre Belloni, Alexey Kardashevskiy, Alistair Popple, Andy
Shevchenko, Aneesh Kumar K.V, Anshuman Khandual, Balbir Singh, Benjamin
Herrenschmidt, Christophe Leroy, Christophe Lombard, Cyril Bur, Daniel Axtens,
Dave Young, Finn Thain, Frederic Barrat, Gustavo Romero, Horia Geantă,
Jonathan Neuschäfer, Kees Cook, Larry Finger, Laurent Dufour, Laurent Vivier,
Logan Gunthorpe, Madhavan Srinivasan, Mark Greer, Mark Hairgrove, Markus
Elfring, Mathieu Malaterre, Matt Brown, Matt Evans, Mauricio Faria de
Oliveira, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Paul Mackerras,
Philippe Bergheaud, Ram Pai, Rob Herring, Sam Bobroff, Segher Boessenkool,
Simon Guo, Simon Horman, Stewart Smith, Sukadev Bhattiprolu, Suraj Jitindar
Singh, Thiago Jung Bauermann, Vaibhav Jain, Vaidyanathan Srinivasan, Vasant
Hegde, Wei Yongjun.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJayKxDExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYAr
JQ/6A9Xs4zHDn9OeT9esEIxciETqUlrP0Wp64c4JVC7EkG1E7xRDZ4Xb4m8R2nNt
9sPhtNO1yCtEk6kFQtPNB0N8v6pud4I6+aMcYnn+tP8mJRYQ4x9bYaF3Hw98IKmE
Kd6TglmsUQvh2GpwPiF93KpzzWu1HB2kZzzqJcAMTMh7C79Qz00BjrTJltzXB2jx
tJ+B4lVy8BeU8G5nDAzJEEwb5Ypkn8O40rS/lpAwVTYOBJ8Rbyq8Fj82FeREK9YO
4EGaEKPkC/FdzX7OJV3v2/nldCd8pzV471fAoGuBUhJiJBMBoBybcTHIdDex7LlL
zMLV1mUtGo8iolRPhL8iCH+GGifZz2WzstYCozz7hgIraWtc/frq9rZp6q0LdH/K
trk7UbPGlVb92ecWZVpZyEcsMzKrCgZqnAe9wRNh1uEKScEdzd/bmRaMhENUObRh
Hili6AVvmSKExpy7k2sZP/oUMaeC15/xz8Lk7l8a/iCkYhNmPYh5iSXM5+UKpcRT
FYOcO0o3DwXsN46Whow3nJ7TqAsDy9/ecPUG71JQi3ZrHnRrm8jxkn8MCG5pZ1Fi
KvKDxlg6RiJo3DF9/fSOpJUokvMwqBS5dJo4eh5eiDy94aBTqmBKFecvPxQm7a0L
l3uXCF/6JuXEvMukFjGBO4RiYhw8i+B2uKsh81XUh7HKrgE=
=HAB1
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for 4PB user address space on 64-bit, opt-in via mmap().
- Removal of POWER4 support, which was accidentally broken in 2016
and no one noticed, and blocked use of some modern instructions.
- Workarounds so that the hypervisor can enable Transactional Memory
on Power9.
- A series to disable the DAWR (Data Address Watchpoint Register) on
Power9.
- More information displayed in the meltdown/spectre_v1/v2 sysfs
files.
- A vpermxor (Power8 Altivec) implementation for the raid6 Q
Syndrome.
- A big series to make the allocation of our pacas (per cpu area),
kernel page tables, and per-cpu stacks NUMA aware when using the
Radix MMU on Power9.
And as usual many fixes, reworks and cleanups.
Thanks to: Aaro Koskinen, Alexandre Belloni, Alexey Kardashevskiy,
Alistair Popple, Andy Shevchenko, Aneesh Kumar K.V, Anshuman Khandual,
Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Cyril Bur, Daniel Axtens, Dave Young, Finn Thain, Frederic
Barrat, Gustavo Romero, Horia Geantă, Jonathan Neuschäfer, Kees Cook,
Larry Finger, Laurent Dufour, Laurent Vivier, Logan Gunthorpe,
Madhavan Srinivasan, Mark Greer, Mark Hairgrove, Markus Elfring,
Mathieu Malaterre, Matt Brown, Matt Evans, Mauricio Faria de Oliveira,
Michael Neuling, Naveen N. Rao, Nicholas Piggin, Paul Mackerras,
Philippe Bergheaud, Ram Pai, Rob Herring, Sam Bobroff, Segher
Boessenkool, Simon Guo, Simon Horman, Stewart Smith, Sukadev
Bhattiprolu, Suraj Jitindar Singh, Thiago Jung Bauermann, Vaibhav
Jain, Vaidyanathan Srinivasan, Vasant Hegde, Wei Yongjun"
* tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (207 commits)
powerpc/64s/idle: Fix restore of AMOR on POWER9 after deep sleep
powerpc/64s: Fix POWER9 DD2.2 and above in cputable features
powerpc/64s: Fix pkey support in dt_cpu_ftrs, add CPU_FTR_PKEY bit
powerpc/64s: Fix dt_cpu_ftrs to have restore_cpu clear unwanted LPCR bits
Revert "powerpc/64s/idle: POWER9 ESL=0 stop avoid save/restore overhead"
powerpc: iomap.c: introduce io{read|write}64_{lo_hi|hi_lo}
powerpc: io.h: move iomap.h include so that it can use readq/writeq defs
cxl: Fix possible deadlock when processing page faults from cxllib
powerpc/hw_breakpoint: Only disable hw breakpoint if cpu supports it
powerpc/mm/radix: Update command line parsing for disable_radix
powerpc/mm/radix: Parse disable_radix commandline correctly.
powerpc/mm/hugetlb: initialize the pagetable cache correctly for hugetlb
powerpc/mm/radix: Update pte fragment count from 16 to 256 on radix
powerpc/mm/keys: Update documentation and remove unnecessary check
powerpc/64s/idle: POWER9 ESL=0 stop avoid save/restore overhead
powerpc/64s/idle: Consolidate power9_offline_stop()/power9_idle_stop()
powerpc/powernv: Always stop secondaries before reboot/shutdown
powerpc: hard disable irqs in smp_send_stop loop
powerpc: use NMI IPI for smp_send_stop
powerpc/powernv: Fix SMT4 forcing idle code
...
SLOF checks for 'sc 1' (hypercall) support by issuing a hcall with
H_SET_DABR. Since the recent commit e8ebedbf31 ("KVM: PPC: Book3S
HV: Return error from h_set_dabr() on POWER9") changed H_SET_DABR to
return H_UNSUPPORTED on Power9, we see guest boot failures, the
symptom is the boot seems to just stop in SLOF, eg:
SLOF ***************************************************************
QEMU Starting
Build Date = Sep 24 2017 12:23:07
FW Version = buildd@ release 20170724
<no further output>
SLOF can cope if H_SET_DABR returns H_HARDWARE. So wwitch the return
value to H_HARDWARE instead of H_UNSUPPORTED so that we don't break
the guest boot.
That does mean we return a different error to PowerVM in this case,
but that's probably not a big concern.
Fixes: e8ebedbf31 ("KVM: PPC: Book3S HV: Return error from h_set_dabr() on POWER9")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Bring in yet another series that touches KVM code, and might need to
be merged into the kvm-ppc branch to resolve conflicts.
This required some changes in pnv_power9_force_smt4_catch/release()
due to the paca array becomming an array of pointers.
The "lppaca" is a structure registered with the hypervisor. This is
unnecessary when running on non-virtualised platforms. One field from
the lppaca (pmcregs_in_use) is also used by the host, so move the host
part out into the paca (lppaca field is still updated in
guest mode).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix non-pseries build with some #ifdefs]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 with the DAWR disabled causes problems for partition
migration. Either we have to fail the migration (since we lose the
DAWR) or we silently drop the DAWR and allow the migration to pass.
This patch does the latter and allows the migration to pass (at the
cost of silently losing the DAWR). This is not ideal but hopefully the
best overall solution. This approach has been acked by Paulus.
With this patch kvmppc_set_one_reg() will store the DAWR in the vcpu
but won't actually set it on POWER9 hardware.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER7 compat mode guests can use h_set_dabr on POWER9. POWER9 should
use the DAWR but since it's disabled there we can't.
This returns H_UNSUPPORTED on a h_set_dabr() on POWER9 where the DAWR
is disabled.
Current Linux guests ignore this error, so they will silently not get
the DAWR (sigh). The same error code is being used by POWERVM in this
case.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works around a hardware bug in "Nimbus" POWER9 DD2.2 processors,
where the contents of the TEXASR can get corrupted while a thread is
in fake suspend state. The workaround is for the instruction emulation
code to use the value saved at the most recent guest exit in real
suspend mode. We achieve this by simply not saving the TEXASR into
the vcpu struct on an exit in fake suspend state. We also have to
take care to set the orig_texasr field only on guest exit in real
suspend state.
This also means that on guest entry in fake suspend state, TEXASR
will be restored to the value it had on the last exit in real suspend
state, effectively counteracting any hardware-caused corruption. This
works because TEXASR may not be written in suspend state.
With this, the guest might see the wrong values in TEXASR if it reads
it while in suspend state, but will see the correct value in
non-transactional state (e.g. after a treclaim), and treclaim will
work correctly.
With this workaround, the code will actually run slightly faster, and
will operate correctly on systems without the TEXASR bug (since TEXASR
may not be written in suspend state, and is only changed by failure
recording, which will have already been done before we get into fake
suspend state). Therefore these changes are not made subject to a CPU
feature bit.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works around a hardware bug in "Nimbus" POWER9 DD2.2 processors,
where a treclaim performed in fake suspend mode can cause subsequent
reads from the XER register to return inconsistent values for the SO
(summary overflow) bit. The inconsistent SO bit state can potentially
be observed on any thread in the core. We have to do the treclaim
because that is the only way to get the thread out of suspend state
(fake or real) and into non-transactional state.
The workaround for the bug is to force the core into SMT4 mode before
doing the treclaim. This patch adds the code to do that, conditional
on the CPU_FTR_P9_TM_XER_SO_BUG feature bit.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 has hardware bugs relating to transactional memory and thread
reconfiguration (changes to hardware SMT mode). Specifically, the core
does not have enough storage to store a complete checkpoint of all the
architected state for all four threads. The DD2.2 version of POWER9
includes hardware modifications designed to allow hypervisor software
to implement workarounds for these problems. This patch implements
those workarounds in KVM code so that KVM guests see a full, working
transactional memory implementation.
The problems center around the use of TM suspended state, where the
CPU has a checkpointed state but execution is not transactional. The
workaround is to implement a "fake suspend" state, which looks to the
guest like suspended state but the CPU does not store a checkpoint.
In this state, any instruction that would cause a transition to
transactional state (rfid, rfebb, mtmsrd, tresume) or would use the
checkpointed state (treclaim) causes a "soft patch" interrupt (vector
0x1500) to the hypervisor so that it can be emulated. The trechkpt
instruction also causes a soft patch interrupt.
On POWER9 DD2.2, we avoid returning to the guest in any state which
would require a checkpoint to be present. The trechkpt in the guest
entry path which would normally create that checkpoint is replaced by
either a transition to fake suspend state, if the guest is in suspend
state, or a rollback to the pre-transactional state if the guest is in
transactional state. Fake suspend state is indicated by a flag in the
PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and
reads back as 0.
On exit from the guest, if the guest is in fake suspend state, we still
do the treclaim instruction as we would in real suspend state, in order
to get into non-transactional state, but we do not save the resulting
register state since there was no checkpoint.
Emulation of the instructions that cause a softpatch interrupt is
handled in two paths. If the guest is in real suspend mode, we call
kvmhv_p9_tm_emulation_early() to handle the cases where the guest is
transitioning to transactional state. This is called before we do the
treclaim in the guest exit path; because we haven't done treclaim, we
can get back to the guest with the transaction still active. If the
instruction is a case that kvmhv_p9_tm_emulation_early() doesn't
handle, or if the guest is in fake suspend state, then we proceed to
do the complete guest exit path and subsequently call
kvmhv_p9_tm_emulation() in host context with the MMU on. This handles
all the cases including the cases that generate program interrupts
(illegal instruction or TM Bad Thing) and facility unavailable
interrupts.
The emulation is reasonably straightforward and is mostly concerned
with checking for exception conditions and updating the state of
registers such as MSR and CR0. The treclaim emulation takes care to
ensure that the TEXASR register gets updated as if it were the guest
treclaim instruction that had done failure recording, not the treclaim
done in hypervisor state in the guest exit path.
With this, the KVM_CAP_PPC_HTM capability returns true (1) even if
transactional memory is not available to host userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Since commit 6964e6a4e4 ("KVM: PPC: Book3S HV: Do SLB load/unload
with guest LPCR value loaded", 2018-01-11), we have been seeing
occasional machine check interrupts on POWER8 systems when running
KVM guests, due to SLB multihit errors.
This turns out to be due to the guest exit code reloading the host
SLB entries from the SLB shadow buffer when the SLB was not previously
cleared in the guest entry path. This can happen because the path
which skips from the guest entry code to the guest exit code without
entering the guest now does the skip before the SLB is cleared and
loaded with guest values, but the host values are loaded after the
point in the guest exit path that we skip to.
To fix this, we move the code that reloads the host SLB values up
so that it occurs just before the point in the guest exit code (the
label guest_bypass:) where we skip to from the guest entry path.
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Fixes: 6964e6a4e4 ("KVM: PPC: Book3S HV: Do SLB load/unload with guest LPCR value loaded")
Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a bug where the trap number that is returned by
__kvmppc_vcore_entry gets corrupted. The effect of the corruption
is that IPIs get ignored on POWER9 systems when the IPI is sent via
a doorbell interrupt to a CPU which is executing in a KVM guest.
The effect of the IPI being ignored is often that another CPU locks
up inside smp_call_function_many() (and if that CPU is holding a
spinlock, other CPUs then lock up inside raw_spin_lock()).
The trap number is currently held in register r12 for most of the
assembly-language part of the guest exit path. In that path, we
call kvmppc_subcore_exit_guest(), which is a C function, without
restoring r12 afterwards. Depending on the kernel config and the
compiler, it may modify r12 or it may not, so some config/compiler
combinations see the bug and others don't.
To fix this, we arrange for the trap number to be stored on the
stack from the 'guest_bypass:' label until the end of the function,
then the trap number is loaded and returned in r12 as before.
Cc: stable@vger.kernel.org # v4.8+
Fixes: fd7bacbca4 ("KVM: PPC: Book3S HV: Fix TB corruption in guest exit path on HMI interrupt")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
Seven fixes that are either trivial or that address bugs that people
are actually hitting. The main ones are:
- Drop spinlocks before reading guest memory
- Fix a bug causing corruption of VCPU state in PR KVM with preemption
enabled
- Make HPT resizing work on POWER9
- Add MMIO emulation for vector loads and stores, because guests now
use these instructions in memcpy and similar routines.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJafWn0AAoJEJ2a6ncsY3GfaMsIANF0hQD8SS78WNKnoy0vnZ/X
PUXdjwHEsfkg5KdQ7o0oaa2BJHHqO3vozddmMiG14r2L1mNCHJpnVZCVV0GaEJcZ
eU8++OPK6yrsPNNpAjnrtQ0Vk4LwzoT0bftEjS3TtLt1s2uSo+R1+HLmxbxGhQUX
bZngo9wQ3cjUfAXLrPtAVhE5wTmgVOiufVRyfRsBRdFzRsAWqjY4hBtJAfwdff4r
AA5H0RCrXO6e1feKr5ElU8KzX6b7IjH9Xu868oJ1r16zZfE05PBl1X5n4XG7XDm7
xWvs8uLAB7iRv2o/ecFznYJ+Dz1NCBVzD0RmAUTqPCcVKDrxixaTkqMPFW97IAA=
=HOJR
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
Second PPC KVM update for 4.16
Seven fixes that are either trivial or that address bugs that people
are actually hitting. The main ones are:
- Drop spinlocks before reading guest memory
- Fix a bug causing corruption of VCPU state in PR KVM with preemption
enabled
- Make HPT resizing work on POWER9
- Add MMIO emulation for vector loads and stores, because guests now
use these instructions in memcpy and similar routines.
We ended up with code that did a conditional branch inside a feature
section to code outside of the feature section. Depending on how the
object file gets organized, that might mean we exceed the 14bit
relocation limit for conditional branches:
arch/powerpc/kvm/built-in.o:arch/powerpc/kvm/book3s_hv_rmhandlers.S:416:(__ftr_alt_97+0x8): relocation truncated to fit: R_PPC64_REL14 against `.text'+1ca4
So instead of doing a conditional branch outside of the feature section,
let's just jump at the end of the same, making the branch very short.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaYXViAAoJEJ2a6ncsY3GfDhgIAIDVBZH/Ftq7eJiUSxDpqyCQ
DF/x7fNKzK/J33pu+3ntOI2gZsldExAy7vH2M27I4qLIkbI5y3vu4v8l3CDlS1LK
9dKi72zg7baozoVF5mGUNm0B1sSvZiIQlC/kaami2aPTF1GcrJ561GthzfZwxENX
TSLqOA4LkeUZh2tUsvbcUrPi6v+E4Em2lgacQcx2ioMblWz56sZu79VsUbSSw/a3
P8+pIv7EbHw+TrOZMehjCbZkOdBeZ3IRLJsdlIAfe7y4vWME/5b9uVnQS/+XQj/B
6f3rQrduGvF2P6GMjsm8gDkgE5oZ1zbKlgO4i5WApnu80MMLFlfEUN+GWuGJ95Q=
=OjGs
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
PPC KVM update for 4.16
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
Merge our fixes branch from the 4.15 cycle.
Unusually the fixes branch saw some significant features merged,
notably the RFI flush patches, so we want the code in next to be
tested against that, to avoid any surprises when the two are merged.
There's also some other work on the panic handling that was reverted
in fixes and we now want to do properly in next, which would conflict.
And we also fix a few other minor merge conflicts.
Merge the topic branch we share with kvm-ppc, this brings in two xive
commits, one from Paul to rework HMI handling, and a minor cleanup to
drop an unused flag.
Rename the paca->soft_enabled to paca->irq_soft_mask as it is no
longer used as a flag for interrupt state, but a mask.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works on top of the single escalation support. When in single
escalation, with this change, we will keep the escalation interrupt
disabled unless the VCPU is in H_CEDE (idle). In any other case, we
know the VCPU will be rescheduled and thus there is no need to take
escalation interrupts in the host whenever a guest interrupt fires.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The prodded flag is only cleared at the beginning of H_CEDE,
so every time we have an escalation, we will cause the *next*
H_CEDE to return immediately.
Instead use a dedicated "irq_pending" flag to indicate that
a guest interrupt is pending for the VCPU. We don't reuse the
existing exception bitmap so as to avoid expensive atomic ops.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch of the powerpc tree to get
two patches which are prerequisites for the following patch series,
plus another patch which touches both powerpc and KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Hypervisor maintenance interrupts (HMIs) are generated by various
causes, signalled by bits in the hypervisor maintenance exception
register (HMER). In most cases calling OPAL to handle the interrupt
is the correct thing to do, but the "debug trigger" HMIs signalled by
PPC bit 17 (bit 46) of HMER are used to invoke software workarounds
for hardware bugs, and OPAL does not have any code to handle this
cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips
to work around a hardware bug in executing vector load instructions to
cache inhibited memory. In POWER9 DD2.2 chips, it is generated when
conditions are detected relating to threads being in TM (transactional
memory) suspended mode when the core SMT configuration needs to be
reconfigured.
The kernel currently has code to detect the vector CI load condition,
but only when the HMI occurs in the host, not when it occurs in a
guest. If a HMI occurs in the guest, it is always passed to OPAL, and
then we always re-sync the timebase, because the HMI cause might have
been a timebase error, for which OPAL would re-sync the timebase, thus
removing the timebase offset which KVM applied for the guest. Since
we don't know what OPAL did, we don't know whether to subtract the
timebase offset from the timebase, so instead we re-sync the timebase.
This adds code to determine explicitly what the cause of a debug
trigger HMI will be. This is based on a new device-tree property
under the CPU nodes called ibm,hmi-special-triggers, if it is
present, or otherwise based on the PVR (processor version register).
The handling of debug trigger HMIs is pulled out into a separate
function which can be called from the KVM guest exit code. If this
function handles and clears the HMI, and no other HMI causes remain,
then we skip calling OPAL and we proceed to subtract the guest
timebase offset from the timebase.
The overall handling for HMIs that occur in the host (i.e. not in a
KVM guest) is largely unchanged, except that we now don't set the flag
for the vector CI load workaround on DD2.2 processors.
This also removes a BUG_ON in the KVM code. BUG_ON is generally not
useful in KVM guest entry/exit code since it is difficult to handle
the resulting trap gracefully.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This moves the code that loads and unloads the guest SLB values so that
it is done while the guest LPCR value is loaded in the LPCR register.
The reason for doing this is that on POWER9, the behaviour of the
slbmte instruction depends on the LPCR[UPRT] bit. If UPRT is 1, as
it is for a radix host (or guest), the SLB index is truncated to
2 bits. This means that for a HPT guest on a radix host, the SLB
was not being loaded correctly, causing the guest to crash.
The SLB is now loaded much later in the guest entry path, after the
LPCR is loaded, which for a secondary thread is after it sees that
the primary thread has switched the MMU to the guest. The loop that
waits for the primary thread has a branch out to the exit code that
is taken if it sees that other threads have commenced exiting the
guest. Since we have now not loaded the SLB at this point, we make
this path branch to a new label 'guest_bypass' and we move the SLB
unload code to before this label.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a bug where it is possible to enter a guest on a POWER9
system without having the XIVE (interrupt controller) context loaded.
This can happen because we unload the XIVE context from the CPU
before doing the real-mode handling for machine checks. After the
real-mode handler runs, it is possible that we re-enter the guest
via a fast path which does not load the XIVE context.
To fix this, we move the unloading of the XIVE context to come after
the real-mode machine check handler is called.
Fixes: 5af5099385 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller")
Cc: stable@vger.kernel.org # v4.11+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On Book3S in HV mode, we don't use the vcpu->arch.dec field at all.
Instead, all logic is built around vcpu->arch.dec_expires.
So let's remove the one remaining piece of code that was setting it.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This commit does simple conversions of rfi/rfid to the new macros that
include the expected destination context. By simple we mean cases
where there is a single well known destination context, and it's
simply a matter of substituting the instruction for the appropriate
macro.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This merges in a couple of fixes from the kvm-ppc-fixes branch that
modify the same areas of code as some commits from the kvm-ppc-next
branch, in order to resolve the conflicts.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch removes the restriction that a radix host can only run
radix guests, allowing us to run HPT (hashed page table) guests as
well. This is useful because it provides a way to run old guest
kernels that know about POWER8 but not POWER9.
Unfortunately, POWER9 currently has a restriction that all threads
in a given code must either all be in HPT mode, or all in radix mode.
This means that when entering a HPT guest, we have to obtain control
of all 4 threads in the core and get them to switch their LPIDR and
LPCR registers, even if they are not going to run a guest. On guest
exit we also have to get all threads to switch LPIDR and LPCR back
to host values.
To make this feasible, we require that KVM not be in the "independent
threads" mode, and that the CPU cores be in single-threaded mode from
the host kernel's perspective (only thread 0 online; threads 1, 2 and
3 offline). That allows us to use the same code as on POWER8 for
obtaining control of the secondary threads.
To manage the LPCR/LPIDR changes required, we extend the kvm_split_info
struct to contain the information needed by the secondary threads.
All threads perform a barrier synchronization (where all threads wait
for every other thread to reach the synchronization point) on guest
entry, both before and after loading LPCR and LPIDR. On guest exit,
they all once again perform a barrier synchronization both before
and after loading host values into LPCR and LPIDR.
Finally, it is also currently necessary to flush the entire TLB every
time we enter a HPT guest on a radix host. We do this on thread 0
with a loop of tlbiel instructions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch allows for a mode on POWER9 hosts where we control all the
threads of a core, much as we do on POWER8. The mode is controlled by
a module parameter on the kvm_hv module, called "indep_threads_mode".
The normal mode on POWER9 is the "independent threads" mode, with
indep_threads_mode=Y, where the host is in SMT4 mode (or in fact any
desired SMT mode) and each thread independently enters and exits from
KVM guests without reference to what other threads in the core are
doing.
If indep_threads_mode is set to N at the point when a VM is started,
KVM will expect every core that the guest runs on to be in single
threaded mode (that is, threads 1, 2 and 3 offline), and will set the
flag that prevents secondary threads from coming online. We can still
use all four threads; the code that implements dynamic micro-threading
on POWER8 will become active in over-commit situations and will allow
up to three other VCPUs to be run on the secondary threads of the core
whenever a VCPU is run.
The reason for wanting this mode is that this will allow us to run HPT
guests on a radix host on a POWER9 machine that does not support
"mixed mode", that is, having some threads in a core be in HPT mode
while other threads are in radix mode. It will also make it possible
to implement a "strict threads" mode in future, if desired.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch of the powerpc tree to get the
commit that reverts the patch "KVM: PPC: Book3S HV: POWER9 does not
require secondary thread management". This is needed for subsequent
patches which will be applied on this branch.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This reverts commit 94a04bc25a.
In order to run HPT guests on a radix POWER9 host, we will have to run
the host in single-threaded mode, because POWER9 processors do not
currently support running some threads of a core in HPT mode while
others are in radix mode ("mixed mode").
That means that we will need the same mechanisms that are used on
POWER8 to make the secondary threads available to KVM, which were
disabled on POWER9 by commit 94a04bc25a.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9 systems, we push the VCPU context onto the XIVE (eXternal
Interrupt Virtualization Engine) hardware when entering a guest,
and pull the context off the XIVE when exiting the guest. The push
is done with cache-inhibited stores, and the pull with cache-inhibited
loads.
Testing has revealed that it is possible (though very rare) for
the stores to get reordered with the loads so that we end up with the
guest VCPU context still loaded on the XIVE after we have exited the
guest. When that happens, it is possible for the same VCPU context
to then get loaded on another CPU, which causes the machine to
checkstop.
To fix this, we add I/O barrier instructions (eieio) before and
after the push and pull operations. As partial compensation for the
potential slowdown caused by the extra barriers, we remove the eieio
instructions between the two stores in the push operation, and between
the two loads in the pull operation. (The architecture requires
loads to cache-inhibited, guarded storage to be kept in order, and
requires stores to cache-inhibited, guarded storage likewise to be
kept in order, but allows such loads and stores to be reordered with
respect to each other.)
Reported-by: Carol L Soto <clsoto@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At present, if an interrupt (i.e. an exception or trap) occurs in the
code where KVM is switching the MMU to or from guest context, we jump
to kvmppc_bad_host_intr, where we simply spin with interrupts disabled.
In this situation, it is hard to debug what happened because we get no
indication as to which interrupt occurred or where. Typically we get
a cascade of stall and soft lockup warnings from other CPUs.
In order to get more information for debugging, this adds code to
create a stack frame on the emergency stack and save register values
to it. We start half-way down the emergency stack in order to give
ourselves some chance of being able to do a stack trace on secondary
threads that are already on the emergency stack.
On POWER7 or POWER8, we then just spin, as before, because we don't
know what state the MMU context is in or what other threads are doing,
and we can't switch back to host context without coordinating with
other threads. On POWER9 we can do better; there we load up the host
MMU context and jump to C code, which prints an oops message to the
console and panics.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Add another case where msgsync is required.
- Required barrier sequence for global doorbells is msgsync ; lwsync
When msgsnd is used for IPIs to other cores, msgsync must be executed by
the target to order stores performed on the source before its msgsnd
(provided the source executes the appropriate sync).
Fixes: 1704a81cce ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9")
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage
Interrupt (HDSI) the HDSISR is not be updated at all.
To work around this we put a canary value into the HDSISR before
returning to a guest and then check for this canary when we take a
HDSI. If we find the canary on a HDSI, we know the hardware didn't
update the HDSISR. In this case we return to the guest to retake the
HDSI which should correctly update the HDSISR the second time HDSI
entry.
After talking to Paulus we've applied this workaround to all POWER9
CPUs. The workaround of returning to the guest shouldn't ever be
triggered on well behaving CPU. The extra instructions should have
negligible performance impact.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Aneesh Kumar reported seeing host crashes when running recent kernels
on POWER8. The symptom was an oops like this:
Unable to handle kernel paging request for data at address 0xf00000000786c620
Faulting instruction address: 0xc00000000030e1e4
Oops: Kernel access of bad area, sig: 11 [#1]
LE SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in: powernv_op_panel
CPU: 24 PID: 6663 Comm: qemu-system-ppc Tainted: G W 4.13.0-rc7-43932-gfc36c59 #2
task: c000000fdeadfe80 task.stack: c000000fdeb68000
NIP: c00000000030e1e4 LR: c00000000030de6c CTR: c000000000103620
REGS: c000000fdeb6b450 TRAP: 0300 Tainted: G W (4.13.0-rc7-43932-gfc36c59)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 24044428 XER: 20000000
CFAR: c00000000030e134 DAR: f00000000786c620 DSISR: 40000000 SOFTE: 0
GPR00: 0000000000000000 c000000fdeb6b6d0 c0000000010bd000 000000000000e1b0
GPR04: c00000000115e168 c000001fffa6e4b0 c00000000115d000 c000001e1b180386
GPR08: f000000000000000 c000000f9a8913e0 f00000000786c600 00007fff587d0000
GPR12: c000000fdeb68000 c00000000fb0f000 0000000000000001 00007fff587cffff
GPR16: 0000000000000000 c000000000000000 00000000003fffff c000000fdebfe1f8
GPR20: 0000000000000004 c000000fdeb6b8a8 0000000000000001 0008000000000040
GPR24: 07000000000000c0 00007fff587cffff c000000fdec20bf8 00007fff587d0000
GPR28: c000000fdeca9ac0 00007fff587d0000 00007fff587c0000 00007fff587d0000
NIP [c00000000030e1e4] __get_user_pages_fast+0x434/0x1070
LR [c00000000030de6c] __get_user_pages_fast+0xbc/0x1070
Call Trace:
[c000000fdeb6b6d0] [c00000000139dab8] lock_classes+0x0/0x35fe50 (unreliable)
[c000000fdeb6b7e0] [c00000000030ef38] get_user_pages_fast+0xf8/0x120
[c000000fdeb6b830] [c000000000112318] kvmppc_book3s_hv_page_fault+0x308/0xf30
[c000000fdeb6b960] [c00000000010e10c] kvmppc_vcpu_run_hv+0xfdc/0x1f00
[c000000fdeb6bb20] [c0000000000e915c] kvmppc_vcpu_run+0x2c/0x40
[c000000fdeb6bb40] [c0000000000e5650] kvm_arch_vcpu_ioctl_run+0x110/0x300
[c000000fdeb6bbe0] [c0000000000d6468] kvm_vcpu_ioctl+0x528/0x900
[c000000fdeb6bd40] [c0000000003bc04c] do_vfs_ioctl+0xcc/0x950
[c000000fdeb6bde0] [c0000000003bc930] SyS_ioctl+0x60/0x100
[c000000fdeb6be30] [c00000000000b96c] system_call+0x58/0x6c
Instruction dump:
7ca81a14 2fa50000 41de0010 7cc8182a 68c60002 78c6ffe2 0b060000 3cc2000a
794a3664 390610d8 e9080000 7d485214 <e90a0020> 7d435378 790507e1 408202f0
---[ end trace fad4a342d0414aa2 ]---
It turns out that what has happened is that the SLB entry for the
vmmemap region hasn't been reloaded on exit from a guest, and it has
the wrong page size. Then, when the host next accesses the vmemmap
region, it gets a page fault.
Commit a25bd72bad ("powerpc/mm/radix: Workaround prefetch issue with
KVM", 2017-07-24) modified the guest exit code so that it now only clears
out the SLB for hash guest. The code tests the radix flag and puts the
result in a non-volatile CR field, CR2, and later branches based on CR2.
Unfortunately, the kvmppc_save_tm function, which gets called between
those two points, modifies all the user-visible registers in the case
where the guest was in transactional or suspended state, except for a
few which it restores (namely r1, r2, r9 and r13). Thus the hash/radix indication in CR2 gets corrupted.
This fixes the problem by re-doing the comparison just before the
result is needed. For good measure, this also adds comments next to
the call sites of kvmppc_save_tm and kvmppc_restore_tm pointing out
that non-volatile register state will be lost.
Cc: stable@vger.kernel.org # v4.13
Fixes: a25bd72bad ("powerpc/mm/radix: Workaround prefetch issue with KVM")
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fix was intended for 4.13, but didn't get in because both
maintainers were on vacation.
Paul Mackerras:
"It adds mutual exclusion between list_add_rcu and list_del_rcu calls
on the kvm->arch.spapr_tce_tables list. Without this, userspace could
potentially trigger corruption of the list and cause a host crash or
worse."
This merges in the 'ppc-kvm' topic branch from the powerpc tree in
order to bring in some fixes which touch both powerpc and KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 2f2724630f ("KVM: PPC: Book3S HV: Cope with host using large
decrementer mode", 2017-05-22) added code to treat the hypervisor
decrementer (HDEC) as a 64-bit value on POWER9 rather than 32-bit.
Unfortunately, that commit missed one place where HDEC is treated
as a 32-bit value. This fixes it.
This bug should not have any user-visible consequences that I can
think of, beyond an occasional unnecessary exit to the host kernel.
If the hypervisor decrementer has gone negative, then the bottom
32 bits will be negative for about 4 seconds after that, so as
long as we get out of the guest within those 4 seconds we won't
conclude that the HDEC interrupt is spurious.
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Fixes: 2f2724630f ("KVM: PPC: Book3S HV: Cope with host using large decrementer mode")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
binutils >= 2.26 now warns about misuse of register expressions in
assembler operands that are actually literals. In this instance r0 is
being used where a literal 0 should be used.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
[mpe: Split into separate KVM patch, tweak change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 CPUs have independent MMU contexts per thread, so KVM does not
need to quiesce secondary threads, so the hwthread_req/hwthread_state
protocol does not have to be used. So patch it away on POWER9, and patch
away the branch from the Linux idle wakeup to kvm_start_guest that is
never used.
Add a warning and error out of kvmppc_grab_hwthread in case it is ever
called on POWER9.
This avoids a hwsync in the idle wakeup path on POWER9.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Use WARN(...) instead of WARN_ON()/pr_err(...)]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When msgsnd is used for IPIs to other cores, msgsync must be executed by
the target to order stores performed on the source before its msgsnd
(provided the source executes the appropriate sync).
Fixes: 1704a81cce ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There's a somewhat architectural issue with Radix MMU and KVM.
When coming out of a guest with AIL (Alternate Interrupt Location, ie,
MMU enabled), we start executing hypervisor code with the PID register
still containing whatever the guest has been using.
The problem is that the CPU can (and will) then start prefetching or
speculatively load from whatever host context has that same PID (if
any), thus bringing translations for that context into the TLB, which
Linux doesn't know about.
This can cause stale translations and subsequent crashes.
Fixing this in a way that is neither racy nor a huge performance
impact is difficult. We could just make the host invalidations always
use broadcast forms but that would hurt single threaded programs for
example.
We chose to fix it instead by partitioning the PID space between guest
and host. This is possible because today Linux only use 19 out of the
20 bits of PID space, so existing guests will work if we make the host
use the top half of the 20 bits space.
We additionally add support for a property to indicate to Linux the
size of the PID register which will be useful if we eventually have
processors with a larger PID space available.
There is still an issue with malicious guests purposefully setting the
PID register to a value in the hosts PID range. Hopefully future HW
can prevent that, but in the meantime, we handle it with a pair of
kludges:
- On the way out of a guest, before we clear the current VCPU in the
PACA, we check the PID and if it's outside of the permitted range
we flush the TLB for that PID.
- When context switching, if the mm is "new" on that CPU (the
corresponding bit was set for the first time in the mm cpumask), we
check if any sibling thread is in KVM (has a non-NULL VCPU pointer
in the PACA). If that is the case, we also flush the PID for that
CPU (core).
This second part is needed to handle the case where a process is
migrated (or starts a new pthread) on a sibling thread of the CPU
coming out of KVM, as there's a window where stale translations can
exist before we detect it and flush them out.
A future optimization could be added by keeping track of whether the
PID has ever been used and avoid doing that for completely fresh PIDs.
We could similarily mark PIDs that have been the subject of a global
invalidation as "fresh". But for now this will do.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Rework the asm to build with CONFIG_PPC_RADIX_MMU=n, drop
unneeded include of kvm_book3s_asm.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to:
Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dan Carpenter, Gautham R. Shenoy, Hari Bathini, Ian
Munsie, Ivan Mikhaylov, Javier Martinez Canillas, Madhavan Srinivasan,
Masahiro Yamada, Matt Brown, Michael Neuling, Michal Suchanek, Murilo
Opsfelder Araujo, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul
Mackerras, Pavel Machek, Russell Currey, Santosh Sivaraj, Stephen Rothwell,
Thiago Jung Bauermann, Yang Li.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZXyPCAAoJEFHr6jzI4aWAI9QQAISf2x5y//cqCi4ISyQB5pTq
KLS/yQajNkQOw7c0fzBZOaH5Xd/SJ6AcKWDg8yDlpDR3+sRRsr98iIRECgKS5I7/
DxD9ywcbSoMXFQQo1ZMCp5CeuMUIJRtugBnUQM+JXCSUCPbznCY5DchDTLyTBTpO
MeMVhI//JxthhoOMA9MudiEGaYCU9ho442Z4OJUSiLUv8WRbvQX9pTqoc4vx1fxA
BWf2mflztBVcIfKIyxIIIlDLukkMzix6gSYPMCbC7lzkbnU7JSqKiheJXjo1gJS2
ePHKDxeNR2/QP0g/j3aT/MR1uTt9MaNBSX3gANE1xQ9OoJ8m1sOtCO4gNbSdLWae
eXhDnoiEp930DRZOeEioOItuWWoxFaMyYk3BMmRKV4QNdYL3y3TRVeL2/XmRGqYL
Lxz4IY/x5TteFEJNGcRX90uizNSi8AaEXPF16pUk8Ctt6eH3ZSwPMv2fHeYVCMr0
KFlKHyaPEKEoztyzLcUR6u9QB56yxDN58bvLpd32AeHvKhqyxFoySy59x9bZbatn
B2y8mmDItg860e0tIG6jrtplpOVvL8i5jla5RWFVoQDuxxrLAds3vG9JZQs+eRzx
Fiic93bqeUAS6RzhXbJ6QQJYIyhE7yqpcgv7ME1W87SPef3HPBk9xlp3yIDwdA2z
bBDvrRnvupusz8qCWrxe
=w8rj
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to: Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman
Khandual, Anton Blanchard, Balbir Singh, Benjamin Herrenschmidt,
Christophe Leroy, Christophe Lombard, Colin Ian King, Dan Carpenter,
Gautham R. Shenoy, Hari Bathini, Ian Munsie, Ivan Mikhaylov, Javier
Martinez Canillas, Madhavan Srinivasan, Masahiro Yamada, Matt Brown,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Naveen N.
Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pavel Machek,
Russell Currey, Santosh Sivaraj, Stephen Rothwell, Thiago Jung
Bauermann, Yang Li"
* tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (158 commits)
powerpc/Kconfig: Enable STRICT_KERNEL_RWX for some configs
powerpc/mm/radix: Implement STRICT_RWX/mark_rodata_ro() for Radix
powerpc/mm/hash: Implement mark_rodata_ro() for hash
powerpc/vmlinux.lds: Align __init_begin to 16M
powerpc/lib/code-patching: Use alternate map for patch_instruction()
powerpc/xmon: Add patch_instruction() support for xmon
powerpc/kprobes/optprobes: Use patch_instruction()
powerpc/kprobes: Move kprobes over to patch_instruction()
powerpc/mm/radix: Fix execute permissions for interrupt_vectors
powerpc/pseries: Fix passing of pp0 in updatepp() and updateboltedpp()
powerpc/64s: Blacklist rtas entry/exit from kprobes
powerpc/64s: Blacklist functions invoked on a trap
powerpc/64s: Un-blacklist system_call() from kprobes
powerpc/64s: Move system_call() symbol to just after setting MSR_EE
powerpc/64s: Blacklist system_call() and system_call_common() from kprobes
powerpc/64s: Convert .L__replay_interrupt_return to a local label
powerpc64/elfv1: Only dereference function descriptor for non-text symbols
cxl: Export library to support IBM XSL
powerpc/dts: Use #include "..." to include local DT
powerpc/perf/hv-24x7: Aggregate result elements on POWER9 SMT8
...