Commit Graph

40 Commits

Author SHA1 Message Date
Josef Bacik
a30a3d2067 btrfs: take overcommit into account in inc_block_group_ro
inc_block_group_ro does a calculation to see if we have enough room left
over if we mark this block group as read only in order to see if it's ok
to mark the block group as read only.

The problem is this calculation _only_ works for data, where our used is
always less than our total.  For metadata we will overcommit, so this
will almost always fail for metadata.

Fix this by exporting btrfs_can_overcommit, and then see if we have
enough space to remove the remaining free space in the block group we
are trying to mark read only.  If we do then we can mark this block
group as read only.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-31 14:02:01 +01:00
Josef Bacik
a7a63acc65 btrfs: fix force usage in inc_block_group_ro
For some reason we've translated the do_chunk_alloc that goes into
btrfs_inc_block_group_ro to force in inc_block_group_ro, but these are
two different things.

force for inc_block_group_ro is used when we are forcing the block group
read only no matter what, for example when the underlying chunk is
marked read only.  We need to not do the space check here as this block
group needs to be read only.

btrfs_inc_block_group_ro() has a do_chunk_alloc flag that indicates that
we need to pre-allocate a chunk before marking the block group read
only.  This has nothing to do with forcing, and in fact we _always_ want
to do the space check in this case, so unconditionally pass false for
force in this case.

Then fixup inc_block_group_ro to honor force as it's expected and
documented to do.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-31 14:01:55 +01:00
Nikolay Borisov
1776ad172e btrfs: Refactor btrfs_rmap_block to improve readability
Move variables to appropriate scope. Remove last BUG_ON in the function
and rework error handling accordingly. Make the duplicate detection code
more straightforward. Use in_range macro. And give variables more
descriptive name by explicitly distinguishing between IO stripe size
(size recorded in the chunk item) and data stripe size (the size of
an actual stripe, constituting a logical chunk/block group).

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-23 17:24:35 +01:00
Nikolay Borisov
96a14336bd btrfs: Move and unexport btrfs_rmap_block
It's used only during initial block group reading to map physical
address of super block to a list of logical ones. Make it private to
block-group.c, add proper kernel doc and ensure it's exported only for
tests.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-23 17:24:34 +01:00
Johannes Thumshirn
ef0a82da81 btrfs: remove unnecessary wrapper get_alloc_profile
btrfs_get_alloc_profile() is a simple wrapper over get_alloc_profile().
The only difference is btrfs_get_alloc_profile() is visible to other
functions in btrfs while get_alloc_profile() is static and thus only
visible to functions in block-group.c.

Let's just fold get_alloc_profile() into btrfs_get_alloc_profile() to
get rid of the unnecessary second function.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Johannes Thumshirn <jth@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:41:01 +01:00
Dennis Zhou
6e80d4f8c4 btrfs: handle empty block_group removal for async discard
block_group removal is a little tricky. It can race with the extent
allocator, the cleaner thread, and balancing. The current path is for a
block_group to be added to the unused_bgs list. Then, when the cleaner
thread comes around, it starts a transaction and then proceeds with
removing the block_group. Extents that are pinned are subsequently
removed from the pinned trees and then eventually a discard is issued
for the entire block_group.

Async discard introduces another player into the game, the discard
workqueue. While it has none of the racing issues, the new problem is
ensuring we don't leave free space untrimmed prior to forgetting the
block_group.  This is handled by placing fully free block_groups on a
separate discard queue. This is necessary to maintain discarding order
as in the future we will slowly trim even fully free block_groups. The
ordering helps us make progress on the same block_group rather than say
the last fully freed block_group or needing to search through the fully
freed block groups at the beginning of a list and insert after.

The new order of events is a fully freed block group gets placed on the
unused discard queue first. Once it's processed, it will be placed on
the unusued_bgs list and then the original sequence of events will
happen, just without the final whole block_group discard.

The mount flags can change when processing unused_bgs, so when flipping
from DISCARD to DISCARD_ASYNC, the unused_bgs must be punted to the
discard_list to be trimmed. If we flip off DISCARD_ASYNC, we punt
free block groups on the discard_list to the unused_bg queue which will
do the final discard for us.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:57 +01:00
Dennis Zhou
b0643e59cf btrfs: add the beginning of async discard, discard workqueue
When discard is enabled, everytime a pinned extent is released back to
the block_group's free space cache, a discard is issued for the extent.
This is an overeager approach when it comes to discarding and helping
the SSD maintain enough free space to prevent severe garbage collection
situations.

This adds the beginning of async discard. Instead of issuing a discard
prior to returning it to the free space, it is just marked as untrimmed.
The block_group is then added to a LRU which then feeds into a workqueue
to issue discards at a much slower rate. Full discarding of unused block
groups is still done and will be addressed in a future patch of the
series.

For now, we don't persist the discard state of extents and bitmaps.
Therefore, our failure recovery mode will be to consider extents
untrimmed. This lets us handle failure and unmounting as one in the
same.

On a number of Facebook webservers, I collected data every minute
accounting the time we spent in btrfs_finish_extent_commit() (col. 1)
and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit()
is where we discard extents synchronously before returning them to the
free space cache.

discard=sync:
                 p99 total per minute       p99 total per minute
      Drive   |   extent_commit() (ms)  |    commit_trans() (ms)
    ---------------------------------------------------------------
     Drive A  |           434           |          1170
     Drive B  |           880           |          2330
     Drive C  |          2943           |          3920
     Drive D  |          4763           |          5701

discard=async:
                 p99 total per minute       p99 total per minute
      Drive   |   extent_commit() (ms)  |    commit_trans() (ms)
    --------------------------------------------------------------
     Drive A  |           134           |           956
     Drive B  |            64           |          1972
     Drive C  |            59           |          1032
     Drive D  |            62           |          1200

While it's not great that the stats are cumulative over 1m, all of these
servers are running the same workload and and the delta between the two
are substantial. We are spending significantly less time in
btrfs_finish_extent_commit() which is responsible for discarding.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:57 +01:00
Dennis Zhou
46b27f5059 btrfs: rename DISCARD mount option to to DISCARD_SYNC
This series introduces async discard which will use the flag
DISCARD_ASYNC, so rename the original flag to DISCARD_SYNC as it is
synchronously done in transaction commit.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:57 +01:00
Josef Bacik
f893556637 btrfs: kill min_allocable_bytes in inc_block_group_ro
This is a relic from a time before we had a proper reservation mechanism
and you could end up with really full chunks at chunk allocation time.
This doesn't make sense anymore, so just kill it.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:52 +01:00
Qu Wenruo
b12de52896 btrfs: scrub: Don't check free space before marking a block group RO
[BUG]
When running btrfs/072 with only one online CPU, it has a pretty high
chance to fail:

  btrfs/072 12s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//btrfs/072.dmesg)
  - output mismatch (see xfstests-dev/results//btrfs/072.out.bad)
      --- tests/btrfs/072.out     2019-10-22 15:18:14.008965340 +0800
      +++ /xfstests-dev/results//btrfs/072.out.bad      2019-11-14 15:56:45.877152240 +0800
      @@ -1,2 +1,3 @@
       QA output created by 072
       Silence is golden
      +Scrub find errors in "-m dup -d single" test
      ...

And with the following call trace:

  BTRFS info (device dm-5): scrub: started on devid 1
  ------------[ cut here ]------------
  BTRFS: Transaction aborted (error -27)
  WARNING: CPU: 0 PID: 55087 at fs/btrfs/block-group.c:1890 btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs]
  CPU: 0 PID: 55087 Comm: btrfs Tainted: G        W  O      5.4.0-rc1-custom+ #13
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs]
  Call Trace:
   __btrfs_end_transaction+0xdb/0x310 [btrfs]
   btrfs_end_transaction+0x10/0x20 [btrfs]
   btrfs_inc_block_group_ro+0x1c9/0x210 [btrfs]
   scrub_enumerate_chunks+0x264/0x940 [btrfs]
   btrfs_scrub_dev+0x45c/0x8f0 [btrfs]
   btrfs_ioctl+0x31a1/0x3fb0 [btrfs]
   do_vfs_ioctl+0x636/0xaa0
   ksys_ioctl+0x67/0x90
   __x64_sys_ioctl+0x43/0x50
   do_syscall_64+0x79/0xe0
   entry_SYSCALL_64_after_hwframe+0x49/0xbe
  ---[ end trace 166c865cec7688e7 ]---

[CAUSE]
The error number -27 is -EFBIG, returned from the following call chain:
btrfs_end_transaction()
|- __btrfs_end_transaction()
   |- btrfs_create_pending_block_groups()
      |- btrfs_finish_chunk_alloc()
         |- btrfs_add_system_chunk()

This happens because we have used up all space of
btrfs_super_block::sys_chunk_array.

The root cause is, we have the following bad loop of creating tons of
system chunks:

1. The only SYSTEM chunk is being scrubbed
   It's very common to have only one SYSTEM chunk.
2. New SYSTEM bg will be allocated
   As btrfs_inc_block_group_ro() will check if we have enough space
   after marking current bg RO. If not, then allocate a new chunk.
3. New SYSTEM bg is still empty, will be reclaimed
   During the reclaim, we will mark it RO again.
4. That newly allocated empty SYSTEM bg get scrubbed
   We go back to step 2, as the bg is already mark RO but still not
   cleaned up yet.

If the cleaner kthread doesn't get executed fast enough (e.g. only one
CPU), then we will get more and more empty SYSTEM chunks, using up all
the space of btrfs_super_block::sys_chunk_array.

[FIX]
Since scrub/dev-replace doesn't always need to allocate new extent,
especially chunk tree extent, so we don't really need to do chunk
pre-allocation.

To break above spiral, here we introduce a new parameter to
btrfs_inc_block_group(), @do_chunk_alloc, which indicates whether we
need extra chunk pre-allocation.

For relocation, we pass @do_chunk_alloc=true, while for scrub, we pass
@do_chunk_alloc=false.
This should keep unnecessary empty chunks from popping up for scrub.

Also, since there are two parameters for btrfs_inc_block_group_ro(),
add more comment for it.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 18:07:55 +01:00
David Sterba
32da5386d9 btrfs: rename btrfs_block_group_cache
The type name is misleading, a single entry is named 'cache' while this
normally means a collection of objects. Rename that everywhere. Also the
identifier was quite long, making function prototypes harder to format.

Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:51 +01:00
Qu Wenruo
d49a2ddb15 btrfs: block-group: Reuse the item key from caller of read_one_block_group()
For read_one_block_group(), its only caller has already got the item key
to search next block group item.

So we can use that key directly without doing our own convertion on
stack.

Also, since that key used in btrfs_read_block_groups() is vital for
block group item search, add 'const' keyword for that parameter to
prevent read_one_block_group() to modify it.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:50 +01:00
Qu Wenruo
ffb9e0f05f btrfs: block-group: Refactor btrfs_read_block_groups()
Refactor the work inside the loop of btrfs_read_block_groups() into one
separate function, read_one_block_group().

This allows read_one_block_group to be reused for later BG_TREE feature.

The refactor does the following extra fix:
- Use btrfs_fs_incompat() to replace open-coded feature check

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:50 +01:00
David Sterba
9c907446dc btrfs: drop incompat bit for raid1c34 after last block group is gone
When there are no raid1c3 or raid1c4 block groups left after balance
(either convert or with other filters applied), remove the incompat bit.
This is already done for RAID56, do the same for RAID1C34.

Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:49 +01:00
David Sterba
b3470b5dbe btrfs: add dedicated members for start and length of a block group
The on-disk format of block group item makes use of the key that stores
the offset and length. This is further used in the code, although this
makes thing harder to understand. The key is also packed so the
offset/length is not properly aligned as u64.

Add start (key.objectid) and length (key.offset) members to block group
and remove the embedded key.  When the item is searched or written, a
local variable for key is used.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:45 +01:00
David Sterba
de0dc456fd btrfs: rename block_group_item on-stack accessors to follow naming
All accessors defined by BTRFS_SETGET_STACK_FUNCS contain _stack_ in the
name, the block group ones were not following that scheme, so let's
switch them.

Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:45 +01:00
David Sterba
3d976388da btrfs: remove embedded block_group_cache::item
The members ::used and ::flags are now in the block group cache
structure, the last one is chunk_objectid, but that's set to a fixed
value and otherwise unused. The item is constructed from a local
variable before write, so we can remove the embedded one from block
group.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:45 +01:00
David Sterba
f93c63e547 btrfs: move block_group_item::flags to block group
The flags are read from the item that's embedded to block group struct,
but the item will be removed. Use the ::flags after read and before
write.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:44 +01:00
David Sterba
bf38be65f3 btrfs: move block_group_item::used to block group
For unknown reasons, the member 'used' in the block group struct is
stored in the b-tree item and accessed everywhere using the special
accessor helper. Let's unify it and make it a regular member and only
update the item before writing it to the tree.

The item is still being used for flags and chunk_objectid, there's some
duplication until the item is removed in following patches.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 17:51:44 +01:00
Josef Bacik
a60adce85f btrfs: use btrfs_block_group_cache_done in update_block_group
When free'ing extents in a block group we check to see if the block
group is not cached, and then cache it if we need to.  However we'll
just carry on as long as we're loading the cache.  This is problematic
because we are dirtying the block group here.  If we are fast enough we
could do a transaction commit and clear the free space cache while we're
still loading the space cache in another thread.  This truncates the
free space inode, which will keep it from loading the space cache.

Fix this by using the btrfs_block_group_cache_done helper so that we try
to load the space cache unconditionally here, which will result in the
caller waiting for the fast caching to complete and keep us from
truncating the free space inode.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:56 +01:00
Marcos Paulo de Souza
a9143bd31c btrfs: block-group: Rework documentation of check_system_chunk function
Commit 4617ea3a52 (" Btrfs: fix necessary chunk tree space calculation
when allocating a chunk") removed the is_allocation argument from
check_system_chunk, since the formula for reserving the necessary space
for allocation or removing a chunk would be the same.

So, rework the comment by removing the mention of is_allocation
argument.

Signed-off-by: Marcos Paulo de Souza <marcos.souza.org@gmail.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:54 +01:00
Omar Sandoval
a0cac0ec96 btrfs: get rid of unique workqueue helper functions
Commit 9e0af23764 ("Btrfs: fix task hang under heavy compressed
write") worked around the issue that a recycled work item could get a
false dependency on the original work item due to how the workqueue code
guarantees non-reentrancy. It did so by giving different work functions
to different types of work.

However, the fixes in the previous few patches are more complete, as
they prevent a work item from being recycled at all (except for a tiny
window that the kernel workqueue code handles for us). This obsoletes
the previous fix, so we don't need the unique helpers for correctness.
The only other reason to keep them would be so they show up in stack
traces, but they always seem to be optimized to a tail call, so they
don't show up anyways. So, let's just get rid of the extra indirection.

While we're here, rename normal_work_helper() to the more informative
btrfs_work_helper().

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:48 +01:00
Qu Wenruo
4b654acdae btrfs: block-group: Fix a memory leak due to missing btrfs_put_block_group()
In btrfs_read_block_groups(), if we have an invalid block group which
has mixed type (DATA|METADATA) while the fs doesn't have MIXED_GROUPS
feature, we error out without freeing the block group cache.

This patch will add the missing btrfs_put_block_group() to prevent
memory leak.

Note for stable backports: the file to patch in versions <= 5.3 is
fs/btrfs/extent-tree.c

Fixes: 49303381f1 ("Btrfs: bail out if block group has different mixed flag")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-11 21:27:51 +02:00
Josef Bacik
a43c383574 btrfs: add space reservation tracepoint for reserved bytes
I noticed when folding the trace_btrfs_space_reservation() tracepoint
into the btrfs_space_info_update_* helpers that we didn't emit a
tracepoint when doing btrfs_add_reserved_bytes().  I know this is
because we were swapping bytes_may_use for bytes_reserved, so in my mind
there was no reason to have the tracepoint there.  But now there is
because we always emit the unreserve for the bytes_may_use side, and
this would have broken if compression was on anyway.  Add a tracepoint
to cover the bytes_reserved counter so the math still comes out right.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:17 +02:00
Josef Bacik
f3e75e3805 btrfs: roll tracepoint into btrfs_space_info_update helper
We duplicate this tracepoint everywhere we call these helpers, so update
the helper to have the tracepoint as well.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:17 +02:00
David Sterba
784352fe0b btrfs: move math functions to misc.h
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:15 +02:00
Josef Bacik
2bd36e7b4f btrfs: rename the btrfs_calc_*_metadata_size helpers
btrfs_calc_trunc_metadata_size differs from trans_metadata_size in that
it doesn't take into account any splitting at the levels, because
truncate will never split nodes.  However truncate _and_ changing will
never split nodes, so rename btrfs_calc_trunc_metadata_size to
btrfs_calc_metadata_size.  Also btrfs_calc_trans_metadata_size is purely
for inserting items, so rename this to btrfs_calc_insert_metadata_size.
Making these clearer will help when I start using them differently in
upcoming patches.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:13 +02:00
Josef Bacik
e11c0406ad btrfs: unexport the temporary exported functions
These were renamed and exported to facilitate logical migration of
different code chunks into block-group.c.  Now that all the users are in
one file go ahead and rename them back, move the code around, and make
them static.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:10 +02:00
Josef Bacik
3e43c279e8 btrfs: migrate the block group cleanup code
This can now be easily migrated as well.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ refresh on top of sysfs cleanups ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:10 +02:00
Josef Bacik
878d7b6794 btrfs: migrate the alloc_profile helpers
These feel more at home in block-group.c.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ refresh, adjust btrfs_get_alloc_profile exports ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:10 +02:00
Josef Bacik
07730d87ac btrfs: migrate the chunk allocation code
This feels more at home in block-group.c than in extent-tree.c.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>i
[ refresh ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:09 +02:00
Josef Bacik
606d1bf10d btrfs: migrate the block group space accounting helpers
We can now easily migrate this code as well.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:09 +02:00
Josef Bacik
77745c0511 btrfs: migrate the dirty bg writeout code
This can be easily migrated over now.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:09 +02:00
Josef Bacik
26ce2095e0 btrfs: migrate inc/dec_block_group_ro code
This can easily be moved now.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ refresh ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:09 +02:00
Josef Bacik
4358d9635a btrfs: migrate the block group read/creation code
All of the prep work has been done so we can now cleanly move this chunk
over.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ refresh, add btrfs_get_alloc_profile export, comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:08 +02:00
Josef Bacik
e3e0520b32 btrfs: migrate the block group removal code
This is the removal code and the unused bgs code.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ refresh, move clear_incompat_bg_bits ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:08 +02:00
Josef Bacik
9f21246d8c btrfs: migrate the block group caching code
We can now just copy it over to block-group.c.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:08 +02:00
Josef Bacik
3eeb3226a8 btrfs: migrate nocow and reservation helpers
These are relatively straightforward as well.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:04 +02:00
Josef Bacik
3cad128400 btrfs: migrate the block group ref counting stuff
Another easy set to move over to block-group.c.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:04 +02:00
Josef Bacik
2e405ad842 btrfs: migrate the block group lookup code
Move these bits first as they are the easiest to move.  Export two of
the helpers so they can be moved all at once.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:04 +02:00