Add cpuacct.h and let sched.h include it.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5155367B.2060506@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.
As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.
It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.
On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.
But we can't afford both at the same time or we run into
a circular dependency:
1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE
We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.
So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.
Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
All warnings:
In file included from kernel/sched/core.c:85:0:
kernel/sched/sched.h:1036:39: warning: 'struct sched_domain' declared inside parameter list
kernel/sched/sched.h:1036:39: warning: its scope is only this definition or declaration, which is probably not what you want
It's because struct sched_domain is defined inside #if CONFIG_SMP,
while update_group_power() is declared unconditionally.
Fix this warning by declaring update_group_power() only if
CONFIG_SMP=n.
Build tested with CONFIG_SMP enabled and then disabled.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5137F4BA.2060101@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
They are used internally only.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A78E.7040609@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move struct sched_group_power and sched_group and related inline
functions to kernel/sched/sched.h, as they are used internally
only.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A77F.2010705@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
They are used internally only.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A771.4070104@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move rt scheduler definitions out of include/linux/sched.h into
new file include/linux/sched/rt.h
Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094707.7b9f825f@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the sysctl-related bits from include/linux/sched.h into
a new file: include/linux/sched/sysctl.h. Then update source
files requiring access to those bits by including the new
header file.
Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094659.06dced96@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
The "mm: sched: numa: Control enabling and disabling of NUMA balancing"
depends on scheduling debug being enabled but it's perfectly legimate to
disable automatic NUMA balancing even without this option. This should
take care of it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
NOTE: This patch is based on "sched, numa, mm: Add fault driven
placement and migration policy" but as it throws away all the policy
to just leave a basic foundation I had to drop the signed-offs-by.
This patch creates a bare-bones method for setting PTEs pte_numa in the
context of the scheduler that when faulted later will be faulted onto the
node the CPU is running on. In itself this does nothing useful but any
placement policy will fundamentally depend on receiving hints on placement
from fault context and doing something intelligent about it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
While per-entity load-tracking is generally useful, beyond computing shares
distribution, e.g. runnable based load-balance (in progress), governors,
power-management, etc.
These facilities are not yet consumers of this data. This may be trivially
reverted when the information is required; but avoid paying the overhead for
calculations we will not use until then.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.422162369@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the machinery in place is in place to compute contributed load in a
bottom up fashion; replace the shares distribution code within update_shares()
accordingly.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.061208672@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With bandwidth control tracked entities may cease execution according to user
specified bandwidth limits. Charging this time as either throttled or blocked
however, is incorrect and would falsely skew in either direction.
What we actually want is for any throttled periods to be "invisible" to
load-tracking as they are removed from the system for that interval and
contribute normally otherwise.
Do this by moderating the progression of time to omit any periods in which the
entity belonged to a throttled hierarchy.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.998912151@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Entities of equal weight should receive equitable distribution of cpu time.
This is challenging in the case of a task_group's shares as execution may be
occurring on multiple cpus simultaneously.
To handle this we divide up the shares into weights proportionate with the load
on each cfs_rq. This does not however, account for the fact that the sum of
the parts may be less than one cpu and so we need to normalize:
load(tg) = min(runnable_avg(tg), 1) * tg->shares
Where runnable_avg is the aggregate time in which the task_group had runnable
children.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.930124292@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Maintain a global running sum of the average load seen on each cfs_rq belonging
to each task group so that it may be used in calculating an appropriate
shares:weight distribution.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.792901086@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a running entity blocks we migrate its tracked load to
cfs_rq->blocked_runnable_avg. In the sleep case this occurs while holding
rq->lock and so is a natural transition. Wake-ups however, are potentially
asynchronous in the presence of migration and so special care must be taken.
We use an atomic counter to track such migrated load, taking care to match this
with the previously introduced decay counters so that we don't migrate too much
load.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.726077467@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are currently maintaining:
runnable_load(cfs_rq) = \Sum task_load(t)
For all running children t of cfs_rq. While this can be naturally updated for
tasks in a runnable state (as they are scheduled); this does not account for
the load contributed by blocked task entities.
This can be solved by introducing a separate accounting for blocked load:
blocked_load(cfs_rq) = \Sum runnable(b) * weight(b)
Obviously we do not want to iterate over all blocked entities to account for
their decay, we instead observe that:
runnable_load(t) = \Sum p_i*y^i
and that to account for an additional idle period we only need to compute:
y*runnable_load(t).
This means that we can compute all blocked entities at once by evaluating:
blocked_load(cfs_rq)` = y * blocked_load(cfs_rq)
Finally we maintain a decay counter so that when a sleeping entity re-awakens
we can determine how much of its load should be removed from the blocked sum.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.585389902@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For a given task t, we can compute its contribution to load as:
task_load(t) = runnable_avg(t) * weight(t)
On a parenting cfs_rq we can then aggregate:
runnable_load(cfs_rq) = \Sum task_load(t), for all runnable children t
Maintain this bottom up, with task entities adding their contributed load to
the parenting cfs_rq sum. When a task entity's load changes we add the same
delta to the maintained sum.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.514678907@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since runqueues do not have a corresponding sched_entity we instead embed a
sched_avg structure directly.
Signed-off-by: Ben Segall <bsegall@google.com>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.442637130@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the last architecture to use this has stopped doing so (ARM,
thanks Catalin!) we can remove this complexity from the scheduler
core.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/n/tip-g9p2a1w81xxbrze25v9zpzbf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
migrate_tasks() uses _pick_next_task_rt() to get tasks from the
real-time runqueues to be migrated. When rt_rq is throttled
_pick_next_task_rt() won't return anything, in which case
migrate_tasks() can't move all threads over and gets stuck in an
infinite loop.
Instead unthrottle rt runqueues before migrating tasks.
Additionally: move unthrottle_offline_cfs_rqs() to rq_offline_fair()
Signed-off-by: Peter Boonstoppel <pboonstoppel@nvidia.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/5FBF8E85CA34454794F0F7ECBA79798F379D3648B7@HQMAIL04.nvidia.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Extract cputime code from the giant sched/core.c and
put it in its own file. This make it easier to deal with
this particular area and de-bloat a bit more core.c
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
With multiple instances of task_groups, for_each_rt_rq() is a noop,
no task groups having been added to the rt.c list instance. This
renders __enable/disable_runtime() and print_rt_stats() noop, the
user (non) visible effect being that rt task groups are missing in
/proc/sched_debug.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: stable@kernel.org # v3.3+
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1344308413.6846.7.camel@marge.simpson.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Peter Portante reported that for large cgroup hierarchies (and or on
large CPU counts) we get immense lock contention on rq->lock and stuff
stops working properly.
His workload was a ton of processes, each in their own cgroup,
everybody idling except for a sporadic wakeup once every so often.
It was found that:
schedule()
idle_balance()
load_balance()
local_irq_save()
double_rq_lock()
update_h_load()
walk_tg_tree(tg_load_down)
tg_load_down()
Results in an entire cgroup hierarchy walk under rq->lock for every
new-idle balance and since new-idle balance isn't throttled this
results in a lot of work while holding the rq->lock.
This patch does two things, it removes the work from under rq->lock
based on the good principle of race and pray which is widely employed
in the load-balancer as a whole. And secondly it throttles the
update_h_load() calculation to max once per jiffy.
I considered excluding update_h_load() for new-idle balance
all-together, but purely relying on regular balance passes to update
this data might not work out under some rare circumstances where the
new-idle busiest isn't the regular busiest for a while (unlikely, but
a nightmare to debug if someone hits it and suffers).
Cc: pjt@google.com
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Reported-by: Peter Portante <pportant@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-aaarrzfpnaam7pqrekofu8a6@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Stefan reported a crash on a kernel before a3e5d1091c ("sched:
Don't call task_group() too many times in set_task_rq()"), he
found the reason to be that the multiple task_group()
invocations in set_task_rq() returned different values.
Looking at all that I found a lack of serialization and plain
wrong comments.
The below tries to fix it using an extra pointer which is
updated under the appropriate scheduler locks. Its not pretty,
but I can't really see another way given how all the cgroup
stuff works.
Reported-and-tested-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1340364965.18025.71.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Thanks to Charles Wang for spotting the defects in the current code:
- If we go idle during the sample window -- after sampling, we get a
negative bias because we can negate our own sample.
- If we wake up during the sample window we get a positive bias
because we push the sample to a known active period.
So rewrite the entire nohz load-avg muck once again, now adding
copious documentation to the code.
Reported-and-tested-by: Doug Smythies <dsmythies@telus.net>
Reported-and-tested-by: Charles Wang <muming.wq@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins
[ minor edits ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Weird topologies can lead to asymmetric domain setups. This needs
further consideration since these setups are typically non-minimal
too.
For now, make it work by adding an extra mask selecting which CPUs
are allowed to iterate up.
The topology that triggered it is the one from David Rientjes:
10 20 20 30
20 10 20 20
20 20 10 20
30 20 20 10
resulting in boxes that wouldn't even boot.
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-3p86l9cuaqnxz7uxsojmz5rm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While investigating why the load-balancer did funny I found that the
rq->cpu_load[] tables were completely screwy.. a bit more digging
revealed that the updates that got through were missing ticks followed
by a catchup of 2 ticks.
The catchup assumes the cpu was idle during that time (since only nohz
can cause missed ticks and the machine is idle etc..) this means that
esp. the higher indices were significantly lower than they ought to
be.
The reason for this is that its not correct to compare against jiffies
on every jiffy on any other cpu than the cpu that updates jiffies.
This patch cludges around it by only doing the catch-up stuff from
nohz_idle_balance() and doing the regular stuff unconditionally from
the tick.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Cc: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/n/tip-tp4kj18xdd5aj4vvj0qg55s2@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since there's a PID space limit of 30bits (see
futex.h:FUTEX_TID_MASK) and allocating that many tasks (assuming a
lower bound of 2 pages per task) would still take 8T of memory it
seems reasonable to say that unsigned int is sufficient for
rq->nr_running.
When we do get anywhere near that amount of tasks I suspect other
things would go funny, load-balancer load computations would really
need to be hoisted to 128bit etc.
So save a few bytes and convert rq->nr_running and friends to
unsigned int.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-y3tvyszjdmbibade5bw8zl81@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar.
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix incorrect usage of for_each_cpu_mask() in select_fallback_rq()
sched: Fix __schedule_bug() output when called from an interrupt
sched/arch: Introduce the finish_arch_post_lock_switch() scheduler callback
Pull scheduler changes for v3.4 from Ingo Molnar
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
printk: Make it compile with !CONFIG_PRINTK
sched/x86: Fix overflow in cyc2ns_offset
sched: Fix nohz load accounting -- again!
sched: Update yield() docs
printk/sched: Introduce special printk_sched() for those awkward moments
sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer
sched: Cleanup cpu_active madness
sched: Fix load-balance wreckage
sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
sched: Ditch per cgroup task lists for load-balancing
sched: Rename load-balancing fields
sched: Move load-balancing arguments into helper struct
sched/rt: Do not submit new work when PI-blocked
sched/rt: Prevent idle task boosting
sched/wait: Add __wake_up_all_locked() API
sched/rt: Document scheduler related skip-resched-check sites
sched/rt: Use schedule_preempt_disabled()
sched/rt: Add schedule_preempt_disabled()
sched/rt: Do not throttle when PI boosting
sched/rt: Keep period timer ticking when rt throttling is active
...
This callback is called by the scheduler after rq->lock has been released
and interrupts enabled. It will be used in subsequent patches on the ARM
architecture.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Tested-by: Marc Zyngier <Marc.Zyngier@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/20120313110840.7b444deb6b1bb902c15f3cdf@canb.auug.org.au
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Per cgroup load-balance has numerous problems, chief amongst them that
there is no real sane order in them. So stop pretending it makes sense
and enqueue all tasks on a single list.
This also allows us to more easily fix the fwd progress issue
uncovered by the lock-break stuff. Rotate the list on failure to
migreate and limit the total iterations to nr_running (which with
releasing the lock isn't strictly accurate but close enough).
Also add a filter that skips very light tasks on the first attempt
around the list, this attempts to avoid shooting whole cgroups around
without affecting over balance.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Link: http://lkml.kernel.org/n/tip-tx8yqydc7eimgq7i4rkc3a4g@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
So here's a boot tested patch on top of Jason's series that does
all the cleanups I talked about and turns jump labels into a
more intuitive to use facility. It should also address the
various misconceptions and confusions that surround jump labels.
Typical usage scenarios:
#include <linux/static_key.h>
struct static_key key = STATIC_KEY_INIT_TRUE;
if (static_key_false(&key))
do unlikely code
else
do likely code
Or:
if (static_key_true(&key))
do likely code
else
do unlikely code
The static key is modified via:
static_key_slow_inc(&key);
...
static_key_slow_dec(&key);
The 'slow' prefix makes it abundantly clear that this is an
expensive operation.
I've updated all in-kernel code to use this everywhere. Note
that I (intentionally) have not pushed through the rename
blindly through to the lowest levels: the actual jump-label
patching arch facility should be named like that, so we want to
decouple jump labels from the static-key facility a bit.
On non-jump-label enabled architectures static keys default to
likely()/unlikely() branches.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: a.p.zijlstra@chello.nl
Cc: mathieu.desnoyers@efficios.com
Cc: davem@davemloft.net
Cc: ddaney.cavm@gmail.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Current the initial SCHED_RR timeslice of init_task is HZ, which means
1s, and is not same as the default SCHED_RR timeslice DEF_TIMESLICE.
Change that initial timeslice to the DEF_TIMESLICE.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
[ s/DEF_TIMESLICE/RR_TIMESLICE/g ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4F3C9995.3010800@ct.jp.nec.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently we don't utilize the sched_switch field anymore.
But, simply removing sched_switch field from the middle of the
sched_stat output will break tools.
So, to stay compatible we hardcode it to zero and remove the
field from the scheduler data structures.
Update the schedstat documentation accordingly.
Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1327422836.27181.5.camel@localhost.localdomain
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mike reported a 13% drop in netperf TCP_RR performance due to the
new remote wakeup code. Suresh too noticed some performance issues
with it.
Reducing the IPIs to only cross cache domains solves the observed
performance issues.
Reported-by: Suresh Siddha <suresh.b.siddha@intel.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Link: http://lkml.kernel.org/r/1323338531.17673.7.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that we initialize jump_labels before sched_init() we can use them
for the debug features without having to worry about a window where
they have the wrong setting.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-vpreo4hal9e0kzqmg5y0io2k@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Right now, after we collect tick statistics for user and system and store them
in a well known location, we keep the same statistics again for cpuacct.
Since cpuacct is hierarchical, the numbers for the root cgroup should be
absolutely equal to the system-wide numbers.
So it would be better to just use it: this patch changes cpuacct accounting
in a way that the cpustat statistics are kept in a struct kernel_cpustat percpu
array. In the root cgroup case, we just point it to the main array. The rest of
the hierarchy walk can be totally disabled later with a static branch - but I am
not doing it here.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Tuner <pjt@google.com>
Link: http://lkml.kernel.org/r/1322498719-2255-4-git-send-email-glommer@parallels.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce nr_busy_cpus in the struct sched_group_power [Not in sched_group
because sched groups are duplicated for the SD_OVERLAP scheduler domain]
and for each cpu that enters and exits idle, this parameter will
be updated in each scheduler group of the scheduler domain that this cpu
belongs to.
To avoid the frequent update of this state as the cpu enters
and exits idle, the update of the stat during idle exit is
delayed to the first timer tick that happens after the cpu becomes busy.
This is done using NOHZ_IDLE flag in the struct rq's nohz_flags.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.555984323@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce nohz_flags in the struct rq, which will track these two flags
for now.
NOHZ_TICK_STOPPED keeps track of the tick stopped status that gets set when
the tick is stopped. It will be used to update the nohz idle load balancer data
structures during the first busy tick after the tick is restarted. At this
first busy tick after tickless idle, NOHZ_TICK_STOPPED flag will be reset.
This will minimize the nohz idle load balancer status updates that currently
happen for every tickless exit, making it more scalable when there
are many logical cpu's that enter and exit idle often.
NOHZ_BALANCE_KICK will track the need for nohz idle load balance
on this rq. This will replace the nohz_balance_kick in the rq, which was
not being updated atomically.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.499438999@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of going through the scheduler domain hierarchy multiple times
(for giving priority to an idle core over an idle SMT sibling in a busy
core), start with the highest scheduler domain with the SD_SHARE_PKG_RESOURCES
flag and traverse the domain hierarchy down till we find an idle group.
This cleanup also addresses an issue reported by Mike where the recent
changes returned the busy thread even in the presence of an idle SMT
sibling in single socket platforms.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1321556904.15339.25.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>