Commit Graph

38 Commits

Author SHA1 Message Date
Christoph Hellwig
e8e0e170e2 xfs: remove XFS_BMAP_TRACE_EXLIST
Instead of looping over all extents in some debug-only helper just
insert trace points into the loops that already exist in the calling
functions.

Also split the xfs_extlist trace point into one each for reading and
writing extents from disk.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-10-26 15:38:27 -07:00
Christoph Hellwig
060ea65b39 xfs: add a xfs_bmap_fork_to_state helper
This creates the right initial bmap state from the passed in inode
fork enum.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-10-26 15:38:26 -07:00
Brian Foster
40214d128e xfs: trim writepage mapping to within eof
The writeback rework in commit fbcc025613 ("xfs: Introduce
writeback context for writepages") introduced a subtle change in
behavior with regard to the block mapping used across the
->writepages() sequence. The previous xfs_cluster_write() code would
only flush pages up to EOF at the time of the writepage, thus
ensuring that any pages due to file-extending writes would be
handled on a separate cycle and with a new, updated block mapping.

The updated code establishes a block mapping in xfs_writepage_map()
that could extend beyond EOF if the file has post-eof preallocation.
Because we now use the generic writeback infrastructure and pass the
cached mapping to each writepage call, there is no implicit EOF
limit in place. If eofblocks trimming occurs during ->writepages(),
any post-eof portion of the cached mapping becomes invalid. The
eofblocks code has no means to serialize against writeback because
there are no pages associated with post-eof blocks. Therefore if an
eofblocks trim occurs and is followed by a file-extending buffered
write, not only has the mapping become invalid, but we could end up
writing a page to disk based on the invalid mapping.

Consider the following sequence of events:

- A buffered write creates a delalloc extent and post-eof
  speculative preallocation.
- Writeback starts and on the first writepage cycle, the delalloc
  extent is converted to real blocks (including the post-eof blocks)
  and the mapping is cached.
- The file is closed and xfs_release() trims post-eof blocks. The
  cached writeback mapping is now invalid.
- Another buffered write appends the file with a delalloc extent.
- The concurrent writeback cycle picks up the just written page
  because the writeback range end is LLONG_MAX. xfs_writepage_map()
  attributes it to the (now invalid) cached mapping and writes the
  data to an incorrect location on disk (and where the file offset is
  still backed by a delalloc extent).

This problem is reproduced by xfstests test generic/464, which
triggers racing writes, appends, open/closes and writeback requests.

To address this problem, trim the mapping used during writeback to
within EOF when the mapping is validated. This ensures the mapping
is revalidated for any pages encountered beyond EOF as of the time
the current mapping was cached or last validated.

Reported-by: Eryu Guan <eguan@redhat.com>
Diagnosed-by: Eryu Guan <eguan@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-10-16 12:26:50 -07:00
Darrick J. Wong
e1a4e37cc7 xfs: try to avoid blowing out the transaction reservation when bunmaping a shared extent
In a pathological scenario where we are trying to bunmapi a single
extent in which every other block is shared, it's possible that trying
to unmap the entire large extent in a single transaction can generate so
many EFIs that we overflow the transaction reservation.

Therefore, use a heuristic to guess at the number of blocks we can
safely unmap from a reflink file's data fork in an single transaction.
This should prevent problems such as the log head slamming into the tail
and ASSERTs that trigger because we've exceeded the transaction
reservation.

Note that since bunmapi can fail to unmap the entire range, we must also
teach the deferred unmap code to roll into a new transaction whenever we
get low on reservation.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: random edits, all bugs are my fault]
Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-06-19 08:59:10 -07:00
Christoph Hellwig
0c1d9e4a61 xfs: simplify validation of the unwritten extent bit
XFS only supports the unwritten extent bit in the data fork, and only if
the file system has a version 5 superblock or the unwritten extent
feature bit.

We currently have two routines that validate the invariant:
xfs_check_nostate_extents which return -EFSCORRUPTED when it's not met,
and xfs_validate_extent that triggers and assert in debug build.

Both of them iterate over all extents of an inode fork when called,
which isn't very efficient.

This patch instead adds a new helper that verifies the invariant one
extent at a time, and calls it from the places where we iterate over
all extents to converted them from or two the in-memory format.  The
callers then return -EFSCORRUPTED when reading invalid extents from
disk, or trigger an assert when writing them to disk.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-04-25 09:40:41 -07:00
Christoph Hellwig
9c4f29d391 xfs: factor out a xfs_bmap_is_real_extent helper
This checks for all the non-normal extent types, including handling both
encodings of delayed allocations.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-04-03 15:18:16 -07:00
Christoph Hellwig
d2b3964a07 xfs: fix COW writeback race
Due to the way how xfs_iomap_write_allocate tries to convert the whole
found extents from delalloc to real space we can run into a race
condition with multiple threads doing writes to this same extent.
For the non-COW case that is harmless as the only thing that can happen
is that we call xfs_bmapi_write on an extent that has already been
converted to a real allocation.  For COW writes where we move the extent
from the COW to the data fork after I/O completion the race is, however,
not quite as harmless.  In the worst case we are now calling
xfs_bmapi_write on a region that contains hole in the COW work, which
will trip up an assert in debug builds or lead to file system corruption
in non-debug builds.  This seems to be reproducible with workloads of
small O_DSYNC write, although so far I've not managed to come up with
a with an isolated reproducer.

The fix for the issue is relatively simple:  tell xfs_bmapi_write
that we are only asked to convert delayed allocations and skip holes
in that case.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-01-23 10:55:07 -08:00
Brian Foster
974ae922ef xfs: track preallocation separately in xfs_bmapi_reserve_delalloc()
Speculative preallocation is currently processed entirely by the callers
of xfs_bmapi_reserve_delalloc(). The caller determines how much
preallocation to include, adjusts the extent length and passes down the
resulting request.

While this works fine for post-eof speculative preallocation, it is not
as reliable for COW fork preallocation. COW fork preallocation is
implemented via the cowextszhint, which aligns the start offset as well
as the length of the extent. Further, it is difficult for the caller to
accurately identify when preallocation occurs because the returned
extent could have been merged with neighboring extents in the fork.

To simplify this situation and facilitate further COW fork preallocation
enhancements, update xfs_bmapi_reserve_delalloc() to take a separate
preallocation parameter to incorporate into the allocation request. The
preallocation blocks value is tacked onto the end of the request and
adjusted to accommodate neighboring extents and extent size limits.
Since xfs_bmapi_reserve_delalloc() now knows precisely how much
preallocation was included in the allocation, it can also tag the inodes
appropriately to support preallocation reclaim.

Note that xfs_bmapi_reserve_delalloc() callers are not yet updated to
use the preallocation mechanism. This patch should not change behavior
outside of correctly tagging reflink inodes when start offset
preallocation occurs (which the caller does not handle correctly).

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-11-28 14:57:42 +11:00
Christoph Hellwig
6edc977f77 xfs: remove xfs_bmap_search_extents
Now that all users are gone.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-11-24 11:40:14 +11:00
Christoph Hellwig
65c5f41978 xfs: remove prev argument to xfs_bmapi_reserve_delalloc
We can easily lookup the previous extent for the cases where we need it,
which saves the callers from looking it up for us later in the series.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-11-24 11:39:44 +11:00
Christoph Hellwig
64e6428ddd xfs: remove xfs_bunmapi_cow
Since no one uses it anymore.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-10-20 15:54:59 +11:00
Christoph Hellwig
fa5c836ca8 xfs: refactor xfs_bunmapi_cow
Split out two helpers for deleting delayed or real extents from the COW fork.
This allows to call them directly from xfs_reflink_cow_end_io once that
function is refactored to iterate the extent tree.  It will also allow
to reuse the delalloc deletion from xfs_bunmapi in the future.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-10-20 15:54:14 +11:00
Darrick J. Wong
0a0af28cad xfs: add xfs_trim_extent
This helpers allows to trim an extent to a subset of it's original range
while making sure the block numbers in it remain valid,

In the future xfs_trim_extent and xfs_bmapi_trim_map should probably be
merged in some form.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: split from a previous patch from Darrick, moved around and added
 support for "raw" delayed extents"]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-10-20 15:51:50 +11:00
Darrick J. Wong
4862cfe825 xfs: support removing extents from CoW fork
Create a helper method to remove extents from the CoW fork without
any of the side effects (rmapbt/bmbt updates) of the regular extent
deletion routine.  We'll eventually use this to clear out the CoW fork
during ioend processing.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-05 13:55:40 -07:00
Darrick J. Wong
be51f8119c xfs: support bmapping delalloc extents in the CoW fork
Allow the creation of delayed allocation extents in the CoW fork.  In
a subsequent patch we'll wire up iomap_begin to actually do this via
reflink helper functions.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 18:06:40 -07:00
Darrick J. Wong
3993baeb3c xfs: introduce the CoW fork
Introduce a new in-core fork for storing copy-on-write delalloc
reservations and allocated extents that are in the process of being
written out.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 18:06:40 -07:00
Darrick J. Wong
4453593be6 xfs: return work remaining at the end of a bunmapi operation
Return the range of file blocks that bunmapi didn't free.  This hint
is used by CoW and reflink to figure out what part of an extent
actually got freed so that it can set up the appropriate atomic
remapping of just the freed range.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 18:06:39 -07:00
Darrick J. Wong
9f3afb57d5 xfs: implement deferred bmbt map/unmap operations
Implement deferred versions of the inode block map/unmap functions.
These will be used in subsequent patches to make reflink operations
atomic.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 11:05:44 -07:00
Darrick J. Wong
4847acf868 xfs: pass bmapi flags through to bmap_del_extent
Pass BMAPI_ flags from bunmapi into bmap_del_extent and extend
BMAPI_REMAP (which means "don't touch the allocator or the quota
accounting") to apply to bunmapi as well.  This will be used to
implement the unmap operation, which will be used by swapext.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 11:05:44 -07:00
Darrick J. Wong
f65306ea52 xfs: map an inode's offset to an exact physical block
Teach the bmap routine to know how to map a range of file blocks to a
specific range of physical blocks, instead of simply allocating fresh
blocks.  This enables reflink to map a file to blocks that are already
in use.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 11:05:44 -07:00
Darrick J. Wong
77d61fe45e xfs: log bmap intent items
Provide a mechanism for higher levels to create BUI/BUD items, submit
them to the log, and a stub function to deal with recovered BUI items.
These parts will be connected to the rmapbt in a later patch.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 11:05:44 -07:00
Dave Chinner
155cd433b5 Merge branch 'xfs-4.9-log-recovery-fixes' into for-next 2016-10-03 09:56:28 +11:00
Dave Chinner
292378edcb xfs: remote attribute blocks aren't really userdata
When adding a new remote attribute, we write the attribute to the
new extent before the allocation transaction is committed. This
means we cannot reuse busy extents as that violates crash
consistency semantics. Hence we currently treat remote attribute
extent allocation like userdata because it has the same overwrite
ordering constraints as userdata.

Unfortunately, this also allows the allocator to incorrectly apply
extent size hints to the remote attribute extent allocation. This
results in interesting failures, such as transaction block
reservation overruns and in-memory inode attribute fork corruption.

To fix this, we need to separate the busy extent reuse configuration
from the userdata configuration. This changes the definition of
XFS_BMAPI_METADATA slightly - it now means that allocation is
metadata and reuse of busy extents is acceptible due to the metadata
ordering semantics of the journal. If this flag is not set, it
means the allocation is that has unordered data writeback, and hence
busy extent reuse is not allowed. It no longer implies the
allocation is for user data, just that the data write will not be
strictly ordered. This matches the semantics for both user data
and remote attribute block allocation.

As such, This patch changes the "userdata" field to a "datatype"
field, and adds a "no busy reuse" flag to the field.
When we detect an unordered data extent allocation, we immediately set
the no reuse flag. We then set the "user data" flags based on the
inode fork we are allocating the extent to. Hence we only set
userdata flags on data fork allocations now and consider attribute
fork remote extents to be an unordered metadata extent.

The result is that remote attribute extents now have the expected
allocation semantics, and the data fork allocation behaviour is
completely unchanged.

It should be noted that there may be other ways to fix this (e.g.
use ordered metadata buffers for the remote attribute extent data
write) but they are more invasive and difficult to validate both
from a design and implementation POV. Hence this patch takes the
simple, obvious route to fixing the problem...

Reported-and-tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-26 08:21:28 +10:00
Christoph Hellwig
51446f5ba4 xfs: rewrite and optimize the delalloc write path
Currently xfs_iomap_write_delay does up to lookups in the inode
extent tree, which is rather costly especially with the new iomap
based write path and small write sizes.

But it turns out that the low-level xfs_bmap_search_extents gives us
all the information we need in the regular delalloc buffered write
path:

 - it will return us an extent covering the block we are looking up
   if it exists.  In that case we can simply return that extent to
   the caller and are done
 - it will tell us if we are beyoned the last current allocated
   block with an eof return parameter.  In that case we can create a
   delalloc reservation and use the also returned information about
   the last extent in the file as the hint to size our delalloc
   reservation.
 - it can tell us that we are writing into a hole, but that there is
   an extent beyoned this hole.  In this case we can create a
   delalloc reservation that covers the requested size (possible
   capped to the next existing allocation).

All that can be done in one single routine instead of bouncing up
and down a few layers.  This reduced the CPU overhead of the block
mapping routines and also simplified the code a lot.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-19 11:10:21 +10:00
Darrick J. Wong
340785cca1 xfs: add owner field to extent allocation and freeing
For the rmap btree to work, we have to feed the extent owner
information to the the allocation and freeing functions. This
information is what will end up in the rmap btree that tracks
allocated extents. While we technically don't need the owner
information when freeing extents, passing it allows us to validate
that the extent we are removing from the rmap btree actually
belonged to the owner we expected it to belong to.

We also define a special set of owner values for internal metadata
that would otherwise have no owner. This allows us to tell the
difference between metadata owned by different per-ag btrees, as
well as static fs metadata (e.g. AG headers) and internal journal
blocks.

There are also a couple of special cases we need to take care of -
during EFI recovery, we don't actually know who the original owner
was, so we need to pass a wildcard to indicate that we aren't
checking the owner for validity. We also need special handling in
growfs, as we "free" the space in the last AG when extending it, but
because it's new space it has no actual owner...

While touching the xfs_bmap_add_free() function, re-order the
parameters to put the struct xfs_mount first.

Extend the owner field to include both the owner type and some sort
of index within the owner.  The index field will be used to support
reverse mappings when reflink is enabled.

When we're freeing extents from an EFI, we don't have the owner
information available (rmap updates have their own redo items).
xfs_free_extent therefore doesn't need to do an rmap update. Make
sure that the log replay code signals this correctly.

This is based upon a patch originally from Dave Chinner. It has been
extended to add more owner information with the intent of helping
recovery operations when things go wrong (e.g. offset of user data
block in a file).

[dchinner: de-shout the xfs_rmap_*_owner helpers]
[darrick: minor style fixes suggested by Christoph Hellwig]

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 11:33:42 +10:00
Darrick J. Wong
2c3234d1ef xfs: rename flist/free_list to dfops
Mechanical change of flist/free_list to dfops, since they're now
deferred ops, not just a freeing list.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 11:19:29 +10:00
Darrick J. Wong
310a75a3c6 xfs: change xfs_bmap_{finish,cancel,init,free} -> xfs_defer_*
Drop the compatibility shims that we were using to integrate the new
deferred operation mechanism into the existing code.  No new code.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 11:18:10 +10:00
Darrick J. Wong
3ab78df2a5 xfs: rework xfs_bmap_free callers to use xfs_defer_ops
Restructure everything that used xfs_bmap_free to use xfs_defer_ops
instead.  For now we'll just remove the old symbols and play some
cpp magic to make it work; in the next patch we'll actually rename
everything.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 11:15:38 +10:00
Darrick J. Wong
e66a4c678e xfs: convert list of extents to free into a regular list
In struct xfs_bmap_free, convert the open-coded free extent list to
a regular list, then use list_sort to sort it prior to processing.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 11:53:28 +10:00
Darrick J. Wong
59bad075bd xfs: rearrange xfs_bmap_add_free parameters
This is already in xfsprogs' libxfs, so port it to the kernel.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 11:53:28 +10:00
Eric Sandeen
f6106efae5 xfs: eliminate committed arg from xfs_bmap_finish
Calls to xfs_bmap_finish() and xfs_trans_ijoin(), and the
associated comments were replicated several times across
the attribute code, all dealing with what to do if the
transaction was or wasn't committed.

And in that replicated code, an ASSERT() test of an
uninitialized variable occurs in several locations:

	error = xfs_attr_thing(&args);
	if (!error) {
		error = xfs_bmap_finish(&args.trans, args.flist,
					&committed);
	}
	if (error) {
		ASSERT(committed);

If the first xfs_attr_thing() failed, we'd skip the xfs_bmap_finish,
never set "committed", and then test it in the ASSERT.

Fix this up by moving the committed state internal to xfs_bmap_finish,
and add a new inode argument.  If an inode is passed in, it is passed
through to __xfs_trans_roll() and joined to the transaction there if
the transaction was committed.

xfs_qm_dqalloc() was a little unique in that it called bjoin rather
than ijoin, but as Dave points out we can detect the committed state
but checking whether (*tpp != tp).

Addresses-Coverity-Id: 102360
Addresses-Coverity-Id: 102361
Addresses-Coverity-Id: 102363
Addresses-Coverity-Id: 102364
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-11 11:34:01 +11:00
Dave Chinner
3fbbbea34b xfs: introduce BMAPI_ZERO for allocating zeroed extents
To enable DAX to do atomic allocation of zeroed extents, we need to
drive the block zeroing deep into the allocator. Because
xfs_bmapi_write() can return merged extents on allocation that were
only partially allocated (i.e. requested range spans allocated and
hole regions, allocation into the hole was contiguous), we cannot
zero the extent returned from xfs_bmapi_write() as that can
overwrite existing data with zeros.

Hence we have to drive the extent zeroing into the allocation code,
prior to where we merge the extents into the BMBT and return the
resultant map. This means we need to propagate this need down to
the xfs_alloc_vextent() and issue the block zeroing at this point.

While this functionality is being introduced for DAX, there is no
reason why it is specific to DAX - we can per-zero blocks during the
allocation transaction on any type of device. It's just slow (and
usually slower than unwritten allocation and conversion) on
traditional block devices so doesn't tend to get used. We can,
however, hook hardware zeroing optimisations via sb_issue_zeroout()
to this operation, so it may be useful in future and hence the
"allocate zeroed blocks" API needs to be implementation neutral.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:27:22 +11:00
Namjae Jeon
a904b1ca57 xfs: Add support FALLOC_FL_INSERT_RANGE for fallocate
This patch implements fallocate's FALLOC_FL_INSERT_RANGE for XFS.

1) Make sure that both offset and len are block size aligned.
2) Update the i_size of inode by len bytes.
3) Compute the file's logical block number against offset. If the computed
   block number is not the starting block of the extent, split the extent
   such that the block number is the starting block of the extent.
4) Shift all the extents which are lying bewteen [offset, last allocated extent]
   towards right by len bytes. This step will make a hole of len bytes
   at offset.

Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-03-25 15:08:56 +11:00
Dave Chinner
aa5d95c1b5 xfs: move xfs_bmap_finish prototype
This function is used libxfs code, but is implemented separately in
userspace. Move the function prototype to xfs_bmap.h so that the
prototype is shared even if the implementations aren't.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-09 10:47:14 +11:00
Dave Chinner
9799b438ce xfs: move struct xfs_bmalloca to libxfs
It no long is used for stack splits, so strip the kernel workqueue
bits from it and push it back into libxfs/xfs_bmap.h so that
it can be shared with the userspace code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-09 10:46:49 +11:00
Brian Foster
2c845f5a5f xfs: track collapse via file offset rather than extent index
The collapse range implementation uses a transaction per extent shift.
The progress of the overall operation is tracked via the current extent
index of the in-core extent list. This is racy because the ilock must be
dropped and reacquired for each transaction according to locking and log
reservation rules. Therefore, writeback to prior regions of the file is
possible and can change the extent count. This changes the extent to
which the current index refers and causes the collapse to fail mid
operation. To avoid this problem, the entire file is currently written
back before the collapse operation starts.

To eliminate the need to flush the entire file, use the file offset
(fsb) to track the progress of the overall extent shift operation rather
than the extent index. Modify xfs_bmap_shift_extents() to
unconditionally convert the start_fsb parameter to an extent index and
return the file offset of the extent where the shift left off, if
further extents exist. The bulk of ths function can remain based on
extent index as ilock is held by the caller. xfs_collapse_file_space()
now uses the fsb output as the starting point for the subsequent shift.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-23 15:37:09 +10:00
Dave Chinner
7f8a058f6d Merge branch 'xfs-libxfs-restructure' into for-next 2014-07-15 07:37:18 +10:00
Dave Chinner
84be0ffc90 libxfs: move header files
Move all the header files that are shared with userspace into
libxfs. This is done as one big chunk simpy to get it done quickly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-06-25 14:57:36 +10:00