Commit d0164adc89 ("mm, page_alloc: distinguish between being unable
to sleep, unwilling to sleep and avoiding waking kswapd") modified
__GFP_WAIT to explicitly identify the difference between atomic callers
and those that were unwilling to sleep. Later the definition was
removed entirely.
The GFP_RECLAIM_MASK is the set of flags that affect watermark checking
and reclaim behaviour but __GFP_ATOMIC was never added. Without it,
atomic users of the slab allocator strip the __GFP_ATOMIC flag and
cannot access the page allocator atomic reserves. This patch addresses
the problem.
The user-visible impact depends on the workload but potentially atomic
allocations unnecessarily fail without this path.
Link: http://lkml.kernel.org/r/20160610093832.GK2527@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Marcin Wojtas <mw@semihalf.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org> [4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we may put reserved by mempool elements into quarantine via
kasan_kfree(). This is totally wrong since quarantine may really free
these objects. So when mempool will try to use such element,
use-after-free will happen. Or mempool may decide that it no longer
need that element and double-free it.
So don't put object into quarantine in kasan_kfree(), just poison it.
Rename kasan_kfree() to kasan_poison_kfree() to respect that.
Also, we shouldn't use kasan_slab_alloc()/kasan_krealloc() in
kasan_unpoison_element() because those functions may update allocation
stacktrace. This would be wrong for the most of the remove_element call
sites.
(The only call site where we may want to update alloc stacktrace is
in mempool_alloc(). Kmemleak solves this by calling
kmemleak_update_trace(), so we could make something like that too.
But this is out of scope of this patch).
Fixes: 55834c5909 ("mm: kasan: initial memory quarantine implementation")
Link: http://lkml.kernel.org/r/575977C3.1010905@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When fallocate is interrupted it will undo a range that extends one byte
past its range of allocated pages. This can corrupt an in-use page by
zeroing out its first byte. Instead, undo using the inclusive byte
range.
Fixes: 1635f6a741 ("tmpfs: undo fallocation on failure")
Link: http://lkml.kernel.org/r/1462713387-16724-1-git-send-email-anthony.romano@coreos.com
Signed-off-by: Anthony Romano <anthony.romano@coreos.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Brandon Philips <brandon@ifup.co>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 36324a990c ("oom: clear TIF_MEMDIE after oom_reaper
managed to unmap the address space") changed to use find_lock_task_mm()
for finding a mm_struct to reap, it is guaranteed that mm->mm_users > 0
because find_lock_task_mm() returns a task_struct with ->mm != NULL.
Therefore, we can safely use atomic_inc().
Link: http://lkml.kernel.org/r/1465024759-8074-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e2fe14564d ("oom_reaper: close race with exiting task") reduced
frequency of needlessly selecting next OOM victim, but was calling
mmput_async() when atomic_inc_not_zero() failed.
Link: http://lkml.kernel.org/r/1464423365-5555-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export these symbols such that UBIFS can implement
->migratepage.
Cc: stable@vger.kernel.org
Signed-off-by: Richard Weinberger <richard@nod.at>
Acked-by: Christoph Hellwig <hch@lst.de>
Pull percpu fixes from Tejun Heo:
"While adding GFP_ATOMIC support to the percpu allocator, the
synchronization for the fast-path which doesn't require external
allocations was separated into pcpu_lock.
Unfortunately, it incorrectly decoupled async paths and percpu
chunks could get destroyed while still being operated on. This
contains two patches to fix the bug"
* 'for-4.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: fix synchronization between synchronous map extension and chunk destruction
percpu: fix synchronization between chunk->map_extend_work and chunk destruction
Pull block layer fixes from Jens Axboe:
"A small collection of fixes for the current series. This contains:
- Two fixes for xen-blkfront, from Bob Liu.
- A bug fix for NVMe, releasing only the specific resources we
requested.
- Fix for a debugfs flags entry for nbd, from Josef.
- Plug fix from Omar, fixing up a case of code being switched between
two functions.
- A missing bio_put() for the new discard callers of
submit_bio_wait(), fixing a regression causing a leak of the bio.
From Shaun.
- Improve dirty limit calculation precision in the writeback code,
fixing a case where setting a limit lower than 1% of memory would
end up being zero. From Tejun"
* 'for-linus' of git://git.kernel.dk/linux-block:
NVMe: Only release requested regions
xen-blkfront: fix resume issues after a migration
xen-blkfront: don't call talk_to_blkback when already connected to blkback
nbd: pass the nbd pointer for flags debugfs
block: missing bio_put following submit_bio_wait
blk-mq: really fix plug list flushing for nomerge queues
writeback: use higher precision calculation in domain_dirty_limits()
I noticed that the logic in the fadvise64_64 syscall is incorrect for
partial pages. While first page of the region is correctly skipped if
it is partial, the last page of the region is mistakenly discarded.
This leads to problems for applications that read data in
non-page-aligned chunks discarding already processed data between the
reads.
A somewhat misguided application that does something like write(XX bytes
(non-page-alligned)); drop the data it just wrote; repeat gets a
significant penalty in performance as a result.
Link: http://lkml.kernel.org/r/1464917140-1506698-1-git-send-email-green@linuxhacker.ru
Signed-off-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is based on https://patchwork.ozlabs.org/patch/574623/.
Tejun submitted commit 23d11a58a9 ("workqueue: skip flush dependency
checks for legacy workqueues") for the legacy create*_workqueue()
interface.
But some workq created by alloc_workqueue still reports warning on
memory reclaim, e.g nvme_workq with flag WQ_MEM_RECLAIM set:
workqueue: WQ_MEM_RECLAIM nvme:nvme_reset_work is flushing !WQ_MEM_RECLAIM events:lru_add_drain_per_cpu
------------[ cut here ]------------
WARNING: CPU: 0 PID: 6 at SoC/linux/kernel/workqueue.c:2448 check_flush_dependency+0xb4/0x10c
...
check_flush_dependency+0xb4/0x10c
flush_work+0x54/0x140
lru_add_drain_all+0x138/0x188
migrate_prep+0xc/0x18
alloc_contig_range+0xf4/0x350
cma_alloc+0xec/0x1e4
dma_alloc_from_contiguous+0x38/0x40
__dma_alloc+0x74/0x25c
nvme_alloc_queue+0xcc/0x36c
nvme_reset_work+0x5c4/0xda8
process_one_work+0x128/0x2ec
worker_thread+0x58/0x434
kthread+0xd4/0xe8
ret_from_fork+0x10/0x50
That's because lru_add_drain_all() will schedule the drain work on
system_wq, whose flag is set to 0, !WQ_MEM_RECLAIM.
Introduce a dedicated WQ_MEM_RECLAIM workqueue to do
lru_add_drain_all(), aiding in getting memory freed.
Link: http://lkml.kernel.org/r/1464917521-9775-1-git-send-email-shhuiw@foxmail.com
Signed-off-by: Wang Sheng-Hui <shhuiw@foxmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Christian Borntraeger reported a kernel panic after corrupt page counts,
and it turned out to be a regression introduced with commit aa88b68c3b
("thp: keep huge zero page pinned until tlb flush"), at least on s390.
put_huge_zero_page() was moved over from zap_huge_pmd() to
release_pages(), and it was replaced by tlb_remove_page(). However,
release_pages() might not always be triggered by (the arch-specific)
tlb_remove_page().
On s390 we call free_page_and_swap_cache() from tlb_remove_page(), and
not tlb_flush_mmu() -> free_pages_and_swap_cache() like the generic
version, because we don't use the MMU-gather logic. Although both
functions have very similar names, they are doing very unsimilar things,
in particular free_page_xxx is just doing a put_page(), while
free_pages_xxx calls release_pages().
This of course results in very harmful put_page()s on the huge zero
page, on architectures where tlb_remove_page() is implemented in this
way. It seems to affect only s390 and sh, but sh doesn't have THP
support, so the problem (currently) probably only exists on s390.
The following quick hack fixed the issue:
Link: http://lkml.kernel.org/r/20160602172141.75c006a9@thinkpad
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: <stable@vger.kernel.org> [4.6.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 1383399d7b ("mm: memcontrol: fix possible css ref leak
on oom"). Johannes points out "There is a task_in_memcg_oom() check
before calling mem_cgroup_oom()".
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the following memory hot-add error messages to info messages.
There is no need for these to be errors.
kasan: WARNING: KASAN doesn't support memory hot-add
kasan: Memory hot-add will be disabled
Link: http://lkml.kernel.org/r/1464794430-5486-1-git-send-email-shuahkh@osg.samsung.com
Signed-off-by: Shuah Khan <shuahkh@osg.samsung.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When creating a private mapping of a hugetlbfs file, it is possible to
unmap pages via ftruncate or fallocate hole punch. If subsequent faults
repopulate these mappings, the reserve counts will go negative. This is
because the code currently assumes all faults to private mappings will
consume reserves. The problem can be recreated as follows:
- mmap(MAP_PRIVATE) a file in hugetlbfs filesystem
- write fault in pages in the mapping
- fallocate(FALLOC_FL_PUNCH_HOLE) some pages in the mapping
- write fault in pages in the hole
This will result in negative huge page reserve counts and negative
subpool usage counts for the hugetlbfs. Note that this can also be
recreated with ftruncate, but fallocate is more straight forward.
This patch modifies the routines vma_needs_reserves and vma_has_reserves
to examine the reserve map associated with private mappings similar to
that for shared mappings. However, the reserve map semantics for
private and shared mappings are very different. This results in subtly
different code that is explained in the comments.
Link: http://lkml.kernel.org/r/1464720957-15698-1-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The optimistic fast path may use cpuset_current_mems_allowed instead of
of a NULL nodemask supplied by the caller for cpuset allocations. The
preferred zone is calculated on this basis for statistic purposes and as
a starting point in the zonelist iterator.
However, if the context can ignore memory policies due to being atomic
or being able to ignore watermarks then the starting point in the
zonelist iterator is no longer correct. This patch resets the zonelist
iterator in the allocator slowpath if the context can ignore memory
policies. This will alter the zone used for statistics but only after
it is known that it makes sense for that context. Resetting it before
entering the slowpath would potentially allow an ALLOC_CPUSET allocation
to be accounted for against the wrong zone. Note that while nodemask is
not explicitly set to the original nodemask, it would only have been
overwritten if cpuset_enabled() and it was reset before the slowpath was
entered.
Link: http://lkml.kernel.org/r/20160602103936.GU2527@techsingularity.net
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Geert Uytterhoeven reported the following problem that bisected to
commit c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone
in a zonelist twice") on m68k/ARAnyM
BUG: scheduling while atomic: cron/668/0x10c9a0c0
Modules linked in:
CPU: 0 PID: 668 Comm: cron Not tainted 4.6.0-atari-05133-gc33d6c06f60f710f #364
Call Trace: [<0003d7d0>] __schedule_bug+0x40/0x54
__schedule+0x312/0x388
__schedule+0x0/0x388
prepare_to_wait+0x0/0x52
schedule+0x64/0x82
schedule_timeout+0xda/0x104
set_next_entity+0x18/0x40
pick_next_task_fair+0x78/0xda
io_schedule_timeout+0x36/0x4a
bit_wait_io+0x0/0x40
bit_wait_io+0x12/0x40
__wait_on_bit+0x46/0x76
wait_on_page_bit_killable+0x64/0x6c
bit_wait_io+0x0/0x40
wake_bit_function+0x0/0x4e
__lock_page_or_retry+0xde/0x124
do_scan_async+0x114/0x17c
lookup_swap_cache+0x24/0x4e
handle_mm_fault+0x626/0x7de
find_vma+0x0/0x66
down_read+0x0/0xe
wait_on_page_bit_killable_timeout+0x77/0x7c
find_vma+0x16/0x66
do_page_fault+0xe6/0x23a
res_func+0xa3c/0x141a
buserr_c+0x190/0x6d4
res_func+0xa3c/0x141a
buserr+0x20/0x28
res_func+0xa3c/0x141a
buserr+0x20/0x28
The relationship is not obvious but it's due to a failure to rescan the
full zonelist after the fair zone allocation policy exhausts the batch
count. While this is a functional problem, it's also a performance
issue. A page allocator microbenchmark showed the following
4.7.0-rc1 4.7.0-rc1
vanilla reset-v1r2
Min alloc-odr0-1 327.00 ( 0.00%) 326.00 ( 0.31%)
Min alloc-odr0-2 235.00 ( 0.00%) 235.00 ( 0.00%)
Min alloc-odr0-4 198.00 ( 0.00%) 198.00 ( 0.00%)
Min alloc-odr0-8 170.00 ( 0.00%) 170.00 ( 0.00%)
Min alloc-odr0-16 156.00 ( 0.00%) 156.00 ( 0.00%)
Min alloc-odr0-32 150.00 ( 0.00%) 150.00 ( 0.00%)
Min alloc-odr0-64 146.00 ( 0.00%) 146.00 ( 0.00%)
Min alloc-odr0-128 145.00 ( 0.00%) 145.00 ( 0.00%)
Min alloc-odr0-256 155.00 ( 0.00%) 155.00 ( 0.00%)
Min alloc-odr0-512 168.00 ( 0.00%) 165.00 ( 1.79%)
Min alloc-odr0-1024 175.00 ( 0.00%) 174.00 ( 0.57%)
Min alloc-odr0-2048 180.00 ( 0.00%) 180.00 ( 0.00%)
Min alloc-odr0-4096 187.00 ( 0.00%) 186.00 ( 0.53%)
Min alloc-odr0-8192 190.00 ( 0.00%) 190.00 ( 0.00%)
Min alloc-odr0-16384 191.00 ( 0.00%) 191.00 ( 0.00%)
Min alloc-odr1-1 736.00 ( 0.00%) 445.00 ( 39.54%)
Min alloc-odr1-2 343.00 ( 0.00%) 335.00 ( 2.33%)
Min alloc-odr1-4 277.00 ( 0.00%) 270.00 ( 2.53%)
Min alloc-odr1-8 238.00 ( 0.00%) 233.00 ( 2.10%)
Min alloc-odr1-16 224.00 ( 0.00%) 218.00 ( 2.68%)
Min alloc-odr1-32 210.00 ( 0.00%) 208.00 ( 0.95%)
Min alloc-odr1-64 207.00 ( 0.00%) 203.00 ( 1.93%)
Min alloc-odr1-128 276.00 ( 0.00%) 202.00 ( 26.81%)
Min alloc-odr1-256 206.00 ( 0.00%) 202.00 ( 1.94%)
Min alloc-odr1-512 207.00 ( 0.00%) 202.00 ( 2.42%)
Min alloc-odr1-1024 208.00 ( 0.00%) 205.00 ( 1.44%)
Min alloc-odr1-2048 213.00 ( 0.00%) 212.00 ( 0.47%)
Min alloc-odr1-4096 218.00 ( 0.00%) 216.00 ( 0.92%)
Min alloc-odr1-8192 341.00 ( 0.00%) 219.00 ( 35.78%)
Note that order-0 allocations are unaffected but higher orders get a
small boost from this patch and a large reduction in system CPU usage
overall as can be seen here:
4.7.0-rc1 4.7.0-rc1
vanilla reset-v1r2
User 85.32 86.31
System 2221.39 2053.36
Elapsed 2368.89 2202.47
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Link: http://lkml.kernel.org/r/20160531100848.GR2527@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg has noted that siglock usage in try_oom_reaper is both pointless
and dangerous. signal_group_exit can be checked lockless. The problem
is that sighand becomes NULL in __exit_signal so we can crash.
Fixes: 3ef22dfff2 ("oom, oom_reaper: try to reap tasks which skip regular OOM killer path")
Link: http://lkml.kernel.org/r/1464679423-30218-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In DEBUG_VM kernel, we can hit infinite loop for order == 0 in
buffered_rmqueue() when check_new_pcp() returns 1, because the bad page
is never removed from the pcp list. Fix this by removing the page
before retrying. Also we don't need to check if page is non-NULL,
because we simply grab it from the list which was just tested for being
non-empty.
Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20160530090154.GM2527@techsingularity.net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix erroneous z3fold header access in a HEADLESS page in reclaim
function, and change one remaining direct handle-to-buddy conversion to
use the appropriate helper.
Link: http://lkml.kernel.org/r/5748706F.9020208@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_offline_kmem() may be called from memcg_free_kmem() after a css
init failure. memcg_free_kmem() is a ->css_free callback which is
called without cgroup_mutex and memcg_offline_kmem() ends up using
css_for_each_descendant_pre() without any locking. Fix it by adding rcu
read locking around it.
mkdir: cannot create directory `65530': No space left on device
===============================
[ INFO: suspicious RCU usage. ]
4.6.0-work+ #321 Not tainted
-------------------------------
kernel/cgroup.c:4008 cgroup_mutex or RCU read lock required!
[ 527.243970] other info that might help us debug this:
[ 527.244715]
rcu_scheduler_active = 1, debug_locks = 0
2 locks held by kworker/0:5/1664:
#0: ("cgroup_destroy"){.+.+..}, at: [<ffffffff81060ab5>] process_one_work+0x165/0x4a0
#1: ((&css->destroy_work)#3){+.+...}, at: [<ffffffff81060ab5>] process_one_work+0x165/0x4a0
[ 527.248098] stack backtrace:
CPU: 0 PID: 1664 Comm: kworker/0:5 Not tainted 4.6.0-work+ #321
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014
Workqueue: cgroup_destroy css_free_work_fn
Call Trace:
dump_stack+0x68/0xa1
lockdep_rcu_suspicious+0xd7/0x110
css_next_descendant_pre+0x7d/0xb0
memcg_offline_kmem.part.44+0x4a/0xc0
mem_cgroup_css_free+0x1ec/0x200
css_free_work_fn+0x49/0x5e0
process_one_work+0x1c5/0x4a0
worker_thread+0x49/0x490
kthread+0xea/0x100
ret_from_fork+0x1f/0x40
Link: http://lkml.kernel.org/r/20160526203018.GG23194@mtj.duckdns.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per the discussion with Joonsoo Kim [1], we need check the return value
of lookup_page_ext() for all call sites since it might return NULL in
some cases, although it is unlikely, i.e. memory hotplug.
Tested with ltp with "page_owner=0".
[1] http://lkml.kernel.org/r/20160519002809.GA10245@js1304-P5Q-DELUXE
[akpm@linux-foundation.org: fix build-breaking typos]
[arnd@arndb.de: fix build problems from lookup_page_ext]
Link: http://lkml.kernel.org/r/6285269.2CksypHdYp@wuerfel
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1464023768-31025-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When remapping pages accounting for 4G or more memory space, the
operation 'count << PAGE_SHIFT' overflows as it is performed on an
integer. Solution: cast before doing the bitshift.
[akpm@linux-foundation.org: fix vm_unmap_ram() also]
[akpm@linux-foundation.org: fix vmap() as well, per Guillermo]
Link: http://lkml.kernel.org/r/etPan.57175fb3.7a271c6b.2bd@naudit.es
Signed-off-by: Guillermo Julián Moreno <guillermo.julian@naudit.es>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As vm.dirty_[background_]bytes can't be applied verbatim to multiple
cgroup writeback domains, they get converted to percentages in
domain_dirty_limits() and applied the same way as
vm.dirty_[background]ratio. However, if the specified bytes is lower
than 1% of available memory, the calculated ratios become zero and the
writeback domain gets throttled constantly.
Fix it by using per-PAGE_SIZE instead of percentage for ratio
calculations. Also, the updated DIV_ROUND_UP() usages now should
yield 1/4096 (0.0244%) as the minimum ratio as long as the specified
bytes are above zero.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Miao Xie <miaoxie@huawei.com>
Link: http://lkml.kernel.org/g/57333E75.3080309@huawei.com
Cc: stable@vger.kernel.org # v4.2+
Fixes: 9fc3a43e17 ("writeback: separate out domain_dirty_limits()")
Reviewed-by: Jan Kara <jack@suse.cz>
Adjusted comment based on Jan's suggestion.
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull vfs fixes from Al Viro:
"Followups to the parallel lookup work:
- update docs
- restore killability of the places that used to take ->i_mutex
killably now that we have down_write_killable() merged
- Additionally, it turns out that I missed a prerequisite for
security_d_instantiate() stuff - ->getxattr() wasn't the only thing
that could be called before dentry is attached to inode; with smack
we needed the same treatment applied to ->setxattr() as well"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
switch ->setxattr() to passing dentry and inode separately
switch xattr_handler->set() to passing dentry and inode separately
restore killability of old mutex_lock_killable(&inode->i_mutex) users
add down_write_killable_nested()
update D/f/directory-locking
The do_brk() and vm_brk() return value was "unsigned long" and returned
the starting address on success, and an error value on failure. The
reasons are entirely historical, and go back to it basically behaving
like the mmap() interface does.
However, nobody actually wanted that interface, and it causes totally
pointless IS_ERR_VALUE() confusion.
What every single caller actually wants is just the simpler integer
return of zero for success and negative error number on failure.
So just convert to that much clearer and more common calling convention,
and get rid of all the IS_ERR_VALUE() uses wrt vm_brk().
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The register_page_bootmem_info_node() function needs to be marked __init
in order to avoid a new warning introduced by commit f65e91df25 ("mm:
use early_pfn_to_nid in register_page_bootmem_info_node").
Otherwise you'll get a warning about how a non-init function calls
early_pfn_to_nid (which is __meminit)
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we have !NO_BOOTMEM, the deferred page struct initialization
doesn't work well because the pages reserved in bootmem are released to
the page allocator uncoditionally. It causes memory corruption and
system crash eventually.
As Mel suggested, the bootmem is retiring slowly. We fix the issue by
simply hiding DEFERRED_STRUCT_PAGE_INIT when bootmem is enabled.
Link: http://lkml.kernel.org/r/1460602170-5821-1-git-send-email-gwshan@linux.vnet.ibm.com
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the comments for get_mctgt_type() to be before get_mctgt_type()
implementation.
Link: http://lkml.kernel.org/r/1463644638-7446-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_margin() might return (memory.limit - memory_count) when the
memsw.limit is in excess. This doesn't happen usually because we do not
allow excess on hard limits and (memory.limit <= memsw.limit), but
__GFP_NOFAIL charges can force the charge and cause the excess when no
memory is really swappable (swap is full or no anonymous memory is
left).
[mhocko@suse.com: rewrote changelog]
Link: http://lkml.kernel.org/r/20160525155122.GK20132@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1464068266-27736-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pageblock_order can be (at least) an unsigned int or an unsigned long
depending on the kernel config and architecture, so use max_t(unsigned
long, ...) when comparing it.
fixes these warnings:
In file included from include/asm-generic/bug.h:13:0,
from arch/powerpc/include/asm/bug.h:127,
from include/linux/bug.h:4,
from include/linux/mmdebug.h:4,
from include/linux/mm.h:8,
from include/linux/memblock.h:18,
from mm/cma.c:28:
mm/cma.c: In function 'cma_init_reserved_mem':
include/linux/kernel.h:748:17: warning: comparison of distinct pointer types lacks a cast
(void) (&_max1 == &_max2); ^
mm/cma.c:186:27: note: in expansion of macro 'max'
alignment = PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order);
^
mm/cma.c: In function 'cma_declare_contiguous':
include/linux/kernel.h:748:17: warning: comparison of distinct pointer types lacks a cast
(void) (&_max1 == &_max2); ^
include/linux/kernel.h:747:9: note: in definition of macro 'max'
typeof(y) _max2 = (y); ^
mm/cma.c:270:29: note: in expansion of macro 'max'
(phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
^
include/linux/kernel.h:748:17: warning: comparison of distinct pointer types lacks a cast
(void) (&_max1 == &_max2); ^
include/linux/kernel.h:747:21: note: in definition of macro 'max'
typeof(y) _max2 = (y); ^
mm/cma.c:270:29: note: in expansion of macro 'max'
(phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
^
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160526150748.5be38a4f@canb.auug.org.au
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If page_move_anon_rmap() is refiling a pmd-splitted THP mapped in a tail
page from a pte, the "address" must be THP aligned in order for the
page->index bugcheck to pass in the CONFIG_DEBUG_VM=y builds.
Link: http://lkml.kernel.org/r/1464253620-106404-1-git-send-email-kirill.shutemov@linux.intel.com
Fixes: 6d0a07edd1 ("mm: thp: calculate the mapcount correctly for THP pages during WP faults")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo has reported:
Out of memory: Kill process 443 (oleg's-test) score 855 or sacrifice child
Killed process 443 (oleg's-test) total-vm:493248kB, anon-rss:423880kB, file-rss:4kB, shmem-rss:0kB
sh invoked oom-killer: gfp_mask=0x24201ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD), order=0, oom_score_adj=0
sh cpuset=/ mems_allowed=0
CPU: 2 PID: 1 Comm: sh Not tainted 4.6.0-rc7+ #51
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013
Call Trace:
dump_stack+0x85/0xc8
dump_header+0x5b/0x394
oom_reaper: reaped process 443 (oleg's-test), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
In other words:
__oom_reap_task exit_mm
atomic_inc_not_zero
tsk->mm = NULL
mmput
atomic_dec_and_test # > 0
exit_oom_victim # New victim will be
# selected
<OOM killer invoked>
# no TIF_MEMDIE task so we can select a new one
unmap_page_range # to release the memory
The race exists even without the oom_reaper because anybody who pins the
address space and gets preempted might race with exit_mm but oom_reaper
made this race more probable.
We can address the oom_reaper part by using oom_lock for __oom_reap_task
because this would guarantee that a new oom victim will not be selected
if the oom reaper might race with the exit path. This doesn't solve the
original issue, though, because somebody else still might be pinning
mm_users and so __mmput won't be called to release the memory but that
is not really realiably solvable because the task will get away from the
oom sight as soon as it is unhashed from the task_list and so we cannot
guarantee a new victim won't be selected.
[akpm@linux-foundation.org: fix use of unused `mm', Per Stephen]
[akpm@linux-foundation.org: coding-style fixes]
Fixes: aac4536355 ("mm, oom: introduce oom reaper")
Link: http://lkml.kernel.org/r/1464271493-20008-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
register_page_bootmem_info_node() is invoked in mem_init(), so it will
be called before page_alloc_init_late() if DEFERRED_STRUCT_PAGE_INIT is
enabled. But, pfn_to_nid() depends on memmap which won't be fully setup
until page_alloc_init_late() is done, so replace pfn_to_nid() by
early_pfn_to_nid().
Link: http://lkml.kernel.org/r/1464210007-30930-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_ext_init() checks suitable pages with pfn_to_nid(), but
pfn_to_nid() depends on memmap which will not be setup fully until
page_alloc_init_late() is done. Use early_pfn_to_nid() instead of
pfn_to_nid() so that page extension could be still used early even
though CONFIG_ DEFERRED_STRUCT_PAGE_INIT is enabled and catch early page
allocation call sites.
Suggested by Joonsoo Kim [1], this fix basically undoes the change
introduced by commit b8f1a75d61 ("mm: call page_ext_init() after all
struct pages are initialized") and fixes the same problem with a better
approach.
[1] http://lkml.kernel.org/r/CAAmzW4OUmyPwQjvd7QUfc6W1Aic__TyAuH80MLRZNMxKy0-wPQ@mail.gmail.com
Link: http://lkml.kernel.org/r/1464198689-23458-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the current process is exiting, we don't invoke oom killer, instead
we give it access to memory reserves and try to reap its mm in case
nobody is going to use it. There's a mistake in the code performing
this check - we just ignore any process of the same thread group no
matter if it is exiting or not - see try_oom_reaper. Fix it.
Link: http://lkml.kernel.org/r/1464087628-7318-1-git-send-email-vdavydov@virtuozzo.com
Fixes: 3ef22dfff2 ("oom, oom_reaper: try to reap tasks which skip regular OOM killer path")Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- We use a bit in an exceptional radix tree entry as a lock bit and use it
similarly to how page lock is used for normal faults. This fixes races
between hole instantiation and read faults of the same index.
- Filesystem DAX PMD faults are disabled, and will be re-enabled when PMD
locking is implemented.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXRKwLAAoJEJ/BjXdf9fLB+BkP/3HBm05KlAKDklvnBIPFDMUK
hA7g2K6vuvaEDZXZQ1ioc1Ajf1sCpVip7shXJsojZqwWmRz0/4nneF7ytluW9AjS
dBX+0qCgKGH1fnwyGFF+MN7fuj7kGrSDz34lG0OObRN6/oKiVNb2svXiYKkT6J6C
AgsWlWRUpMy9jrn1u/FduMjDhk92Z3ojarexuicr0i8NUlBClCIrdCEmUMi4orSB
DuiIjestLOc7+mERBUwrXkzoh9v8Z0FpIgnDLWwpeEkAvJwWkGe5eXrBJwF+hEbi
RYfTrOYc7bBQLo22LRb8pdighjrx3OW9EpNCfEmLDOjM3cYBbMK/d2i/ww52H6IK
Mw6iS5rXdGgJtQIGL8N96HLFk+cDyZ8J8xNUCwbYYBJqgpMzxzVkL3vTm72tyFnl
InWhih+miCMbBPytQSRd6+1wZG2piJTv6SsFTd5K1OaiRmJhBJZG47t2QTBRBu7Y
5A4FGPtlraV+iDJvD6VLO1Tp8twxdLluOJ2BwdGeiKXiGh6LP+FGGFF3aFa5N4Ro
xSslCTX7Q1G66zXQwD4+IMWLwS1FDNymPkUSsF6RQo6qfAnl9SrmYTc4xJ4QXy92
sUdrWEz2OBTfxKNqbGyc/KrXKZT3RnEkJNft8snB2h6WTCdOPaNYs/yETUwiwkSc
CXpuQFrxm69QYwNsqVu1
=Pkd0
-----END PGP SIGNATURE-----
Merge tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull DAX locking updates from Ross Zwisler:
"Filesystem DAX locking for 4.7
- We use a bit in an exceptional radix tree entry as a lock bit and
use it similarly to how page lock is used for normal faults. This
fixes races between hole instantiation and read faults of the same
index.
- Filesystem DAX PMD faults are disabled, and will be re-enabled when
PMD locking is implemented"
* tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: Remove i_mmap_lock protection
dax: Use radix tree entry lock to protect cow faults
dax: New fault locking
dax: Allow DAX code to replace exceptional entries
dax: Define DAX lock bit for radix tree exceptional entry
dax: Make huge page handling depend of CONFIG_BROKEN
dax: Fix condition for filling of PMD holes
Some updates to commit d34f615720 ("mm/zsmalloc: don't fail if can't
create debugfs info"):
- add pr_warn to all stat failure cases
- do not prevent module loading on stat failure
Link: http://lkml.kernel.org/r/1463671123-5479-1-git-send-email-ddstreet@ieee.org
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Reviewed-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_out_of_memory() is returning "true" if it finds a TIF_MEMDIE
task after an eligible task was found, "false" if it found a TIF_MEMDIE
task before an eligible task is found.
This difference confuses memory_max_write() which checks the return
value of mem_cgroup_out_of_memory(). Since memory_max_write() wants to
continue looping, mem_cgroup_out_of_memory() should return "true" in
this case.
This patch sets a dummy pointer in order to return "true".
Link: http://lkml.kernel.org/r/1463753327-5170-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per the suggestion from Michal Hocko [1], DEFERRED_STRUCT_PAGE_INIT
requires some ordering wrt other initialization operations, e.g.
page_ext_init has to happen after the whole memmap is initialized
properly.
For SPARSEMEM this requires to wait for page_alloc_init_late. Other
memory models (e.g. flatmem) might have different initialization
layouts (page_ext_init_flatmem). Currently DEFERRED_STRUCT_PAGE_INIT
depends on MEMORY_HOTPLUG which in turn
depends on SPARSEMEM || X86_64_ACPI_NUMA
depends on ARCH_ENABLE_MEMORY_HOTPLUG
and X86_64_ACPI_NUMA depends on NUMA which in turn disable FLATMEM
memory model:
config ARCH_FLATMEM_ENABLE
def_bool y
depends on X86_32 && !NUMA
so FLATMEM is ruled out via dependency maze. Be explicit and disable
FLATMEM for DEFERRED_STRUCT_PAGE_INIT so that we do not reintroduce
subtle initialization bugs
[1] http://lkml.kernel.org/r/20160523073157.GD2278@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1464027356-32282-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For non-atomic allocations, pcpu_alloc() can try to extend the area
map synchronously after dropping pcpu_lock; however, the extension
wasn't synchronized against chunk destruction and the chunk might get
freed while extension is in progress.
This patch fixes the bug by putting most of non-atomic allocations
under pcpu_alloc_mutex to synchronize against pcpu_balance_work which
is responsible for async chunk management including destruction.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: stable@vger.kernel.org # v3.18+
Fixes: 1a4d76076c ("percpu: implement asynchronous chunk population")
Atomic allocations can trigger async map extensions which is serviced
by chunk->map_extend_work. pcpu_balance_work which is responsible for
destroying idle chunks wasn't synchronizing properly against
chunk->map_extend_work and may end up freeing the chunk while the work
item is still in flight.
This patch fixes the bug by rolling async map extension operations
into pcpu_balance_work.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: stable@vger.kernel.org # v3.18+
Fixes: 9c824b6a17 ("percpu: make sure chunk->map array has available space")
Merge yet more updates from Andrew Morton:
- Oleg's "wait/ptrace: assume __WALL if the child is traced". It's a
kernel-based workaround for existing userspace issues.
- A few hotfixes
- befs cleanups
- nilfs2 updates
- sys_wait() changes
- kexec updates
- kdump
- scripts/gdb updates
- the last of the MM queue
- a few other misc things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (84 commits)
kgdb: depends on VT
drm/amdgpu: make amdgpu_mn_get wait for mmap_sem killable
drm/radeon: make radeon_mn_get wait for mmap_sem killable
drm/i915: make i915_gem_mmap_ioctl wait for mmap_sem killable
uprobes: wait for mmap_sem for write killable
prctl: make PR_SET_THP_DISABLE wait for mmap_sem killable
exec: make exec path waiting for mmap_sem killable
aio: make aio_setup_ring killable
coredump: make coredump_wait wait for mmap_sem for write killable
vdso: make arch_setup_additional_pages wait for mmap_sem for write killable
ipc, shm: make shmem attach/detach wait for mmap_sem killable
mm, fork: make dup_mmap wait for mmap_sem for write killable
mm, proc: make clear_refs killable
mm: make vm_brk killable
mm, elf: handle vm_brk error
mm, aout: handle vm_brk failures
mm: make vm_munmap killable
mm: make vm_mmap killable
mm: make mmap_sem for write waits killable for mm syscalls
MAINTAINERS: add co-maintainer for scripts/gdb
...
Now that all the callers handle vm_brk failure we can change it wait for
mmap_sem killable to help oom_reaper to not get blocked just because
vm_brk gets blocked behind mmap_sem readers.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Almost all current users of vm_munmap are ignoring the return value and
so they do not handle potential error. This means that some VMAs might
stay behind. This patch doesn't try to solve those potential problems.
Quite contrary it adds a new failure mode by using down_write_killable
in vm_munmap. This should be safer than other failure modes, though,
because the process is guaranteed to die as soon as it leaves the kernel
and exit_mmap will clean the whole address space.
This will help in the OOM conditions when the oom victim might be stuck
waiting for the mmap_sem for write which in turn can block oom_reaper
which relies on the mmap_sem for read to make a forward progress and
reclaim the address space of the victim.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All the callers of vm_mmap seem to check for the failure already and
bail out in one way or another on the error which means that we can
change it to use killable version of vm_mmap_pgoff and return -EINTR if
the current task gets killed while waiting for mmap_sem. This also
means that vm_mmap_pgoff can be killable by default and drop the
additional parameter.
This will help in the OOM conditions when the oom victim might be stuck
waiting for the mmap_sem for write which in turn can block oom_reaper
which relies on the mmap_sem for read to make a forward progress and
reclaim the address space of the victim.
Please note that load_elf_binary is ignoring vm_mmap error for
current->personality & MMAP_PAGE_ZERO case but that shouldn't be a
problem because the address is not used anywhere and we never return to
the userspace if we got killed.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a follow up work for oom_reaper [1]. As the async OOM killing
depends on oom_sem for read we would really appreciate if a holder for
write didn't stood in the way. This patchset is changing many of
down_write calls to be killable to help those cases when the writer is
blocked and waiting for readers to release the lock and so help
__oom_reap_task to process the oom victim.
Most of the patches are really trivial because the lock is help from a
shallow syscall paths where we can return EINTR trivially and allow the
current task to die (note that EINTR will never get to the userspace as
the task has fatal signal pending). Others seem to be easy as well as
the callers are already handling fatal errors and bail and return to
userspace which should be sufficient to handle the failure gracefully.
I am not familiar with all those code paths so a deeper review is really
appreciated.
As this work is touching more areas which are not directly connected I
have tried to keep the CC list as small as possible and people who I
believed would be familiar are CCed only to the specific patches (all
should have received the cover though).
This patchset is based on linux-next and it depends on
down_write_killable for rw_semaphores which got merged into tip
locking/rwsem branch and it is merged into this next tree. I guess it
would be easiest to route these patches via mmotm because of the
dependency on the tip tree but if respective maintainers prefer other
way I have no objections.
I haven't covered all the mmap_write(mm->mmap_sem) instances here
$ git grep "down_write(.*\<mmap_sem\>)" next/master | wc -l
98
$ git grep "down_write(.*\<mmap_sem\>)" | wc -l
62
I have tried to cover those which should be relatively easy to review in
this series because this alone should be a nice improvement. Other
places can be changed on top.
[0] http://lkml.kernel.org/r/1456752417-9626-1-git-send-email-mhocko@kernel.org
[1] http://lkml.kernel.org/r/1452094975-551-1-git-send-email-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1456750705-7141-1-git-send-email-mhocko@kernel.org
This patch (of 18):
This is the first step in making mmap_sem write waiters killable. It
focuses on the trivial ones which are taking the lock early after
entering the syscall and they are not changing state before.
Therefore it is very easy to change them to use down_write_killable and
immediately return with -EINTR. This will allow the waiter to pass away
without blocking the mmap_sem which might be required to make a forward
progress. E.g. the oom reaper will need the lock for reading to
dismantle the OOM victim address space.
The only tricky function in this patch is vm_mmap_pgoff which has many
call sites via vm_mmap. To reduce the risk keep vm_mmap with the
original non-killable semantic for now.
vm_munmap callers do not bother checking the return value so open code
it into the munmap syscall path for now for simplicity.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_oom may be invoked multiple times while a process is handling
a page fault, in which case current->memcg_in_oom will be overwritten
leaking the previously taken css reference.
Link: http://lkml.kernel.org/r/1464019330-7579-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>