Commit Graph

104 Commits

Author SHA1 Message Date
Harish Chegondi
1e7b939062 perf/x86/intel: Add perf core PMU support for Intel Knights Landing
Knights Landing core is based on Silvermont core with several differences.
Like Silvermont, Knights Landing has 8 pairs of LBR MSRs. However, the
LBR MSRs addresses match those of the Xeon cores' first 8 pairs of LBR MSRs
Unlike Silvermont, Knights Landing supports hyperthreading. Knights Landing
offcore response events config register mask is different from that of the
Silvermont.

This patch was developed based on a patch from Andi Kleen.

For more details, please refer to the public document:

  https://software.intel.com/sites/default/files/managed/15/8d/IntelXeonPhi%E2%84%A2x200ProcessorPerformanceMonitoringReferenceManual_Volume1_Registers_v0%206.pdf

Signed-off-by: Harish Chegondi <harish.chegondi@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Harish Chegondi <harish.chegondi@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lukasz Anaczkowski <lukasz.anaczkowski@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/d14593c7311f78c93c9cf6b006be843777c5ad5c.1449517401.git.harish.chegondi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-06 11:15:37 +01:00
Andi Kleen
724697648e perf/x86: Use INST_RETIRED.PREC_DIST for cycles: ppp
Add a new 'three-p' precise level, that uses INST_RETIRED.PREC_DIST as
base. The basic mechanism of abusing the inverse cmask to get all
cycles works the same as before.

PREC_DIST is available on Sandy Bridge or later. It had some problems
on Sandy Bridge, so we only use it on IvyBridge and later. I tested it
on Broadwell and Skylake.

PREC_DIST has special support for avoiding shadow effects, which can
give better results compare to UOPS_RETIRED. The drawback is that
PREC_DIST can only schedule on counter 1, but that is ok for cycle
sampling, as there is normally no need to do multiple cycle sampling
runs in parallel. It is still possible to run perf top in parallel, as
that doesn't use precise mode. Also of course the multiplexing can
still allow parallel operation.

:pp stays with the previous event.

Example:

Sample a loop with 10 sqrt with old cycles:pp

	  0.14 │10:   sqrtps %xmm1,%xmm0     <--------------
	  9.13 │      sqrtps %xmm1,%xmm0
	 11.58 │      sqrtps %xmm1,%xmm0
	 11.51 │      sqrtps %xmm1,%xmm0
	  6.27 │      sqrtps %xmm1,%xmm0
	 10.38 │      sqrtps %xmm1,%xmm0
	 12.20 │      sqrtps %xmm1,%xmm0
	 12.74 │      sqrtps %xmm1,%xmm0
	  5.40 │      sqrtps %xmm1,%xmm0
	 10.14 │      sqrtps %xmm1,%xmm0
	 10.51 │    ↑ jmp    10

We expect all 10 sqrt to get roughly the sample number of samples.

But you can see that the instruction directly after the JMP is
systematically underestimated in the result, due to sampling shadow
effects.

With the new PREC_DIST based sampling this problem is gone and all
instructions show up roughly evenly:

	  9.51 │10:   sqrtps %xmm1,%xmm0
	 11.74 │      sqrtps %xmm1,%xmm0
	 11.84 │      sqrtps %xmm1,%xmm0
	  6.05 │      sqrtps %xmm1,%xmm0
	 10.46 │      sqrtps %xmm1,%xmm0
	 12.25 │      sqrtps %xmm1,%xmm0
	 12.18 │      sqrtps %xmm1,%xmm0
	  5.26 │      sqrtps %xmm1,%xmm0
	 10.13 │      sqrtps %xmm1,%xmm0
	 10.43 │      sqrtps %xmm1,%xmm0
	  0.16 │    ↑ jmp    10

Even with PREC_DIST there is still sampling skid and the result is not
completely even, but systematic shadow effects are significantly
reduced.

The improvements are mainly expected to make a difference in high IPC
code. With low IPC it should be similar.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/1448929689-13771-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-06 11:15:32 +01:00
Andi Kleen
f1ad44884a perf/x86: Remove old MSR perf tracing code
Now that we have generic MSR trace points we can remove the old
hackish perf MSR read tracing code.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1449018060-1742-4-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-06 12:56:14 +01:00
Ingo Molnar
42a0789bf5 Merge branch 'perf/urgent' into perf/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-06 12:55:37 +01:00
Jiri Olsa
169b932a15 perf/x86/intel: Fix INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA macro
We need to add rest of the flags to the constraint mask
instead of another INTEL_ARCH_EVENT_MASK, fixing a typo.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1447061071-28085-1-git-send-email-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-06 12:54:48 +01:00
Andi Kleen
b7883a1c4f perf/x86: Handle multiple umask bits for BDW CYCLE_ACTIVITY.*
The earlier constraint fix for Broadwell CYCLE_ACTIVITY.*
forced umask 8 to counter 2. For this it used UEVENT,
to match the complete umask.

The event list for Broadwell has an additional
STALLS_L1D_PENDIND event that uses umask 8, but also
sets other bits in the umask.  The earlier strict umask match
didn't handle this case.

Add a new UBIT_EVENT constraint macro that only matches
the specified bits in the umask. Then use that macro
to handle CYCLE_ACTIVITY.* on Broadwell.

The documented event also uses cmask, but there's no
need to let the event scheduler know about the cmask,
as the scheduling restriction is only tied to the umask.

Reported-by: Grant Ayers <ayers@cs.stanford.edu>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1447719667-9998-1-git-send-email-andi@firstfloor.org
[ Filled in the missing email address of Grant Ayers - hopefully I got the right one. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-23 09:58:27 +01:00
Peter Zijlstra
90eec103b9 treewide: Remove old email address
There were still a number of references to my old Red Hat email
address in the kernel source. Remove these while keeping the
Red Hat copyright notices intact.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-23 09:44:58 +01:00
Andi Kleen
b28ae9560b perf/x86: Fix LBR call stack save/restore
This fixes a bug I added in the following commit:

  90405aa022 ("perf/x86/intel/lbr: Limit LBR accesses to TOS in callstack mode")

The bug could lead to lost LBR call stacks. When restoring the LBR state
we need to use the TOS of the previous context, not the current context.
To do that we need to save/restore the TOS.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/1445366797-30894-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-23 09:44:57 +01:00
Ingo Molnar
02386c356a Merge branch 'perf/urgent' into perf/core, to pick up fixes before applying new changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-18 09:24:01 +02:00
Andi Kleen
d0dc8494cd perf/x86/intel/pebs: Add PEBS frontend profiling for Skylake
Skylake has a new FRONTEND_LATENCY PEBS event to accurately profile
frontend problems (like ITLB or decoding issues).

The new event is configured through a separate MSR, which selects
a range of sub events.

Define the extra MSR as a extra reg and export support for it
through sysfs.  To avoid duplicating the existing
tables use a new function to add new entries to existing tables.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1435707205-6676-4-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-18 09:20:22 +02:00
Sukadev Bhattiprolu
8f3e5684d3 perf/core: Drop PERF_EVENT_TXN
We currently use PERF_EVENT_TXN flag to determine if we are in the middle
of a transaction. If in a transaction, we defer the schedulability checks
from pmu->add() operation to the pmu->commit() operation.

Now that we have "transaction types" (PERF_PMU_TXN_ADD, PERF_PMU_TXN_READ)
we can use the type to determine if we are in a transaction and drop the
PERF_EVENT_TXN flag.

When PERF_EVENT_TXN is dropped, the cpuhw->group_flag on some architectures
becomes unused, so drop that field as well.

This is an extension of the Powerpc patch from Peter Zijlstra to s390,
Sparc and x86 architectures.

Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1441336073-22750-11-git-send-email-sukadev@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13 11:27:30 +02:00
Sukadev Bhattiprolu
fbbe070115 perf/core: Add a 'flags' parameter to the PMU transactional interfaces
Currently, the PMU interface allows reading only one counter at a time.
But some PMUs like the 24x7 counters in Power, support reading several
counters at once. To leveage this functionality, extend the transaction
interface to support a "transaction type".

The first type, PERF_PMU_TXN_ADD, refers to the existing transactions,
i.e. used to _schedule_ all the events on the PMU as a group. A second
transaction type, PERF_PMU_TXN_READ, will be used in a follow-on patch,
by the 24x7 counters to read several counters at once.

Extend the transaction interfaces to the PMU to accept a 'txn_flags'
parameter and use this parameter to ignore any transactions that are
not of type PERF_PMU_TXN_ADD.

Thanks to Peter Zijlstra for his input.

Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
[peterz: s390 compile fix]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1441336073-22750-3-git-send-email-sukadev@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13 11:27:25 +02:00
Andi Kleen
47732d8863 perf/x86: Make merge_attr() global to use from perf_event_intel
merge_attr() allows to merge two sysfs attribute tables.
Export it to be usable by other files too.

Next patch is going to use that to extend the sysfs format
attributes for a CPU.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1435612935-24425-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-04 10:16:59 +02:00
Andi Kleen
9a92e16fd7 perf/x86/intel: Add Intel Skylake PMU support
Add perf core PMU support for future Intel Skylake CPU cores.

The code is based on Haswell/Broadwell.

There is a new cache event list, based on the updated Haswell
event list.

Skylake has removed most counter constraints on basic
events, so the basic constraints table now only has a single
entry (plus the fixed counters).

TSX support and various other setups are all shared with Haswell.

Skylake has 32 LBR entries. Add a new LBR init function
to set this up. The filters are all the same as Haswell.

It also has a new LBR format with a separate LBR_INFO_* MSR,
but that has been already added earlier.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1431285767-27027-7-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-04 10:16:58 +02:00
Andi Kleen
50eab8f6ec perf/x86/intel/lbr: Add support for LBRv5
Add support for the new LBRv5 format used on Intel Skylake CPUs.

The flags for mispredict, abort, in_tx etc. moved to range of separate
LBR_INFO_* MSRs. Teach the LBR code to read those. The original
LBR registers stay the same, except they have full sign
extension now.

LBR_INFO also reports a cycle count to the last branch.
Report the cycle information using the new "cycles" branch_info
output field.

In addition we have to context switch and clear the new INFO
MSRs to avoid any information leaks.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1431285767-27027-6-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-04 10:16:57 +02:00
Andi Kleen
a7b58d211b perf/x86/intel/lbr: Allow time stamp for free running PEBSv3
With PEBSv3 the PEBS record contains a time stamp. That means we can allow
free-running PEBS without a PMI even if the user program requested a time stamp.
This avoids the need to use -T to get free running PEBS, and also avoids
any problems with mis-identifying MMAPs later.

Move the free_running_flags state into a variable in x86_pmu and use it.
This only works when no explicit clock_id is set.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1432786398-23861-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-04 10:16:56 +02:00
Alexander Shishkin
c749b3e963 perf/x86/intel/lbr: Kill off intel_pmu_needs_lbr_smpl for good
The x86_lbr_exclusive commit (4807034248 "perf/x86: Mark Intel PT and
LBR/BTS as mutually exclusive") mistakenly moved intel_pmu_needs_lbr_smpl()
to perf_event.h, while another commit (a46a230001 "perf: Simplify the
branch stack check") removed it in favor of needs_branch_stack().

This patch gets rid of intel_pmu_needs_lbr_smpl() for good.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/1435140349-32588-3-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-04 10:16:53 +02:00
Linus Torvalds
6bc4c3ad36 Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "These are the left over fixes from the v4.1 cycle"

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf tools: Fix build breakage if prefix= is specified
  perf/x86: Honor the architectural performance monitoring version
  perf/x86/intel: Fix PMI handling for Intel PT
  perf/x86/intel/bts: Fix DS area sharing with x86_pmu events
  perf/x86: Add more Broadwell model numbers
  perf: Fix ring_buffer_attach() RCU sync, again
2015-06-22 15:45:41 -07:00
Alexander Shishkin
6b099d9b04 perf/x86/intel/bts: Fix DS area sharing with x86_pmu events
Currently, the intel_bts driver relies on the DS area allocated by the x86_pmu
code in its event_init() path, which is a bug: creating a BTS event while
no x86_pmu events are present results in a NULL pointer dereference.

The same DS area is also used by PEBS sampling, which makes it quite a bit
trickier to have a separate one for intel_bts' purposes.

This patch makes intel_bts driver use the same DS allocation and reference
counting code as x86_pmu to make sure it is always present when either
intel_bts or x86_pmu need it.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Link: http://lkml.kernel.org/r/1434024837-9916-2-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-19 09:38:47 +02:00
Yan, Zheng
9c964efa43 perf/x86/intel: Drain the PEBS buffer during context switches
Flush the PEBS buffer during context switches if PEBS interrupt threshold
is larger than one. This allows perf to supply TID for sample outputs.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1430940834-8964-6-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:08:54 +02:00
Yan, Zheng
3569c0d7c5 perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold)
PEBS always had the capability to log samples to its buffers without
an interrupt. Traditionally perf has not used this but always set the
PEBS threshold to one.

For frequently occurring events (like cycles or branches or load/store)
this in term requires using a relatively high sampling period to avoid
overloading the system, by only processing PMIs. This in term increases
sampling error.

For the common cases we still need to use the PMI because the PEBS
hardware has various limitations. The biggest one is that it can not
supply a callgraph. It also requires setting a fixed period, as the
hardware does not support adaptive period. Another issue is that it
cannot supply a time stamp and some other options. To supply a TID it
requires flushing on context switch. It can however supply the IP, the
load/store address, TSX information, registers, and some other things.

So we can make PEBS work for some specific cases, basically as long as
you can do without a callgraph and can set the period you can use this
new PEBS mode.

The main benefit is the ability to support much lower sampling period
(down to -c 1000) without extensive overhead.

One use cases is for example to increase the resolution of the c2c tool.
Another is double checking when you suspect the standard sampling has
too much sampling error.

Some numbers on the overhead, using cycle soak, comparing the elapsed
time from "kernbench -M -H" between plain (threshold set to one) and
multi (large threshold).

The test command for plain:
  "perf record --time -e cycles:p -c $period -- kernbench -M -H"

The test command for multi:
  "perf record --no-time -e cycles:p -c $period -- kernbench -M -H"

( The only difference of test command between multi and plain is time
  stamp options. Since time stamp is not supported by large PEBS
  threshold, it can be used as a flag to indicate if large threshold is
  enabled during the test. )

	period    plain(Sec)  multi(Sec)  Delta
	10003     32.7        16.5        16.2
	20003     30.2        16.2        14.0
	40003     18.6        14.1        4.5
	80003     16.8        14.6        2.2
	100003    16.9        14.1        2.8
	800003    15.4        15.7        -0.3
	1000003   15.3        15.2        0.2
	2000003   15.3        15.1        0.1

With periods below 100003, plain (threshold one) cause much more
overhead. With 10003 sampling period, the Elapsed Time for multi is
even 2X faster than plain.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1430940834-8964-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:08:49 +02:00
Yan, Zheng
851559e35f perf/x86/intel: Use the PEBS auto reload mechanism when possible
When a fixed period is specified, this patch makes perf use the PEBS
auto reload mechanism. This makes normal profiling faster, because
it avoids one costly MSR write in the PMI handler.

However, the reset value will be loaded by hardware assist. There is a
small delay compared to the previous non-auto-reload mechanism. The
delay time is arbitrary, but very small. The assist cost is 400-800
cycles, assuming common cases with everything cached. The minimum period
the patch currently uses is 10000. In that extreme case it can be ~10%
if cycles are used.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1430940834-8964-2-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:08:35 +02:00
Peter Zijlstra
43ef205bde perf/x86/intel: Remove intel_excl_states::init_state
For some obscure reason intel_{start,stop}_scheduling() copy the HT
state to an intermediate array. This would make sense if we ever were
to make changes to it which we'd have to discard.

Except we don't. By the time we call intel_commit_scheduling() we're;
as the name implies; committed to them. We'll never back out.

A further hint its pointless is that stop_scheduling() unconditionally
publishes the state.

So the intermediate array is pointless, modify the state in place and
kill the extra array.

And remove the pointless array initialization: INTEL_EXCL_UNUSED == 0.

Note; all is serialized by intel_excl_cntr::lock.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-27 09:17:45 +02:00
Peter Zijlstra
0c41e756b9 perf/x86/intel: Clean up intel_commit_scheduling() placement
Move the code of intel_commit_scheduling() to the right place, which is
in between start() and stop().

No change in functionality.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-27 09:17:44 +02:00
Peter Zijlstra
cc1790cf54 perf/x86: Improve HT workaround GP counter constraint
The (SNB/IVB/HSW) HT bug only affects events that can be programmed
onto GP counters, therefore we should only limit the number of GP
counters that can be used per cpu -- iow we should not constrain the
FP counters.

Furthermore, we should only enfore such a limit when there are in fact
exclusive events being scheduled on either sibling.

Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Fixed build fail for the !CONFIG_CPU_SUP_INTEL case. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-27 09:16:03 +02:00
Peter Zijlstra
b371b59431 perf/x86: Fix event/group validation
Commit 43b4578071 ("perf/x86: Reduce stack usage of
x86_schedule_events()") violated the rule that 'fake' scheduling; as
used for event/group validation; should not change the event state.

This went mostly un-noticed because repeated calls of
x86_pmu::get_event_constraints() would give the same result. And
x86_pmu::put_event_constraints() would mostly not do anything.

Commit e979121b1b ("perf/x86/intel: Implement cross-HT corruption
bug workaround") made the situation much worse by actually setting the
event->hw.constraint value to NULL, so when validation and actual
scheduling interact we get NULL ptr derefs.

Fix it by removing the constraint pointer from the event and move it
back to an array, this time in cpuc instead of on the stack.

validate_group()
  x86_schedule_events()
    event->hw.constraint = c; # store

      <context switch>
        perf_task_event_sched_in()
          ...
            x86_schedule_events();
              event->hw.constraint = c2; # store

              ...

              put_event_constraints(event); # assume failure to schedule
                intel_put_event_constraints()
                  event->hw.constraint = NULL;

      <context switch end>

    c = event->hw.constraint; # read -> NULL

    if (!test_bit(hwc->idx, c->idxmsk)) # <- *BOOM* NULL deref

This in particular is possible when the event in question is a
cpu-wide event and group-leader, where the validate_group() tries to
add an event to the group.

Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 43b4578071 ("perf/x86: Reduce stack usage of x86_schedule_events()")
Fixes: e979121b1b ("perf/x86/intel: Implement cross-HT corruption bug workaround")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-27 08:46:44 +02:00
Peter Zijlstra
c857eb56e6 perf/x86: Fix hw_perf_event::flags collision
Somehow we ended up with overlapping flags when merging the
RDPMC control flag - this is bad, fix it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-17 09:50:43 +02:00
Andi Kleen
1a78d93750 perf/x86/intel: Streamline LBR MSR handling in PMI
The perf PMI currently does unnecessary MSR accesses when
LBRs are enabled. We use LBR freezing, or when in callstack
mode force the LBRs to only filter on ring 3.

So there is no need to disable the LBRs explicitely in the
PMI handler.

Also we always unnecessarily rewrite LBR_SELECT in the LBR
handler, even though it can never change.

 5)               |  /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
 5)               |  /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
 5)               |  /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
 5)               |  /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 70000000f */
 5)               |  /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 */
 5)               |  /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
 5)               |  /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
 5)               |  /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */

This patch:

  - Avoids disabling already frozen LBRs unnecessarily in the PMI
  - Avoids changing LBR_SELECT in the PMI

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1426871484-21285-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:19 +02:00
Stephane Eranian
b37609c30e perf/x86/intel: Make the HT bug workaround conditional on HT enabled
This patch disables the PMU HT bug when Hyperthreading (HT)
is disabled. We cannot do this test immediately when perf_events
is initialized. We need to wait until the topology information
is setup properly. As such, we register a later initcall, check
the topology and potentially disable the workaround. To do this,
we need to ensure there is no user of the PMU. At this point of
the boot, the only user is the NMI watchdog, thus we disable
it during the switch and re-enable it right after.

Having the workaround disabled when it is not needed provides
some benefits by limiting the overhead is time and space.
The workaround still ensures correct scheduling of the corrupting
memory events (0xd0, 0xd1, 0xd2) when HT is off. Those events
can only be measured on counters 0-3. Something else the current
kernel did not handle correctly.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Cc: maria.n.dimakopoulou@gmail.com
Link: http://lkml.kernel.org/r/1416251225-17721-13-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:15 +02:00
Stephane Eranian
c02cdbf60b perf/x86/intel: Limit to half counters when the HT workaround is enabled, to avoid exclusive mode starvation
This patch limits the number of counters available to each CPU when
the HT bug workaround is enabled.

This is necessary to avoid situation of counter starvation. Such can
arise from configuration where one HT thread, HT0, is using all 4 counters
with corrupting events which require exclusion the the sibling HT, HT1.

In such case, HT1 would not be able to schedule any event until HT0
is done. To mitigate this problem, this patch artificially limits
the number of counters to 2.

That way, we can gurantee that at least 2 counters are not in exclusive
mode and therefore allow the sibling thread to schedule events of the
same type (system vs. per-thread). The 2 counters are not determined
in advance. We simply set the limit to two events per HT.

This helps mitigate starvation in case of events with specific counter
constraints such a PREC_DIST.

Note that this does not elimintate the starvation is all cases. But
it is better than not having it.

(Solution suggested by Peter Zjilstra.)

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Cc: maria.n.dimakopoulou@gmail.com
Link: http://lkml.kernel.org/r/1416251225-17721-11-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:14 +02:00
Maria Dimakopoulou
b63b4b459a perf/x86/intel: Enforce HT bug workaround with PEBS for SNB/IVB/HSW
This patch modifies the PEBS constraint tables for SNB/IVB/HSW
such that corrupting events supporting PEBS activate the HT
workaround.

Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1416251225-17721-9-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:13 +02:00
Maria Dimakopoulou
e979121b1b perf/x86/intel: Implement cross-HT corruption bug workaround
This patch implements a software workaround for a HW erratum
on Intel SandyBridge, IvyBridge and Haswell processors
with Hyperthreading enabled. The errata are documented for
each processor in their respective specification update
documents:

  - SandyBridge: BJ122
  - IvyBridge: BV98
  - Haswell: HSD29

The bug causes silent counter corruption across hyperthreads only
when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3).
Counters measuring those events may leak counts to the sibling
counter. For instance, counter 0, thread 0 measuring event 0xd0,
may leak to counter 0, thread 1, regardless of the event measured
there. The size of the leak is not predictible. It all depends on
the workload and the state of each sibling hyper-thread. The
corrupting events do undercount as a consequence of the leak. The
leak is compensated automatically only when the sibling counter measures
the exact same corrupting event AND the workload is on the two threads
is the same. Given, there is no way to guarantee this, a work-around
is necessary. Furthermore, there is a serious problem if the leaked count
is added to a low-occurrence event. In that case the corruption on
the low occurrence event can be very large, e.g., orders of magnitude.

There is no HW or FW workaround for this problem.

The bug is very easy to reproduce on a loaded system.
Here is an example on a Haswell client, where CPU0, CPU4
are siblings. We load the CPUs with a simple triad app
streaming large floating-point vector. We use 0x81d0
corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and
0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not
using the LBR, the 0x20cc event should be zero.

  $ taskset -c 0 triad &
  $ taskset -c 4 triad &
  $ perf stat -a -C 0 -e r81d0 sleep 100 &
  $ perf stat -a -C 4 -r20cc sleep 10
  Performance counter stats for 'system wide':
        139 277 291      r20cc
       10,000969126 seconds time elapsed

In this example, 0x81d0 and r20cc ar eusing sinling counters
on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it
from 0 to 139 millions occurrences.

This patch provides a software workaround to this problem by modifying the
way events are scheduled onto counters by the kernel. The patch forces
cross-thread mutual exclusion between counters in case a corrupting event
is measured by one of the hyper-threads. If thread 0, counter 0 is measuring
event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting
event is measured on any hyper-thread, event scheduling proceeds as before.

The same example run with the workaround enabled, yield the correct answer:

  $ taskset -c 0 triad &
  $ taskset -c 4 triad &
  $ perf stat -a -C 0 -e r81d0 sleep 100 &
  $ perf stat -a -C 4 -r20cc sleep 10
  Performance counter stats for 'system wide':
        0 r20cc
       10,000969126 seconds time elapsed

The patch does provide correctness for all non-corrupting events. It does not
"repatriate" the leaked counts back to the leaking counter. This is planned
for a second patch series. This patch series makes this repatriation more
easy by guaranteeing the sibling counter is not measuring any useful event.

The patch introduces dynamic constraints for events. That means that events which
did not have constraints, i.e., could be measured on any counters, may now be
constrained to a subset of the counters depending on what is going on the sibling
thread. The algorithm is similar to a cache coherency protocol. We call it XSU
in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU
counter.

As a consequence of the workaround, users may see an increased amount of event
multiplexing, even in situtations where there are fewer events than counters
measured on a CPU.

Patch has been tested on all three impacted processors. Note that when
HT is off, there is no corruption. However, the workaround is still enabled,
yet not costing too much. Adding a dynamic detection of HT on turned out to
be complex are requiring too much to code to be justified.

This patch addresses the issue when PEBS is not used. A subsequent patch
fixes the problem when PEBS is used.

Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
[spinlock_t -> raw_spinlock_t]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:12 +02:00
Maria Dimakopoulou
6f6539cad9 perf/x86/intel: Add cross-HT counter exclusion infrastructure
This patch adds a new shared_regs style structure to the
per-cpu x86 state (cpuc). It is used to coordinate access
between counters which must be used with exclusion across
HyperThreads on Intel processors. This new struct is not
needed on each PMU, thus is is allocated on demand.

Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
[peterz: spinlock_t -> raw_spinlock_t]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1416251225-17721-6-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:11 +02:00
Stephane Eranian
79cba82244 perf/x86: Add 'index' param to get_event_constraint() callback
This patch adds an index parameter to the get_event_constraint()
x86_pmu callback. It is expected to represent the index of the
event in the cpuc->event_list[] array. When the callback is used
for fake_cpuc (evnet validation), then the index must be -1. The
motivation for passing the index is to use it to index into another
cpuc array.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Cc: maria.n.dimakopoulou@gmail.com
Link: http://lkml.kernel.org/r/1416251225-17721-5-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:10 +02:00
Maria Dimakopoulou
c5362c0c37 perf/x86: Add 3 new scheduling callbacks
This patch adds 3 new PMU model specific callbacks
during the event scheduling done by x86_schedule_events().

  ->start_scheduling():  invoked when entering the schedule routine.
  ->stop_scheduling():   invoked at the end of the schedule routine
  ->commit_scheduling(): invoked for each committed event

To be used optionally by model-specific code.

Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1416251225-17721-4-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:09 +02:00
Stephane Eranian
9041346431 perf/x86: Vectorize cpuc->kfree_on_online
Make the cpuc->kfree_on_online a vector to accommodate
more than one entry and add the second entry to be
used by a later patch.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1416251225-17721-3-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:08 +02:00
Stephane Eranian
9a5e3fb52a perf/x86: Rename x86_pmu::er_flags to 'flags'
Because it will be used for more than just tracking the
presence of extra registers.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Cc: maria.n.dimakopoulou@gmail.com
Link: http://lkml.kernel.org/r/1416251225-17721-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:33:08 +02:00
Alexander Shishkin
8062382c8d perf/x86/intel/bts: Add BTS PMU driver
Add support for Branch Trace Store (BTS) via kernel perf event infrastructure.
The difference with the existing implementation of BTS support is that this
one is a separate PMU that exports events' trace buffers to userspace by means
of AUX area of the perf buffer, which is zero-copy mapped into userspace.

The immediate benefit is that the buffer size can be much bigger, resulting in
fewer interrupts and no kernel side copying is involved and little to no trace
data loss. Also, kernel code can be traced with this driver.

The old way of collecting BTS traces still works.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kaixu Xia <kaixu.xia@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Cc: kan.liang@intel.com
Cc: markus.t.metzger@intel.com
Cc: mathieu.poirier@linaro.org
Link: http://lkml.kernel.org/r/1422614435-114702-1-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:14:21 +02:00
Alexander Shishkin
52ca9ced3f perf/x86/intel/pt: Add Intel PT PMU driver
Add support for Intel Processor Trace (PT) to kernel's perf events.
PT is an extension of Intel Architecture that collects information about
software execuction such as control flow, execution modes and timings and
formats it into highly compressed binary packets. Even being compressed,
these packets are generated at hundreds of megabytes per second per core,
which makes it impractical to decode them on the fly in the kernel.

This driver exports trace data by through AUX space in the perf ring
buffer, which is zero-copy mapped into userspace for faster data retrieval.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kaixu Xia <kaixu.xia@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Cc: kan.liang@intel.com
Cc: markus.t.metzger@intel.com
Cc: mathieu.poirier@linaro.org
Link: http://lkml.kernel.org/r/1422614392-114498-1-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:14:20 +02:00
Alexander Shishkin
4807034248 perf/x86: Mark Intel PT and LBR/BTS as mutually exclusive
Intel PT cannot be used at the same time as LBR or BTS and will cause a
general protection fault if they are used together. In order to avoid
fixing up GPs in the fast path, instead we disallow creating LBR/BTS
events when PT events are present and vice versa.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kaixu Xia <kaixu.xia@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Cc: kan.liang@intel.com
Cc: markus.t.metzger@intel.com
Cc: mathieu.poirier@linaro.org
Link: http://lkml.kernel.org/r/1421237903-181015-12-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:14:19 +02:00
Andi Kleen
294fe0f52a perf/x86/intel: Add INST_RETIRED.ALL workarounds
On Broadwell INST_RETIRED.ALL cannot be used with any period
that doesn't have the lowest 6 bits cleared. And the period
should not be smaller than 128.

This is erratum BDM11 and BDM55:

  http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/5th-gen-core-family-spec-update.pdf

BDM11: When using a period < 100; we may get incorrect PEBS/PMI
interrupts and/or an invalid counter state.
BDM55: When bit0-5 of the period are !0 we may get redundant PEBS
records on overflow.

Add a new callback to enforce this, and set it for Broadwell.

How does this handle the case when an app requests a specific
period with some of the bottom bits set?

Short answer:

Any useful instruction sampling period needs to be 4-6 orders
of magnitude larger than 128, as an PMI every 128 instructions
would instantly overwhelm the system and be throttled.
So the +-64 error from this is really small compared to the
period, much smaller than normal system jitter.

Long answer (by Peterz):

IFF we guarantee perf_event_attr::sample_period >= 128.

Suppose we start out with sample_period=192; then we'll set period_left
to 192, we'll end up with left = 128 (we truncate the lower bits). We
get an interrupt, find that period_left = 64 (>0 so we return 0 and
don't get an overflow handler), up that to 128. Then we trigger again,
at n=256. Then we find period_left = -64 (<=0 so we return 1 and do get
an overflow). We increment with sample_period so we get left = 128. We
fire again, at n=384, period_left = 0 (<=0 so we return 1 and get an
overflow). And on and on.

So while the individual interrupts are 'wrong' we get then with
interval=256,128 in exactly the right ratio to average out at 192. And
this works for everything >=128.

So the num_samples*fixed_period thing is still entirely correct +- 127,
which is good enough I'd say, as you already have that error anyhow.

So no need to 'fix' the tools, al we need to do is refuse to create
INST_RETIRED:ALL events with sample_period < 128.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
[ Updated comments and changelog a bit. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1424225886-18652-3-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:14:03 +01:00
Peter Zijlstra
2c44b1936b perf/x86/intel: Expose LBR callstack to user space tooling
With LBR call stack feature enable, there are three callchain options.
Enable the 3rd callchain option (LBR callstack) to user space tooling.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20141105093759.GQ10501@worktop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 17:16:15 +01:00
Yan, Zheng
e18bf52642 perf/x86/intel: Allocate space for storing LBR stack
When the LBR call stack is enabled, it is necessary to save/restore
the LBR stack on context switch. We can use pmu specific data to
store LBR stack when task is scheduled out. This patch adds code
that allocates the pmu specific data.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-8-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 17:16:08 +01:00
Yan, Zheng
e9d7f7cd97 perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.

When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.

This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 17:16:04 +01:00
Yan, Zheng
2a0ad3b326 perf/x86/intel: Use context switch callback to flush LBR stack
Previous commit introduces context switch callback, its function
overlaps with the flush branch stack callback. So we can use the
context switch callback to flush LBR stack.

This patch adds code that uses the flush branch callback to
flush the LBR stack when task is being scheduled in. The callback
is enabled only when there are events use the LBR hardware. This
patch also removes all old flush branch stack code.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-4-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 17:16:03 +01:00
Yan, Zheng
ba532500c5 perf: Introduce pmu context switch callback
The callback is invoked when process is scheduled in or out.
It provides mechanism for later patches to save/store the LBR
stack. For the schedule in case, the callback is invoked at
the same place that flush branch stack callback is invoked.
So it also can replace the flush branch stack callback. To
avoid unnecessary overhead, the callback is enabled only when
there are events use the LBR stack.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-3-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 17:16:02 +01:00
Yan, Zheng
27ac905b8f perf/x86/intel: Reduce lbr_sel_map[] size
The index of lbr_sel_map is bit value of perf branch_sample_type.
PERF_SAMPLE_BRANCH_MAX is 1024 at present, so each lbr_sel_map uses
4096 bytes. By using bit shift as index, we can reduce lbr_sel_map
size to 40 bytes. This patch defines 'bit shift' for branch types,
and use 'bit shift' to define lbr_sel_maps.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: jolsa@redhat.com
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/1415156173-10035-2-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 17:16:01 +01:00
Andy Lutomirski
7911d3f7af perf/x86: Only allow rdpmc if a perf_event is mapped
We currently allow any process to use rdpmc.  This significantly
weakens the protection offered by PR_TSC_DISABLED, and it could be
helpful to users attempting to exploit timing attacks.

Since we can't enable access to individual counters, use a very
coarse heuristic to limit access to rdpmc: allow access only when
a perf_event is mmapped.  This protects seccomp sandboxes.

There is plenty of room to further tighen these restrictions.  For
example, this allows rdpmc for any x86_pmu event, but it's only
useful for self-monitoring tasks.

As a side effect, cap_user_rdpmc will now be false for AMD uncore
events.  This isn't a real regression, since .event_idx is disabled
for these events anyway for the time being.  Whenever that gets
re-added, the cap_user_rdpmc code can be adjusted or refactored
accordingly.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/a2bdb3cf3a1d70c26980d7c6dddfbaa69f3182bf.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-04 12:10:47 +01:00
Andi Kleen
7550ddffe4 perf/x86: Add INTEL_FLAGS_UEVENT_CONSTRAINT
Add a FLAGS_UEVENT_CONSTRAINT macro that allows us to
match on event+umask, and in additional all flags.

This is needed to ensure the INV and CMASK fields
are zero for specific events, as this can cause undefined
behavior.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Cc: Mark Davies <junk@eslaf.co.uk>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/r/1411569288-5627-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 11:41:54 +01:00
Ingo Molnar
1776b10627 perf/x86/intel: Revert incomplete and undocumented Broadwell client support
These patches:

  86a349a28b ("perf/x86/intel: Add Broadwell core support")
  c46e665f03 ("perf/x86: Add INST_RETIRED.ALL workarounds")
  fdda3c4aac ("perf/x86/intel: Use Broadwell cache event list for Haswell")

introduced magic constants and unexplained changes:

  https://lkml.org/lkml/2014/10/28/1128
  https://lkml.org/lkml/2014/10/27/325
  https://lkml.org/lkml/2014/8/27/546
  https://lkml.org/lkml/2014/10/28/546

Peter Zijlstra has attempted to help out, to clean up the mess:

  https://lkml.org/lkml/2014/10/28/543

But has not received helpful and constructive replies which makes
me doubt wether it can all be finished in time until v3.18 is
released.

Despite various review feedback the author (Andi Kleen) has answered
only few of the review questions and has generally been uncooperative,
only giving replies when prompted repeatedly, and only giving minimal
answers instead of constructively explaining and helping along the effort.

That kind of behavior is not acceptable.

There's also a boot crash on Intel E5-1630 v3 CPUs reported for another
commit from Andi Kleen:

  e735b9db12 ("perf/x86/intel/uncore: Add Haswell-EP uncore support")

  https://lkml.org/lkml/2014/10/22/730

Which is not yet resolved. The uncore driver is independent in theory,
but the crash makes me worry about how well all these patches were
tested and makes me uneasy about the level of interminging that the
Broadwell and Haswell code has received by the commits above.

As a first step to resolve the mess revert the Broadwell client commits
back to the v3.17 version, before we run out of time and problematic
code hits a stable upstream kernel.

( If the Haswell-EP crash is not resolved via a simple fix then we'll have
  to revert the Haswell-EP uncore driver as well. )

The Broadwell client series has to be submitted in a clean fashion, with
single, well documented changes per patch. If they are submitted in time
and are accepted during review then they can possibly go into v3.19 but
will need additional scrutiny due to the rocky history of this patch set.

Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: eranian@google.com
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409683455-29168-3-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-29 11:07:58 +01:00