asm/tlbflush.h is only needed for:
- using functions xxx_flush_tlb_xxx()
- using MMU_NO_CONTEXT
- including asm-generic/pgtable.h
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Removal started in commit 5bbeed12bd ("sparc32: drop unused
kmap_atomic_to_page"). Let's do it across the whole tree.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[swarren@nvidia.com: highmem: Fix ARM build break due to __kmap_atomic rename]
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
Keep the current interface but ignore the KM_type and use a stack based
approach.
The advantage is that we get rid of crappy code like:
#define __KM_PTE \
(in_nmi() ? KM_NMI_PTE : \
in_irq() ? KM_IRQ_PTE : \
KM_PTE0)
and in general can stop worrying about what context we're in and what kmap
slots might be appropriate for that.
The downside is that FRV kmap_atomic() gets more expensive.
For now we use a CPP trick suggested by Andrew:
#define kmap_atomic(page, args...) __kmap_atomic(page)
to avoid having to touch all kmap_atomic() users in a single patch.
[ not compiled on:
- mn10300: the arch doesn't actually build with highmem to begin with ]
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c]
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kunmap_atomic() is currently at level -4 on Rusty's "Hard To Misuse"
list[1] ("Follow common convention and you'll get it wrong"), except in
some architectures when CONFIG_DEBUG_HIGHMEM is set[2][3].
kunmap() takes a pointer to a struct page; kunmap_atomic(), however, takes
takes a pointer to within the page itself. This seems to once in a while
trip people up (the convention they are following is the one from
kunmap()).
Make it much harder to misuse, by moving it to level 9 on Rusty's list[4]
("The compiler/linker won't let you get it wrong"). This is done by
refusing to build if the type of its first argument is a pointer to a
struct page.
The real kunmap_atomic() is renamed to kunmap_atomic_notypecheck()
(which is what you would call in case for some strange reason calling it
with a pointer to a struct page is not incorrect in your code).
The previous version of this patch was compile tested on x86-64.
[1] http://ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html
[2] In these cases, it is at level 5, "Do it right or it will always
break at runtime."
[3] At least mips and powerpc look very similar, and sparc also seems to
share a common ancestor with both; there seems to be quite some
degree of copy-and-paste coding here. The include/asm/highmem.h file
for these three archs mention x86 CPUs at its top.
[4] http://ozlabs.org/~rusty/index.cgi/tech/2008-03-30.html
[5] As an aside, could someone tell me why mn10300 uses unsigned long as
the first parameter of kunmap_atomic() instead of void *?
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Cc: Russell King <linux@arm.linux.org.uk> (arch/arm)
Cc: Ralf Baechle <ralf@linux-mips.org> (arch/mips)
Cc: David Howells <dhowells@redhat.com> (arch/frv, arch/mn10300)
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com> (arch/mn10300)
Cc: Kyle McMartin <kyle@mcmartin.ca> (arch/parisc)
Cc: Helge Deller <deller@gmx.de> (arch/parisc)
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> (arch/parisc)
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> (arch/powerpc)
Cc: Paul Mackerras <paulus@samba.org> (arch/powerpc)
Cc: "David S. Miller" <davem@davemloft.net> (arch/sparc)
Cc: Thomas Gleixner <tglx@linutronix.de> (arch/x86)
Cc: Ingo Molnar <mingo@redhat.com> (arch/x86)
Cc: "H. Peter Anvin" <hpa@zytor.com> (arch/x86)
Cc: Arnd Bergmann <arnd@arndb.de> (include/asm-generic)
Cc: Rusty Russell <rusty@rustcorp.com.au> ("Hard To Misuse" list)
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Those functions are way too big to be inline, besides, kmap_atomic()
wants to call debug_kmap_atomic() which isn't exported for modules
and causes module link failures.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Use debug_kmap_atomic in kmap_atomic, kmap_atomic_pfn, and
iomap_atomic_prot_pfn.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds support for 256KB pages on ppc44x-based boards.
For simplification of implementation with 256KB pages we still assume
2-level paging. As a side effect this leads to wasting extra memory space
reserved for PTE tables: only 1/4 of pages allocated for PTEs are
actually used. But this may be an acceptable trade-off to achieve the
high performance we have with big PAGE_SIZEs in some applications (e.g.
RAID).
Also with 256KB PAGE_SIZE we increase THREAD_SIZE up to 32KB to minimize
the risk of stack overflows in the cases of on-stack arrays, which size
depends on the page size (e.g. multipage BIOs, NTFS, etc.).
With 256KB PAGE_SIZE we need to decrease the PKMAP_ORDER at least down
to 9, otherwise all high memory (2 ^ 10 * PAGE_SIZE == 256MB) we'll be
occupied by PKMAP addresses leaving no place for vmalloc. We do not
separate PKMAP_ORDER for 256K from 16K/64K PAGE_SIZE here; actually that
value of 10 in support for 16K/64K had been selected rather intuitively.
Thus now for all cases of PAGE_SIZE on ppc44x (including the default, 4KB,
one) we have 512 pages for PKMAP.
Because ELF standard supports only page sizes up to 64K, then you should
use binutils later than 2.17.50.0.3 with '-zmax-page-size' set to 256K
for building applications, which are to be run with the 256KB-page sized
kernel. If using the older binutils, then you should patch them like follows:
--- binutils/bfd/elf32-ppc.c.orig
+++ binutils/bfd/elf32-ppc.c
-#define ELF_MAXPAGESIZE 0x10000
+#define ELF_MAXPAGESIZE 0x40000
One more restriction we currently have with 256KB page sizes is inability
to use shmem safely, so, for now, the 256KB is available only if you turn
the CONFIG_SHMEM option off (another variant is to use BROKEN).
Though, if you need shmem with 256KB pages, you can always remove the !SHMEM
dependency in 'config PPC_256K_PAGES', and use the workaround available here:
http://lkml.org/lkml/2008/12/19/20
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
This patch reworks the way we do I and D cache coherency on PowerPC.
The "old" way was split in 3 different parts depending on the processor type:
- Hash with per-page exec support (64-bit and >= POWER4 only) does it
at hashing time, by preventing exec on unclean pages and cleaning pages
on exec faults.
- Everything without per-page exec support (32-bit hash, 8xx, and
64-bit < POWER4) does it for all page going to user space in update_mmu_cache().
- Embedded with per-page exec support does it from do_page_fault() on
exec faults, in a way similar to what the hash code does.
That leads to confusion, and bugs. For example, the method using update_mmu_cache()
is racy on SMP where another processor can see the new PTE and hash it in before
we have cleaned the cache, and then blow trying to execute. This is hard to hit but
I think it has bitten us in the past.
Also, it's inefficient for embedded where we always end up having to do at least
one more page fault.
This reworks the whole thing by moving the cache sync into two main call sites,
though we keep different behaviours depending on the HW capability. The call
sites are set_pte_at() which is now made out of line, and ptep_set_access_flags()
which joins the former in pgtable.c
The base idea for Embedded with per-page exec support, is that we now do the
flush at set_pte_at() time when coming from an exec fault, which allows us
to avoid the double fault problem completely (we can even improve the situation
more by implementing TLB preload in update_mmu_cache() but that's for later).
If for some reason we didn't do it there and we try to execute, we'll hit
the page fault, which will do a minor fault, which will hit ptep_set_access_flags()
to do things like update _PAGE_ACCESSED or _PAGE_DIRTY if needed, we just make
this guys also perform the I/D cache sync for exec faults now. This second path
is the catch all for things that weren't cleaned at set_pte_at() time.
For cpus without per-pag exec support, we always do the sync at set_pte_at(),
thus guaranteeing that when the PTE is visible to other processors, the cache
is clean.
For the 64-bit hash with per-page exec support case, we keep the old mechanism
for now. I'll look into changing it later, once I've reworked a bit how we
use _PAGE_EXEC.
This is also a first step for adding _PAGE_EXEC support for embedded platforms
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds support for 16k and 64k page sizes on PowerPC 44x processors.
The PGDIR table is much smaller than a page when using 16k or 64k
pages (512 and 32 bytes respectively) so we allocate the PGDIR with
kzalloc() instead of __get_free_pages().
One PTE table covers rather a large memory area when using 16k or 64k
pages (32MB or 512MB respectively), so we can easily put FIXMAP and
PKMAP in the area covered by one PTE table.
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Vladimir Panfilov <pvr@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This commit moves the whole no-hash TLB handling out of line into a
new tlb_nohash.c file, and implements some basic SMP support using
IPIs and/or broadcast tlbivax instructions.
Note that I'm using local invalidations for D->I cache coherency.
At worst, if another processor is trying to execute the same and
has the old entry in its TLB, it will just take a fault and re-do
the TLB flush locally (it won't re-do the cache flush in any case).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The tlb invalidates in kmap_atomic/kunmap_atomic can be called from
IRQ context, however they are only local invalidates (on the processor
that the kmap was called on). In the future we want to use IPIs to
do tlb invalidates this causes issue since flush_tlb_page() is considered
a broadcast invalidate.
Add local_flush_tlb_page() as a non-broadcast invalidate and use it in
kmap_atomic() since we don't have enough information in the
flush_tlb_page() call to determine its local.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
There are some minor issues with support 64-bit PTEs on a 32-bit processor
when dealing with SMP.
* We need to order the stores in set_pte_at to make sure the flag word
is set second.
* Change pte_clear to use pte_update so only the flag word is cleared
* Added a WARN_ON to set_pte_at to ensure the pte isn't present for
the 64-bit pte/SMP case (to ensure our assumption of this fact).
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Becky Bruce <becky.bruce@freescale.com>
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>