The caller of the iterator might know that some nodes or even subtrees
should be skipped but there is no way to tell iterators about that so the
only choice left is to let iterators to visit each node and do the
selection outside of the iterating code. This, however, doesn't scale
well with hierarchies with many groups where only few groups are
interesting.
This patch adds mem_cgroup_iter_cond variant of the iterator with a
callback which gets called for every visited node. There are three
possible ways how the callback can influence the walk. Either the node is
visited, it is skipped but the tree walk continues down the tree or the
whole subtree of the current group is skipped.
[hughd@google.com: fix memcg-less page reclaim]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Soft reclaim has been done only for the global reclaim (both background
and direct). Since "memcg: integrate soft reclaim tighter with zone
shrinking code" there is no reason for this limitation anymore as the soft
limit reclaim doesn't use any special code paths and it is a part of the
zone shrinking code which is used by both global and targeted reclaims.
From the semantic point of view it is natural to consider soft limit
before touching all groups in the hierarchy tree which is touching the
hard limit because soft limit tells us where to push back when there is a
memory pressure. It is not important whether the pressure comes from the
limit or imbalanced zones.
This patch simply enables soft reclaim unconditionally in
mem_cgroup_should_soft_reclaim so it is enabled for both global and
targeted reclaim paths. mem_cgroup_soft_reclaim_eligible needs to learn
about the root of the reclaim to know where to stop checking soft limit
state of parents up the hierarchy. Say we have
A (over soft limit)
\
B (below s.l., hit the hard limit)
/ \
C D (below s.l.)
B is the source of the outside memory pressure now for D but we shouldn't
soft reclaim it because it is behaving well under B subtree and we can
still reclaim from C (pressumably it is over the limit).
mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the
hierarchy at B (root of the memory pressure).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the soft limit is integrated to the reclaim directly the whole
soft-limit tree infrastructure is not needed anymore. Rip it out.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset is sitting out of tree for quite some time without any
objections. I would be really happy if it made it into 3.12. I do not
want to push it too hard but I think this work is basically ready and
waiting more doesn't help.
The basic idea is quite simple. Pull soft reclaim into shrink_zone in the
first step and get rid of the previous soft reclaim infrastructure.
shrink_zone is done in two passes now. First it tries to do the soft
limit reclaim and it falls back to reclaim-all mode if no group is over
the limit or no pages have been scanned. The second pass happens at the
same priority so the only time we waste is the memcg tree walk which has
been updated in the third step to have only negligible overhead.
As a bonus we will get rid of a _lot_ of code by this and soft reclaim
will not stand out like before when it wasn't integrated into the zone
shrinking code and it reclaimed at priority 0 (the testing results show
that some workloads suffers from such an aggressive reclaim). The clean
up is in a separate patch because I felt it would be easier to review that
way.
The second step is soft limit reclaim integration into targeted reclaim.
It should be rather straight forward. Soft limit has been used only for
the global reclaim so far but it makes sense for any kind of pressure
coming from up-the-hierarchy, including targeted reclaim.
The third step (patches 4-8) addresses the tree walk overhead by enhancing
memcg iterators to enable skipping whole subtrees and tracking number of
over soft limit children at each level of the hierarchy. This information
is updated same way the old soft limit tree was updated (from
memcg_check_events) so we shouldn't see an additional overhead. In fact
mem_cgroup_update_soft_limit is much simpler than tree manipulation done
previously.
__shrink_zone uses mem_cgroup_soft_reclaim_eligible as a predicate for
mem_cgroup_iter so the decision whether a particular group should be
visited is done at the iterator level which allows us to decide to skip
the whole subtree as well (if there is no child in excess). This reduces
the tree walk overhead considerably.
* TEST 1
========
My primary test case was a parallel kernel build with 2 groups (make is
running with -j8 with a distribution .config in a separate cgroup without
any hard limit) on a 32 CPU machine booted with 1GB memory and both builds
run taskset to Node 0 cpus.
I was mostly interested in 2 setups. Default - no soft limit set and -
and 0 soft limit set to both groups. The first one should tell us whether
the rework regresses the default behavior while the second one should show
us improvements in an extreme case where both workloads are always over
the soft limit.
/usr/bin/time -v has been used to collect the statistics and each
configuration had 3 runs after fresh boot without any other load on the
system.
base is mmotm-2013-07-18-16-40
rework all 8 patches applied on top of base
* No-limit
User
no-limit/base: min: 651.92 max: 672.65 avg: 664.33 std: 8.01 runs: 6
no-limit/rework: min: 657.34 [100.8%] max: 668.39 [99.4%] avg: 663.13 [99.8%] std: 3.61 runs: 6
System
no-limit/base: min: 69.33 max: 71.39 avg: 70.32 std: 0.79 runs: 6
no-limit/rework: min: 69.12 [99.7%] max: 71.05 [99.5%] avg: 70.04 [99.6%] std: 0.59 runs: 6
Elapsed
no-limit/base: min: 398.27 max: 422.36 avg: 408.85 std: 7.74 runs: 6
no-limit/rework: min: 386.36 [97.0%] max: 438.40 [103.8%] avg: 416.34 [101.8%] std: 18.85 runs: 6
The results are within noise. Elapsed time has a bigger variance but the
average looks good.
* 0-limit
User
0-limit/base: min: 573.76 max: 605.63 avg: 585.73 std: 12.21 runs: 6
0-limit/rework: min: 645.77 [112.6%] max: 666.25 [110.0%] avg: 656.97 [112.2%] std: 7.77 runs: 6
System
0-limit/base: min: 69.57 max: 71.13 avg: 70.29 std: 0.54 runs: 6
0-limit/rework: min: 68.68 [98.7%] max: 71.40 [100.4%] avg: 69.91 [99.5%] std: 0.87 runs: 6
Elapsed
0-limit/base: min: 1306.14 max: 1550.17 avg: 1430.35 std: 90.86 runs: 6
0-limit/rework: min: 404.06 [30.9%] max: 465.94 [30.1%] avg: 434.81 [30.4%] std: 22.68 runs: 6
The improvement is really huge here (even bigger than with my previous
testing and I suspect that this highly depends on the storage). Page
fault statistics tell us at least part of the story:
Minor
0-limit/base: min: 37180461.00 max: 37319986.00 avg: 37247470.00 std: 54772.71 runs: 6
0-limit/rework: min: 36751685.00 [98.8%] max: 36805379.00 [98.6%] avg: 36774506.33 [98.7%] std: 17109.03 runs: 6
Major
0-limit/base: min: 170604.00 max: 221141.00 avg: 196081.83 std: 18217.01 runs: 6
0-limit/rework: min: 2864.00 [1.7%] max: 10029.00 [4.5%] avg: 5627.33 [2.9%] std: 2252.71 runs: 6
Same as with my previous testing Minor faults are more or less within
noise but Major fault count is way bellow the base kernel.
While this looks as a nice win it is fair to say that 0-limit
configuration is quite artificial. So I was playing with 0-no-limit
loads as well.
* TEST 2
========
The following results are from 2 groups configuration on a 16GB machine
(single NUMA node).
- A running stream IO (dd if=/dev/zero of=local.file bs=1024) with
2*TotalMem with 0 soft limit.
- B running a mem_eater which consumes TotalMem-1G without any limit. The
mem_eater consumes the memory in 100 chunks with 1s nap after each
mmap+poppulate so that both loads have chance to fight for the memory.
The expected result is that B shouldn't be reclaimed and A shouldn't see
a big dropdown in elapsed time.
User
base: min: 2.68 max: 2.89 avg: 2.76 std: 0.09 runs: 3
rework: min: 3.27 [122.0%] max: 3.74 [129.4%] avg: 3.44 [124.6%] std: 0.21 runs: 3
System
base: min: 86.26 max: 88.29 avg: 87.28 std: 0.83 runs: 3
rework: min: 81.05 [94.0%] max: 84.96 [96.2%] avg: 83.14 [95.3%] std: 1.61 runs: 3
Elapsed
base: min: 317.28 max: 332.39 avg: 325.84 std: 6.33 runs: 3
rework: min: 281.53 [88.7%] max: 298.16 [89.7%] avg: 290.99 [89.3%] std: 6.98 runs: 3
System time improved slightly as well as Elapsed. My previous testing
has shown worse numbers but this again seem to depend on the storage
speed.
My theory is that the writeback doesn't catch up and prio-0 soft reclaim
falls into wait on writeback page too often in the base kernel. The
patched kernel doesn't do that because the soft reclaim is done from the
kswapd/direct reclaim context. This can be seen on the following graph
nicely. The A's group usage_in_bytes regurarly drops really low very often.
All 3 runs
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream.png
resp. a detail of the single run
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream-one-run.png
mem_eater seems to be doing better as well. It gets to the full
allocation size faster as can be seen on the following graph:
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/mem_eater-one-run.png
/proc/meminfo collected during the test also shows that rework kernel
hasn't swapped that much (well almost not at all):
base: max: 123900 K avg: 56388.29 K
rework: max: 300 K avg: 128.68 K
kswapd and direct reclaim statistics are of no use unfortunatelly because
soft reclaim is not accounted properly as the counters are hidden by
global_reclaim() checks in the base kernel.
* TEST 3
========
Another test was the same configuration as TEST2 except the stream IO was
replaced by a single kbuild (16 parallel jobs bound to Node0 cpus same as
in TEST1) and mem_eater allocated TotalMem-200M so kbuild had only 200MB
left.
Kbuild did better with the rework kernel here as well:
User
base: min: 860.28 max: 872.86 avg: 868.03 std: 5.54 runs: 3
rework: min: 880.81 [102.4%] max: 887.45 [101.7%] avg: 883.56 [101.8%] std: 2.83 runs: 3
System
base: min: 84.35 max: 85.06 avg: 84.79 std: 0.31 runs: 3
rework: min: 85.62 [101.5%] max: 86.09 [101.2%] avg: 85.79 [101.2%] std: 0.21 runs: 3
Elapsed
base: min: 135.36 max: 243.30 avg: 182.47 std: 45.12 runs: 3
rework: min: 110.46 [81.6%] max: 116.20 [47.8%] avg: 114.15 [62.6%] std: 2.61 runs: 3
Minor
base: min: 36635476.00 max: 36673365.00 avg: 36654812.00 std: 15478.03 runs: 3
rework: min: 36639301.00 [100.0%] max: 36695541.00 [100.1%] avg: 36665511.00 [100.0%] std: 23118.23 runs: 3
Major
base: min: 14708.00 max: 53328.00 avg: 31379.00 std: 16202.24 runs: 3
rework: min: 302.00 [2.1%] max: 414.00 [0.8%] avg: 366.33 [1.2%] std: 47.22 runs: 3
Again we can see a significant improvement in Elapsed (it also seems to
be more stable), there is a huge dropdown for the Major page faults and
much more swapping:
base: max: 583736 K avg: 112547.43 K
rework: max: 4012 K avg: 124.36 K
Graphs from all three runs show the variability of the kbuild quite
nicely. It even seems that it took longer after every run with the base
kernel which would be quite surprising as the source tree for the build is
removed and caches are dropped after each run so the build operates on a
freshly extracted sources everytime.
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater.png
My other testing shows that this is just a matter of timing and other runs
behave differently the std for Elapsed time is similar ~50. Example of
other three runs:
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater2.png
So to wrap this up. The series is still doing good and improves the soft
limit.
The testing results for bunch of cgroups with both stream IO and kbuild
loads can be found in "memcg: track children in soft limit excess to
improve soft limit".
This patch:
Memcg soft reclaim has been traditionally triggered from the global
reclaim paths before calling shrink_zone. mem_cgroup_soft_limit_reclaim
then picked up a group which exceeds the soft limit the most and reclaimed
it with 0 priority to reclaim at least SWAP_CLUSTER_MAX pages.
The infrastructure requires per-node-zone trees which hold over-limit
groups and keep them up-to-date (via memcg_check_events) which is not cost
free. Although this overhead hasn't turned out to be a bottle neck the
implementation is suboptimal because mem_cgroup_update_tree has no idea
which zones consumed memory over the limit so we could easily end up
having a group on a node-zone tree having only few pages from that
node-zone.
This patch doesn't try to fix node-zone trees management because it seems
that integrating soft reclaim into zone shrinking sounds much easier and
more appropriate for several reasons. First of all 0 priority reclaim was
a crude hack which might lead to big stalls if the group's LRUs are big
and hard to reclaim (e.g. a lot of dirty/writeback pages). Soft reclaim
should be applicable also to the targeted reclaim which is awkward right
now without additional hacks. Last but not least the whole infrastructure
eats quite some code.
After this patch shrink_zone is done in 2 passes. First it tries to do
the soft reclaim if appropriate (only for global reclaim for now to keep
compatible with the original state) and fall back to ignoring soft limit
if no group is eligible to soft reclaim or nothing has been scanned during
the first pass. Only groups which are over their soft limit or any of
their parents up the hierarchy is over the limit are considered eligible
during the first pass.
Soft limit tree which is not necessary anymore will be removed in the
follow up patch to make this patch smaller and easier to review.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vfs guarantees the cgroup won't be destroyed, so it's redundant to get a
css reference.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A memory cgroup with (1) multiple threshold notifications and (2) at least
one threshold >=2G was not reliable. Specifically the notifications would
either not fire or would not fire in the proper order.
The __mem_cgroup_threshold() signaling logic depends on keeping 64 bit
thresholds in sorted order. mem_cgroup_usage_register_event() sorts them
with compare_thresholds(), which returns the difference of two 64 bit
thresholds as an int. If the difference is positive but has bit[31] set,
then sort() treats the difference as negative and breaks sort order.
This fix compares the two arbitrary 64 bit thresholds returning the
classic -1, 0, 1 result.
The test below sets two notifications (at 0x1000 and 0x81001000):
cd /sys/fs/cgroup/memory
mkdir x
for x in 4096 2164264960; do
cgroup_event_listener x/memory.usage_in_bytes $x | sed "s/^/$x listener:/" &
done
echo $$ > x/cgroup.procs
anon_leaker 500M
v3.11-rc7 fails to signal the 4096 event listener:
Leaking...
Done leaking pages.
Patched v3.11-rc7 properly notifies:
Leaking...
4096 listener:2013:8:31:14:13:36
Done leaking pages.
The fixed bug is old. It appears to date back to the introduction of
memcg threshold notifications in v2.6.34-rc1-116-g2e72b6347c94 "memcg:
implement memory thresholds"
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg_cache_params structure contains the common part and the union,
which represents two different types of data: one for root cashes and
another for child caches.
The size of child data is fixed. The size of the memcg_caches array is
calculated in runtime.
Currently the size of memcg_cache_params for root caches is calculated
incorrectly, because it includes the size of parameters for child caches.
ssize_t size = memcg_caches_array_size(num_groups);
size *= sizeof(void *);
size += sizeof(struct memcg_cache_params);
v2: Fix a typo in calculations
Signed-off-by: Andrey Vagin <avagin@openvz.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"A lot of activities on the cgroup front. Most changes aren't visible
to userland at all at this point and are laying foundation for the
planned unified hierarchy.
- The biggest change is decoupling the lifetime management of css
(cgroup_subsys_state) from that of cgroup's. Because controllers
(cpu, memory, block and so on) will need to be dynamically enabled
and disabled, css which is the association point between a cgroup
and a controller may come and go dynamically across the lifetime of
a cgroup. Till now, css's were created when the associated cgroup
was created and stayed till the cgroup got destroyed.
Assumptions around this tight coupling permeated through cgroup
core and controllers. These assumptions are gradually removed,
which consists bulk of patches, and css destruction path is
completely decoupled from cgroup destruction path. Note that
decoupling of creation path is relatively easy on top of these
changes and the patchset is pending for the next window.
- cgroup has its own event mechanism cgroup.event_control, which is
only used by memcg. It is overly complex trying to achieve high
flexibility whose benefits seem dubious at best. Going forward,
new events will simply generate file modified event and the
existing mechanism is being made specific to memcg. This pull
request contains prepatory patches for such change.
- Various fixes and cleanups"
Fixed up conflict in kernel/cgroup.c as per Tejun.
* 'for-3.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (69 commits)
cgroup: fix cgroup_css() invocation in css_from_id()
cgroup: make cgroup_write_event_control() use css_from_dir() instead of __d_cgrp()
cgroup: make cgroup_event hold onto cgroup_subsys_state instead of cgroup
cgroup: implement CFTYPE_NO_PREFIX
cgroup: make cgroup_css() take cgroup_subsys * instead and allow NULL subsys
cgroup: rename cgroup_css_from_dir() to css_from_dir() and update its syntax
cgroup: fix cgroup_write_event_control()
cgroup: fix subsystem file accesses on the root cgroup
cgroup: change cgroup_from_id() to css_from_id()
cgroup: use css_get() in cgroup_create() to check CSS_ROOT
cpuset: remove an unncessary forward declaration
cgroup: RCU protect each cgroup_subsys_state release
cgroup: move subsys file removal to kill_css()
cgroup: factor out kill_css()
cgroup: decouple cgroup_subsys_state destruction from cgroup destruction
cgroup: replace cgroup->css_kill_cnt with ->nr_css
cgroup: bounce cgroup_subsys_state ref kill confirmation to a work item
cgroup: move cgroup->subsys[] assignment to online_css()
cgroup: reorganize css init / exit paths
cgroup: add __rcu modifier to cgroup->subsys[]
...
The swapaccount kernel parameter without any values has been removed by
commit a2c8990aed ("memsw: remove noswapaccount kernel parameter") but
it seems that we didn't get rid of all the left overs.
Make sure that menuconfig help text and kernel-parameters.txt are clear
about value for the paramter and remove the stalled comment which is not
very much useful on its own.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Gergely Risko <gergely@risko.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct memcg_cache_params has a union. Different parts of this union
are used for root and non-root caches. A part with destroying work is
used only for non-root caches.
I fixed the same problem in another place v3.9-rc1-16204-gf101a94, but
didn't notice this one.
This patch fixes the kernel panic:
[ 46.848187] BUG: unable to handle kernel paging request at 000000fffffffeb8
[ 46.849026] IP: [<ffffffff811a484c>] kmem_cache_destroy_memcg_children+0x6c/0xc0
[ 46.849092] PGD 0
[ 46.849092] Oops: 0000 [#1] SMP
...
Signed-off-by: Andrey Vagin <avagin@openvz.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: <stable@vger.kernel.org> [3.9.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously, all css descendant iterators didn't include the origin
(root of subtree) css in the iteration. The reasons were maintaining
consistency with css_for_each_child() and that at the time of
introduction more use cases needed skipping the origin anyway;
however, given that css_is_descendant() considers self to be a
descendant, omitting the origin css has become more confusing and
looking at the accumulated use cases rather clearly indicates that
including origin would result in simpler code overall.
While this is a change which can easily lead to subtle bugs, cgroup
API including the iterators has recently gone through major
restructuring and no out-of-tree changes will be applicable without
adjustments making this a relatively acceptable opportunity for this
type of change.
The conversions are mostly straight-forward. If the iteration block
had explicit origin handling before or after, it's moved inside the
iteration. If not, if (pos == origin) continue; is added. Some
conversions add extra reference get/put around origin handling by
consolidating origin handling and the rest. While the extra ref
operations aren't strictly necessary, this shouldn't cause any
noticeable difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle. This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.
cftype->[un]register_event() is among the remaining couple interfaces
which still use struct cgroup. Convert it to cgroup_subsys_state.
The conversion is mostly mechanical and removes the last users of
mem_cgroup_from_cont() and cg_to_vmpressure(), which are removed.
v2: indentation update as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle. This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.
This patch converts task iterators to deal with css instead of cgroup.
Note that under unified hierarchy, different sets of tasks will be
considered belonging to a given cgroup depending on the subsystem in
question and making the iterators deal with css instead cgroup
provides them with enough information about the iteration.
While at it, fix several function comment formats in cpuset.c.
This patch doesn't introduce any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Currently all cgroup_task_iter functions require @cgrp to be passed
in, which is superflous and increases chance of usage error. Make
cgroup_task_iter remember the cgroup being iterated and drop @cgrp
argument from next and end functions.
This patch doesn't introduce any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
cgroup now has multiple iterators and it's quite confusing to have
something which walks over tasks of a single cgroup named cgroup_iter.
Let's rename it to cgroup_task_iter.
While at it, reformat / update comments and replace the overview
comment above the interface function decls with proper function
comments. Such overview can be useful but function comments should be
more than enough here.
This is pure rename and doesn't introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
cgroup is currently in the process of transitioning to using css
(cgroup_subsys_state) as the primary handle instead of cgroup in
subsystem API. For hierarchy iterators, this is beneficial because
* In most cases, css is the only thing subsystems care about anyway.
* On the planned unified hierarchy, iterations for different
subsystems will need to skip over different subtrees of the
hierarchy depending on which subsystems are enabled on each cgroup.
Passing around css makes it unnecessary to explicitly specify the
subsystem in question as css is intersection between cgroup and
subsystem
* For the planned unified hierarchy, css's would need to be created
and destroyed dynamically independent from cgroup hierarchy. Having
cgroup core manage css iteration makes enforcing deref rules a lot
easier.
Most subsystem conversions are straight-forward. Noteworthy changes
are
* blkio: cgroup_to_blkcg() is no longer used. Removed.
* freezer: cgroup_freezer() is no longer used. Removed.
* devices: cgroup_to_devcgroup() is no longer used. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup.
Please see the previous commit which converts the subsystem methods
for rationale.
This patch converts all cftype file operations to take @css instead of
@cgroup. cftypes for the cgroup core files don't have their subsytem
pointer set. These will automatically use the dummy_css added by the
previous patch and can be converted the same way.
Most subsystem conversions are straight forwards but there are some
interesting ones.
* freezer: update_if_frozen() is also converted to take @css instead
of @cgroup for consistency. This will make the code look simpler
too once iterators are converted to use css.
* memory/vmpressure: mem_cgroup_from_css() needs to be exported to
vmpressure while mem_cgroup_from_cont() can be made static.
Updated accordingly.
* cpu: cgroup_tg() doesn't have any user left. Removed.
* cpuacct: cgroup_ca() doesn't have any user left. Removed.
* hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left.
Removed.
* net_cls: cgrp_cls_state() doesn't have any user left. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup *
in subsystem implementations for the following reasons.
* With unified hierarchy, subsystems will be dynamically bound and
unbound from cgroups and thus css's (cgroup_subsys_state) may be
created and destroyed dynamically over the lifetime of a cgroup,
which is different from the current state where all css's are
allocated and destroyed together with the associated cgroup. This
in turn means that cgroup_css() should be synchronized and may
return NULL, making it more cumbersome to use.
* Differing levels of per-subsystem granularity in the unified
hierarchy means that the task and descendant iterators should behave
differently depending on the specific subsystem the iteration is
being performed for.
* In majority of the cases, subsystems only care about its part in the
cgroup hierarchy - ie. the hierarchy of css's. Subsystem methods
often obtain the matching css pointer from the cgroup and don't
bother with the cgroup pointer itself. Passing around css fits
much better.
This patch converts all cgroup_subsys methods to take @css instead of
@cgroup. The conversions are mostly straight-forward. A few
noteworthy changes are
* ->css_alloc() now takes css of the parent cgroup rather than the
pointer to the new cgroup as the css for the new cgroup doesn't
exist yet. Knowing the parent css is enough for all the existing
subsystems.
* In kernel/cgroup.c::offline_css(), unnecessary open coded css
dereference is replaced with local variable access.
This patch shouldn't cause any behavior differences.
v2: Unnecessary explicit cgrp->subsys[] deref in css_online() replaced
with local variable @css as suggested by Li Zefan.
Rebased on top of new for-3.12 which includes for-3.11-fixes so
that ->css_free() invocation added by da0a12caff ("cgroup: fix a
leak when percpu_ref_init() fails") is converted too. Suggested
by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Currently, controllers have to explicitly follow the cgroup hierarchy
to find the parent of a given css. cgroup is moving towards using
cgroup_subsys_state as the main controller interface construct, so
let's provide a way to climb the hierarchy using just csses.
This patch implements css_parent() which, given a css, returns its
parent. The function is guarnateed to valid non-NULL parent css as
long as the target css is not at the top of the hierarchy.
freezer, cpuset, cpu, cpuacct, hugetlb, memory, net_cls and devices
are converted to use css_parent() instead of accessing cgroup->parent
directly.
* __parent_ca() is dropped from cpuacct and its usage is replaced with
parent_ca(). The only difference between the two was NULL test on
cgroup->parent which is now embedded in css_parent() making the
distinction moot. Note that eventually a css->parent field will be
added to css and the NULL check in css_parent() will go away.
This patch shouldn't cause any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
css (cgroup_subsys_state) is usually embedded in a subsys specific
data structure. Subsystems either use container_of() directly to cast
from css to such data structure or has an accessor function wrapping
such cast. As cgroup as whole is moving towards using css as the main
interface handle, add and update such accessors to ease dealing with
css's.
All accessors explicitly handle NULL input and return NULL in those
cases. While this looks like an extra branch in the code, as all
controllers specific data structures have css as the first field, the
casting doesn't involve any offsetting and the compiler can trivially
optimize out the branch.
* blkio, freezer, cpuset, cpu, cpuacct and net_cls didn't have such
accessor. Added.
* memory, hugetlb and devices already had one but didn't explicitly
handle NULL input. Updated.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.
We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward. Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.
Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css(). This patch is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
vmpressure is called synchronously from reclaim where the target_memcg
is guaranteed to be alive but the eventfd is signaled from the work
queue context. This means that memcg (along with vmpressure structure
which is embedded into it) might go away while the work item is pending
which would result in use-after-release bug.
We have two possible ways how to fix this. Either vmpressure pins memcg
before it schedules vmpr->work and unpin it in vmpressure_work_fn or
explicitely flush the work item from the css_offline context (as
suggested by Tejun).
This patch implements the later one and it introduces vmpressure_cleanup
which flushes the vmpressure work queue item item. It hooks into
mem_cgroup_css_offline after the memcg itself is cleaned up.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Tejun Heo <tj@kernel.org>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Li Zefan <lizefan@huawei.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Now memcg has the same life cycle with its corresponding cgroup, and a
cgroup is freed via RCU and then mem_cgroup_css_free() will be called in
a work function, so we can simply call __mem_cgroup_free() in
mem_cgroup_css_free().
This actually reverts commit 59927fb984 ("memcg: free mem_cgroup by RCU
to fix oops").
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now memcg has the same life cycle as its corresponding cgroup. Kill the
useless refcnt.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use css_get/put instead of mem_cgroup_get/put. A simple replacement
will do.
The historical reason that memcg has its own refcnt instead of always
using css_get/put, is that cgroup couldn't be removed if there're still
css refs, so css refs can't be used as long-lived reference. The
situation has changed so that rmdir a cgroup will succeed regardless css
refs, but won't be freed until css refs goes down to 0.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use css_get/put instead of mem_cgroup_get/put.
We can't do a simple replacement, because here mem_cgroup_put() is
called during mem_cgroup_css_free(), while mem_cgroup_css_free() won't
be called until css refcnt goes down to 0.
Instead we increment css refcnt in mem_cgroup_css_offline(), and then
check if there's still kmem charges. If not, css refcnt will be
decremented immediately, otherwise the refcnt will be released after the
last kmem allocation is uncahred.
[akpm@linux-foundation.org: tweak comment]
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use css_get()/css_put() instead of mem_cgroup_get()/mem_cgroup_put().
There are two things being done in the current code:
First, we acquired a css_ref to make sure that the underlying cgroup
would not go away. That is a short lived reference, and it is put as
soon as the cache is created.
At this point, we acquire a long-lived per-cache memcg reference count
to guarantee that the memcg will still be alive.
so it is:
enqueue: css_get
create : memcg_get, css_put
destroy: memcg_put
So we only need to get rid of the memcg_get, change the memcg_put to
css_put, and get rid of the now extra css_put.
(This changelog is mostly written by Glauber)
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use css_get/css_put instead of mem_cgroup_get/put.
Note, if at the same time someone is moving @current to a different
cgroup and removing the old cgroup, css_tryget() may return false, and
sock->sk_cgrp won't be initialized, which is fine.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_css_online calls mem_cgroup_put if memcg_init_kmem fails.
This is not correct because only memcg_propagate_kmem takes an
additional reference while mem_cgroup_sockets_init is allowed to fail as
well (although no current implementation fails) but it doesn't take any
reference. This all suggests that it should be memcg_propagate_kmem
that should clean up after itself so this patch moves mem_cgroup_put
over there.
Unfortunately this is not that easy (as pointed out by Li Zefan) because
memcg_kmem_mark_dead marks the group dead (KMEM_ACCOUNTED_DEAD) if it is
marked active (KMEM_ACCOUNTED_ACTIVE) which is the case even if
memcg_propagate_kmem fails so the additional reference is dropped in
that case in kmem_cgroup_destroy which means that the reference would be
dropped two times.
The easiest way then would be to simply remove mem_cgrroup_put from
mem_cgroup_css_online and rely on kmem_cgroup_destroy doing the right
thing.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org> [3.8]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit e4715f01be.
mem_cgroup_put is hierarchy aware so mem_cgroup_put(memcg) already drops
an additional reference from all parents so the additional
mem_cgrroup_put(parent) potentially causes use-after-free.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org> [3.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memory we used to hold the memcg arrays is currently accounted to
the current memcg. But that creates a problem, because that memory can
only be freed after the last user is gone. Our only way to know which
is the last user, is to hook up to freeing time, but the fact that we
still have some in flight kmallocs will prevent freeing to happen. I
believe therefore to be just easier to account this memory as global
overhead.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memory we used to hold the memcg arrays is currently accounted to
the current memcg. But that creates a problem, because that memory can
only be freed after the last user is gone. Our only way to know which
is the last user, is to hook up to freeing time, but the fact that we
still have some in flight kmallocs will prevent freeing to happen. I
believe therefore to be just easier to account this memory as global
overhead.
This patch (of 2):
Disabling accounting is only relevant for some specific memcg internal
allocations. Therefore we would initially not have such check at
memcg_kmem_newpage_charge, since direct calls to the page allocator that
are marked with GFP_KMEMCG only happen outside memcg core. We are
mostly concerned with cache allocations and by having this test at
memcg_kmem_get_cache we are already able to relay the allocation to the
root cache and bypass the memcg caches altogether.
There is one exception, though: the SLUB allocator does not create large
order caches, but rather service large kmallocs directly from the page
allocator. Therefore, the following sequence, when backed by the SLUB
allocator:
memcg_stop_kmem_account();
kmalloc(<large_number>)
memcg_resume_kmem_account();
would effectively ignore the fact that we should skip accounting, since
it will drive us directly to this function without passing through the
cache selector memcg_kmem_get_cache. Such large allocations are
extremely rare but can happen, for instance, for the cache arrays.
This was never a problem in practice, because we weren't skipping
accounting for the cache arrays. All the allocations we were skipping
were fairly small. However, the fact that we were not skipping those
allocations are a problem and can prevent the memcgs from going away.
As we fix that, we need to make sure that the fix will also work with
the SLUB allocator.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reported-by: Michal Hocko <mhocko@suze.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove struct mem_cgroup_lru_info and fold its single member, the
variably sized nodeinfo[0], directly into struct mem_cgroup. This
should make it more obvious why it has to be the last member there.
Also move the comment that's above that special last member below it, so
it is more visible to somebody that considers appending to the struct
mem_cgroup.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_iter() is too hard to follow. Factor out the lockless reclaim
iterator loading and updating so it's easier to follow the big picture.
Also document the iterator invalidation mechanism a bit more extensively.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For processes that have detached their mm's, task_in_mem_cgroup()
unnecessarily takes task_lock() when rcu_read_lock() is all that is
necessary to call mem_cgroup_from_task().
While we're here, switch task_in_mem_cgroup() to return bool.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The lockless reclaim hierarchy iterator currently has a misplaced
barrier that can lead to use-after-free crashes.
The reclaim hierarchy iterator consist of a sequence count and a
position pointer that are read and written locklessly, with memory
barriers enforcing ordering.
The write side sets the position pointer first, then updates the
sequence count to "publish" the new position. Likewise, the read side
must read the sequence count first, then the position. If the sequence
count is up to date, it's guaranteed that the position is up to date as
well:
writer: reader:
iter->position = position if iter->sequence == expected:
smp_wmb() smp_rmb()
iter->sequence = sequence position = iter->position
However, the read side barrier is currently misplaced, which can lead to
dereferencing stale position pointers that no longer point to valid
memory. Fix this.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: <stable@kernel.org> [3.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0c59b89c81 ("mm: memcg: push down PageSwapCache check into
uncharge entry functions") added a VM_BUG_ON() on PageSwapCache in the
uncharge path after checking that page flag once, assuming that the
state is stable in all paths, but this is not the case and the condition
triggers in user environments. An uncharge after the last page table
reference to the page goes away can race with reclaim adding the page to
swap cache.
Swap cache pages are usually uncharged when they are freed after
swapout, from a path that also handles swap usage accounting and memcg
lifetime management. However, since the last page table reference is
gone and thus no references to the swap slot left, the swap slot will be
freed shortly when reclaim attempts to write the page to disk. The
whole swap accounting is not even necessary.
So while the race condition for which this VM_BUG_ON was added is real
and actually existed all along, there are no negative effects. Remove
the VM_BUG_ON again.
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reported-by: Lingzhu Xiang <lxiang@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This exports the amount of anonymous transparent hugepages for each
memcg via the new "rss_huge" stat in memory.stat. The units are in
bytes.
This is helpful to determine the hugepage utilization for individual
jobs on the system in comparison to rss and opportunities where
MADV_HUGEPAGE may be helpful.
The amount of anonymous transparent hugepages is also included in "rss"
for backwards compatibility.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
- Fixes and a lot of cleanups. Locking cleanup is finally complete.
cgroup_mutex is no longer exposed to individual controlelrs which
used to cause nasty deadlock issues. Li fixed and cleaned up quite a
bit including long standing ones like racy cgroup_path().
- device cgroup now supports proper hierarchy thanks to Aristeu.
- perf_event cgroup now supports proper hierarchy.
- A new mount option "__DEVEL__sane_behavior" is added. As indicated
by the name, this option is to be used for development only at this
point and generates a warning message when used. Unfortunately,
cgroup interface currently has too many brekages and inconsistencies
to implement a consistent and unified hierarchy on top. The new flag
is used to collect the behavior changes which are necessary to
implement consistent unified hierarchy. It's likely that this flag
won't be used verbatim when it becomes ready but will be enabled
implicitly along with unified hierarchy.
The option currently disables some of broken behaviors in cgroup core
and also .use_hierarchy switch in memcg (will be routed through -mm),
which can be used to make very unusual hierarchy where nesting is
partially honored. It will also be used to implement hierarchy
support for blk-throttle which would be impossible otherwise without
introducing a full separate set of control knobs.
This is essentially versioning of interface which isn't very nice but
at this point I can't see any other options which would allow keeping
the interface the same while moving towards hierarchy behavior which
is at least somewhat sane. The planned unified hierarchy is likely
to require some level of adaptation from userland anyway, so I think
it'd be best to take the chance and update the interface such that
it's supportable in the long term.
Maintaining the existing interface does complicate cgroup core but
shouldn't put too much strain on individual controllers and I think
it'd be manageable for the foreseeable future. Maybe we'll be able
to drop it in a decade.
Fix up conflicts (including a semantic one adding a new #include to ppc
that was uncovered by header the file changes) as per Tejun.
* 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (45 commits)
cpuset: fix compile warning when CONFIG_SMP=n
cpuset: fix cpu hotplug vs rebuild_sched_domains() race
cpuset: use rebuild_sched_domains() in cpuset_hotplug_workfn()
cgroup: restore the call to eventfd->poll()
cgroup: fix use-after-free when umounting cgroupfs
cgroup: fix broken file xattrs
devcg: remove parent_cgroup.
memcg: force use_hierarchy if sane_behavior
cgroup: remove cgrp->top_cgroup
cgroup: introduce sane_behavior mount option
move cgroupfs_root to include/linux/cgroup.h
cgroup: convert cgroupfs_root flag bits to masks and add CGRP_ prefix
cgroup: make cgroup_path() not print double slashes
Revert "cgroup: remove bind() method from cgroup_subsys."
perf: make perf_event cgroup hierarchical
cgroup: implement cgroup_is_descendant()
cgroup: make sure parent won't be destroyed before its children
cgroup: remove bind() method from cgroup_subsys.
devcg: remove broken_hierarchy tag
cgroup: remove cgroup_lock_is_held()
...
The memcg is not referenced, so it can be destroyed at anytime right
after we exit rcu read section, so it's not safe to access it.
To fix this, we call css_tryget() to get a reference while we're still
in rcu read section.
This also removes a bogus comment above __memcg_create_cache_enqueue().
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A memcg may livelock when oom if the process that grabs the hierarchy's
oom lock is never the first process with PF_EXITING set in the memcg's
task iteration.
The oom killer, both global and memcg, will defer if it finds an
eligible process that is in the process of exiting and it is not being
ptraced. The idea is to allow it to exit without using memory reserves
before needlessly killing another process.
This normally works fine except in the memcg case with a large number of
threads attached to the oom memcg. In this case, the memcg oom killer
only gets called for the process that grabs the hierarchy's oom lock;
all others end up blocked on the memcg's oom waitqueue. Thus, if the
process that grabs the hierarchy's oom lock is never the first
PF_EXITING process in the memcg's task iteration, the oom killer is
constantly deferred without anything making progress.
The fix is to give PF_EXITING processes access to memory reserves so
that we've marked them as oom killed without any iteration. This allows
__mem_cgroup_try_charge() to succeed so that the process may exit. This
makes the memcg oom killer exemption for TIF_MEMDIE tasks, now
immediately granted for processes with pending SIGKILLs and those in the
exit path, to be equivalent to what is done for the global oom killer.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This might cause a use-after-free bug.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With this patch userland applications that want to maintain the
interactivity/memory allocation cost can use the pressure level
notifications. The levels are defined like this:
The "low" level means that the system is reclaiming memory for new
allocations. Monitoring this reclaiming activity might be useful for
maintaining cache level. Upon notification, the program (typically
"Activity Manager") might analyze vmstat and act in advance (i.e.
prematurely shutdown unimportant services).
The "medium" level means that the system is experiencing medium memory
pressure, the system might be making swap, paging out active file
caches, etc. Upon this event applications may decide to further analyze
vmstat/zoneinfo/memcg or internal memory usage statistics and free any
resources that can be easily reconstructed or re-read from a disk.
The "critical" level means that the system is actively thrashing, it is
about to out of memory (OOM) or even the in-kernel OOM killer is on its
way to trigger. Applications should do whatever they can to help the
system. It might be too late to consult with vmstat or any other
statistics, so it's advisable to take an immediate action.
The events are propagated upward until the event is handled, i.e. the
events are not pass-through. Here is what this means: for example you
have three cgroups: A->B->C. Now you set up an event listener on
cgroups A, B and C, and suppose group C experiences some pressure. In
this situation, only group C will receive the notification, i.e. groups
A and B will not receive it. This is done to avoid excessive
"broadcasting" of messages, which disturbs the system and which is
especially bad if we are low on memory or thrashing. So, organize the
cgroups wisely, or propagate the events manually (or, ask us to
implement the pass-through events, explaining why would you need them.)
Performance wise, the memory pressure notifications feature itself is
lightweight and does not require much of bookkeeping, in contrast to the
rest of memcg features. Unfortunately, as of current memcg
implementation, pages accounting is an inseparable part and cannot be
turned off. The good news is that there are some efforts[1] to improve
the situation; plus, implementing the same, fully API-compatible[2]
interface for CONFIG_MEMCG=n case (e.g. embedded) is also a viable
option, so it will not require any changes on the userland side.
[1] http://permalink.gmane.org/gmane.linux.kernel.cgroups/6291
[2] http://lkml.org/lkml/2013/2/21/454
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix CONFIG_CGROPUPS=n warnings]
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Leonid Moiseichuk <leonid.moiseichuk@nokia.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just a trivial issue I stumbled on while doing something else...
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 2d11085e40 ("memcg: do not create memsw files if swap
accounting is disabled") memsw files are created only if memcg swap
accounting is enabled so it doesn't make any sense to check for it
explicitly in mem_cgroup_read(), mem_cgroup_write() and
mem_cgroup_reset().
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_iter basically does two things currently. It takes care of
the house keeping (reference counting, raclaim cookie) and it iterates
through a hierarchy tree (by using cgroup generic tree walk). The code
would be much more easier to follow if we move the iteration outside of
the function (to __mem_cgrou_iter_next) so the distinction is more
clear. This patch doesn't introduce any functional changes.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current implementation of mem_cgroup_iter has to consider both css
and memcg to find out whether no group has been found (css==NULL - aka
the loop is completed) and that no memcg is associated with the found
node (!memcg - aka css_tryget failed because the group is no longer
alive). This leads to awkward tweaks like tests for css && !memcg to
skip the current node.
It will be much easier if we got rid off css variable altogether and
only rely on memcg. In order to do that the iteration part has to skip
dead nodes. This sounds natural to me and as a nice side effect we will
get a simple invariant that memcg is always alive when non-NULL and all
nodes have been visited otherwise.
We could get rid of the surrounding while loop but keep it in for now to
make review easier. It will go away in the following patch.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the per-node-zone-priority iterator caches memory cgroups
rather than their css ids we have to be careful and remove them from the
iterator when they are on the way out otherwise they might live for
unbounded amount of time even though their group is already gone (until
the global/targeted reclaim triggers the zone under priority to find out
the group is dead and let it to find the final rest).
We can fix this issue by relaxing rules for the last_visited memcg.
Instead of taking a reference to the css before it is stored into
iter->last_visited we can just store its pointer and track the number of
removed groups from each memcg's subhierarchy.
This number would be stored into iterator everytime when a memcg is
cached. If the iter count doesn't match the curent walker root's one we
will start from the root again. The group counter is incremented
upwards the hierarchy every time a group is removed.
The iter_lock can be dropped because racing iterators cannot leak the
reference anymore as the reference count is not elevated for
last_visited when it is cached.
Locking rules got a bit complicated by this change though. The iterator
primarily relies on rcu read lock which makes sure that once we see a
valid last_visited pointer then it will be valid for the whole RCU walk.
smp_rmb makes sure that dead_count is read before last_visited and
last_dead_count while smp_wmb makes sure that last_visited is updated
before last_dead_count so the up-to-date last_dead_count cannot point to
an outdated last_visited. css_tryget then makes sure that the
last_visited is still alive in case the iteration races with the cached
group removal (css is invalidated before mem_cgroup_css_offline
increments dead_count).
In short:
mem_cgroup_iter
rcu_read_lock()
dead_count = atomic_read(parent->dead_count)
smp_rmb()
if (dead_count != iter->last_dead_count)
last_visited POSSIBLY INVALID -> last_visited = NULL
if (!css_tryget(iter->last_visited))
last_visited DEAD -> last_visited = NULL
next = find_next(last_visited)
css_tryget(next)
css_put(last_visited) // css would be invalidated and parent->dead_count
// incremented if this was the last reference
iter->last_visited = next
smp_wmb()
iter->last_dead_count = dead_count
rcu_read_unlock()
cgroup_rmdir
cgroup_destroy_locked
atomic_add(CSS_DEACT_BIAS, &css->refcnt) // subsequent css_tryget fail
mem_cgroup_css_offline
mem_cgroup_invalidate_reclaim_iterators
while(parent = parent_mem_cgroup)
atomic_inc(parent->dead_count)
css_put(css) // last reference held by cgroup core
Spotted by Ying Han.
Original idea from Johannes Weiner.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_iter curently relies on css->id when walking down a group
hierarchy tree. This is really awkward because the tree walk depends on
the groups creation ordering. The only guarantee is that a parent node is
visited before its children.
Example:
1) mkdir -p a a/d a/b/c
2) mkdir -a a/b/c a/d
Will create the same trees but the tree walks will be different:
1) a, d, b, c
2) a, b, c, d
Commit 574bd9f7c7 ("cgroup: implement generic child / descendant walk
macros") has introduced generic cgroup tree walkers which provide either
pre-order or post-order tree walk. This patch converts css->id based
iteration to pre-order tree walk to keep the semantic with the original
iterator where parent is always visited before its subtree.
cgroup_for_each_descendant_pre suggests using post_create and
pre_destroy for proper synchronization with groups addidition resp.
removal. This implementation doesn't use those because a new memory
cgroup is initialized sufficiently for iteration in mem_cgroup_css_alloc
already and css reference counting enforces that the group is alive for
both the last seen cgroup and the found one resp. it signals that the
group is dead and it should be skipped.
If the reclaim cookie is used we need to store the last visited group
into the iterator so we have to be careful that it doesn't disappear in
the mean time. Elevated reference count on the css keeps it alive even
though the group have been removed (parked waiting for the last dput so
that it can be freed).
Per node-zone-prio iter_lock has been introduced to ensure that
css_tryget and iter->last_visited is set atomically. Otherwise two
racing walkers could both take a references and only one release it
leading to a css leak (which pins cgroup dentry).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patchset tries to make mem_cgroup_iter saner in the way how it walks
hierarchies. css->id based traversal is far from being ideal as it is not
deterministic because it depends on the creation ordering. Additional to
that css_id is considered a burden for cgroup maintainers because it is
quite some code and memcg is the last user of it. After this series only
the swap accounting uses css_id but that one will follow up later.
Diffstat (if we exclude removed/added comments) looks quite
promising. We got rid of some code:
$ git diff mmotm... | grep -v "^[+-][[:space:]]*[/ ]\*" | diffstat
b/include/linux/cgroup.h | 3 ---
kernel/cgroup.c | 33 ---------------------------------
mm/memcontrol.c | 4 +++-
3 files changed, 3 insertions(+), 37 deletions(-)
The first patch is just preparatory and it changes when we release css of
the previously returned memcg. Nothing controlversial.
The second patch is the core of the patchset and it replaces css_get_next
based on css_id by the generic cgroup pre-order. This brings some
chalanges for the last visited group caching during the reclaim
(mem_cgroup_per_zone::reclaim_iter). We have to use memcg pointers
directly now which means that we have to keep a reference to those groups'
css to keep them alive.
I also folded iter_lock introduced by https://lkml.org/lkml/2013/1/3/295
in the previous version into this patch. Johannes felt the race I was
describing should be mostly harmless and I haven't been able to trigger it
so the lock doesn't deserve its own patch. It is still needed
temporarily, though, because the reference counting on iter->last_visited
depends on it. It will go away with the next patch.
The next patch fixups an unbounded cgroup removal holdoff caused by the
elevated css refcount. The issue has been observed by Ying Han. Johannes
wasn't impressed by the previous version of the fix
(https://lkml.org/lkml/2013/2/8/379) which cleaned up pending references
during mem_cgroup_css_offline when a group is removed. He has suggested a
different way when the iterator checks whether a cached memcg is still
valid or no. More on that in the patch but the basic idea is that every
memcg tracks the number removed subgroups and iterator records this number
when a group is cached. These numbers are checked before
iter->last_visited is about to be used and the iteration is restarted if
it is invalid.
The fourth and fifth patches are an attempt for simplification of the
mem_cgroup_iter. css juggling is removed and the iteration logic is moved
to a helper so that the reference counting and iteration are separated.
The last patch just removes css_get_next as there is no user for it any
longer.
My testing looked as follows:
A (use_hierarchy=1, limit_in_bytes=150M)
/|\
1 2 3
Children groups were created so that the number is never higher than 3 and
their limits were random between 50-100M. Each group hosts a kernel build
(starting with tar -xf so the tree is not shared and make -jNUM_CPUs/3)
and terminated after random time - up to 5 minutes) and then it is
removed.
This should exercise both leaf and hierarchical reclaim as well as races
with cgroup removals and debugging messages I added on top proved that.
100 groups were created during the test.
This patch:
css reference counting keeps the cgroup alive even though it has been
already removed. mem_cgroup_iter relies on this fact and takes a
reference to the returned group. The reference is then released on the
next iteration or mem_cgroup_iter_break. mem_cgroup_iter currently
releases the reference right after it gets the last css_id.
This is correct because neither prev's memcg nor cgroup are accessed after
then. This will change in the next patch so we need to hold the group
alive a bit longer so let's move the css_put at the end of the function.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Turn on use_hierarchy by default if sane_behavior is specified and
don't create .use_hierarchy file.
It is debatable whether to remove .use_hierarchy file or make it ro as
the former could make transition easier in certain cases; however, the
behavior changes which will be gated by sane_behavior are intensive
including changing basic meaning of certain control knobs in a few
controllers and I don't really think keeping this piece would make
things easier in any noticeable way, so let's remove it.
v2: Explain that mem_cgroup_bind() doesn't have to worry about
children as suggested by Michal Hocko.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
As cgroup supports rename, it's unsafe to dereference dentry->d_name
without proper vfs locks. Fix this by using cgroup_name() rather than
dentry directly.
Also open code memcg_cache_name because it is called only from
kmem_cache_dup which frees the returned name right after
kmem_cache_create_memcg makes a copy of it. Such a short-lived
allocation doesn't make too much sense. So replace it by a static
buffer as kmem_cache_dup is called with memcg_cache_mutex.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Whilst I run the risk of a flogging for disloyalty to the Lord of Sealand,
I do have CONFIG_MEMCG=y CONFIG_MEMCG_KMEM not set, and grow tired of the
"mm/memcontrol.c:4972:12: warning: `memcg_propagate_kmem' defined but not
used [-Wunused-function]" seen in 3.8-rc: move the #ifdef outwards.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should encourage all memcg controller initialization independent on a
specific mem_cgroup to be done here rather than exploit css_alloc
callback and assume that nothing happens before root cgroup is created.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <htejun@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_stock are currently initialized during the root cgroup allocation
which is OK but it pointlessly pollutes memcg allocation code with
something that can be called when the memcg subsystem is initialized by
mem_cgroup_init along with other controller specific parts.
This patch wraps the current memcg_stock initialization code into a
helper calls it from the controller subsystem initialization code.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <htejun@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per-node-zone soft limit tree is currently initialized when the root
cgroup is created which is OK but it pointlessly pollutes memcg
allocation code with something that can be called when the memcg
subsystem is initialized by mem_cgroup_init along with other controller
specific parts.
While we are at it let's make mem_cgroup_soft_limit_tree_init void
because it doesn't make much sense to report memory failure because if
we fail to allocate memory that early during the boot then we are
screwed anyway (this saves some code).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <htejun@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An inactive file list is considered low when its active counterpart is
bigger, regardless of whether it is a global zone LRU list or a memcg
zone LRU list. The only difference is in how the LRU size is assessed.
get_lru_size() does the right thing for both global and memcg reclaim
situations.
Get rid of inactive_file_is_low_global() and
mem_cgroup_inactive_file_is_low() by using get_lru_size() and compare
the numbers in common code.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When use_hierarchy is enabled, we acquire an extra reference count in
our parent during cgroup creation. We don't release it, though, if any
failure exist in the creation process.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reported-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We were deferring the kmemcg static branch increment to a later time,
due to a nasty dependency between the cpu_hotplug lock, taken by the
jump label update, and the cgroup_lock.
Now we no longer take the cgroup lock, and we can save ourselves the
trouble.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After the preparation work done in earlier patches, the cgroup_lock can
be trivially replaced with a memcg-specific lock. This is an automatic
translation at every site where the values involved were queried.
The sites where values are written, however, used to be naturally called
under cgroup_lock. This is the case for instance in the css_online
callback. For those, we now need to explicitly add the memcg lock.
With this, all the calls to cgroup_lock outside cgroup core are gone.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we use cgroups' provided list of children to verify if it is
safe to proceed with any value change that is dependent on the cgroup
being empty.
This is less than ideal, because it enforces a dependency over cgroup
core that we would be better off without. The solution proposed here is
to iterate over the child cgroups and if any is found that is already
online, we bounce and return: we don't really care how many children we
have, only if we have any.
This is also made to be hierarchy aware. IOW, cgroups with hierarchy
disabled, while they still exist, will be considered for the purpose of
this interface as having no children.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a preparatory work for later locking rework to get rid of
big cgroup lock from memory controller code.
The memory controller uses some tunables to adjust its operation. Those
tunables are inherited from parent to children upon children
intialization. For most of them, the value cannot be changed after the
parent has a new children.
cgroup core splits initialization in two phases: css_alloc and css_online.
After css_alloc, the memory allocation and basic initialization are done.
But the new group is not yet visible anywhere, not even for cgroup core
code. It is only somewhere between css_alloc and css_online that it is
inserted into the internal children lists. Copying tunable values in
css_alloc will lead to inconsistent values: the children will copy the old
parent values, that can change between the copy and the moment in which
the groups is linked to any data structure that can indicate the presence
of children.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In memcg, we use the cgroup_lock basically to synchronize against
attaching new children to a cgroup. We do this because we rely on
cgroup core to provide us with this information.
We need to guarantee that upon child creation, our tunables are
consistent. For those, the calls to cgroup_lock() all live in handlers
like mem_cgroup_hierarchy_write(), where we change a tunable in the
group that is hierarchy-related. For instance, the use_hierarchy flag
cannot be changed if the cgroup already have children.
Furthermore, those values are propagated from the parent to the child
when a new child is created. So if we don't lock like this, we can end
up with the following situation:
A B
memcg_css_alloc() mem_cgroup_hierarchy_write()
copy use hierarchy from parent change use hierarchy in parent
finish creation.
This is mainly because during create, we are still not fully connected
to the css tree. So all iterators and the such that we could use, will
fail to show that the group has children.
My observation is that all of creation can proceed in parallel with
those tasks, except value assignment. So what this patch series does is
to first move all value assignment that is dependent on parent values
from css_alloc to css_online, where the iterators all work, and then we
lock only the value assignment. This will guarantee that parent and
children always have consistent values. Together with an online test,
that can be derived from the observation that the refcount of an online
memcg can be made to be always positive, we should be able to
synchronize our side without the cgroup lock.
This patch:
Currently, we rely on the cgroup_lock() to prevent changes to
move_charge_at_immigrate during task migration. However, this is only
needed because the current strategy keeps checking this value throughout
the whole process. Since all we need is serialization, one needs only
to guarantee that whatever decision we made in the beginning of a
specific migration is respected throughout the process.
We can achieve this by just saving it in mc. By doing this, no kind of
locking is needed.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to maintain all the memcg bookkeeping, we need per-node
descriptors, which will in turn contain a per-zone descriptor.
Because we want to statically allocate those, this array ends up being
very big. Part of the reason is that we allocate something large enough
to hold MAX_NUMNODES, the compile time constant that holds the maximum
number of nodes we would ever consider.
However, we can do better in some cases if the firmware help us. This
is true for modern x86 machines; coincidentally one of the architectures
in which MAX_NUMNODES tends to be very big.
By using the firmware-provided maximum number of nodes instead of
MAX_NUMNODES, we can reduce the memory footprint of struct memcg
considerably. In the extreme case in which we have only one node, this
reduces the size of the structure from ~ 64k to ~2k. This is
particularly important because it means that we will no longer resort to
the vmalloc area for the struct memcg on defconfigs. We also have
enough room for an extra node and still be outside vmalloc.
One also has to keep in mind that with the industry's ability to fit
more processors in a die as fast as the FED prints money, a nodes = 2
configuration is already respectably big.
[akpm@linux-foundation.org: add check for invalid nid, remove inline]
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg swap accounting is currently enabled by enable_swap_cgroup when
the root cgroup is created. mem_cgroup_init acts as a memcg subsystem
initializer which sounds like a much better place for enable_swap_cgroup
as well. We already register memsw files from there so it makes a lot
of sense to merge those two into a single enable_swap_cgroup function.
This patch doesn't introduce any semantic changes.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Zhouping Liu <zliu@redhat.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: CAI Qian <caiqian@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Zhouping Liu has reported that memsw files are exported even though swap
accounting is runtime disabled if MEMCG_SWAP is enabled. This behavior
has been introduced by commit af36f906c0 ("memcg: always create memsw
files if CGROUP_MEM_RES_CTLR_SWAP") and it causes any attempt to open
the file to return EOPNOTSUPP. Although EOPNOTSUPP should say be clear
that memsw operations are not supported in the given configuration it is
fair to say that this behavior could be quite confusing.
Let's tear memsw files out of default cgroup files and add them only if
the swap accounting is really enabled (either by MEMCG_SWAP_ENABLED or
swapaccount=1 boot parameter). We can hook into mem_cgroup_init which
is called when the memcg subsystem is initialized and which happens
after boot command line is processed.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Zhouping Liu <zliu@redhat.com>
Tested-by: Zhouping Liu <zliu@redhat.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: CAI Qian <caiqian@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I use several fast SSD to do swap, swapper_space.tree_lock is
heavily contended. This makes each swap partition have one
address_space to reduce the lock contention. There is an array of
address_space for swap. The swap entry type is the index to the array.
In my test with 3 SSD, this increases the swapout throughput 20%.
[akpm@linux-foundation.org: revert unneeded change to __add_to_swap_cache]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The designed workflow for the caches in kmemcg is: register it with
memcg_register_cache() if kmemcg is already available or later on when a
new kmemcg appears at memcg_update_cache_sizes() which will handle all
caches in the system. The caches created at boot time will be handled
by the later, and the memcg-caches as well as any system caches that are
registered later on by the former.
There is a bug, however, in memcg_register_cache: we correctly set up
the array size, but do not mark the cache as a root cache.
This means that allocations for any cache appearing late in the game
will see memcg->memcg_params->is_root_cache == false, and in particular,
trigger VM_BUG_ON(!cachep->memcg_params->is_root_cache) in
__memcg_kmem_cache_get.
The obvious fix is to include the missing assignment.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB allows us to tune a particular cache behavior with tunables. When
creating a new memcg cache copy, we'd like to preserve any tunables the
parent cache already had.
This could be done by an explicit call to do_tune_cpucache() after the
cache is created. But this is not very convenient now that the caches are
created from common code, since this function is SLAB-specific.
Another method of doing that is taking advantage of the fact that
do_tune_cpucache() is always called from enable_cpucache(), which is
called at cache initialization. We can just preset the values, and then
things work as expected.
It can also happen that a root cache has its tunables updated during
normal system operation. In this case, we will propagate the change to
all caches that are already active.
This change will require us to move the assignment of root_cache in
memcg_params a bit earlier. We need this to be already set - which
memcg_kmem_register_cache will do - when we reach __kmem_cache_create()
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we create caches in memcgs, we need to display their usage
information somewhere. We'll adopt a scheme similar to /proc/meminfo,
with aggregate totals shown in the global file, and per-group information
stored in the group itself.
For the time being, only reads are allowed in the per-group cache.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This means that when we destroy a memcg cache that happened to be empty,
those caches may take a lot of time to go away: removing the memcg
reference won't destroy them - because there are pending references, and
the empty pages will stay there, until a shrinker is called upon for any
reason.
In this patch, we will call kmem_cache_shrink() for all dead caches that
cannot be destroyed because of remaining pages. After shrinking, it is
possible that it could be freed. If this is not the case, we'll schedule
a lazy worker to keep trying.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This enables us to remove all the children of a kmem_cache being
destroyed, if for example the kernel module it's being used in gets
unloaded. Otherwise, the children will still point to the destroyed
parent.
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement destruction of memcg caches. Right now, only caches where our
reference counter is the last remaining are deleted. If there are any
other reference counters around, we just leave the caches lying around
until they go away.
When that happens, a destruction function is called from the cache code.
Caches are only destroyed in process context, so we queue them up for
later processing in the general case.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are able to match a cache allocation to a particular memcg. If the
task doesn't change groups during the allocation itself - a rare event,
this will give us a good picture about who is the first group to touch a
cache page.
This patch uses the now available infrastructure by calling
memcg_kmem_get_cache() before all the cache allocations.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Create a mechanism that skip memcg allocations during certain pieces of
our core code. It basically works in the same way as
preempt_disable()/preempt_enable(): By marking a region under which all
allocations will be accounted to the root memcg.
We need this to prevent races in early cache creation, when we
allocate data using caches that are not necessarily created already.
Signed-off-by: Glauber Costa <glommer@parallels.com>
yCc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator is able to bind a page to a memcg when it is
allocated. But for the caches, we'd like to have as many objects as
possible in a page belonging to the same cache.
This is done in this patch by calling memcg_kmem_get_cache in the
beginning of every allocation function. This function is patched out by
static branches when kernel memory controller is not being used.
It assumes that the task allocating, which determines the memcg in the
page allocator, belongs to the same cgroup throughout the whole process.
Misaccounting can happen if the task calls memcg_kmem_get_cache() while
belonging to a cgroup, and later on changes. This is considered
acceptable, and should only happen upon task migration.
Before the cache is created by the memcg core, there is also a possible
imbalance: the task belongs to a memcg, but the cache being allocated from
is the global cache, since the child cache is not yet guaranteed to be
ready. This case is also fine, since in this case the GFP_KMEMCG will not
be passed and the page allocator will not attempt any cgroup accounting.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every cache that is considered a root cache (basically the "original"
caches, tied to the root memcg/no-memcg) will have an array that should be
large enough to store a cache pointer per each memcg in the system.
Theoreticaly, this is as high as 1 << sizeof(css_id), which is currently
in the 64k pointers range. Most of the time, we won't be using that much.
What goes in this patch, is a simple scheme to dynamically allocate such
an array, in order to minimize memory usage for memcg caches. Because we
would also like to avoid allocations all the time, at least for now, the
array will only grow. It will tend to be big enough to hold the maximum
number of kmem-limited memcgs ever achieved.
We'll allocate it to be a minimum of 64 kmem-limited memcgs. When we have
more than that, we'll start doubling the size of this array every time the
limit is reached.
Because we are only considering kmem limited memcgs, a natural point for
this to happen is when we write to the limit. At that point, we already
have set_limit_mutex held, so that will become our natural synchronization
mechanism.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow a memcg parameter to be passed during cache creation. When the slub
allocator is being used, it will only merge caches that belong to the same
memcg. We'll do this by scanning the global list, and then translating
the cache to a memcg-specific cache
Default function is created as a wrapper, passing NULL to the memcg
version. We only merge caches that belong to the same memcg.
A helper is provided, memcg_css_id: because slub needs a unique cache name
for sysfs. Since this is visible, but not the canonical location for slab
data, the cache name is not used, the css_id should suffice.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A lot of the initialization we do in mem_cgroup_create() is done with
softirqs enabled. This include grabbing a css id, which holds
&ss->id_lock->rlock, and the per-zone trees, which holds
rtpz->lock->rlock. All of those signal to the lockdep mechanism that
those locks can be used in SOFTIRQ-ON-W context.
This means that the freeing of memcg structure must happen in a
compatible context, otherwise we'll get a deadlock, like the one below,
caught by lockdep:
free_accounted_pages+0x47/0x4c
free_task+0x31/0x5c
__put_task_struct+0xc2/0xdb
put_task_struct+0x1e/0x22
delayed_put_task_struct+0x7a/0x98
__rcu_process_callbacks+0x269/0x3df
rcu_process_callbacks+0x31/0x5b
__do_softirq+0x122/0x277
This usage pattern could not be triggered before kmem came into play.
With the introduction of kmem stack handling, it is possible that we call
the last mem_cgroup_put() from the task destructor, which is run in an rcu
callback. Such callbacks are run with softirqs disabled, leading to the
offensive usage pattern.
In general, we have little, if any, means to guarantee in which context
the last memcg_put will happen. The best we can do is test it and try to
make sure no invalid context releases are happening. But as we add more
code to memcg, the possible interactions grow in number and expose more
ways to get context conflicts. One thing to keep in mind, is that part of
the freeing process is already deferred to a worker, such as vfree(), that
can only be called from process context.
For the moment, the only two functions we really need moved away are:
* free_css_id(), and
* mem_cgroup_remove_from_trees().
But because the later accesses per-zone info,
free_mem_cgroup_per_zone_info() needs to be moved as well. With that, we
are left with the per_cpu stats only. Better move it all.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Tested-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because the ultimate goal of the kmem tracking in memcg is to track slab
pages as well, we can't guarantee that we'll always be able to point a
page to a particular process, and migrate the charges along with it -
since in the common case, a page will contain data belonging to multiple
processes.
Because of that, when we destroy a memcg, we only make sure the
destruction will succeed by discounting the kmem charges from the user
charges when we try to empty the cgroup.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use static branches to patch the code in or out when not used.
Because the _ACTIVE bit on kmem_accounted is only set after the increment
is done, we guarantee that the root memcg will always be selected for kmem
charges until all call sites are patched (see memcg_kmem_enabled). This
guarantees that no mischarges are applied.
Static branch decrement happens when the last reference count from the
kmem accounting in memcg dies. This will only happen when the charges
drop down to 0.
When that happens, we need to disable the static branch only on those
memcgs that enabled it. To achieve this, we would be forced to complicate
the code by keeping track of which memcgs were the ones that actually
enabled limits, and which ones got it from its parents.
It is a lot simpler just to do static_key_slow_inc() on every child
that is accounted.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because kmem charges can outlive the cgroup, we need to make sure that we
won't free the memcg structure while charges are still in flight. For
reviewing simplicity, the charge functions will issue mem_cgroup_get() at
every charge, and mem_cgroup_put() at every uncharge.
This can get expensive, however, and we can do better. mem_cgroup_get()
only really needs to be issued once: when the first limit is set. In the
same spirit, we only need to issue mem_cgroup_put() when the last charge
is gone.
We'll need an extra bit in kmem_account_flags for that:
KMEM_ACCOUNTED_DEAD. it will be set when the cgroup dies, if there are
charges in the group. If there aren't, we can proceed right away.
Our uncharge function will have to test that bit every time the charges
drop to 0. Because that is not the likely output of res_counter_uncharge,
this should not impose a big hit on us: it is certainly much better than a
reference count decrease at every operation.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce infrastructure for tracking kernel memory pages to a given
memcg. This will happen whenever the caller includes the flag
__GFP_KMEMCG flag, and the task belong to a memcg other than the root.
In memcontrol.h those functions are wrapped in inline acessors. The idea
is to later on, patch those with static branches, so we don't incur any
overhead when no mem cgroups with limited kmem are being used.
Users of this functionality shall interact with the memcg core code
through the following functions:
memcg_kmem_newpage_charge: will return true if the group can handle the
allocation. At this point, struct page is not
yet allocated.
memcg_kmem_commit_charge: will either revert the charge, if struct page
allocation failed, or embed memcg information
into page_cgroup.
memcg_kmem_uncharge_page: called at free time, will revert the charge.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the basic infrastructure for the accounting of kernel memory. To
control that, the following files are created:
* memory.kmem.usage_in_bytes
* memory.kmem.limit_in_bytes
* memory.kmem.failcnt
* memory.kmem.max_usage_in_bytes
They have the same meaning of their user memory counterparts. They
reflect the state of the "kmem" res_counter.
Per cgroup kmem memory accounting is not enabled until a limit is set for
the group. Once the limit is set the accounting cannot be disabled for
that group. This means that after the patch is applied, no behavioral
changes exists for whoever is still using memcg to control their memory
usage, until memory.kmem.limit_in_bytes is set for the first time.
We always account to both user and kernel resource_counters. This
effectively means that an independent kernel limit is in place when the
limit is set to a lower value than the user memory. A equal or higher
value means that the user limit will always hit first, meaning that kmem
is effectively unlimited.
People who want to track kernel memory but not limit it, can set this
limit to a very high number (like RESOURCE_MAX - 1page - that no one will
ever hit, or equal to the user memory)
[akpm@linux-foundation.org: MEMCG_MMEM only works with slab and slub]
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is just a cleanup patch for clarity of expression. In earlier
submissions, people asked it to be in a separate patch, so here it is.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_do_charge() was written before kmem accounting, and expects
three cases: being called for 1 page, being called for a stock of 32
pages, or being called for a hugepage. If we call for 2 or 3 pages (and
both the stack and several slabs used in process creation are such, at
least with the debug options I had), it assumed it's being called for
stock and just retried without reclaiming.
Fix that by passing down a minsize argument in addition to the csize.
And what to do about that (csize == PAGE_SIZE && ret) retry? If it's
needed at all (and presumably is since it's there, perhaps to handle
races), then it should be extended to more than PAGE_SIZE, yet how far?
And should there be a retry count limit, of what? For now retry up to
COSTLY_ORDER (as page_alloc.c does) and make sure not to do it if
__GFP_NORETRY.
v4: fixed nr pages calculation pointed out by Christoph Lameter.
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently have a percpu stock cache scheme that charges one page at a
time from memcg->res, the user counter. When the kernel memory controller
comes into play, we'll need to charge more than that.
This is because kernel memory allocations will also draw from the user
counter, and can be bigger than a single page, as it is the case with the
stack (usually 2 pages) or some higher order slabs.
[glommer@parallels.com: added a changelog ]
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
The mm given to __mem_cgroup_count_vm_event() cannot be NULL because the
function is either called from the page fault path or vma->vm_mm is used.
So the check can be dropped.
The check was introduced by commit 456f998ec8 ("memcg: add the
pagefault count into memcg stats") because the originally proposed patch
used current->mm for shmem but this has been changed to vma->vm_mm later
on without the check being removed (thanks to Hugh for this
recollection).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While profiling numa/core v16 with cgroup_disable=memory on the command
line, I noticed mem_cgroup_count_vm_event() still showed up as high as
0.60% in perftop.
This occurs because the function is called extremely often even when memcg
is disabled.
To fix this, inline the check for mem_cgroup_disabled() so we avoid the
unnecessary function call if memcg is disabled.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.
The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup changes from Tejun Heo:
"A lot of activities on cgroup side. The big changes are focused on
making cgroup hierarchy handling saner.
- cgroup_rmdir() had peculiar semantics - it allowed cgroup
destruction to be vetoed by individual controllers and tried to
drain refcnt synchronously. The vetoing never worked properly and
caused good deal of contortions in cgroup. memcg was the last
reamining user. Michal Hocko removed the usage and cgroup_rmdir()
path has been simplified significantly. This was done in a
separate branch so that the memcg people can base further memcg
changes on top.
- The above allowed cleaning up cgroup lifecycle management and
implementation of generic cgroup iterators which are used to
improve hierarchy support.
- cgroup_freezer updated to allow migration in and out of a frozen
cgroup and handle hierarchy. If a cgroup is frozen, all descendant
cgroups are frozen.
- netcls_cgroup and netprio_cgroup updated to handle hierarchy
properly.
- Various fixes and cleanups.
- Two merge commits. One to pull in memcg and rmdir cleanups (needed
to build iterators). The other pulled in cgroup/for-3.7-fixes for
device_cgroup fixes so that further device_cgroup patches can be
stacked on top."
Fixed up a trivial conflict in mm/memcontrol.c as per Tejun (due to
commit bea8c150a7 ("memcg: fix hotplugged memory zone oops") in master
touching code close to commit 2ef37d3fe4 ("memcg: Simplify
mem_cgroup_force_empty_list error handling") in for-3.8)
* 'for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (65 commits)
cgroup: update Documentation/cgroups/00-INDEX
cgroup_rm_file: don't delete the uncreated files
cgroup: remove subsystem files when remounting cgroup
cgroup: use cgroup_addrm_files() in cgroup_clear_directory()
cgroup: warn about broken hierarchies only after css_online
cgroup: list_del_init() on removed events
cgroup: fix lockdep warning for event_control
cgroup: move list add after list head initilization
netprio_cgroup: allow nesting and inherit config on cgroup creation
netprio_cgroup: implement netprio[_set]_prio() helpers
netprio_cgroup: use cgroup->id instead of cgroup_netprio_state->prioidx
netprio_cgroup: reimplement priomap expansion
netprio_cgroup: shorten variable names in extend_netdev_table()
netprio_cgroup: simplify write_priomap()
netcls_cgroup: move config inheritance to ->css_online() and remove .broken_hierarchy marking
cgroup: remove obsolete guarantee from cgroup_task_migrate.
cgroup: add cgroup->id
cgroup, cpuset: remove cgroup_subsys->post_clone()
cgroup: s/CGRP_CLONE_CHILDREN/CGRP_CPUSET_CLONE_CHILDREN/
cgroup: rename ->create/post_create/pre_destroy/destroy() to ->css_alloc/online/offline/free()
...
mem_cgroup_out_of_memory() is only referenced from within file scope, so
it can be marked static.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Note: This is very heavily based on a patch from Peter Zijlstra with
fixes from Ingo Molnar, Hugh Dickins and Johannes Weiner. That patch
put a lot of migration logic into mm/huge_memory.c where it does
not belong. This version puts tries to share some of the migration
logic with migrate_misplaced_page. However, it should be noted
that now migrate.c is doing more with the pagetable manipulation
than is preferred. The end result is barely recognisable so as
before, the signed-offs had to be removed but will be re-added if
the original authors are ok with it.
Add THP migration for the NUMA working set scanning fault case.
It uses the page lock to serialize. No migration pte dance is
necessary because the pte is already unmapped when we decide
to migrate.
[dhillf@gmail.com: Fix memory leak on isolation failure]
[dhillf@gmail.com: Fix transfer of last_nid information]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Rename cgroup_subsys css lifetime related callbacks to better describe
what their roles are. Also, update documentation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
When MEMCG is configured on (even when it's disabled by boot option),
when adding or removing a page to/from its lru list, the zone pointer
used for stats updates is nowadays taken from the struct lruvec. (On
many configurations, calculating zone from page is slower.)
But we have no code to update all the lruvecs (per zone, per memcg) when
a memory node is hotadded. Here's an extract from the oops which
results when running numactl to bind a program to a newly onlined node:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000f60
IP: __mod_zone_page_state+0x9/0x60
Pid: 1219, comm: numactl Not tainted 3.6.0-rc5+ #180 Bochs Bochs
Process numactl (pid: 1219, threadinfo ffff880039abc000, task ffff8800383c4ce0)
Call Trace:
__pagevec_lru_add_fn+0xdf/0x140
pagevec_lru_move_fn+0xb1/0x100
__pagevec_lru_add+0x1c/0x30
lru_add_drain_cpu+0xa3/0x130
lru_add_drain+0x2f/0x40
...
The natural solution might be to use a memcg callback whenever memory is
hotadded; but that solution has not been scoped out, and it happens that
we do have an easy location at which to update lruvec->zone. The lruvec
pointer is discovered either by mem_cgroup_zone_lruvec() or by
mem_cgroup_page_lruvec(), and both of those do know the right zone.
So check and set lruvec->zone in those; and remove the inadequate
attempt to set lruvec->zone from lruvec_init(), which is called before
NODE_DATA(node) has been allocated in such cases.
Ah, there was one exceptionr. For no particularly good reason,
mem_cgroup_force_empty_list() has its own code for deciding lruvec.
Change it to use the standard mem_cgroup_zone_lruvec() and
mem_cgroup_get_lru_size() too. In fact it was already safe against such
an oops (the lru lists in danger could only be empty), but we're better
proofed against future changes this way.
I've marked this for stable (3.6) since we introduced the problem in 3.5
(now closed to stable); but I have no idea if this is the only fix
needed to get memory hotadd working with memcg in 3.6, and received no
answer when I enquired twice before.
Reported-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_badness() takes a totalpages argument which says how many pages are
available and it uses it as a base for the score calculation. The value
is calculated by mem_cgroup_get_limit which considers both limit and
total_swap_pages (resp. memsw portion of it).
This is usually correct but since fe35004fbf ("mm: avoid swapping out
with swappiness==0") we do not swap when swappiness is 0 which means
that we cannot really use up all the totalpages pages. This in turn
confuses oom score calculation if the memcg limit is much smaller than
the available swap because the used memory (capped by the limit) is
negligible comparing to totalpages so the resulting score is too small
if adj!=0 (typically task with CAP_SYS_ADMIN or non zero oom_score_adj).
A wrong process might be selected as result.
The problem can be worked around by checking mem_cgroup_swappiness==0
and not considering swap at all in such a case.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull rmdir updates into for-3.8 so that further callback updates can
be put on top. This pull created a trivial conflict between the
following two commits.
8c7f6edbda ("cgroup: mark subsystems with broken hierarchy support and whine if cgroups are nested for them")
ed95779340 ("cgroup: kill cgroup_subsys->__DEPRECATED_clear_css_refs")
The former added a field to cgroup_subsys and the latter removed one
from it. They happen to be colocated causing the conflict. Keeping
what's added and removing what's removed resolves the conflict.
Signed-off-by: Tejun Heo <tj@kernel.org>
All ->pre_destory() implementations return 0 now, which is the only
allowed return value. Make it return void.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Now that pre_destroy callbacks are called from the context where neither
any task can attach the group nor any children group can be added there
is no other way to fail from mem_cgroup_pre_destroy.
mem_cgroup_pre_destroy doesn't have to take a reference to memcg's css
because all css' are marked dead already.
tj: Remove now unused local variable @cgrp from
mem_cgroup_reparent_charges().
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
CGRP_WAIT_ON_RMDIR is another kludge which was added to make cgroup
destruction rollback somewhat working. cgroup_rmdir() used to drain
CSS references and CGRP_WAIT_ON_RMDIR and the associated waitqueue and
helpers were used to allow the task performing rmdir to wait for the
next relevant event.
Unfortunately, the wait is visible to controllers too and the
mechanism got exposed to memcg by 887032670d ("cgroup avoid permanent
sleep at rmdir").
Now that the draining and retries are gone, CGRP_WAIT_ON_RMDIR is
unnecessary. Remove it and all the mechanisms supporting it. Note
that memcontrol.c changes are essentially revert of 887032670d
("cgroup avoid permanent sleep at rmdir").
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
CSS_REMOVED is one of the several contortions which were necessary to
support css reference draining on cgroup removal. All css->refcnts
which need draining should be deactivated and verified to equal zero
atomically w.r.t. css_tryget(). If any one isn't zero, all refcnts
needed to be re-activated and css_tryget() shouldn't fail in the
process.
This was achieved by letting css_tryget() busy-loop until either the
refcnt is reactivated (failed removal attempt) or CSS_REMOVED is set
(committing to removal).
Now that css refcnt draining is no longer used, there's no need for
atomic rollback mechanism. css_tryget() simply can look at the
reference count and fail if it's deactivated - it's never getting
re-activated.
This patch removes CSS_REMOVED and updates __css_tryget() to fail if
the refcnt is deactivated. As deactivation and removal are a single
step now, they no longer need to be protected against css_tryget()
happening from irq context. Remove local_irq_disable/enable() from
cgroup_rmdir().
Note that this removes css_is_removed() whose only user is VM_BUG_ON()
in memcontrol.c. We can replace it with a check on the refcnt but
given that the only use case is a debug assert, I think it's better to
simply unexport it.
v2: Comment updated and explanation on local_irq_disable/enable()
added per Michal Hocko.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
mem_cgroup_force_empty_list currently tries to remove all pages from
the given LRU. To prevent from temoporary failures (EBUSY returned by
mem_cgroup_move_parent) it uses a margin to the current LRU pages and
returns the true if there are still some pages left on the list.
If we consider that mem_cgroup_move_parent fails only when it is racing
with somebody else removing (uncharging) the page or when the page is
migrated then it is obvious that all those failures are only temporal
and so we can safely retry later.
Let's get rid of the safety margin and make the loop really wait for
the empty LRU. The caller should still make sure that all charges have
been removed from the res_counter because mem_cgroup_replace_page_cache
might add a page to the LRU after the list_empty check (it doesn't touch
res_counter though).
This catches most of the cases except for shmem which might call
mem_cgroup_replace_page_cache with a page which is not charged and on
the LRU yet but this was the case also without this patch. In order to
fix this we need a guarantee that try_get_mem_cgroup_from_page falls
back to the current mm's cgroup so it needs css_tryget to fail. This
will be fixed up in a later patch because it needs a help from cgroup
core (pre_destroy has to be called after css is cleared).
Although mem_cgroup_pre_destroy can still fail (if a new task or a new
sub-group appears) there is no reason to retry pre_destroy callback from
the cgroup core. This means that __DEPRECATED_clear_css_refs has lost
its meaning and it can be removed.
Changes since v2
- remove __DEPRECATED_clear_css_refs
Changes since v1
- use kerndoc
- be more specific about mem_cgroup_move_parent possible failures
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The root cgroup cannot be destroyed so we never hit it down the
mem_cgroup_pre_destroy path and mem_cgroup_force_empty_write shouldn't
even try to do anything if called for the root.
This means that mem_cgroup_move_parent doesn't have to bother with the
root cgroup and it can assume it can always move charges upwards.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
mem_cgroup_force_empty did two separate things depending on free_all
parameter from the very beginning. It either reclaimed as many pages as
possible and moved the rest to the parent or just moved charges to the
parent. The first variant is used as memory.force_empty callback while
the later is used from the mem_cgroup_pre_destroy.
The whole games around gotos are far from being nice and there is no
reason to keep those two functions inside one. Let's split them and
also move the responsibility for css reference counting to their callers
to make to code easier.
This patch doesn't have any functional changes.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
kmem code uses this function and it is better to not use forward
declarations for static inline functions as some (older) compilers don't
like it:
gcc version 4.3.4 [gcc-4_3-branch revision 152973] (SUSE Linux)
mm/memcontrol.c:421: warning: `mem_cgroup_is_root' declared inline after being called
mm/memcontrol.c:421: warning: previous declaration of `mem_cgroup_is_root' was here
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
TCP kmem accounting is currently guarded by CONFIG_MEMCG_KMEM ifdefs but
the code is not used if !CONFIG_INET so we should rather test for both.
The same applies to net/sock.h, net/ip.h and net/tcp_memcontrol.h but
let's keep those outside of any ifdefs because it is considered safer wrt.
future maintainability.
Tested with
- CONFIG_INET && CONFIG_MEMCG_KMEM
- !CONFIG_INET && CONFIG_MEMCG_KMEM
- CONFIG_INET && !CONFIG_MEMCG_KMEM
- !CONFIG_INET && !CONFIG_MEMCG_KMEM
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, cgroup hierarchy support is a mess. cpu related subsystems
behave correctly - configuration, accounting and control on a parent
properly cover its children. blkio and freezer completely ignore
hierarchy and treat all cgroups as if they're directly under the root
cgroup. Others show yet different behaviors.
These differing interpretations of cgroup hierarchy make using cgroup
confusing and it impossible to co-mount controllers into the same
hierarchy and obtain sane behavior.
Eventually, we want full hierarchy support from all subsystems and
probably a unified hierarchy. Users using separate hierarchies
expecting completely different behaviors depending on the mounted
subsystem is deterimental to making any progress on this front.
This patch adds cgroup_subsys.broken_hierarchy and sets it to %true
for controllers which are lacking in hierarchy support. The goal of
this patch is two-fold.
* Move users away from using hierarchy on currently non-hierarchical
subsystems, so that implementing proper hierarchy support on those
doesn't surprise them.
* Keep track of which controllers are broken how and nudge the
subsystems to implement proper hierarchy support.
For now, start with a single warning message. We can whine louder
later on.
v2: Fixed a typo spotted by Michal. Warning message updated.
v3: Updated memcg part so that it doesn't generate warning in the
cases where .use_hierarchy=false doesn't make the behavior
different from root.use_hierarchy=true. Fixed a typo spotted by
Glauber.
v4: Check ->broken_hierarchy after cgroup creation is complete so that
->create() can affect the result per Michal. Dropped unnecessary
memcg root handling per Michal.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Graf <tgraf@suug.ch>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Add a mem_cgroup_from_css() helper to replace open-coded invokations of
container_of(). To clarify the code and to add a little more type safety.
[akpm@linux-foundation.org: fix extensive breakage]
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem knows for sure that the page is in swap cache when attempting to
charge a page, because the cache charge entry function has a check for it.
Only anon pages may be removed from swap cache already when trying to
charge their swapin.
Adjust the comment, though: '4969c11 mm: fix swapin race condition' added
a stable PageSwapCache check under the page lock in the do_swap_page()
before calling the memory controller, so it's unuse_pte()'s pte_same()
that may fail.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only anon and shmem pages in the swap cache are attempted to be charged
multiple times, from every swap pte fault or from shmem_unuse(). No other
pages require checking PageCgroupUsed().
Charging pages in the swap cache is also serialized by the page lock, and
since both the try_charge and commit_charge are called under the same page
lock section, the PageCgroupUsed() check might as well happen before the
counter charging, let alone reclaim.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When shmem is charged upon swapin, it does not need to check twice whether
the memory controller is enabled.
Also, shmem pages do not have to be checked for everything that regular
anon pages have to be checked for, so let shmem use the internal version
directly and allow future patches to move around checks that are only
required when swapping in anon pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It does not matter to __mem_cgroup_try_charge() if the passed mm is NULL
or init_mm, it will charge the root memcg in either case.
Also fix up the comment in __mem_cgroup_try_charge() that claimed the
init_mm would be charged when no mm was passed. It's not really
incorrect, but confusing. Clarify that the root memcg is charged in this
case.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem page charges have not needed a separate charge type to tell them
from regular file pages since 08e552c ("memcg: synchronized LRU").
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Charging cache pages may require swapin in the shmem case. Save the
forward declaration and just move the swapin functions above the cache
charging functions.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only anon pages that are uncharged at the time of the last page table
mapping vanishing may be in swapcache.
When shmem pages, file pages, swap-freed anon pages, or just migrated
pages are uncharged, they are known for sure to be not in swapcache.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not all uncharge paths need to check if the page is swapcache, some of
them can know for sure.
Push down the check into all callsites of uncharge_common() so that the
patch that removes some of them is more obvious.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction (and page migration in general) can currently be hindered
through pages being owned by memory cgroups that are at their limits and
unreclaimable.
The reason is that the replacement page is being charged against the limit
while the page being replaced is also still charged. But this seems
unnecessary, given that only one of the two pages will still be in use
after migration finishes.
This patch changes the memcg migration sequence so that the replacement
page is not charged. Whatever page is still in use after successful or
failed migration gets to keep the charge of the page that was going to be
replaced.
The replacement page will still show up temporarily in the rss/cache
statistics, this can be fixed in a later patch as it's less urgent.
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By globally defining check_panic_on_oom(), the memcg oom handler can be
moved entirely to mm/memcontrol.c. This removes the ugly #ifdef in the
oom killer and cleans up the code.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since exiting tasks require write_lock_irq(&tasklist_lock) several times,
try to reduce the amount of time the readside is held for oom kills. This
makes the interface with the memcg oom handler more consistent since it
now never needs to take tasklist_lock unnecessarily.
The only time the oom killer now takes tasklist_lock is when iterating the
children of the selected task, everything else is protected by
rcu_read_lock().
This requires that a reference to the selected process, p, is grabbed
before calling oom_kill_process(). It may release it and grab a reference
on another one of p's threads if !p->mm, but it also guarantees that it
will release the reference before returning.
[hughd@google.com: fix duplicate put_task_struct()]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global oom killer is serialized by the per-zonelist
try_set_zonelist_oom() which is used in the page allocator. Concurrent
oom kills are thus a rare event and only occur in systems using
mempolicies and with a large number of nodes.
Memory controller oom kills, however, can frequently be concurrent since
there is no serialization once the oom killer is called for oom conditions
in several different memcgs in parallel.
This creates a massive contention on tasklist_lock since the oom killer
requires the readside for the tasklist iteration. If several memcgs are
calling the oom killer, this lock can be held for a substantial amount of
time, especially if threads continue to enter it as other threads are
exiting.
Since the exit path grabs the writeside of the lock with irqs disabled in
a few different places, this can cause a soft lockup on cpus as a result
of tasklist_lock starvation.
The kernel lacks unfair writelocks, and successful calls to the oom killer
usually result in at least one thread entering the exit path, so an
alternative solution is needed.
This patch introduces a seperate oom handler for memcgs so that they do
not require tasklist_lock for as much time. Instead, it iterates only
over the threads attached to the oom memcg and grabs a reference to the
selected thread before calling oom_kill_process() to ensure it doesn't
prematurely exit.
This still requires tasklist_lock for the tasklist dump, iterating
children of the selected process, and killing all other threads on the
system sharing the same memory as the selected victim. So while this
isn't a complete solution to tasklist_lock starvation, it significantly
reduces the amount of time that it is held.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have an application that does the following:
* copy the state of all controllers attached to a hierarchy
* replicate it as a child of the current level.
I would expect writes to the files to mostly succeed, since they are
inheriting sane values from parents.
But that is not the case for use_hierarchy. If it is set to 0, we succeed
ok. If we're set to 1, the value of the file is automatically set to 1 in
the children, but if userspace tries to write the very same 1, it will
fail. That same situation happens if we set use_hierarchy, create a
child, and then try to write 1 again.
Now, there is no reason whatsoever for failing to write a value that is
already there. It doesn't even match the comments, that states:
/* If parent's use_hierarchy is set, we can't make any modifications
* in the child subtrees...
since we are not changing anything.
So test the new value against the one we're storing, and automatically
return 0 if we're not proposing a change.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Dhaval Giani <dhaval.giani@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_force_empty_list() just returns 0 or -EBUSY and -EBUSY
indicates 'you need to retry'. Make mem_cgroup_force_empty_list() return
a bool to simplify the logic.
[akpm@linux-foundation.org: rework mem_cgroup_force_empty_list()'s comment]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After bf544fdc241da8 "memcg: move charges to root cgroup if
use_hierarchy=0 in mem_cgroup_move_hugetlb_parent()"
mem_cgroup_move_parent() returns only -EBUSY or -EINVAL. So we can remove
the -ENOMEM and -EINTR checks.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After bf544fdc241da8 "memcg: move charges to root cgroup if
use_hierarchy=0 in mem_cgroup_move_hugetlb_parent()", no memory reclaim
will occur when removing a memory cgroup. If -EINTR is returned here,
cgroup will show a warning.
We don't need to handle any user interruption signal. Remove this.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no users since commit b24028572f ("memcg: remove PCG_CACHE").
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, in memcg, 2 "MAPPED" enum/macro are found
MEM_CGROUP_CHARGE_TYPE_MAPPED
MEM_CGROUP_STAT_FILE_MAPPED
Thier names looks similar to each other but the former is used for
accounting anonymous memory. rename it as TYPE_ANON.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MEM_CGROUP_STAT_SWAPOUT represents the usage of swap rather than
the number of swap-out events. Rename it to be MEM_CGROUP_STAT_SWAP.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix kernel-doc warnings such as
Warning(../mm/page_cgroup.c:432): No description found for parameter 'id'
Warning(../mm/page_cgroup.c:432): Excess function parameter 'mem' description in 'swap_cgroup_record'
Signed-off-by: Wanpeng Li <liwp@linux.vnet.ibm.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If use_hierarchy is set, reclaim testing soon oopses in css_is_ancestor()
called from __mem_cgroup_same_or_subtree() called from page_referenced():
when processes are exiting, it's easy for mm_match_cgroup() to pass along
a NULL memcg coming from a NULL mm->owner.
Check for that in __mem_cgroup_same_or_subtree(). Return true or false?
False because we cannot know if it was in the hierarchy, but also false
because it's better not to count a reference from an exiting process.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We call the destroy function when a cgroup starts to be removed, such as
by a rmdir event.
However, because of our reference counters, some objects are still
inflight. Right now, we are decrementing the static_keys at destroy()
time, meaning that if we get rid of the last static_key reference, some
objects will still have charges, but the code to properly uncharge them
won't be run.
This becomes a problem specially if it is ever enabled again, because now
new charges will be added to the staled charges making keeping it pretty
much impossible.
We just need to be careful with the static branch activation: since there
is no particular preferred order of their activation, we need to make sure
that we only start using it after all call sites are active. This is
achieved by having a per-memcg flag that is only updated after
static_key_slow_inc() returns. At this time, we are sure all sites are
active.
This is made per-memcg, not global, for a reason: it also has the effect
of making socket accounting more consistent. The first memcg to be
limited will trigger static_key() activation, therefore, accounting. But
all the others will then be accounted no matter what. After this patch,
only limited memcgs will have its sockets accounted.
[akpm@linux-foundation.org: move enum sock_flag_bits into sock.h,
document enum sock_flag_bits,
convert memcg_proto_active() and memcg_proto_activated() to test_bit(),
redo tcp_update_limit() comment to 80 cols]
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now we free struct memcg with kfree right after a rcu grace period,
but defer it if we need to use vfree() to get rid of that memory area. We
do that by need, because we need vfree to be called in a process context.
This patch unifies this behavior, by ensuring that even kfree will happen
in a separate thread. The goal is to have a stable place to call the
upcoming jump label destruction function outside the realm of the
complicated and quite far-reaching cgroup lock (that can't be held when
holding either the cpu_hotplug.lock or jump_label_mutex)
[akpm@linux-foundation.org: tweak comment]
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and
del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to
its target functions.
This cleanup eliminates a swathe of cruft in memcontrol.c, including
mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and
mem_cgroup_lru_move_lists() - which never actually touched the lists.
In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously
a side-effect of add, and mem_cgroup_update_lru_size() to maintain the
lru_size stats.
Whilst these are simplifications in their own right, the goal is to bring
the evaluation of lruvec next to the spin_locking of the lrus, in
preparation for a future patch.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Konstantin just introduced mem_cgroup_get_lruvec_size() and
get_lruvec_size(), I'm about to add mem_cgroup_update_lru_size(): but
we're dealing with the same thing, lru_size[lru]. We ought to agree on
the naming, and I do think lru_size is the more correct: so rename his
ones to get_lru_size().
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Directly print statistics and event counters instead of going through an
intermediate accumulation stage into a separate array, which used to
require defining statistic items in more than one place.
[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The counter of currently swapped out pages in a memcg (hierarchy) is
sitting amidst ever-increasing event counters. Move this item to the
other counters that reflect current state rather than history.
This technically breaks the kernel ABI, but hopefully nobody relies on the
order of items in memory.stat.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All events except the ratelimit counter are statistics exported to
userspace. Keep this internal value out of the event count array.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Being able to use seq_printf() allows being smarter about statistics
name strings, which are currently listed twice, with the only difference
being a "total_" prefix on the hierarchical version.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>