Formatting of Kconfig files doesn't look so pretty, so let the
Great White Handkerchief come around and clean it up.
Also convert "---help---" as requested.
Signed-off-by: Enrico Weigelt, metux IT consult <info@metux.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When emulating tsr, treclaim and trechkpt, we incorrectly set CR0. The
code currently sets:
CR0 <- 00 || MSR[TS]
but according to the ISA it should be:
CR0 <- 0 || MSR[TS] || 0
This fixes the bit shift to put the bits in the correct location.
This is a data integrity issue as CR0 is corrupted.
Fixes: 4bb3c7a020 ("KVM: PPC: Book3S HV: Work around transactional memory bugs in POWER9")
Cc: stable@vger.kernel.org # v4.17+
Tested-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If you compile with KVM but without CONFIG_HAVE_HW_BREAKPOINT you fail
at linking with:
arch/powerpc/kvm/book3s_hv_rmhandlers.o:(.text+0x708): undefined reference to `dawr_force_enable'
This was caused by commit c1fe190c06 ("powerpc: Add force enable of
DAWR on P9 option").
This moves a bunch of code around to fix this. It moves a lot of the
DAWR code in a new file and creates a new CONFIG_PPC_DAWR to enable
compiling it.
Fixes: c1fe190c06 ("powerpc: Add force enable of DAWR on P9 option")
Signed-off-by: Michael Neuling <mikey@neuling.org>
[mpe: Minor formatting in set_dawr()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
ISA v3.0 radix modes provide SLBIA variants which can invalidate ERAT
for effPID!=0 or for effLPID!=0, which allows user and guest
invalidations to retain kernel/host ERAT entries.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This makes it clear to the caller that it can only be used on POWER9
and later CPUs.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Use "ISA_3_0" rather than "ARCH_300"]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Merge our fixes branch into next, this brings in a number of commits
that fix bugs we don't want to hit in next, in particular the fix for
CVE-2019-12817.
Seven fixes, all for bugs introduced this cycle.
The commit to add KASAN support broke booting on 32-bit SMP machines, due to a
refactoring that moved some setup out of the secondary CPU path.
A fix for another 32-bit SMP bug introduced by the fast syscall entry
implementation for 32-bit BOOKE. And a build fix for the same commit.
Our change to allow the DAWR to be force enabled on Power9 introduced a bug in
KVM, where we clobber r3 leading to a host crash.
The same commit also exposed a previously unreachable bug in the nested KVM
handling of DAWR, which could lead to an oops in a nested host.
One of the DMA reworks broke the b43legacy WiFi driver on some people's
powermacs, fix it by enabling a 30-bit ZONE_DMA on 32-bit.
A fix for TLB flushing in KVM introduced a new bug, as it neglected to also
flush the ERAT, this could lead to memory corruption in the guest.
Thanks to:
Aaro Koskinen, Christoph Hellwig, Christophe Leroy, Larry Finger, Michael
Neuling, Suraj Jitindar Singh.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJdDg4YAAoJEFHr6jzI4aWACKYP/RG1cqYDjEWz0N9bxjAOanx6
z//hPZqZrObEORx0mek07LNj6JDy4eL7CB9WaEudJjHt7mYugLYq0g7hUMVvBWnB
irFEuzGJ8EgWl1aMbmz+fgf49PBIuroy2o/4pyzzQXoDaw44QyUaCke2VEBskQNG
RW64C2rDVrPgpRHzBB9EZVNv7svmo6ERJsEpRvqP3PZG1ZxgXW+DXbEdSmJCcgAt
8oI+z6frRv+0ez+nge7TULo8DuheShfxc7l0jFrd48i35v2qB/IowPr8cof9fRwM
TqnB+3dZXHPKPz6J9mz80p9ZDe1omLzg6i9EiR2/7a3XGpRBo7kCg3Iri7N5pu0j
LotK9l1+mXWLy5P6lOHH5/tEHv52Wqsvh5IetpNJ2tgXp3MzbOc1/Ut9h7Ag7cRw
WRa7tNXQ5Ud8uPM1Pds8Ymhd+/nZ9RItjGcu6S095/OGpM1FJR9a0QnfUHMyfyuX
kAGrJDWcAkCd/Q9tKHsQotuZAFmRCQe4JFkzTiGzwdjYWYgtTA1c/eIv3+SG7eLV
1dsaIYzIS56b+Qz2Qc/pKHwho+I9o505Y7LFXxlCGXDDjyI72ioTQDwiSBzaZdc9
ORwNchLfpXNpiNXRoRqAnqmhWxavYmA6oJ13RDBiMBxIUWHynVbEzLlX9fPNdBFj
Kw3Zd15znokXBzU+1mDE
=Ju1y
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.2-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"This is a frustratingly large batch at rc5. Some of these were sent
earlier but were missed by me due to being distracted by other things,
and some took a while to track down due to needing manual bisection on
old hardware. But still we clearly need to improve our testing of KVM,
and of 32-bit, so that we catch these earlier.
Summary: seven fixes, all for bugs introduced this cycle.
- The commit to add KASAN support broke booting on 32-bit SMP
machines, due to a refactoring that moved some setup out of the
secondary CPU path.
- A fix for another 32-bit SMP bug introduced by the fast syscall
entry implementation for 32-bit BOOKE. And a build fix for the same
commit.
- Our change to allow the DAWR to be force enabled on Power9
introduced a bug in KVM, where we clobber r3 leading to a host
crash.
- The same commit also exposed a previously unreachable bug in the
nested KVM handling of DAWR, which could lead to an oops in a
nested host.
- One of the DMA reworks broke the b43legacy WiFi driver on some
people's powermacs, fix it by enabling a 30-bit ZONE_DMA on 32-bit.
- A fix for TLB flushing in KVM introduced a new bug, as it neglected
to also flush the ERAT, this could lead to memory corruption in the
guest.
Thanks to: Aaro Koskinen, Christoph Hellwig, Christophe Leroy, Larry
Finger, Michael Neuling, Suraj Jitindar Singh"
* tag 'powerpc-5.2-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
KVM: PPC: Book3S HV: Invalidate ERAT when flushing guest TLB entries
powerpc: enable a 30-bit ZONE_DMA for 32-bit pmac
KVM: PPC: Book3S HV: Only write DAWR[X] when handling h_set_dawr in real mode
KVM: PPC: Book3S HV: Fix r3 corruption in h_set_dabr()
powerpc/32: fix build failure on book3e with KVM
powerpc/booke: fix fast syscall entry on SMP
powerpc/32s: fix initial setup of segment registers on secondary CPU
If we enter an L1 guest with a pending decrementer exception then this
is cleared on guest exit if the guest has writtien a positive value
into the decrementer (indicating that it handled the decrementer
exception) since there is no other way to detect that the guest has
handled the pending exception and that it should be dequeued. In the
event that the L1 guest tries to run a nested (L2) guest immediately
after this and the L2 guest decrementer is negative (which is loaded
by L1 before making the H_ENTER_NESTED hcall), then the pending
decrementer exception isn't cleared and the L2 entry is blocked since
L1 has a pending exception, even though L1 may have already handled
the exception and written a positive value for it's decrementer. This
results in a loop of L1 trying to enter the L2 guest and L0 blocking
the entry since L1 has an interrupt pending with the outcome being
that L2 never gets to run and hangs.
Fix this by clearing any pending decrementer exceptions when L1 makes
the H_ENTER_NESTED hcall since it won't do this if it's decrementer
has gone negative, and anyway it's decrementer has been communicated
to L0 in the hdec_expires field and L0 will return control to L1 when
this goes negative by delivering an H_DECREMENTER exception.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9 the decrementer can operate in large decrementer mode where
the decrementer is 56 bits and signed extended to 64 bits. When not
operating in this mode the decrementer behaves as a 32 bit decrementer
which is NOT signed extended (as on POWER8).
Currently when reading a guest decrementer value we don't take into
account whether the large decrementer is enabled or not, and this
means the value will be incorrect when the guest is not using the
large decrementer. Fix this by sign extending the value read when the
guest isn't using the large decrementer.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When a guest vcpu moves from one physical thread to another it is
necessary for the host to perform a tlb flush on the previous core if
another vcpu from the same guest is going to run there. This is because the
guest may use the local form of the tlb invalidation instruction meaning
stale tlb entries would persist where it previously ran. This is handled
on guest entry in kvmppc_check_need_tlb_flush() which calls
flush_guest_tlb() to perform the tlb flush.
Previously the generic radix__local_flush_tlb_lpid_guest() function was
used, however the functionality was reimplemented in flush_guest_tlb()
to avoid the trace_tlbie() call as the flushing may be done in real
mode. The reimplementation in flush_guest_tlb() was missing an erat
invalidation after flushing the tlb.
This lead to observable memory corruption in the guest due to the
caching of stale translations. Fix this by adding the erat invalidation.
Fixes: 70ea13f6e6 ("KVM: PPC: Book3S HV: Flush TLB on secondary radix threads")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The hcall H_SET_DAWR is used by a guest to set the data address
watchpoint register (DAWR). This hcall is handled in the host in
kvmppc_h_set_dawr() which can be called in either real mode on the
guest exit path from hcall_try_real_mode() in book3s_hv_rmhandlers.S,
or in virtual mode when called from kvmppc_pseries_do_hcall() in
book3s_hv.c.
The function kvmppc_h_set_dawr() updates the dawr and dawrx fields in
the vcpu struct accordingly and then also writes the respective values
into the DAWR and DAWRX registers directly. It is necessary to write
the registers directly here when calling the function in real mode
since the path to re-enter the guest won't do this. However when in
virtual mode the host DAWR and DAWRX values have already been
restored, and so writing the registers would overwrite these.
Additionally there is no reason to write the guest values here as
these will be read from the vcpu struct and written to the registers
appropriately the next time the vcpu is run.
This also avoids the case when handling h_set_dawr for a nested guest
where the guest hypervisor isn't able to write the DAWR and DAWRX
registers directly and must rely on the real hypervisor to do this for
it when it calls H_ENTER_NESTED.
Fixes: c1fe190c06 ("powerpc: Add force enable of DAWR on P9 option")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
QEMU's kvm_handle_debug() function identifies software breakpoints by checking
for a value of 0 in kvm_debug_exit_arch's status field. Since this field isn't
explicitly set to 0 when the software breakpoint instruction is detected, any
previous non-zero value present causes a hang in QEMU as it tries to process
the breakpoint instruction incorrectly as a hardware breakpoint.
Ensure that the kvm_debug_exit_arch status field is set to 0 when the software
breakpoint instruction is detected (similar to the existing logic in booke.c
and e500_emulate.c) to restore software breakpoint functionality under Book3S
PR.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 4eeb85568e ("KVM: PPC: Remove mmio_vsx_tx_sx_enabled in KVM
MMIO emulation") removed the mmio_vsx_tx_sx_enabled field, but its
documentation was left behind. Remove the superfluous comment.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation 51 franklin street fifth floor boston ma 02110
1301 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 67 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add a wrapper to invoke kvm_arch_check_processor_compat() so that the
boilerplate ugliness of checking virtualization support on all CPUs is
hidden from the arch specific code. x86's implementation in particular
is quite heinous, as it unnecessarily propagates the out-param pattern
into kvm_x86_ops.
While the x86 specific issue could be resolved solely by changing
kvm_x86_ops, make the change for all architectures as returning a value
directly is prettier and technically more robust, e.g. s390 doesn't set
the out param, which could lead to subtle breakage in the (highly
unlikely) scenario where the out-param was not pre-initialized by the
caller.
Opportunistically annotate svm_check_processor_compat() with __init.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc85ibAAoJEL/70l94x66D72gH/iaXjRF9uqGSnd1/JLHIawfb
oH0VQS24tBzRlFREBTA68IxThgjTmSS+yHcAXSO7JmxztjGq3ZWiNaidQIvC1reu
t4MJMvf7ZZa7Yq0OAy2jwVAkZMKk5P8hBjjI5N7pEBb4ApJHzsCHV+KEIe5loc+q
f5LYLR53keImJ40wxh/qFftNNlYJUMv6tWa8y0mrlBrKABOvdRYFswhqcnEPibi9
cPoHDS6Ep/34eAVQzqHzfDbjezpa342SSw6s66Vpb/qYJyxoUh1Mw+9YCmAWanS8
vuvXz4qjCFvLRrmc9ctASUTEVydqx8IdcKQGiteWgpSrl4kgy6nLMZDY5sbq8UM=
=Bgfn
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Fixes for PPC and s390"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: PPC: Book3S HV: Restore SPRG3 in kvmhv_p9_guest_entry()
KVM: PPC: Book3S HV: Fix lockdep warning when entering guest on POWER9
KVM: PPC: Book3S HV: XIVE: Fix page offset when clearing ESB pages
KVM: PPC: Book3S HV: XIVE: Take the srcu read lock when accessing memslots
KVM: PPC: Book3S HV: XIVE: Do not clear IRQ data of passthrough interrupts
KVM: PPC: Book3S HV: XIVE: Introduce a new mutex for the XIVE device
KVM: PPC: Book3S HV: XIVE: Fix the enforced limit on the vCPU identifier
KVM: PPC: Book3S HV: XIVE: Do not test the EQ flag validity when resetting
KVM: PPC: Book3S HV: XIVE: Clear file mapping when device is released
KVM: PPC: Book3S HV: Don't take kvm->lock around kvm_for_each_vcpu
KVM: PPC: Book3S: Use new mutex to synchronize access to rtas token list
KVM: PPC: Book3S HV: Use new mutex to synchronize MMU setup
KVM: PPC: Book3S HV: Avoid touching arch.mmu_ready in XIVE release functions
KVM: s390: Do not report unusabled IDs via KVM_CAP_MAX_VCPU_ID
kvm: fix compile on s390 part 2
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 655 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.575739538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The sprgs are a set of 4 general purpose sprs provided for software use.
SPRG3 is special in that it can also be read from userspace. Thus it is
used on linux to store the cpu and numa id of the process to speed up
syscall access to this information.
This register is overwritten with the guest value on kvm guest entry,
and so needs to be restored on exit again. Thus restore the value on
the guest exit path in kvmhv_p9_guest_entry().
Cc: stable@vger.kernel.org # v4.20+
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Under XIVE, the ESB pages of an interrupt are used for interrupt
management (EOI) and triggering. They are made available to guests
through a mapping of the XIVE KVM device.
When a device is passed-through, the passthru_irq helpers,
kvmppc_xive_set_mapped() and kvmppc_xive_clr_mapped(), clear the ESB
pages of the guest IRQ number being mapped and let the VM fault
handler repopulate with the correct page.
The ESB pages are mapped at offset 4 (KVM_XIVE_ESB_PAGE_OFFSET) in the
KVM device mapping. Unfortunately, this offset was not taken into
account when clearing the pages. This lead to issues with the
passthrough devices for which the interrupts were not functional under
some guest configuration (tg3 and single CPU) or in any configuration
(e1000e adapter).
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
According to Documentation/virtual/kvm/locking.txt, the srcu read lock
should be taken when accessing the memslots of the VM. The XIVE KVM
device needs to do so when configuring the page of the OS event queue
of vCPU for a given priority and when marking the same page dirty
before migration.
This avoids warnings such as :
[ 208.224882] =============================
[ 208.224884] WARNING: suspicious RCU usage
[ 208.224889] 5.2.0-rc2-xive+ #47 Not tainted
[ 208.224890] -----------------------------
[ 208.224894] ../include/linux/kvm_host.h:633 suspicious rcu_dereference_check() usage!
[ 208.224896]
other info that might help us debug this:
[ 208.224898]
rcu_scheduler_active = 2, debug_locks = 1
[ 208.224901] no locks held by qemu-system-ppc/3923.
[ 208.224902]
stack backtrace:
[ 208.224907] CPU: 64 PID: 3923 Comm: qemu-system-ppc Kdump: loaded Not tainted 5.2.0-rc2-xive+ #47
[ 208.224909] Call Trace:
[ 208.224918] [c000200cdd98fa30] [c000000000be1934] dump_stack+0xe8/0x164 (unreliable)
[ 208.224924] [c000200cdd98fa80] [c0000000001aec80] lockdep_rcu_suspicious+0x110/0x180
[ 208.224935] [c000200cdd98fb00] [c0080000075933a0] gfn_to_memslot+0x1c8/0x200 [kvm]
[ 208.224943] [c000200cdd98fb40] [c008000007599600] gfn_to_pfn+0x28/0x60 [kvm]
[ 208.224951] [c000200cdd98fb70] [c008000007599658] gfn_to_page+0x20/0x40 [kvm]
[ 208.224959] [c000200cdd98fb90] [c0080000075b495c] kvmppc_xive_native_set_attr+0x8b4/0x1480 [kvm]
[ 208.224967] [c000200cdd98fca0] [c00800000759261c] kvm_device_ioctl_attr+0x64/0xb0 [kvm]
[ 208.224974] [c000200cdd98fcf0] [c008000007592730] kvm_device_ioctl+0xc8/0x110 [kvm]
[ 208.224979] [c000200cdd98fd10] [c000000000433a24] do_vfs_ioctl+0xd4/0xcd0
[ 208.224981] [c000200cdd98fdb0] [c000000000434724] ksys_ioctl+0x104/0x120
[ 208.224984] [c000200cdd98fe00] [c000000000434768] sys_ioctl+0x28/0x80
[ 208.224988] [c000200cdd98fe20] [c00000000000b888] system_call+0x5c/0x70
legoater@boss01:~$
Fixes: 13ce3297c5 ("KVM: PPC: Book3S HV: XIVE: Add controls for the EQ configuration")
Fixes: e6714bd167 ("KVM: PPC: Book3S HV: XIVE: Add a control to dirty the XIVE EQ pages")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The XICS-on-XIVE KVM device needs to allocate XIVE event queues when a
priority is used by the OS. This is referred as EQ provisioning and it
is done under the hood when :
1. a CPU is hot-plugged in the VM
2. the "set-xive" is called at VM startup
3. sources are restored at VM restore
The kvm->lock mutex is used to protect the different XIVE structures
being modified but in some contexts, kvm->lock is taken under the
vcpu->mutex which is not permitted by the KVM locking rules.
Introduce a new mutex 'lock' for the KVM devices for them to
synchronize accesses to the XIVE device structures.
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a vCPU is connected to the KVM device, it is done using its vCPU
identifier in the guest. Fix the enforced limit on the vCPU identifier
by taking into account the SMT mode.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a CPU is hot-unplugged, the EQ is deconfigured using a zero size
and a zero address. In this case, there is no need to check the flag
and queue size validity. Move the checks after the queue reset code
section to fix CPU hot-unplug.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Improve the release of the XIVE KVM device by clearing the file
address_space, which is used to unmap the interrupt ESB pages when a
device is passed-through.
Suggested-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently the HV KVM code takes the kvm->lock around calls to
kvm_for_each_vcpu() and kvm_get_vcpu_by_id() (which can call
kvm_for_each_vcpu() internally). However, that leads to a lock
order inversion problem, because these are called in contexts where
the vcpu mutex is held, but the vcpu mutexes nest within kvm->lock
according to Documentation/virtual/kvm/locking.txt. Hence there
is a possibility of deadlock.
To fix this, we simply don't take the kvm->lock mutex around these
calls. This is safe because the implementations of kvm_for_each_vcpu()
and kvm_get_vcpu_by_id() have been designed to be able to be called
locklessly.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently the Book 3S KVM code uses kvm->lock to synchronize access
to the kvm->arch.rtas_tokens list. Because this list is scanned
inside kvmppc_rtas_hcall(), which is called with the vcpu mutex held,
taking kvm->lock cause a lock inversion problem, which could lead to
a deadlock.
To fix this, we add a new mutex, kvm->arch.rtas_token_lock, which nests
inside the vcpu mutexes, and use that instead of kvm->lock when
accessing the rtas token list.
This removes the lockdep_assert_held() in kvmppc_rtas_tokens_free().
At this point we don't hold the new mutex, but that is OK because
kvmppc_rtas_tokens_free() is only called when the whole VM is being
destroyed, and at that point nothing can be looking up a token in
the list.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently the HV KVM code uses kvm->lock in conjunction with a flag,
kvm->arch.mmu_ready, to synchronize MMU setup and hold off vcpu
execution until the MMU-related data structures are ready. However,
this means that kvm->lock is being taken inside vcpu->mutex, which
is contrary to Documentation/virtual/kvm/locking.txt and results in
lockdep warnings.
To fix this, we add a new mutex, kvm->arch.mmu_setup_lock, which nests
inside the vcpu mutexes, and is taken in the places where kvm->lock
was taken that are related to MMU setup.
Additionally we take the new mutex in the vcpu creation code at the
point where we are creating a new vcore, in order to provide mutual
exclusion with kvmppc_update_lpcr() and ensure that an update to
kvm->arch.lpcr doesn't get missed, which could otherwise lead to a
stale vcore->lpcr value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, kvmppc_xive_release() and kvmppc_xive_native_release() clear
kvm->arch.mmu_ready and call kick_all_cpus_sync() as a way of ensuring
that no vcpus are executing in the guest. However, future patches will
change the mutex associated with kvm->arch.mmu_ready to a new mutex that
nests inside the vcpu mutexes, making it difficult to continue to use
this method.
In fact, taking the vcpu mutex for a vcpu excludes execution of that
vcpu, and we already take the vcpu mutex around the call to
kvmppc_xive_[native_]cleanup_vcpu(). Once the cleanup function is
done and we release the vcpu mutex, the vcpu can execute once again,
but because we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type,
vcpu->arch.xive_esc_vaddr and vcpu->arch.xive_esc_raddr, that vcpu will
not be going into XIVE code any more. Thus, once we have cleaned up
all of the vcpus, we are safe to clean up the rest of the XIVE state,
and we don't need to use kvm->arch.mmu_ready to hold off vcpu execution.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all
architectures. However, on s390x, the amount of usable CPUs is determined
during runtime - it is depending on the features of the machine the code
is running on. Since we are using the vcpu_id as an index into the SCA
structures that are defined by the hardware (see e.g. the sca_add_vcpu()
function), it is not only the amount of CPUs that is limited by the hard-
ware, but also the range of IDs that we can use.
Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too.
So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common
code into the architecture specific code, and on s390x we have to return
the same value here as for KVM_CAP_MAX_VCPUS.
This problem has been discovered with the kvm_create_max_vcpus selftest.
With this change applied, the selftest now passes on s390x, too.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20190523164309.13345-9-thuth@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 8 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190523091650.663497195@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your optional any later version of the license
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520075212.713472955@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
memory and performance optimizations.
* x86: support for accessing memory not backed by struct page, fixes and refactoring
* Generic: dirty page tracking improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
=D0+p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for SVE and Pointer Authentication in guests
- PMU improvements
POWER:
- support for direct access to the POWER9 XIVE interrupt controller
- memory and performance optimizations
x86:
- support for accessing memory not backed by struct page
- fixes and refactoring
Generic:
- dirty page tracking improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
kvm: fix compilation on aarch64
Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
kvm: x86: Fix L1TF mitigation for shadow MMU
KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
tests: kvm: Add tests for KVM_SET_NESTED_STATE
KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
tests: kvm: Add tests to .gitignore
KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
KVM: Fix the bitmap range to copy during clear dirty
KVM: arm64: Fix ptrauth ID register masking logic
KVM: x86: use direct accessors for RIP and RSP
KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
KVM: x86: Omit caching logic for always-available GPRs
kvm, x86: Properly check whether a pfn is an MMIO or not
...
- Fix a bug, fix a spelling mistake, remove some useless code.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJc2kTEAAoJEJ2a6ncsY3GfS88IAImcIlKXMvzSKtHFxGpRap17
9LTZs5MQAUZHVMFJXmrJLBgogtGxUw53aX53woeyerytZsoGU4+YzwgLhk4XBEzA
5Kt5ahlxu82sa2ThH1zyLlNWFXiTECgD5ErNTdavLbNlaKE8YG160+65/mSyixGz
vs5wLSYGv/37no1ay6PIZ3DtwqdrYq5nJbuG+ZsaamUHPJOGprqHqg0gaTJ877NZ
yQDUS7OVuEJ1pdUUK/elP+cnlqR9smaP5OUNsXYMHWJgPJMjc27/thBJy93iS1kk
/zKQ8AFmxqoaePnR7ymTbqurfFFHBiSavUmyWopSQppNHCf4DDE8XjLs9MXKez8=
=Lco4
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
PPC KVM update for 5.2
* Support for guests to access the new POWER9 XIVE interrupt controller
hardware directly, reducing interrupt latency and overhead for guests.
* In-kernel implementation of the H_PAGE_INIT hypercall.
* Reduce memory usage of sparsely-populated IOMMU tables.
* Several bug fixes.
Second PPC KVM update for 5.2
* Fix a bug, fix a spelling mistake, remove some useless code.
To facilitate additional options to get_user_pages_fast() change the
singular write parameter to be gup_flags.
This patch does not change any functionality. New functionality will
follow in subsequent patches.
Some of the get_user_pages_fast() call sites were unchanged because they
already passed FOLL_WRITE or 0 for the write parameter.
NOTE: It was suggested to change the ordering of the get_user_pages_fast()
arguments to ensure that callers were converted. This breaks the current
GUP call site convention of having the returned pages be the final
parameter. So the suggestion was rejected.
Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Mike Marshall <hubcap@omnibond.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a spelling mistake in a pr_err message, fix it.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 70ea13f6e6 ("KVM: PPC: Book3S HV: Flush TLB on secondary radix
threads", 2019-04-29) aimed to make radix guests that are using the
real-mode entry path load the LPID register and flush the TLB in the
same place where those things are done for HPT guests. However, it
omitted to remove a branch which branches around that code for radix
guests. The result is that with indep_thread_mode = N, radix guests
don't run correctly. (With indep_threads_mode = Y, which is the
default, radix guests use a different entry path.)
This removes the offending branch, and also the load and compare that
the branch depends on, since the cr7 setting is now unused.
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Tested-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Fixes: 70ea13f6e6 ("KVM: PPC: Book3S HV: Flush TLB on secondary radix threads")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Highlights:
- Support for Kernel Userspace Access/Execution Prevention (like
SMAP/SMEP/PAN/PXN) on some 64-bit and 32-bit CPUs. This prevents the kernel
from accidentally accessing userspace outside copy_to/from_user(), or
ever executing userspace.
- KASAN support on 32-bit.
- Rework of where we map the kernel, vmalloc, etc. on 64-bit hash to use the
same address ranges we use with the Radix MMU.
- A rewrite into C of large parts of our idle handling code for 64-bit Book3S
(ie. power8 & power9).
- A fast path entry for syscalls on 32-bit CPUs, for a 12-17% speedup in the
null_syscall benchmark.
- On 64-bit bare metal we have support for recovering from errors with the time
base (our clocksource), however if that fails currently we hang in __delay()
and never crash. We now have support for detecting that case and short
circuiting __delay() so we at least panic() and reboot.
- Add support for optionally enabling the DAWR on Power9, which had to be
disabled by default due to a hardware erratum. This has the effect of
enabling hardware breakpoints for GDB, the downside is a badly behaved
program could crash the machine by pointing the DAWR at cache inhibited
memory. This is opt-in obviously.
- xmon, our crash handler, gets support for a read only mode where operations
that could change memory or otherwise disturb the system are disabled.
Plus many clean-ups, reworks and minor fixes etc.
Thanks to:
Christophe Leroy, Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anton Blanchard, Ben Hutchings,
Bo YU, Breno Leitao, Cédric Le Goater, Christopher M. Riedl, Christoph
Hellwig, Colin Ian King, David Gibson, Ganesh Goudar, Gautham R. Shenoy,
George Spelvin, Greg Kroah-Hartman, Greg Kurz, Horia Geantă, Jagadeesh
Pagadala, Joel Stanley, Joe Perches, Julia Lawall, Laurentiu Tudor, Laurent
Vivier, Lukas Bulwahn, Madhavan Srinivasan, Mahesh Salgaonkar, Mathieu
Malaterre, Michael Neuling, Mukesh Ojha, Nathan Fontenot, Nathan Lynch,
Nicholas Piggin, Nick Desaulniers, Oliver O'Halloran, Peng Hao, Qian Cai, Ravi
Bangoria, Rick Lindsley, Russell Currey, Sachin Sant, Stewart Smith, Sukadev
Bhattiprolu, Thomas Huth, Tobin C. Harding, Tyrel Datwyler, Valentin
Schneider, Wei Yongjun, Wen Yang, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJc1WbwAAoJEFHr6jzI4aWAv5cP/iDskai4Az/GCa6yLj4b+det
7mc7tTOaEzhUtvfrYYfHgvvdNNzo1ETv7rqTdZqtWJ3xfwdeowLFXXZwSywZKUDB
bi4pcl2v55Qlf9kxgx9RDr6+4fTwGG4nhO2qPDJDR1umEih9mG/2HJ7d+Wnq6Va2
E9srd+R6Fa0ty88+9vzBtdyllnDK1XHu3ahsxCH62aRm79ucuVrxyydWmbbs5lJe
a7g/OQIPgZmObHhfXvw9DFkOvkp5Pm6hfHOeyQH2nTB5X6k0judWv00uoHTJgOuP
DKxZtDhaGnajUfuhQYboDPOuFjY7lkfgEXaagyZsjdudqridTMmv1iU1o7iy8BT4
AId4DyJbvFFgqRJkCwKzhKRRHPfFMfM7KTJ38GPZuPmniuULk9uiIy6JyY0tXO+l
UQEclPzOTPkAE12FBaOBuqZqTRuBQuokWQF8ZDPOxbNAixHgFoRd4Z9diNwCPpLu
+KoyCwd2Gm5DyX+mC85sWG28IPKi9Hhhw2XBOA5F4A2kH6uFa1BnERSRGYomx+pc
BvEXHglf/vgV0XUQZfDCsiOecIKYuWxgre0/liLhhU5qMss2pxHczzffH4KtdykS
9y7o3mVRcS7Moitbmb6SAJoQxbR5QhzfN832DbSd6jEfKdg1ytZlfHTG0WZYHKDs
PHs6V1N+cQANdukutrJz
=cUkd
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.2-1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Slightly delayed due to the issue with printk() calling
probe_kernel_read() interacting with our new user access prevention
stuff, but all fixed now.
The only out-of-area changes are the addition of a cpuhp_state, small
additions to Documentation and MAINTAINERS updates.
Highlights:
- Support for Kernel Userspace Access/Execution Prevention (like
SMAP/SMEP/PAN/PXN) on some 64-bit and 32-bit CPUs. This prevents
the kernel from accidentally accessing userspace outside
copy_to/from_user(), or ever executing userspace.
- KASAN support on 32-bit.
- Rework of where we map the kernel, vmalloc, etc. on 64-bit hash to
use the same address ranges we use with the Radix MMU.
- A rewrite into C of large parts of our idle handling code for
64-bit Book3S (ie. power8 & power9).
- A fast path entry for syscalls on 32-bit CPUs, for a 12-17% speedup
in the null_syscall benchmark.
- On 64-bit bare metal we have support for recovering from errors
with the time base (our clocksource), however if that fails
currently we hang in __delay() and never crash. We now have support
for detecting that case and short circuiting __delay() so we at
least panic() and reboot.
- Add support for optionally enabling the DAWR on Power9, which had
to be disabled by default due to a hardware erratum. This has the
effect of enabling hardware breakpoints for GDB, the downside is a
badly behaved program could crash the machine by pointing the DAWR
at cache inhibited memory. This is opt-in obviously.
- xmon, our crash handler, gets support for a read only mode where
operations that could change memory or otherwise disturb the system
are disabled.
Plus many clean-ups, reworks and minor fixes etc.
Thanks to: Christophe Leroy, Akshay Adiga, Alastair D'Silva, Alexey
Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar,
Anton Blanchard, Ben Hutchings, Bo YU, Breno Leitao, Cédric Le Goater,
Christopher M. Riedl, Christoph Hellwig, Colin Ian King, David Gibson,
Ganesh Goudar, Gautham R. Shenoy, George Spelvin, Greg Kroah-Hartman,
Greg Kurz, Horia Geantă, Jagadeesh Pagadala, Joel Stanley, Joe
Perches, Julia Lawall, Laurentiu Tudor, Laurent Vivier, Lukas Bulwahn,
Madhavan Srinivasan, Mahesh Salgaonkar, Mathieu Malaterre, Michael
Neuling, Mukesh Ojha, Nathan Fontenot, Nathan Lynch, Nicholas Piggin,
Nick Desaulniers, Oliver O'Halloran, Peng Hao, Qian Cai, Ravi
Bangoria, Rick Lindsley, Russell Currey, Sachin Sant, Stewart Smith,
Sukadev Bhattiprolu, Thomas Huth, Tobin C. Harding, Tyrel Datwyler,
Valentin Schneider, Wei Yongjun, Wen Yang, YueHaibing"
* tag 'powerpc-5.2-1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (205 commits)
powerpc/64s: Use early_mmu_has_feature() in set_kuap()
powerpc/book3s/64: check for NULL pointer in pgd_alloc()
powerpc/mm: Fix hugetlb page initialization
ocxl: Fix return value check in afu_ioctl()
powerpc/mm: fix section mismatch for setup_kup()
powerpc/mm: fix redundant inclusion of pgtable-frag.o in Makefile
powerpc/mm: Fix makefile for KASAN
powerpc/kasan: add missing/lost Makefile
selftests/powerpc: Add a signal fuzzer selftest
powerpc/booke64: set RI in default MSR
ocxl: Provide global MMIO accessors for external drivers
ocxl: move event_fd handling to frontend
ocxl: afu_irq only deals with IRQ IDs, not offsets
ocxl: Allow external drivers to use OpenCAPI contexts
ocxl: Create a clear delineation between ocxl backend & frontend
ocxl: Don't pass pci_dev around
ocxl: Split pci.c
ocxl: Remove some unused exported symbols
ocxl: Remove superfluous 'extern' from headers
ocxl: read_pasid never returns an error, so make it void
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE7btrcuORLb1XUhEwjrBW1T7ssS0FAlzReuoACgkQjrBW1T7s
sS1uvBAA16pgnhRNxNTrp3LYft6lUWmF4n0baOTVtQNLhPjpwaOxHIrCBugkQCJB
QcQ9IQSOvIkaEW0XAQoPBaeLviiKhHOFw1Fv89OtW6xUidSfSV15lcI9f1F2pCm2
4yCL/8XvL6M0NhxiwftJAkWOXeDNLfjFnLwyLxBfgg3EeyqMgUB8raeosEID0ORR
gm2/g8DYS2r+KNqM/F4xvMSgabfi2bGk+8BtAaVnftJfstpRNrqKwWnSK3Wspj1l
5gkb8gSsiY6ns3V6RgNHrFlhevFg8V+VjcJt7FR+aUEjOkcoiXas/PhvamMzdsn/
FM1F/A0pM8FSybIUClhnnnxNPc+p8ZN/71YQAPs+Mnh3xvbtKea2lkhC+Xv4OpK3
edutSZWFaiIery82Rk00H3vqiSF1+kRIXSpZSS4mElk4FsVljkyH+nSP7rbmE2MR
EQe+kKnZl8QzWrVbnODC+EVvvVpA2bXDvENJmvKqus+t2G0OdV7Iku3F5E3KjF8k
S5RRV1zuBF3ugqnjmYrVmJtpEA8mxClmqvg6okru+qW6ngO5oOgVpPLjWn1CXcdj
wcuQ6Pe1QwAHS54e9WSWgCHVssLvm9nCdCqypdNaoyGWmbTWntwlrY7Y0JUQnAbB
6/G/DQQiCWY9y8bMZlTEydhIpgcsdROuPYv+oHF5+eQQthsWwHc=
=LH11
-----END PGP SIGNATURE-----
Merge tag 'pidfd-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd updates from Christian Brauner:
"This patchset makes it possible to retrieve pidfds at process creation
time by introducing the new flag CLONE_PIDFD to the clone() system
call. Linus originally suggested to implement this as a new flag to
clone() instead of making it a separate system call.
After a thorough review from Oleg CLONE_PIDFD returns pidfds in the
parent_tidptr argument. This means we can give back the associated pid
and the pidfd at the same time. Access to process metadata information
thus becomes rather trivial.
As has been agreed, CLONE_PIDFD creates file descriptors based on
anonymous inodes similar to the new mount api. They are made
unconditional by this patchset as they are now needed by core kernel
code (vfs, pidfd) even more than they already were before (timerfd,
signalfd, io_uring, epoll etc.). The core patchset is rather small.
The bulky looking changelist is caused by David's very simple changes
to Kconfig to make anon inodes unconditional.
A pidfd comes with additional information in fdinfo if the kernel
supports procfs. The fdinfo file contains the pid of the process in
the callers pid namespace in the same format as the procfs status
file, i.e. "Pid:\t%d".
To remove worries about missing metadata access this patchset comes
with a sample/test program that illustrates how a combination of
CLONE_PIDFD and pidfd_send_signal() can be used to gain race-free
access to process metadata through /proc/<pid>.
Further work based on this patchset has been done by Joel. His work
makes pidfds pollable. It finished too late for this merge window. I
would prefer to have it sitting in linux-next for a while and send it
for inclusion during the 5.3 merge window"
* tag 'pidfd-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
samples: show race-free pidfd metadata access
signal: support CLONE_PIDFD with pidfd_send_signal
clone: add CLONE_PIDFD
Make anon_inodes unconditional
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to ensure that after a XIVE or XICS-on-XIVE KVM device
is closed, KVM will not try to enable or disable any of the escalation
interrupts for the VCPUs. We don't have to worry about races between
clearing the pointers and use of the pointers by the XIVE context
push/pull code, because the callers hold the vcpu->mutex, which is
also taken by the KVM_RUN code. Therefore the vcpu cannot be entering
or exiting the guest concurrently.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Now that we have the possibility of a XIVE or XICS-on-XIVE device being
released while the VM is still running, we need to be careful about
races and potential use-after-free bugs. Although the kvmppc_xive
struct is not freed, but kept around for re-use, the kvmppc_xive_vcpu
structs are freed, and they are used extensively in both the XIVE native
and XICS-on-XIVE code.
There are various ways in which XIVE code gets invoked:
- VCPU entry and exit, which do push and pull operations on the XIVE hardware
- one_reg get and set functions (vcpu->mutex is held)
- XICS hypercalls (but only inside guest execution, not from
kvmppc_pseries_do_hcall)
- device creation calls (kvm->lock is held)
- device callbacks - get/set attribute, mmap, pagefault, release/destroy
- set_mapped/clr_mapped calls (kvm->lock is held)
- connect_vcpu calls
- debugfs file read callbacks
Inside a device release function, we know that userspace cannot have an
open file descriptor referring to the device, nor can it have any mmapped
regions from the device. Therefore the device callbacks are excluded,
as are the connect_vcpu calls (since they need a fd for the device).
Further, since the caller holds the kvm->lock mutex, no other device
creation calls or set/clr_mapped calls can be executing concurrently.
To exclude VCPU execution and XICS hypercalls, we temporarily set
kvm->arch.mmu_ready to 0. This forces any VCPU task that is trying to
enter the guest to take the kvm->lock mutex, which is held by the caller
of the release function. Then, sending an IPI to all other CPUs forces
any VCPU currently executing in the guest to exit.
Finally, we take the vcpu->mutex for each VCPU around the process of
cleaning up and freeing its XIVE data structures, in order to exclude
any one_reg get/set calls.
To exclude the debugfs read callbacks, we just need to ensure that
debugfs_remove is called before freeing any data structures. Once it
returns we know that no CPU can be executing the callbacks (for our
kvmppc_xive instance).
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a P9 sPAPR VM boots, the CAS negotiation process determines which
interrupt mode to use (XICS legacy or XIVE native) and invokes a
machine reset to activate the chosen mode.
We introduce 'release' methods for the XICS-on-XIVE and the XIVE
native KVM devices which are called when the file descriptor of the
device is closed after the TIMA and ESB pages have been unmapped.
They perform the necessary cleanups : clear the vCPU interrupt
presenters that could be attached and then destroy the device. The
'release' methods replace the 'destroy' methods as 'destroy' is not
called anymore once 'release' is. Compatibility with older QEMU is
nevertheless maintained.
This is not considered as a safe operation as the vCPUs are still
running and could be referencing the KVM device through their
presenters. To protect the system from any breakage, the kvmppc_xive
objects representing both KVM devices are now stored in an array under
the VM. Allocation is performed on first usage and memory is freed
only when the VM exits.
[paulus@ozlabs.org - Moved freeing of xive structures to book3s.c,
put it under #ifdef CONFIG_KVM_XICS.]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Full support for the XIVE native exploitation mode is now available,
advertise the capability KVM_CAP_PPC_IRQ_XIVE for guests running on
PowerNV KVM Hypervisors only. Support for nested guests (pseries KVM
Hypervisor) is not yet available. XIVE should also have been activated
which is default setting on POWER9 systems running a recent Linux
kernel.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The KVM XICS-over-XIVE device and the proposed KVM XIVE native device
implement an IRQ space for the guest using the generic IPI interrupts
of the XIVE IC controller. These interrupts are allocated at the OPAL
level and "mapped" into the guest IRQ number space in the range 0-0x1FFF.
Interrupt management is performed in the XIVE way: using loads and
stores on the addresses of the XIVE IPI interrupt ESB pages.
Both KVM devices share the same internal structure caching information
on the interrupts, among which the xive_irq_data struct containing the
addresses of the IPI ESB pages and an extra one in case of pass-through.
The later contains the addresses of the ESB pages of the underlying HW
controller interrupts, PHB4 in all cases for now.
A guest, when running in the XICS legacy interrupt mode, lets the KVM
XICS-over-XIVE device "handle" interrupt management, that is to
perform the loads and stores on the addresses of the ESB pages of the
guest interrupts. However, when running in XIVE native exploitation
mode, the KVM XIVE native device exposes the interrupt ESB pages to
the guest and lets the guest perform directly the loads and stores.
The VMA exposing the ESB pages make use of a custom VM fault handler
which role is to populate the VMA with appropriate pages. When a fault
occurs, the guest IRQ number is deduced from the offset, and the ESB
pages of associated XIVE IPI interrupt are inserted in the VMA (using
the internal structure caching information on the interrupts).
Supporting device passthrough in the guest running in XIVE native
exploitation mode adds some extra refinements because the ESB pages
of a different HW controller (PHB4) need to be exposed to the guest
along with the initial IPI ESB pages of the XIVE IC controller. But
the overall mechanic is the same.
When the device HW irqs are mapped into or unmapped from the guest
IRQ number space, the passthru_irq helpers, kvmppc_xive_set_mapped()
and kvmppc_xive_clr_mapped(), are called to record or clear the
passthrough interrupt information and to perform the switch.
The approach taken by this patch is to clear the ESB pages of the
guest IRQ number being mapped and let the VM fault handler repopulate.
The handler will insert the ESB page corresponding to the HW interrupt
of the device being passed-through or the initial IPI ESB page if the
device is being removed.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Each source is associated with an Event State Buffer (ESB) with a
even/odd pair of pages which provides commands to manage the source:
to trigger, to EOI, to turn off the source for instance.
The custom VM fault handler will deduce the guest IRQ number from the
offset of the fault, and the ESB page of the associated XIVE interrupt
will be inserted into the VMA using the internal structure caching
information on the interrupts.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Each thread has an associated Thread Interrupt Management context
composed of a set of registers. These registers let the thread handle
priority management and interrupt acknowledgment. The most important
are :
- Interrupt Pending Buffer (IPB)
- Current Processor Priority (CPPR)
- Notification Source Register (NSR)
They are exposed to software in four different pages each proposing a
view with a different privilege. The first page is for the physical
thread context and the second for the hypervisor. Only the third
(operating system) and the fourth (user level) are exposed the guest.
A custom VM fault handler will populate the VMA with the appropriate
pages, which should only be the OS page for now.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The state of the thread interrupt management registers needs to be
collected for migration. These registers are cached under the
'xive_saved_state.w01' field of the VCPU when the VPCU context is
pulled from the HW thread. An OPAL call retrieves the backup of the
IPB register in the underlying XIVE NVT structure and merges it in the
KVM state.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When migration of a VM is initiated, a first copy of the RAM is
transferred to the destination before the VM is stopped, but there is
no guarantee that the EQ pages in which the event notifications are
queued have not been modified.
To make sure migration will capture a consistent memory state, the
XIVE device should perform a XIVE quiesce sequence to stop the flow of
event notifications and stabilize the EQs. This is the purpose of the
KVM_DEV_XIVE_EQ_SYNC control which will also marks the EQ pages dirty
to force their transfer.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control will be used by the H_INT_SYNC hcall from QEMU to flush
event notifications on the XIVE IC owning the source.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control is to be used by the H_INT_RESET hcall from QEMU. Its
purpose is to clear all configuration of the sources and EQs. This is
necessary in case of a kexec (for a kdump kernel for instance) to make
sure that no remaining configuration is left from the previous boot
setup so that the new kernel can start safely from a clean state.
The queue 7 is ignored when the XIVE device is configured to run in
single escalation mode. Prio 7 is used by escalations.
The XIVE VP is kept enabled as the vCPU is still active and connected
to the XIVE device.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
These controls will be used by the H_INT_SET_QUEUE_CONFIG and
H_INT_GET_QUEUE_CONFIG hcalls from QEMU to configure the underlying
Event Queue in the XIVE IC. They will also be used to restore the
configuration of the XIVE EQs and to capture the internal run-time
state of the EQs. Both 'get' and 'set' rely on an OPAL call to access
the EQ toggle bit and EQ index which are updated by the XIVE IC when
event notifications are enqueued in the EQ.
The value of the guest physical address of the event queue is saved in
the XIVE internal xive_q structure for later use. That is when
migration needs to mark the EQ pages dirty to capture a consistent
memory state of the VM.
To be noted that H_INT_SET_QUEUE_CONFIG does not require the extra
OPAL call setting the EQ toggle bit and EQ index to configure the EQ,
but restoring the EQ state will.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control will be used by the H_INT_SET_SOURCE_CONFIG hcall from
QEMU to configure the target of a source and also to restore the
configuration of a source when migrating the VM.
The XIVE source interrupt structure is extended with the value of the
Effective Interrupt Source Number. The EISN is the interrupt number
pushed in the event queue that the guest OS will use to dispatch
events internally. Caching the EISN value in KVM eases the test when
checking if a reconfiguration is indeed needed.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The XIVE KVM device maintains a list of interrupt sources for the VM
which are allocated in the pool of generic interrupts (IPIs) of the
main XIVE IC controller. These are used for the CPU IPIs as well as
for virtual device interrupts. The IRQ number space is defined by
QEMU.
The XIVE device reuses the source structures of the XICS-on-XIVE
device for the source blocks (2-level tree) and for the source
interrupts. Under XIVE native, the source interrupt caches mostly
configuration information and is less used than under the XICS-on-XIVE
device in which hcalls are still necessary at run-time.
When a source is initialized in KVM, an IPI interrupt source is simply
allocated at the OPAL level and then MASKED. KVM only needs to know
about its type: LSI or MSI.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The user interface exposes a new capability KVM_CAP_PPC_IRQ_XIVE to
let QEMU connect the vCPU presenters to the XIVE KVM device if
required. The capability is not advertised for now as the full support
for the XIVE native exploitation mode is not yet available. When this
is case, the capability will be advertised on PowerNV Hypervisors
only. Nested guests (pseries KVM Hypervisor) are not supported.
Internally, the interface to the new KVM device is protected with a
new interrupt mode: KVMPPC_IRQ_XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This is the basic framework for the new KVM device supporting the XIVE
native exploitation mode. The user interface exposes a new KVM device
to be created by QEMU, only available when running on a L0 hypervisor.
Support for nested guests is not available yet.
The XIVE device reuses the device structure of the XICS-on-XIVE device
as they have a lot in common. That could possibly change in the future
if the need arise.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch from the powerpc tree to get
patches which touch both general powerpc code and KVM code, one of
which is a prerequisite for following patches.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9 and later processors where the host can schedule vcpus on a
per thread basis, there is a streamlined entry path used when the guest
is radix. This entry path saves/restores the fp and vr state in
kvmhv_p9_guest_entry() by calling store_[fp/vr]_state() and
load_[fp/vr]_state(). This is the same as the old entry path however the
old entry path also saved/restored the VRSAVE register, which isn't done
in the new entry path.
This means that the vrsave register is now volatile across guest exit,
which is an incorrect change in behaviour.
Fix this by saving/restoring the vrsave register in kvmhv_p9_guest_entry().
This restores the old, correct, behaviour.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When running on POWER9 with kvm_hv.indep_threads_mode = N and the host
in SMT1 mode, KVM will run guest VCPUs on offline secondary threads.
If those guests are in radix mode, we fail to load the LPID and flush
the TLB if necessary, leading to the guest crashing with an
unsupported MMU fault. This arises from commit 9a4506e11b ("KVM:
PPC: Book3S HV: Make radix handle process scoped LPID flush in C,
with relocation on", 2018-05-17), which didn't consider the case
where indep_threads_mode = N.
For simplicity, this makes the real-mode guest entry path flush the
TLB in the same place for both radix and hash guests, as we did before
9a4506e11b, though the code is now C code rather than assembly code.
We also have the radix TLB flush open-coded rather than calling
radix__local_flush_tlb_lpid_guest(), because the TLB flush can be
called in real mode, and in real mode we don't want to invoke the
tracepoint code.
Fixes: 9a4506e11b ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This replaces assembler code in book3s_hv_rmhandlers.S that checks
the kvm->arch.need_tlb_flush cpumask and optionally does a TLB flush
with C code in book3s_hv_builtin.c. Note that unlike the radix
version, the hash version doesn't do an explicit ERAT invalidation
because we will invalidate and load up the SLB before entering the
guest, and that will invalidate the ERAT.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The code in book3s_hv_rmhandlers.S that pushes the XIVE virtual CPU
context to the hardware currently assumes it is being called in real
mode, which is usually true. There is however a path by which it can
be executed in virtual mode, in the case where indep_threads_mode = N.
A virtual CPU executing on an offline secondary thread can take a
hypervisor interrupt in virtual mode and return from the
kvmppc_hv_entry() call after the kvm_secondary_got_guest label.
It is possible for it to be given another vcpu to execute before it
gets to execute the stop instruction. In that case it will call
kvmppc_hv_entry() for the second VCPU in virtual mode, and the XIVE
vCPU push code will be executed in virtual mode. The result in that
case will be a host crash due to an unexpected data storage interrupt
caused by executing the stdcix instruction in virtual mode.
This fixes it by adding a code path for virtual mode, which uses the
virtual TIMA pointer and normal load/store instructions.
[paulus@ozlabs.org - wrote patch description]
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a bug in the XICS emulation on POWER9 machines which is
triggered by the guest doing a H_IPI with priority = 0 (the highest
priority). What happens is that the notification interrupt arrives
at the destination at priority zero. The loop in scan_interrupts()
sees that a priority 0 interrupt is pending, but because xc->mfrr is
zero, we break out of the loop before taking the notification
interrupt out of the queue and EOI-ing it. (This doesn't happen
when xc->mfrr != 0; in that case we process the priority-0 notification
interrupt on the first iteration of the loop, and then break out of
a subsequent iteration of the loop with hirq == XICS_IPI.)
To fix this, we move the prio >= xc->mfrr check down to near the end
of the loop. However, there are then some other things that need to
be adjusted. Since we are potentially handling the notification
interrupt and also delivering an IPI to the guest in the same loop
iteration, we need to update pending and handle any q->pending_count
value before the xc->mfrr check, rather than at the end of the loop.
Also, we need to update the queue pointers when we have processed and
EOI-ed the notification interrupt, since we may not do it later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
I made the same typo when trying to grep for uses of smp_wmb and figured
I might as well fix it.
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We already allocate hardware TCE tables in multiple levels and skip
intermediate levels when we can, now it is a turn of the KVM TCE tables.
Thankfully these are allocated already in 2 levels.
This moves the table's last level allocation from the creating helper to
kvmppc_tce_put() and kvm_spapr_tce_fault(). Since such allocation cannot
be done in real mode, this creates a virtual mode version of
kvmppc_tce_put() which handles allocations.
This adds kvmppc_rm_ioba_validate() to do an additional test if
the consequent kvmppc_tce_put() needs a page which has not been allocated;
if this is the case, we bail out to virtual mode handlers.
The allocations are protected by a new mutex as kvm->lock is not suitable
for the task because the fault handler is called with the mmap_sem held
but kvmhv_setup_mmu() locks kvm->lock and mmap_sem in the reverse order.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The kvmppc_tce_to_ua() helper is called from real and virtual modes
and it works fine as long as CONFIG_DEBUG_LOCKDEP is not enabled.
However if the lockdep debugging is on, the lockdep will most likely break
in kvm_memslots() because of srcu_dereference_check() so we need to use
PPC-own kvm_memslots_raw() which uses realmode safe
rcu_dereference_raw_notrace().
This creates a realmode copy of kvmppc_tce_to_ua() which replaces
kvm_memslots() with kvm_memslots_raw().
Since kvmppc_rm_tce_to_ua() becomes static and can only be used inside
HV KVM, this moves it earlier under CONFIG_KVM_BOOK3S_HV_POSSIBLE.
This moves truly virtual-mode kvmppc_tce_to_ua() to where it belongs and
drops the prmap parameter which was never used in the virtual mode.
Fixes: d3695aa4f4 ("KVM: PPC: Add support for multiple-TCE hcalls", 2016-02-15)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The trace_hardirqs_on() sets current->hardirqs_enabled and from here
the lockdep assumes interrupts are enabled although they are remain
disabled until the context switches to the guest. Consequent
srcu_read_lock() checks the flags in rcu_lock_acquire(), observes
disabled interrupts and prints a warning (see below).
This moves trace_hardirqs_on/off closer to __kvmppc_vcore_entry to
prevent lockdep from being confused.
DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)
WARNING: CPU: 16 PID: 8038 at kernel/locking/lockdep.c:4128 check_flags.part.25+0x224/0x280
[...]
NIP [c000000000185b84] check_flags.part.25+0x224/0x280
LR [c000000000185b80] check_flags.part.25+0x220/0x280
Call Trace:
[c000003fec253710] [c000000000185b80] check_flags.part.25+0x220/0x280 (unreliable)
[c000003fec253780] [c000000000187ea4] lock_acquire+0x94/0x260
[c000003fec253840] [c00800001a1e9768] kvmppc_run_core+0xa60/0x1ab0 [kvm_hv]
[c000003fec253a10] [c00800001a1ed944] kvmppc_vcpu_run_hv+0x73c/0xec0 [kvm_hv]
[c000003fec253ae0] [c00800001a1095dc] kvmppc_vcpu_run+0x34/0x48 [kvm]
[c000003fec253b00] [c00800001a1056bc] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[c000003fec253b90] [c00800001a0f3618] kvm_vcpu_ioctl+0x460/0x850 [kvm]
[c000003fec253d00] [c00000000041c4f4] do_vfs_ioctl+0xe4/0x930
[c000003fec253db0] [c00000000041ce04] ksys_ioctl+0xc4/0x110
[c000003fec253e00] [c00000000041ce78] sys_ioctl+0x28/0x80
[c000003fec253e20] [c00000000000b5a4] system_call+0x5c/0x70
Instruction dump:
419e0034 3d220004 39291730 81290000 2f890000 409e0020 3c82ffc6 3c62ffc5
3884be70 386329c0 4bf6ea71 60000000 <0fe00000> 3c62ffc6 3863be90 4801273d
irq event stamp: 1025
hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>] (null)
---[ end trace 31180adcc848993e ]---
possible reason: unannotated irqs-off.
irq event stamp: 1025
hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>] (null)
Fixes: 8b24e69fc4 ("KVM: PPC: Book3S HV: Close race with testing for signals on guest entry", 2017-06-26)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Implement a real mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.
The in-kernel real mode handler halves the time to handle this H_CALL
compared to handling it in userspace for a hash guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Implement a virtual mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.
The in-kernel handler halves the time to handle this H_CALL compared to
handling it in userspace for a radix guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch maps vmalloc, IO and vmemap regions in the 0xc address range
instead of the current 0xd and 0xf range. This brings the mapping closer
to radix translation mode.
With hash 64K page size each of this region is 512TB whereas with 4K config
we are limited by the max page table range of 64TB and hence there regions
are of 16TB size.
The kernel mapping is now:
On 4K hash
kernel_region_map_size = 16TB
kernel vmalloc start = 0xc000100000000000
kernel IO start = 0xc000200000000000
kernel vmemmap start = 0xc000300000000000
64K hash, 64K radix and 4k radix:
kernel_region_map_size = 512TB
kernel vmalloc start = 0xc008000000000000
kernel IO start = 0xc00a000000000000
kernel vmemmap start = 0xc00c000000000000
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds a flag so that the DAWR can be enabled on P9 via:
echo Y > /sys/kernel/debug/powerpc/dawr_enable_dangerous
The DAWR was previously force disabled on POWER9 in:
9654153158 powerpc: Disable DAWR in the base POWER9 CPU features
Also see Documentation/powerpc/DAWR-POWER9.txt
This is a dangerous setting, USE AT YOUR OWN RISK.
Some users may not care about a bad user crashing their box
(ie. single user/desktop systems) and really want the DAWR. This
allows them to force enable DAWR.
This flag can also be used to disable DAWR access. Once this is
cleared, all DAWR access should be cleared immediately and your
machine once again safe from crashing.
Userspace may get confused by toggling this. If DAWR is force
enabled/disabled between getting the number of breakpoints (via
PTRACE_GETHWDBGINFO) and setting the breakpoint, userspace will get an
inconsistent view of what's available. Similarly for guests.
For the DAWR to be enabled in a KVM guest, the DAWR needs to be force
enabled in the host AND the guest. For this reason, this won't work on
POWERVM as it doesn't allow the HCALL to work. Writes of 'Y' to the
dawr_enable_dangerous file will fail if the hypervisor doesn't support
writing the DAWR.
To double check the DAWR is working, run this kernel selftest:
tools/testing/selftests/powerpc/ptrace/ptrace-hwbreak.c
Any errors/failures/skips mean something is wrong.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Make the anon_inodes facility unconditional so that it can be used by core
VFS code and pidfd code.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[christian@brauner.io: adapt commit message to mention pidfds]
Signed-off-by: Christian Brauner <christian@brauner.io>
All architectures except MIPS were defining it in the same way,
and memory slots are handled entirely by common code so there
is no point in keeping the definition per-architecture.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is a hardware bug in some POWER9 processors where a treclaim in
fake suspend mode can cause an inconsistency in the XER[SO] bit across
the threads of a core, the workaround being to force the core into SMT4
when doing the treclaim.
The FAKE_SUSPEND bit (bit 10) in the PSSCR is used to control whether a
thread is in fake suspend or real suspend. The important difference here
being that thread reconfiguration is blocked in real suspend but not
fake suspend mode.
When we exit a guest which was in fake suspend mode, we force the core
into SMT4 while we do the treclaim in kvmppc_save_tm_hv().
However on the new exit path introduced with the function
kvmhv_run_single_vcpu() we restore the host PSSCR before calling
kvmppc_save_tm_hv() which means that if we were in fake suspend mode we
put the thread into real suspend mode when we clear the
PSSCR[FAKE_SUSPEND] bit. This means that we block thread reconfiguration
and the thread which is trying to get the core into SMT4 before it can
do the treclaim spins forever since it itself is blocking thread
reconfiguration. The result is that that core is essentially lost.
This results in a trace such as:
[ 93.512904] CPU: 7 PID: 13352 Comm: qemu-system-ppc Not tainted 5.0.0 #4
[ 93.512905] NIP: c000000000098a04 LR: c0000000000cc59c CTR: 0000000000000000
[ 93.512908] REGS: c000003fffd2bd70 TRAP: 0100 Not tainted (5.0.0)
[ 93.512908] MSR: 9000000302883033 <SF,HV,VEC,VSX,FP,ME,IR,DR,RI,LE,TM[SE]> CR: 22222444 XER: 00000000
[ 93.512914] CFAR: c000000000098a5c IRQMASK: 3
[ 93.512915] PACATMSCRATCH: 0000000000000001
[ 93.512916] GPR00: 0000000000000001 c000003f6cc1b830 c000000001033100 0000000000000004
[ 93.512928] GPR04: 0000000000000004 0000000000000002 0000000000000004 0000000000000007
[ 93.512930] GPR08: 0000000000000000 0000000000000004 0000000000000000 0000000000000004
[ 93.512932] GPR12: c000203fff7fc000 c000003fffff9500 0000000000000000 0000000000000000
[ 93.512935] GPR16: 2000000000300375 000000000000059f 0000000000000000 0000000000000000
[ 93.512951] GPR20: 0000000000000000 0000000000080053 004000000256f41f c000003f6aa88ef0
[ 93.512953] GPR24: c000003f6aa89100 0000000000000010 0000000000000000 0000000000000000
[ 93.512956] GPR28: c000003f9e9a0800 0000000000000000 0000000000000001 c000203fff7fc000
[ 93.512959] NIP [c000000000098a04] pnv_power9_force_smt4_catch+0x1b4/0x2c0
[ 93.512960] LR [c0000000000cc59c] kvmppc_save_tm_hv+0x40/0x88
[ 93.512960] Call Trace:
[ 93.512961] [c000003f6cc1b830] [0000000000080053] 0x80053 (unreliable)
[ 93.512965] [c000003f6cc1b8a0] [c00800001e9cb030] kvmhv_p9_guest_entry+0x508/0x6b0 [kvm_hv]
[ 93.512967] [c000003f6cc1b940] [c00800001e9cba44] kvmhv_run_single_vcpu+0x2dc/0xb90 [kvm_hv]
[ 93.512968] [c000003f6cc1ba10] [c00800001e9cc948] kvmppc_vcpu_run_hv+0x650/0xb90 [kvm_hv]
[ 93.512969] [c000003f6cc1bae0] [c00800001e8f620c] kvmppc_vcpu_run+0x34/0x48 [kvm]
[ 93.512971] [c000003f6cc1bb00] [c00800001e8f2d4c] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[ 93.512972] [c000003f6cc1bb90] [c00800001e8e3918] kvm_vcpu_ioctl+0x460/0x7d0 [kvm]
[ 93.512974] [c000003f6cc1bd00] [c0000000003ae2c0] do_vfs_ioctl+0xe0/0x8e0
[ 93.512975] [c000003f6cc1bdb0] [c0000000003aeb24] ksys_ioctl+0x64/0xe0
[ 93.512978] [c000003f6cc1be00] [c0000000003aebc8] sys_ioctl+0x28/0x80
[ 93.512981] [c000003f6cc1be20] [c00000000000b3a4] system_call+0x5c/0x70
[ 93.512983] Instruction dump:
[ 93.512986] 419dffbc e98c0000 2e8b0000 38000001 60000000 60000000 60000000 40950068
[ 93.512993] 392bffff 39400000 79290020 39290001 <7d2903a6> 60000000 60000000 7d235214
To fix this we preserve the PSSCR[FAKE_SUSPEND] bit until we call
kvmppc_save_tm_hv() which will mean the core can get into SMT4 and
perform the treclaim. Note kvmppc_save_tm_hv() clears the
PSSCR[FAKE_SUSPEND] bit again so there is no need to explicitly do that.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
for 32-bit guests
s390: interrupt cleanup, introduction of the Guest Information Block,
preparation for processor subfunctions in cpu models
PPC: bug fixes and improvements, especially related to machine checks
and protection keys
x86: many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations; plus AVIC fixes.
Generic: memcg accounting
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
=XIzU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- some cleanups
- direct physical timer assignment
- cache sanitization for 32-bit guests
s390:
- interrupt cleanup
- introduction of the Guest Information Block
- preparation for processor subfunctions in cpu models
PPC:
- bug fixes and improvements, especially related to machine checks
and protection keys
x86:
- many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations
- AVIC fixes
Generic:
- memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
kvm: vmx: fix formatting of a comment
KVM: doc: Document the life cycle of a VM and its resources
MAINTAINERS: Add KVM selftests to existing KVM entry
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
KVM: PPC: Fix compilation when KVM is not enabled
KVM: Minor cleanups for kvm_main.c
KVM: s390: add debug logging for cpu model subfunctions
KVM: s390: implement subfunction processor calls
arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
KVM: arm/arm64: Remove unused timer variable
KVM: PPC: Book3S: Improve KVM reference counting
KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
x86: kvmguest: use TSC clocksource if invariant TSC is exposed
KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
...
Add KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST &
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE to the characteristics returned
from the H_GET_CPU_CHARACTERISTICS H-CALL, as queried from either the
hypervisor or the device tree.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When activating CONFIG_THREAD_INFO_IN_TASK, linux/sched.h includes
asm/current.h. This generates a circular dependency. To avoid that,
asm/processor.h shall not be included in mmu-hash.h.
In order to do that, this patch moves into a new header called
asm/task_size_64/32.h all the TASK_SIZE related constants, which can
then be included in mmu-hash.h directly.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Split out all the TASK_SIZE constants not just 64-bit ones]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There are no major new features this time, just a collection of bug
fixes and improvements in various areas, including machine check
handling and context switching of protection-key-related registers.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJcb3lEAAoJEJ2a6ncsY3GflNwH/2ezxhHv7CRy18d2D3F+Kna+
YQs3V/pJfBRvVdV7ZLxnR03H/NmzAK3UOzRfqGodYUtbF+gUDqSuM27lAxMKrjBv
S87X5g/1ZdiQNnqYK7PIBn75Tx27vnw2kJAif8rXTfqbj8qLUsXcNhsziA16sJOA
azbD5PBp9mOVzTojawyriJ3H8LYqw+vinad0idvFrApFCuNmMxv56FR6H+IBadt7
1UJyx6AegQACdhxvy0CzmZjzzXw02z9zeFUa4lakm2sORc4fbbyyZ68CtkGURg7A
8rt2j9SGt649ExpjfG2Cz/UihMGIMXSAOrpqTZMfyd9UPzPgHeKx2FidnxASUBc=
=PIT8
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into kvm-next
PPC KVM update for 5.1
There are no major new features this time, just a collection of bug
fixes and improvements in various areas, including machine check
handling and context switching of protection-key-related registers.
This merges in the "ppc-kvm" topic branch of the powerpc tree to get a
series of commits that touch both general arch/powerpc code and KVM
code. These commits will be merged both via the KVM tree and the
powerpc tree.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When the hash MMU is active the AMR, IAMR and UAMOR are used for
pkeys. The AMR is directly writable by user space, and the UAMOR masks
those writes, meaning both registers are effectively user register
state. The IAMR is used to create an execute only key.
Also we must maintain the value of at least the AMR when running in
process context, so that any memory accesses done by the kernel on
behalf of the process are correctly controlled by the AMR.
Although we are correctly switching all registers when going into a
guest, on returning to the host we just write 0 into all regs, except
on Power9 where we restore the IAMR correctly.
This could be observed by a user process if it writes the AMR, then
runs a guest and we then return immediately to it without
rescheduling. Because we have written 0 to the AMR that would have the
effect of granting read/write permission to pages that the process was
trying to protect.
In addition, when using the Radix MMU, the AMR can prevent inadvertent
kernel access to userspace data, writing 0 to the AMR disables that
protection.
So save and restore AMR, IAMR and UAMOR.
Fixes: cf43d3b264 ("powerpc: Enable pkey subsystem")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
The anon fd's ops releases the KVM reference in the release hook.
However we reference the KVM object after we create the fd so there is
small window when the release function can be called and
dereferenced the KVM object which potentially may free it.
It is not a problem at the moment as the file is created and KVM is
referenced under the KVM lock and the release function obtains the same
lock before dereferencing the KVM (although the lock is not held when
calling kvm_put_kvm()) but it is potentially fragile against future changes.
This references the KVM object before creating a file.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently trying to build without IOMMU support will fail:
(.text+0x1380): undefined reference to `kvmppc_h_get_tce'
(.text+0x1384): undefined reference to `kvmppc_rm_h_put_tce'
(.text+0x149c): undefined reference to `kvmppc_rm_h_stuff_tce'
(.text+0x14a0): undefined reference to `kvmppc_rm_h_put_tce_indirect'
This happens because turning off IOMMU support will prevent
book3s_64_vio_hv.c from being built because it is only built when
SPAPR_TCE_IOMMU is set, which depends on IOMMU support.
Fix it using ifdefs for the undefined references.
Fixes: 76d837a4c0 ("KVM: PPC: Book3S PR: Don't include SPAPR TCE code on non-pseries platforms")
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds an "in_guest" parameter to machine_check_print_event_info()
so that we can avoid trying to translate guest NIP values into
symbolic form using the host kernel's symbol table.
Reviewed-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This makes the handling of machine check interrupts that occur inside
a guest simpler and more robust, with less done in assembler code and
in real mode.
Now, when a machine check occurs inside a guest, we always get the
machine check event struct and put a copy in the vcpu struct for the
vcpu where the machine check occurred. We no longer call
machine_check_queue_event() from kvmppc_realmode_mc_power7(), because
on POWER8, when a vcpu is running on an offline secondary thread and
we call machine_check_queue_event(), that calls irq_work_queue(),
which doesn't work because the CPU is offline, but instead triggers
the WARN_ON(lazy_irq_pending()) in pnv_smp_cpu_kill_self() (which
fires again and again because nothing clears the condition).
All that machine_check_queue_event() actually does is to cause the
event to be printed to the console. For a machine check occurring in
the guest, we now print the event in kvmppc_handle_exit_hv()
instead.
The assembly code at label machine_check_realmode now just calls C
code and then continues exiting the guest. We no longer either
synthesize a machine check for the guest in assembly code or return
to the guest without a machine check.
The code in kvmppc_handle_exit_hv() is extended to handle the case
where the guest is not FWNMI-capable. In that case we now always
synthesize a machine check interrupt for the guest. Previously, if
the host thinks it has recovered the machine check fully, it would
return to the guest without any notification that the machine check
had occurred. If the machine check was caused by some action of the
guest (such as creating duplicate SLB entries), it is much better to
tell the guest that it has caused a problem. Therefore we now always
generate a machine check interrupt for guests that are not
FWNMI-capable.
Reviewed-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
kvmhv_p9_guest_entry() implements a fast-path guest entry for Power9
when guest and host are both running with the Radix MMU.
Currently in that path we don't save the host AMR (Authority Mask
Register) value, and we always restore 0 on return to the host. That
is OK at the moment because the AMR is not used for storage keys with
the Radix MMU.
However we plan to start using the AMR on Radix to prevent the kernel
from reading/writing to userspace outside of copy_to/from_user(). In
order to make that work we need to save/restore the AMR value.
We only restore the value if it is different from the guest value,
which is already in the register when we exit to the host. This should
mean we rarely need to actually restore the value when running a
modern Linux as a guest, because it will be using the same value as
us.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Russell Currey <ruscur@russell.cc>
grow_halt_poll_ns() have a strange behaviour in case
(vcpu->halt_poll_ns != 0) &&
(vcpu->halt_poll_ns < halt_poll_ns_grow_start).
In this case, vcpu->halt_poll_ns will be multiplied by grow factor
(halt_poll_ns_grow) which will require several grow iteration in order
to reach a value bigger than halt_poll_ns_grow_start.
This means that growing vcpu->halt_poll_ns from value of 0 is slower
than growing it from a positive value less than halt_poll_ns_grow_start.
Which is misleading and inaccurate.
Fix issue by changing grow_halt_poll_ns() to set vcpu->halt_poll_ns
to halt_poll_ns_grow_start in any case that
(vcpu->halt_poll_ns < halt_poll_ns_grow_start).
Regardless if vcpu->halt_poll_ns is 0.
use READ_ONCE to get a consistent number for all cases.
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Nir Weiner <nir.weiner@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hard-coded value 10000 in grow_halt_poll_ns() stands for the initial
start value when raising up vcpu->halt_poll_ns.
It actually sets the first timeout to the first polling session.
This value has significant effect on how tolerant we are to outliers.
On the standard case, higher value is better - we will spend more time
in the polling busyloop, handle events/interrupts faster and result
in better performance.
But on outliers it puts us in a busy loop that does nothing.
Even if the shrink factor is zero, we will still waste time on the first
iteration.
The optimal value changes between different workloads. It depends on
outliers rate and polling sessions length.
As this value has significant effect on the dynamic halt-polling
algorithm, it should be configurable and exposed.
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Nir Weiner <nir.weiner@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
grow_halt_poll_ns() have a strange behavior in case
(halt_poll_ns_grow == 0) && (vcpu->halt_poll_ns != 0).
In this case, vcpu->halt_pol_ns will be set to zero.
That results in shrinking instead of growing.
Fix issue by changing grow_halt_poll_ns() to not modify
vcpu->halt_poll_ns in case halt_poll_ns_grow is zero
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Nir Weiner <nir.weiner@oracle.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds an entry to the kvm_stats_debugfs directory which provides the
number of large (2M or 1G) pages which have been used to setup the guest
mappings, for radix guests.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The SPAPR TCE KVM device references all hardware IOMMU tables assigned to
some IOMMU group to ensure that in-kernel KVM acceleration of H_PUT_TCE
can work. The tables are references when an IOMMU group gets registered
with the VFIO KVM device by the KVM_DEV_VFIO_GROUP_ADD ioctl;
KVM_DEV_VFIO_GROUP_DEL calls into the dereferencing code
in kvm_spapr_tce_release_iommu_group() which walks through the list of
LIOBNs, finds a matching IOMMU table and calls kref_put() when found.
However that code stops after the very first successful derefencing
leaving other tables referenced till the SPAPR TCE KVM device is destroyed
which normally happens on guest reboot or termination so if we do hotplug
and unplug in a loop, we are leaking IOMMU tables here.
This removes a premature return to let kvm_spapr_tce_release_iommu_group()
find and dereference all attached tables.
Fixes: 121f80ba68 ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Devices on the KVM_FAST_MMIO_BUS by definition have length zero and are
thus used for notification purposes rather than data transfer. For
example eventfd for virtio devices.
This means that when emulating mmio instructions which target devices on
this bus we can immediately handle them and return without needing to load
the instruction from guest memory.
For now we restrict this to stores as this is the only use case at
present.
For a normal guest the effect is negligible, however for a nested guest
we save on the order of 5us per access.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the KVM code assumes that if the host kernel is using the
XIVE interrupt controller (the new interrupt controller that first
appeared in POWER9 systems), then the in-kernel XICS emulation will
use the XIVE hardware to deliver interrupts to the guest. However,
this only works when the host is running in hypervisor mode and has
full access to all of the XIVE functionality. It doesn't work in any
nested virtualization scenario, either with PR KVM or nested-HV KVM,
because the XICS-on-XIVE code calls directly into the native-XIVE
routines, which are not initialized and cannot function correctly
because they use OPAL calls, and OPAL is not available in a guest.
This means that using the in-kernel XICS emulation in a nested
hypervisor that is using XIVE as its interrupt controller will cause a
(nested) host kernel crash. To fix this, we change most of the places
where the current code calls xive_enabled() to select between the
XICS-on-XIVE emulation and the plain XICS emulation to call a new
function, xics_on_xive(), which returns false in a guest.
However, there is a further twist. The plain XICS emulation has some
functions which are used in real mode and access the underlying XICS
controller (the interrupt controller of the host) directly. In the
case of a nested hypervisor, this means doing XICS hypercalls
directly. When the nested host is using XIVE as its interrupt
controller, these hypercalls will fail. Therefore this also adds
checks in the places where the XICS emulation wants to access the
underlying interrupt controller directly, and if that is XIVE, makes
the code use the virtual mode fallback paths, which call generic
kernel infrastructure rather than doing direct XICS access.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The header search path -I. in kernel Makefiles is very suspicious;
it allows the compiler to search for headers in the top of $(srctree),
where obviously no header file exists.
Commit 46f43c6ee0 ("KVM: powerpc: convert marker probes to event
trace") first added these options, but they are completely useless.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Recent kernels, since commit e15a4fea4d ("powerpc/64s/hash: Add
some SLB debugging tests", 2018-10-03) use the slbfee. instruction,
which PR KVM currently does not have code to emulate. Consequently
recent kernels fail to boot under PR KVM. This adds emulation of
slbfee., enabling these kernels to boot successfully.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The header search path -I. in kernel Makefiles is very suspicious;
it allows the compiler to search for headers in the top of $(srctree),
where obviously no header file exists.
Commit 46f43c6ee0 ("KVM: powerpc: convert marker probes to event
trace") first added these options, but they are completely useless.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Old GCCs (4.6.3 at least), aren't able to follow the logic in
__kvmhv_copy_tofrom_guest_radix() and warn that old_pid is used
uninitialized:
arch/powerpc/kvm/book3s_64_mmu_radix.c:75:3: error: 'old_pid' may be
used uninitialized in this function
The logic is OK, we only use old_pid if quadrant == 1, and in that
case it has definitely be initialised, eg:
if (quadrant == 1) {
old_pid = mfspr(SPRN_PID);
...
if (quadrant == 1 && pid != old_pid)
mtspr(SPRN_PID, old_pid);
Annotate it to fix the error.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- support -y option for merge_config.sh to avoid downgrading =y to =m
- remove S_OTHER symbol type, and touch include/config/*.h files correctly
- fix file name and line number in lexer warnings
- fix memory leak when EOF is encountered in quotation
- resolve all shift/reduce conflicts of the parser
- warn no new line at end of file
- make 'source' statement more strict to take only string literal
- rewrite the lexer and remove the keyword lookup table
- convert to SPDX License Identifier
- compile C files independently instead of including them from zconf.y
- fix various warnings of gconfig
- misc cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJcJieuAAoJED2LAQed4NsGHlIP/1s0fQ86XD9dIMyHzAO0gh2f
7rylfe2kEXJgIzJ0DyZdLu4iZtwbkEUqTQrRS1abriNGVemPkfBAnZdM5d92lOQX
3iREa700AJ2xo7V7gYZ6AbhZoG3p0S9U9Q2qE5S+tFTe8c2Gy4xtjnODF+Vel85r
S0P8tF5sE1/d00lm+yfMI/CJVfDjyNaMm+aVEnL0kZTPiRkaktjWgo6Fc2p4z1L5
HFmMMP6/iaXmRZ+tHJGPQ2AT70GFVZw5ePxPcl50EotUP25KHbuUdzs8wDpYm3U/
rcESVsIFpgqHWmTsdBk6dZk0q8yFZNkMlkaP/aYukVZpUn/N6oAXgTFckYl8dmQL
fQBkQi6DTfr9EBPVbj18BKm7xI3Y4DdQ2fzTfYkJ2XwNRGFA5r9N3sjd7ZTVGjxC
aeeMHCwvGdSx1x8PeZAhZfsUHW8xVDMSQiT713+ljBY+6cwzA+2NF0kP7B6OAqwr
ETFzd4Xu2/lZcL7gQRH8WU3L2S5iedmDG6RnZgJMXI0/9V4qAA+nlsWaCgnl1TgA
mpxYlLUMrd6AUJevE34FlnyFdk8IMn9iKRFsvF0f3doO5C7QzTVGqFdJu5a0CuWO
4NBJvZjFT8/4amoWLfnDlfApWXzTfwLbKG+r6V2F30fLuXpYg5LxWhBoGRPYLZSq
oi4xN1Mpx3TvXz6WcKVZ
=r3Fl
-----END PGP SIGNATURE-----
Merge tag 'kconfig-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kconfig updates from Masahiro Yamada:
- support -y option for merge_config.sh to avoid downgrading =y to =m
- remove S_OTHER symbol type, and touch include/config/*.h files correctly
- fix file name and line number in lexer warnings
- fix memory leak when EOF is encountered in quotation
- resolve all shift/reduce conflicts of the parser
- warn no new line at end of file
- make 'source' statement more strict to take only string literal
- rewrite the lexer and remove the keyword lookup table
- convert to SPDX License Identifier
- compile C files independently instead of including them from zconf.y
- fix various warnings of gconfig
- misc cleanups
* tag 'kconfig-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (39 commits)
kconfig: surround dbg_sym_flags with #ifdef DEBUG to fix gconf warning
kconfig: split images.c out of qconf.cc/gconf.c to fix gconf warnings
kconfig: add static qualifiers to fix gconf warnings
kconfig: split the lexer out of zconf.y
kconfig: split some C files out of zconf.y
kconfig: convert to SPDX License Identifier
kconfig: remove keyword lookup table entirely
kconfig: update current_pos in the second lexer
kconfig: switch to ASSIGN_VAL state in the second lexer
kconfig: stop associating kconf_id with yylval
kconfig: refactor end token rules
kconfig: stop supporting '.' and '/' in unquoted words
treewide: surround Kconfig file paths with double quotes
microblaze: surround string default in Kconfig with double quotes
kconfig: use T_WORD instead of T_VARIABLE for variables
kconfig: use specific tokens instead of T_ASSIGN for assignments
kconfig: refactor scanning and parsing "option" properties
kconfig: use distinct tokens for type and default properties
kconfig: remove redundant token defines
kconfig: rename depends_list to comment_option_list
...
Notable changes:
- Mitigations for Spectre v2 on some Freescale (NXP) CPUs.
- A large series adding support for pass-through of Nvidia V100 GPUs to guests
on Power9.
- Another large series to enable hardware assistance for TLB table walk on
MPC8xx CPUs.
- Some preparatory changes to our DMA code, to make way for further cleanups
from Christoph.
- Several fixes for our Transactional Memory handling discovered by fuzzing the
signal return path.
- Support for generating our system call table(s) from a text file like other
architectures.
- A fix to our page fault handler so that instead of generating a WARN_ON_ONCE,
user accesses of kernel addresses instead print a ratelimited and
appropriately scary warning.
- A cosmetic change to make our unhandled page fault messages more similar to
other arches and also more compact and informative.
- Freescale updates from Scott:
"Highlights include elimination of legacy clock bindings use from dts
files, an 83xx watchdog handler, fixes to old dts interrupt errors, and
some minor cleanup."
And many clean-ups, reworks and minor fixes etc.
Thanks to:
Alexandre Belloni, Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V,
Arnd Bergmann, Benjamin Herrenschmidt, Breno Leitao, Christian Lamparter,
Christophe Leroy, Christoph Hellwig, Daniel Axtens, Darren Stevens, David
Gibson, Diana Craciun, Dmitry V. Levin, Firoz Khan, Geert Uytterhoeven, Greg
Kurz, Gustavo Romero, Hari Bathini, Joel Stanley, Kees Cook, Madhavan
Srinivasan, Mahesh Salgaonkar, Markus Elfring, Mathieu Malaterre, Michal
Suchánek, Naveen N. Rao, Nick Desaulniers, Oliver O'Halloran, Paul Mackerras,
Ram Pai, Ravi Bangoria, Rob Herring, Russell Currey, Sabyasachi Gupta, Sam
Bobroff, Satheesh Rajendran, Scott Wood, Segher Boessenkool, Stephen Rothwell,
Tang Yuantian, Thiago Jung Bauermann, Yangtao Li, Yuantian Tang, Yue Haibing.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJcJLwZAAoJEFHr6jzI4aWAAv4P/jMvP52lA90i2E8G72LOVSF1
33DbE/Okib3VfmmMcXZpgpEfwIcEmJcIj86WWcLWzBfXLunehkgwh+AOfBLwqWch
D08+RR9EZb7ppvGe91hvSgn4/28CWVKAxuDviSuoE1OK8lOTncu889r2+AxVFZiY
f6Al9UPlB3FTJonNx8iO4r/GwrPigukjbzp1vkmJJg59LvNUrMQ1Fgf9D3cdlslH
z4Ff9zS26RJy7cwZYQZI4sZXJZmeQ1DxOZ+6z6FL/nZp/O4WLgpw6C6o1+vxo1kE
9ZnO/3+zIRhoWiXd6OcOQXBv3NNCjJZlXh9HHAiL8m5ZqbmxrStQWGyKW/jjEZuK
wVHxfUT19x9Qy1p+BH3XcUNMlxchYgcCbEi5yPX2p9ZDXD6ogNG7sT1+NO+FBTww
ueCT5PCCB/xWOccQlBErFTMkFXFLtyPDNFK7BkV7uxbH0PQ+9guCvjWfBZti6wjD
/6NK4mk7FpmCiK13Y1xjwC5OqabxLUYwtVuHYOMr5TOPh8URUPS4+0pIOdoYDM6z
Ensrq1CC843h59MWADgFHSlZ78FRtZlG37JAXunjLbqGupLOvL7phC9lnwkylHga
2hWUWFeOV8HFQBP4gidZkLk64pkT9LzqHgdgIB4wUwrhc8r2mMZGdQTq5H7kOn3Q
n9I48PWANvEC0PBCJ/KL
=cr6s
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Mitigations for Spectre v2 on some Freescale (NXP) CPUs.
- A large series adding support for pass-through of Nvidia V100 GPUs
to guests on Power9.
- Another large series to enable hardware assistance for TLB table
walk on MPC8xx CPUs.
- Some preparatory changes to our DMA code, to make way for further
cleanups from Christoph.
- Several fixes for our Transactional Memory handling discovered by
fuzzing the signal return path.
- Support for generating our system call table(s) from a text file
like other architectures.
- A fix to our page fault handler so that instead of generating a
WARN_ON_ONCE, user accesses of kernel addresses instead print a
ratelimited and appropriately scary warning.
- A cosmetic change to make our unhandled page fault messages more
similar to other arches and also more compact and informative.
- Freescale updates from Scott:
"Highlights include elimination of legacy clock bindings use from
dts files, an 83xx watchdog handler, fixes to old dts interrupt
errors, and some minor cleanup."
And many clean-ups, reworks and minor fixes etc.
Thanks to: Alexandre Belloni, Alexey Kardashevskiy, Andrew Donnellan,
Aneesh Kumar K.V, Arnd Bergmann, Benjamin Herrenschmidt, Breno Leitao,
Christian Lamparter, Christophe Leroy, Christoph Hellwig, Daniel
Axtens, Darren Stevens, David Gibson, Diana Craciun, Dmitry V. Levin,
Firoz Khan, Geert Uytterhoeven, Greg Kurz, Gustavo Romero, Hari
Bathini, Joel Stanley, Kees Cook, Madhavan Srinivasan, Mahesh
Salgaonkar, Markus Elfring, Mathieu Malaterre, Michal Suchánek, Naveen
N. Rao, Nick Desaulniers, Oliver O'Halloran, Paul Mackerras, Ram Pai,
Ravi Bangoria, Rob Herring, Russell Currey, Sabyasachi Gupta, Sam
Bobroff, Satheesh Rajendran, Scott Wood, Segher Boessenkool, Stephen
Rothwell, Tang Yuantian, Thiago Jung Bauermann, Yangtao Li, Yuantian
Tang, Yue Haibing"
* tag 'powerpc-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (201 commits)
Revert "powerpc/fsl_pci: simplify fsl_pci_dma_set_mask"
powerpc/zImage: Also check for stdout-path
powerpc: Fix HMIs on big-endian with CONFIG_RELOCATABLE=y
macintosh: Use of_node_name_{eq, prefix} for node name comparisons
ide: Use of_node_name_eq for node name comparisons
powerpc: Use of_node_name_eq for node name comparisons
powerpc/pseries/pmem: Convert to %pOFn instead of device_node.name
powerpc/mm: Remove very old comment in hash-4k.h
powerpc/pseries: Fix node leak in update_lmb_associativity_index()
powerpc/configs/85xx: Enable CONFIG_DEBUG_KERNEL
powerpc/dts/fsl: Fix dtc-flagged interrupt errors
clk: qoriq: add more compatibles strings
powerpc/fsl: Use new clockgen binding
powerpc/83xx: handle machine check caused by watchdog timer
powerpc/fsl-rio: fix spelling mistake "reserverd" -> "reserved"
powerpc/fsl_pci: simplify fsl_pci_dma_set_mask
arch/powerpc/fsl_rmu: Use dma_zalloc_coherent
vfio_pci: Add NVIDIA GV100GL [Tesla V100 SXM2] subdriver
vfio_pci: Allow regions to add own capabilities
vfio_pci: Allow mapping extra regions
...
The Kconfig lexer supports special characters such as '.' and '/' in
the parameter context. In my understanding, the reason is just to
support bare file paths in the source statement.
I do not see a good reason to complicate Kconfig for the room of
ambiguity.
The majority of code already surrounds file paths with double quotes,
and it makes sense since file paths are constant string literals.
Make it treewide consistent now.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Wolfram Sang <wsa@the-dreams.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
This has 5 commits that fix page dirty tracking when running nested
HV KVM guests, from Suraj Jitindar Singh.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJcHGnCAAoJEJ2a6ncsY3GfaMQIAKP1KQ/SzE38gORRjdf4aUTf
8X6+B6bAjVPwu0OgR2xoU4hPT8vpViG8gIjlspDm/v1igRlokz5GeCEXXlttQwK6
5JFfqS+psCQ/Z/bPFo0uW7cOojeDeE3s1Vd3XXjMH79T6Mvpg54fYutvxd+qbjW6
gAl/jGK6xxo1XsaQfySeSSLA3b8ibI77mjnPBgvbSHbrxBAIjoAfqKTVSjrPwR2b
ZvHyCbaoX2uOGyWrw9O73CqCgsiXEOQvr8dLEjsT7a+brrJBO4mv20s6DzlpC1lS
YVHd8GAfk44h1fxsNXsj9eEUIcRMEB4fYYOd/u0TECdeyFFWz+8JjBhm6u0TRck=
=Zrya
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.21-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into kvm-next
Second PPC KVM update for 4.21
This has 5 commits that fix page dirty tracking when running nested
HV KVM guests, from Suraj Jitindar Singh.
The patch is to make kvm_set_spte_hva() return int and caller can
check return value to determine flush tlb or not.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This new memory does not have page structs as it is not plugged to
the host so gup() will fail anyway.
This adds 2 helpers:
- mm_iommu_newdev() to preregister the "memory device" memory so
the rest of API can still be used;
- mm_iommu_is_devmem() to know if the physical address is one of thise
new regions which we must avoid unpinning of.
This adds @mm to tce_page_is_contained() and iommu_tce_xchg() to test
if the memory is device memory to avoid pfn_to_page().
This adds a check for device memory in mm_iommu_ua_mark_dirty_rm() which
does delayed pages dirtying.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The rc bits contained in ptes are used to track whether a page has been
accessed and whether it is dirty. The accessed bit is used to age a page
and the dirty bit to track whether a page is dirty or not.
Now that we support nested guests there are three ptes which track the
state of the same page:
- The partition-scoped page table in the L1 guest, mapping L2->L1 address
- The partition-scoped page table in the host for the L1 guest, mapping
L1->L0 address
- The shadow partition-scoped page table for the nested guest in the host,
mapping L2->L0 address
The idea is to attempt to keep the rc state of these three ptes in sync,
both when setting and when clearing rc bits.
When setting the bits we achieve consistency by:
- Initially setting the bits in the shadow page table as the 'and' of the
other two.
- When updating in software the rc bits in the shadow page table we
ensure the state is consistent with the other two locations first, and
update these before reflecting the change into the shadow page table.
i.e. only set the bits in the L2->L0 pte if also set in both the
L2->L1 and the L1->L0 pte.
When clearing the bits we achieve consistency by:
- The rc bits in the shadow page table are only cleared when discarding
a pte, and we don't need to record this as if either bit is set then
it must also be set in the pte mapping L1->L0.
- When L1 clears an rc bit in the L2->L1 mapping it __should__ issue a
tlbie instruction
- This means we will discard the pte from the shadow page table
meaning the mapping will have to be setup again.
- When setup the pte again in the shadow page table we will ensure
consistency with the L2->L1 pte.
- When the host clears an rc bit in the L1->L0 mapping we need to also
clear the bit in any ptes in the shadow page table which map the same
gfn so we will be notified if a nested guest accesses the page.
This case is what this patch specifically concerns.
- We can search the nest_rmap list for that given gfn and clear the
same bit from all corresponding ptes in shadow page tables.
- If a nested guest causes either of the rc bits to be set by software
in future then we will update the L1->L0 pte and maintain consistency.
With the process outlined above we aim to maintain consistency of the 3
pte locations where we track rc for a given guest page.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Introduce a function kvmhv_update_nest_rmap_rc_list() which for a given
nest_rmap list will traverse it, find the corresponding pte in the shadow
page tables, and if it still maps the same host page update the rc bits
accordingly.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The shadow page table contains ptes for translations from nested guest
address to host address. Currently when creating these ptes we take the
rc bits from the pte for the L1 guest address to host address
translation. This is incorrect as we must also factor in the rc bits
from the pte for the nested guest address to L1 guest address
translation (as contained in the L1 guest partition table for the nested
guest).
By not calculating these bits correctly L1 may not have been correctly
notified when it needed to update its rc bits in the partition table it
maintains for its nested guest.
Modify the code so that the rc bits in the resultant pte for the L2->L0
translation are the 'and' of the rc bits in the L2->L1 pte and the L1->L0
pte, also accounting for whether this was a write access when setting
the dirty bit.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Nested rmap entries are used to store the translation from L1 gpa to L2
gpa when entries are inserted into the shadow (nested) page tables. This
rmap list is located by indexing the rmap array in the memslot by L1
gfn. When we come to search for these entries we only know the L1 page size
(which could be PAGE_SIZE, 2M or a 1G page) and so can only select a gfn
aligned to that size. This means that when we insert the entry, so we can
find it later, we need to align the gfn we use to select the rmap list
in which to insert the entry to L1 page size as well.
By not doing this we were missing nested rmap entries when modifying L1
ptes which were for a page also passed through to an L2 guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We already hold the kvm->mmu_lock spin lock across updating the rc bits
in the pte for the L1 guest. Continue to hold the lock across updating
the rc bits in the pte for the nested guest as well to prevent
invalidations from occurring.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The main new feature this time is support in HV nested KVM for passing
a device that is emulated by a level 0 hypervisor and presented to
level 1 as a PCI device through to a level 2 guest using VFIO.
Apart from that there are improvements for migration of radix guests
under HV KVM and some other fixes and cleanups.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJcGFzEAAoJEJ2a6ncsY3GfKjoH/Azcf8QIO5ftyHrjazFZOSUh
5Lr24HZTYHheowp6obzuZWRAIyckHmflRmOkv8RVGuA8+Sp+m5pBxN3WTVPOwDUh
WanOWVGJsuhl6qATmkm7xIxmYhQEyLxVNbnWva7WXuZ92rgGCNfHtByHWAx/7vTe
q5Shr4fLIQ8HRzor8Xqqph1I0hQNTE9VsaK1hW/PxI0gsO8qjDwOR8SDpT/aaJrS
Sir+lM0TwCbJREuObDxYAXn1OWy8rMYjlb9fEBv5tmPCQKiB9vJz4tV+ahR9eJ14
PEF57MoBOGwzQXo4geFLuo/Bu8fDygKsKQX1eYGcn6tRGA4pnTxzYl0+dHLBkOM=
=3WkD
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
PPC KVM update for 4.21 from Paul Mackerras
The main new feature this time is support in HV nested KVM for passing
a device that is emulated by a level 0 hypervisor and presented to
level 1 as a PCI device through to a level 2 guest using VFIO.
Apart from that there are improvements for migration of radix guests
under HV KVM and some other fixes and cleanups.
Switching from the guest to host is another place
where the speculative accesses can be exploited.
Flush the branch predictor when entering KVM.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In order to flush the branch predictor the guest kernel performs
writes to the BUCSR register which is hypervisor privilleged. However,
the branch predictor is flushed at each KVM entry, so the branch
predictor has been already flushed, so just return as soon as possible
to guest.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
[mpe: Tweak comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Previously when a device was being emulated by an L1 guest for an L2
guest, that device couldn't then be passed through to an L3 guest. This
was because the L1 guest had no method for accessing L3 memory.
The hcall H_COPY_TOFROM_GUEST provides this access. Thus this setup for
passthrough can now be allowed.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
A guest cannot access quadrants 1 or 2 as this would result in an
exception. Thus introduce the hcall H_COPY_TOFROM_GUEST to be used by a
guest when it wants to perform an access to quadrants 1 or 2, for
example when it wants to access memory for one of its nested guests.
Also provide an implementation for the kvm-hv module.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Allow for a device which is being emulated at L0 (the host) for an L1
guest to be passed through to a nested (L2) guest.
The existing kvmppc_hv_emulate_mmio function can be used here. The main
challenge is that for a load the result must be stored into the L2 gpr,
not an L1 gpr as would normally be the case after going out to qemu to
complete the operation. This presents a challenge as at this point the
L2 gpr state has been written back into L1 memory.
To work around this we store the address in L1 memory of the L2 gpr
where the result of the load is to be stored and use the new io_gpr
value KVM_MMIO_REG_NESTED_GPR to indicate that this is a nested load for
which completion must be done when returning back into the kernel. Then
in kvmppc_complete_mmio_load() the resultant value is written into L1
memory at the location of the indicated L2 gpr.
Note that we don't currently let an L1 guest emulate a device for an L2
guest which is then passed through to an L3 guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The functions kvmppc_st and kvmppc_ld are used to access guest memory
from the host using a guest effective address. They do so by translating
through the process table to obtain a guest real address and then using
kvm_read_guest or kvm_write_guest to make the access with the guest real
address.
This method of access however only works for L1 guests and will give the
incorrect results for a nested guest.
We can however use the store_to_eaddr and load_from_eaddr kvmppc_ops to
perform the access for a nested guesti (and a L1 guest). So attempt this
method first and fall back to the old method if this fails and we aren't
running a nested guest.
At this stage there is no fall back method to perform the access for a
nested guest and this is left as a future improvement. For now we will
return to the nested guest and rely on the fact that a translation
should be faulted in before retrying the access.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The kvmppc_ops struct is used to store function pointers to kvm
implementation specific functions.
Introduce two new functions load_from_eaddr and store_to_eaddr to be
used to load from and store to a guest effective address respectively.
Also implement these for the kvm-hv module. If we are using the radix
mmu then we can call the functions to access quadrant 1 and 2.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The POWER9 radix mmu has the concept of quadrants. The quadrant number
is the two high bits of the effective address and determines the fully
qualified address to be used for the translation. The fully qualified
address consists of the effective lpid, the effective pid and the
effective address. This gives then 4 possible quadrants 0, 1, 2, and 3.
When accessing these quadrants the fully qualified address is obtained
as follows:
Quadrant | Hypervisor | Guest
--------------------------------------------------------------------------
| EA[0:1] = 0b00 | EA[0:1] = 0b00
0 | effLPID = 0 | effLPID = LPIDR
| effPID = PIDR | effPID = PIDR
--------------------------------------------------------------------------
| EA[0:1] = 0b01 |
1 | effLPID = LPIDR | Invalid Access
| effPID = PIDR |
--------------------------------------------------------------------------
| EA[0:1] = 0b10 |
2 | effLPID = LPIDR | Invalid Access
| effPID = 0 |
--------------------------------------------------------------------------
| EA[0:1] = 0b11 | EA[0:1] = 0b11
3 | effLPID = 0 | effLPID = LPIDR
| effPID = 0 | effPID = 0
--------------------------------------------------------------------------
In the Guest;
Quadrant 3 is normally used to address the operating system since this
uses effPID=0 and effLPID=LPIDR, meaning the PID register doesn't need to
be switched.
Quadrant 0 is normally used to address user space since the effLPID and
effPID are taken from the corresponding registers.
In the Host;
Quadrant 0 and 3 are used as above, however the effLPID is always 0 to
address the host.
Quadrants 1 and 2 can be used by the host to address guest memory using
a guest effective address. Since the effLPID comes from the LPID register,
the host loads the LPID of the guest it would like to access (and the
PID of the process) and can perform accesses to a guest effective
address.
This means quadrant 1 can be used to address the guest user space and
quadrant 2 can be used to address the guest operating system from the
hypervisor, using a guest effective address.
Access to the quadrants can cause a Hypervisor Data Storage Interrupt
(HDSI) due to being unable to perform partition scoped translation.
Previously this could only be generated from a guest and so the code
path expects us to take the KVM trampoline in the interrupt handler.
This is no longer the case so we modify the handler to call
bad_page_fault() to check if we were expecting this fault so we can
handle it gracefully and just return with an error code. In the hash mmu
case we still raise an unknown exception since quadrants aren't defined
for the hash mmu.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There exists a function kvm_is_radix() which is used to determine if a
kvm instance is using the radix mmu. However this only applies to the
first level (L1) guest. Add a function kvmhv_vcpu_is_radix() which can
be used to determine if the current execution context of the vcpu is
radix, accounting for if the vcpu is running a nested guest.
Currently all nested guests must be radix but this may change in the
future.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The kvm capability KVM_CAP_SPAPR_TCE_VFIO is used to indicate the
availability of in kernel tce acceleration for vfio. However it is
currently the case that this is only available on a powernv machine,
not for a pseries machine.
Thus make this capability dependent on having the cpu feature
CPU_FTR_HVMODE.
[paulus@ozlabs.org - fixed compilation for Book E.]
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to flush the partition-scoped page tables for a radix
guest when dirty tracking is turned on or off for a memslot. Only the
guest real addresses covered by the memslot are flushed. The reason
for this is to get rid of any 2M PTEs in the partition-scoped page
tables that correspond to host transparent huge pages, so that page
dirtiness is tracked at a system page (4k or 64k) granularity rather
than a 2M granularity. The page tables are also flushed when turning
dirty tracking off so that the memslot's address space can be
repopulated with THPs if possible.
To do this, we add a new function kvmppc_radix_flush_memslot(). Since
this does what's needed for kvmppc_core_flush_memslot_hv() on a radix
guest, we now make kvmppc_core_flush_memslot_hv() call the new
kvmppc_radix_flush_memslot() rather than calling kvm_unmap_radix()
for each page in the memslot. This has the effect of fixing a bug in
that kvmppc_core_flush_memslot_hv() was previously calling
kvm_unmap_radix() without holding the kvm->mmu_lock spinlock, which
is required to be held.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds 'const' to the declarations for the struct kvm_memory_slot
pointer parameters of some functions, which will make it possible to
call those functions from kvmppc_core_commit_memory_region_hv()
in the next patch.
This also fixes some comments about locking.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
For radix guests, this makes KVM map guest memory as individual pages
when dirty page logging is enabled for the memslot corresponding to the
guest real address. Having a separate partition-scoped PTE for each
system page mapped to the guest means that we have a separate dirty
bit for each page, thus making the reported dirty bitmap more accurate.
Without this, if part of guest memory is backed by transparent huge
pages, the dirty status is reported at a 2MB granularity rather than
a 64kB (or 4kB) granularity for that part, causing userspace to have
to transmit more data when migrating the guest.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, kvm_arch_commit_memory_region() gets called with a
parameter indicating what type of change is being made to the memslot,
but it doesn't pass it down to the platform-specific memslot commit
functions. This adds the `change' parameter to the lower-level
functions so that they can use it in future.
[paulus@ozlabs.org - fix book E also.]
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When booting a kvm-pr guest on a POWER9 machine the following message is
observed:
"qemu-system-ppc64: KVM does not support 1TiB segments which guest expects"
This is because the guest is expecting to be able to use 1T segments
however we don't indicate support for it. This is because we don't set
the BOOK3S_HFLAG_MULTI_PGSIZE flag in the hflags in kvmppc_set_pvr_pr()
on POWER9.
POWER9 does indeed have support for 1T segments, so add a case for
POWER9 to the switch statement to ensure it is set.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Use DEFINE_SHOW_ATTRIBUTE macro to simplify the code.
Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Testing has revealed an occasional crash which appears to be caused
by a race between kvmppc_switch_mmu_to_hpt and kvm_unmap_hva_range_hv.
The symptom is a NULL pointer dereference in __find_linux_pte() called
from kvm_unmap_radix() with kvm->arch.pgtable == NULL.
Looking at kvmppc_switch_mmu_to_hpt(), it does indeed clear
kvm->arch.pgtable (via kvmppc_free_radix()) before setting
kvm->arch.radix to NULL, and there is nothing to prevent
kvm_unmap_hva_range_hv() or the other MMU callback functions from
being called concurrently with kvmppc_switch_mmu_to_hpt() or
kvmppc_switch_mmu_to_radix().
This patch therefore adds calls to spin_lock/unlock on the kvm->mmu_lock
around the assignments to kvm->arch.radix, and makes sure that the
partition-scoped radix tree or HPT is only freed after changing
kvm->arch.radix.
This also takes the kvm->mmu_lock in kvmppc_rmap_reset() to make sure
that the clearing of each rmap array (one per memslot) doesn't happen
concurrently with use of the array in the kvm_unmap_hva_range_hv()
or the other MMU callbacks.
Fixes: 18c3640cef ("KVM: PPC: Book3S HV: Add infrastructure for running HPT guests on radix host")
Cc: stable@vger.kernel.org # v4.15+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The purpose of this patch is to move platform specific
mmu-xxx.h files in platform directories like pte-xxx.h files.
In the meantime this patch creates common nohash and
nohash/32 + nohash/64 mmu.h files for future common parts.
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This has a single 1-line patch which fixes a bug in the recently-merged
nested HV KVM support.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJb7pbhAAoJEJ2a6ncsY3Gf8UIIAKgiocLz4jTrWYaR/OVbg6EY
tSJQBbsi6bEAog/FZMWDG0zL0YB4s+wXu34RiTt/P7g0VzHFTmR6ZHIJPiSd78aH
oxe8H7TOVq8/EmD0TwREVgUe1qIHgLBkVkk05b0P0nlpeO5bzWQBco2No2mfKWOq
yZcK03QWBsVaq0xhZFM/c0SkxBYOIDcm1kG+XNpOcsmWGXin96TlK+2WohOIH5nY
+16vI61n7/jBjdoxQS0Lw8OAfsA8CjY9GaKf3MuFYe93anZUv2s8FrAv35qUwzBg
5/Y/f+EB5AKMf3XR2A8nJ6HmoeXUFu4NUxT1YAQPAUcrxkENcsaRHDe2Uwt1QIk=
=iPcL
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-fixes-4.20-1' of https://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
PPC KVM fixes for 4.20
This has a single 1-line patch which fixes a bug in the recently-merged
nested HV KVM support.
While running a nested guest VCPU on L0 via H_ENTER_NESTED hcall, a
pending signal in the L0 QEMU process can generate the following
sequence:
ret0 = kvmppc_pseries_do_hcall()
ret1 = kvmhv_enter_nested_guest()
ret2 = kvmhv_run_single_vcpu()
if (ret2 == -EINTR)
return H_INTERRUPT
if (ret1 == H_INTERRUPT)
kvmppc_set_gpr(vcpu, 3, 0)
return -EINTR
/* skipped: */
kvmppc_set_gpr(vcpu, 3, ret)
vcpu->arch.hcall_needed = 0
return RESUME_GUEST
which causes an exit to L0 userspace with ret0 == -EINTR.
The intention seems to be to set the hcall return value to 0 (via
VCPU r3) so that L1 will see a successful return from H_ENTER_NESTED
once we resume executing the VCPU. However, because we don't set
vcpu->arch.hcall_needed = 0, we do the following once userspace
resumes execution via kvm_arch_vcpu_ioctl_run():
...
} else if (vcpu->arch.hcall_needed) {
int i
kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
for (i = 0; i < 9; ++i)
kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
vcpu->arch.hcall_needed = 0;
since vcpu->arch.hcall_needed == 1 indicates that userspace should
have handled the hcall and stored the return value in
run->papr_hcall.ret. Since that's not the case here, we can get an
unexpected value in VCPU r3, which can result in
kvmhv_p9_guest_entry() reporting an unexpected trap value when it
returns from H_ENTER_NESTED, causing the following register dump to
console via subsequent call to kvmppc_handle_exit_hv() in L1:
[ 350.612854] vcpu 00000000f9564cf8 (0):
[ 350.612915] pc = c00000000013eb98 msr = 8000000000009033 trap = 1
[ 350.613020] r 0 = c0000000004b9044 r16 = 0000000000000000
[ 350.613075] r 1 = c00000007cffba30 r17 = 0000000000000000
[ 350.613120] r 2 = c00000000178c100 r18 = 00007fffc24f3b50
[ 350.613166] r 3 = c00000007ef52480 r19 = 00007fffc24fff58
[ 350.613212] r 4 = 0000000000000000 r20 = 00000a1e96ece9d0
[ 350.613253] r 5 = 70616d00746f6f72 r21 = 00000a1ea117c9b0
[ 350.613295] r 6 = 0000000000000020 r22 = 00000a1ea1184360
[ 350.613338] r 7 = c0000000783be440 r23 = 0000000000000003
[ 350.613380] r 8 = fffffffffffffffc r24 = 00000a1e96e9e124
[ 350.613423] r 9 = c00000007ef52490 r25 = 00000000000007ff
[ 350.613469] r10 = 0000000000000004 r26 = c00000007eb2f7a0
[ 350.613513] r11 = b0616d0009eccdb2 r27 = c00000007cffbb10
[ 350.613556] r12 = c0000000004b9000 r28 = c00000007d83a2c0
[ 350.613597] r13 = c000000001b00000 r29 = c0000000783cdf68
[ 350.613639] r14 = 0000000000000000 r30 = 0000000000000000
[ 350.613681] r15 = 0000000000000000 r31 = c00000007cffbbf0
[ 350.613723] ctr = c0000000004b9000 lr = c0000000004b9044
[ 350.613765] srr0 = 0000772f954dd48c srr1 = 800000000280f033
[ 350.613808] sprg0 = 0000000000000000 sprg1 = c000000001b00000
[ 350.613859] sprg2 = 0000772f9565a280 sprg3 = 0000000000000000
[ 350.613911] cr = 88002848 xer = 0000000020040000 dsisr = 42000000
[ 350.613962] dar = 0000772f95390000
[ 350.614031] fault dar = c000000244b278c0 dsisr = 00000000
[ 350.614073] SLB (0 entries):
[ 350.614157] lpcr = 0040000003d40413 sdr1 = 0000000000000000 last_inst = ffffffff
[ 350.614252] trap=0x1 | pc=0xc00000000013eb98 | msr=0x8000000000009033
followed by L1's QEMU reporting the following before stopping execution
of the nested guest:
KVM: unknown exit, hardware reason 1
NIP c00000000013eb98 LR c0000000004b9044 CTR c0000000004b9000 XER 0000000020040000 CPU#0
MSR 8000000000009033 HID0 0000000000000000 HF 8000000000000000 iidx 3 didx 3
TB 00000000 00000000 DECR 00000000
GPR00 c0000000004b9044 c00000007cffba30 c00000000178c100 c00000007ef52480
GPR04 0000000000000000 70616d00746f6f72 0000000000000020 c0000000783be440
GPR08 fffffffffffffffc c00000007ef52490 0000000000000004 b0616d0009eccdb2
GPR12 c0000000004b9000 c000000001b00000 0000000000000000 0000000000000000
GPR16 0000000000000000 0000000000000000 00007fffc24f3b50 00007fffc24fff58
GPR20 00000a1e96ece9d0 00000a1ea117c9b0 00000a1ea1184360 0000000000000003
GPR24 00000a1e96e9e124 00000000000007ff c00000007eb2f7a0 c00000007cffbb10
GPR28 c00000007d83a2c0 c0000000783cdf68 0000000000000000 c00000007cffbbf0
CR 88002848 [ L L - - E L G L ] RES ffffffffffffffff
SRR0 0000772f954dd48c SRR1 800000000280f033 PVR 00000000004e1202 VRSAVE 0000000000000000
SPRG0 0000000000000000 SPRG1 c000000001b00000 SPRG2 0000772f9565a280 SPRG3 0000000000000000
SPRG4 0000000000000000 SPRG5 0000000000000000 SPRG6 0000000000000000 SPRG7 0000000000000000
HSRR0 0000000000000000 HSRR1 0000000000000000
CFAR 0000000000000000
LPCR 0000000003d40413
PTCR 0000000000000000 DAR 0000772f95390000 DSISR 0000000042000000
Fix this by setting vcpu->arch.hcall_needed = 0 to indicate completion
of H_ENTER_NESTED before we exit to L0 userspace.
Fixes: 360cae3137 ("KVM: PPC: Book3S HV: Nested guest entry via hypercall")
Cc: linuxppc-dev@ozlabs.org
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
TRACE_INCLUDE_PATH and TRACE_INCLUDE_FILE are used by
<trace/define_trace.h>, so like that #include, they should
be outside #ifdef protection.
They also need to be #undefed before defining, in case multiple trace
headers are included by the same C file. This became the case on
book3e after commit cf4a608515 ("powerpc/mm: Add missing tracepoint for
tlbie"), leading to the following build error:
CC arch/powerpc/kvm/powerpc.o
In file included from arch/powerpc/kvm/powerpc.c:51:0:
arch/powerpc/kvm/trace.h:9:0: error: "TRACE_INCLUDE_PATH" redefined
[-Werror]
#define TRACE_INCLUDE_PATH .
^
In file included from arch/powerpc/kvm/../mm/mmu_decl.h:25:0,
from arch/powerpc/kvm/powerpc.c:48:
./arch/powerpc/include/asm/trace.h:224:0: note: this is the location of
the previous definition
#define TRACE_INCLUDE_PATH asm
^
cc1: all warnings being treated as errors
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Scott Wood <oss@buserror.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some things that I missed due to travel, or that came in late.
Two fixes also going to stable:
- A revert of a buggy change to the 8xx TLB miss handlers.
- Our flushing of SPE (Signal Processing Engine) registers on fork was broken.
Other changes:
- A change to the KVM decrementer emulation to use proper APIs.
- Some cleanups to the way we do code patching in the 8xx code.
- Expose the maximum possible memory for the system in /proc/powerpc/lparcfg.
- Merge some updates from Scott: "a couple device tree updates, and a fix for a
missing prototype warning."
A few other minor fixes and a handful of fixes for our selftests.
Thanks to:
Aravinda Prasad, Breno Leitao, Camelia Groza, Christophe Leroy, Felipe Rechia,
Joel Stanley, Naveen N. Rao, Paul Mackerras, Scott Wood, Tyrel Datwyler.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJb3C+uAAoJEFHr6jzI4aWAPJgQAIX0aD/PiYfEUI/rm/Q0vnJI
HO3FCKroi+LVF/URU24+NLA/1KGCBfO9by9m6D/nnmHl+vi2P69fFgokywO0Ajru
nf9a+9Gx53IbO7EEUf1fZVwxCMobBqU8eWq1hIBndd5HTz9QEftc/RXgpgqZcQ/x
x8xN1FNMSUT9NwMk750QDO7CFBrSfSjFC+/WrkViBaMiRWx2rwle+2tDipQ/fegY
Tsu4wg0qEzWMT//MFP4yOlkcLV8M6d2Sw65Km59rWHA1I2wqsTek1yQ68Epo9Co0
RdJh9Nt1kjLC5XXteneFhe18UUPKRmrXbYDFByw5CUhs5VI99Dq4w5kamh197XLr
+jA3XHAeAyaXf21I9zmmZXbhHanowCPZGyzZqZXWJ86bVJp5v328wXmnxtKrb0Nz
pH7fjQ6zjzsZgIcN9i2CFpIvuDQ/z1A/QyHdBnRvJ8HoXlTerZCn22JTgY7d2VJu
XJn1n+VABG2BrzJexW/7quY3Z7V6tvdkloWwOA3PdAwkcoImd4BfYq9K2DU//diN
BnXPnDs2K7JwDG9s+cgUEHnrP6DOKsxT+mmYpqXf0Ta0wtyoZJ1zgSdfZAUOmjnb
MhcK46l+F4E891qjnsuuVNnspqI4yPMLmAGmife5OUrfcoFdm/vFbM75FaXameBx
cMOmidrJJhO6z5eWSKvO
=VCkW
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Some things that I missed due to travel, or that came in late.
Two fixes also going to stable:
- A revert of a buggy change to the 8xx TLB miss handlers.
- Our flushing of SPE (Signal Processing Engine) registers on fork
was broken.
Other changes:
- A change to the KVM decrementer emulation to use proper APIs.
- Some cleanups to the way we do code patching in the 8xx code.
- Expose the maximum possible memory for the system in
/proc/powerpc/lparcfg.
- Merge some updates from Scott: "a couple device tree updates, and a
fix for a missing prototype warning"
A few other minor fixes and a handful of fixes for our selftests.
Thanks to: Aravinda Prasad, Breno Leitao, Camelia Groza, Christophe
Leroy, Felipe Rechia, Joel Stanley, Naveen N. Rao, Paul Mackerras,
Scott Wood, Tyrel Datwyler"
* tag 'powerpc-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (21 commits)
selftests/powerpc: Fix compilation issue due to asm label
selftests/powerpc/cache_shape: Fix out-of-tree build
selftests/powerpc/switch_endian: Fix out-of-tree build
selftests/powerpc/pmu: Link ebb tests with -no-pie
selftests/powerpc/signal: Fix out-of-tree build
selftests/powerpc/ptrace: Fix out-of-tree build
powerpc/xmon: Relax frame size for clang
selftests: powerpc: Fix warning for security subdir
selftests/powerpc: Relax L1d miss targets for rfi_flush test
powerpc/process: Fix flush_all_to_thread for SPE
powerpc/pseries: add missing cpumask.h include file
selftests/powerpc: Fix ptrace tm failure
KVM: PPC: Use exported tb_to_ns() function in decrementer emulation
powerpc/pseries: Export maximum memory value
powerpc/8xx: Use patch_site for perf counters setup
powerpc/8xx: Use patch_site for memory setup patching
powerpc/code-patching: Add a helper to get the address of a patch_site
Revert "powerpc/8xx: Use L1 entry APG to handle _PAGE_ACCESSED for CONFIG_SWAP"
powerpc/8xx: add missing header in 8xx_mmu.c
powerpc/8xx: Add DT node for using the SEC engine of the MPC885
...
Notable changes:
- A large series to rewrite our SLB miss handling, replacing a lot of fairly
complicated asm with much fewer lines of C.
- Following on from that, we now maintain a cache of SLB entries for each
process and preload them on context switch. Leading to a 27% speedup for our
context switch benchmark on Power9.
- Improvements to our handling of SLB multi-hit errors. We now print more debug
information when they occur, and try to continue running by flushing the SLB
and reloading, rather than treating them as fatal.
- Enable THP migration on 64-bit Book3S machines (eg. Power7/8/9).
- Add support for physical memory up to 2PB in the linear mapping on 64-bit
Book3S. We only support up to 512TB as regular system memory, otherwise the
percpu allocator runs out of vmalloc space.
- Add stack protector support for 32 and 64-bit, with a per-task canary.
- Add support for PTRACE_SYSEMU and PTRACE_SYSEMU_SINGLESTEP.
- Support recognising "big cores" on Power9, where two SMT4 cores are presented
to us as a single SMT8 core.
- A large series to cleanup some of our ioremap handling and PTE flags.
- Add a driver for the PAPR SCM (storage class memory) interface, allowing
guests to operate on SCM devices (acked by Dan).
- Changes to our ftrace code to handle very large kernels, where we need to use
a trampoline to get to ftrace_caller().
Many other smaller enhancements and cleanups.
Thanks to:
Alan Modra, Alistair Popple, Aneesh Kumar K.V, Anton Blanchard, Aravinda
Prasad, Bartlomiej Zolnierkiewicz, Benjamin Herrenschmidt, Breno Leitao,
Cédric Le Goater, Christophe Leroy, Christophe Lombard, Dan Carpenter, Daniel
Axtens, Finn Thain, Gautham R. Shenoy, Gustavo Romero, Haren Myneni, Hari
Bathini, Jia Hongtao, Joel Stanley, John Allen, Laurent Dufour, Madhavan
Srinivasan, Mahesh Salgaonkar, Mark Hairgrove, Masahiro Yamada, Michael
Bringmann, Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Nick Desaulniers, Oliver O'Halloran,
Paul Mackerras, Petr Vorel, Rashmica Gupta, Reza Arbab, Rob Herring, Sam
Bobroff, Samuel Mendoza-Jonas, Scott Wood, Stan Johnson, Stephen Rothwell,
Stewart Smith, Suraj Jitindar Singh, Tyrel Datwyler, Vaibhav Jain, Vasant
Hegde, YueHaibing, zhong jiang,
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJb01vTAAoJEFHr6jzI4aWADsEP/jqL3+2qxs098ra80tpXCpXJ
tgXCosEs4b35sGtyHeUWZZZfWXeisaPAIlP8zTx1n50HACZduDYRAl0Ew9XB7Xdw
enDHRVccD21FsmHBOx/Ii1rVJlovWlj6EQCWHKeZmNjeRoFuClVZ7CYmf+mBifKR
sw2Db2fKA/59wMTq2zIMy5pqYgqlAs4jTWS6uN5hKPoBmO/82ARnNG+qgLuloD3Z
O8zSDM9QQ7PpuyDgTjO9SAo2YjmEfXlEG6cOCCejsU3DMctaEAK5PUZ+blsHYHBH
BYZYKs/x4pcw0SO41GtTh0M2YqDYBVuBIpRw8lLZap97Xo9ucSkAm5WD3rGxk4CY
YeZKEPUql6MHN3+DKl8mx2F0V+Et/tio2HNqc9KReR1tfoolZAbe+SFZHfgmc/Rq
RD9nnG8KRd4K2K1BTqpkTmI1EtE7jPtPJPSV8gMGhgL/N5vPmH3mql/qyOtYx48E
6/hPzWESgs16VRZ/opLh8VvjlY1HBDODQhehhhl+o23/Vb8qEgRf8Uqhq50rQW1H
EeOqyyYQ90txSU31Sgy1kQkvOgIFAsBObWT1ZCJ3RbfGbB4/tdEAvZqTZRlXo2OY
7P0Sqcw/9Le5eJkHIlLtBv0TF7y1OYemCbLgRQzFlcRP+UKtYyg8eFnFjqbPEEmP
ulwhn/BfFVSgaYKQ503u
=I0pj
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- A large series to rewrite our SLB miss handling, replacing a lot of
fairly complicated asm with much fewer lines of C.
- Following on from that, we now maintain a cache of SLB entries for
each process and preload them on context switch. Leading to a 27%
speedup for our context switch benchmark on Power9.
- Improvements to our handling of SLB multi-hit errors. We now print
more debug information when they occur, and try to continue running
by flushing the SLB and reloading, rather than treating them as
fatal.
- Enable THP migration on 64-bit Book3S machines (eg. Power7/8/9).
- Add support for physical memory up to 2PB in the linear mapping on
64-bit Book3S. We only support up to 512TB as regular system
memory, otherwise the percpu allocator runs out of vmalloc space.
- Add stack protector support for 32 and 64-bit, with a per-task
canary.
- Add support for PTRACE_SYSEMU and PTRACE_SYSEMU_SINGLESTEP.
- Support recognising "big cores" on Power9, where two SMT4 cores are
presented to us as a single SMT8 core.
- A large series to cleanup some of our ioremap handling and PTE
flags.
- Add a driver for the PAPR SCM (storage class memory) interface,
allowing guests to operate on SCM devices (acked by Dan).
- Changes to our ftrace code to handle very large kernels, where we
need to use a trampoline to get to ftrace_caller().
And many other smaller enhancements and cleanups.
Thanks to: Alan Modra, Alistair Popple, Aneesh Kumar K.V, Anton
Blanchard, Aravinda Prasad, Bartlomiej Zolnierkiewicz, Benjamin
Herrenschmidt, Breno Leitao, Cédric Le Goater, Christophe Leroy,
Christophe Lombard, Dan Carpenter, Daniel Axtens, Finn Thain, Gautham
R. Shenoy, Gustavo Romero, Haren Myneni, Hari Bathini, Jia Hongtao,
Joel Stanley, John Allen, Laurent Dufour, Madhavan Srinivasan, Mahesh
Salgaonkar, Mark Hairgrove, Masahiro Yamada, Michael Bringmann,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Nick Desaulniers, Oliver
O'Halloran, Paul Mackerras, Petr Vorel, Rashmica Gupta, Reza Arbab,
Rob Herring, Sam Bobroff, Samuel Mendoza-Jonas, Scott Wood, Stan
Johnson, Stephen Rothwell, Stewart Smith, Suraj Jitindar Singh, Tyrel
Datwyler, Vaibhav Jain, Vasant Hegde, YueHaibing, zhong jiang"
* tag 'powerpc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (221 commits)
Revert "selftests/powerpc: Fix out-of-tree build errors"
powerpc/msi: Fix compile error on mpc83xx
powerpc: Fix stack protector crashes on CPU hotplug
powerpc/traps: restore recoverability of machine_check interrupts
powerpc/64/module: REL32 relocation range check
powerpc/64s/radix: Fix radix__flush_tlb_collapsed_pmd double flushing pmd
selftests/powerpc: Add a test of wild bctr
powerpc/mm: Fix page table dump to work on Radix
powerpc/mm/radix: Display if mappings are exec or not
powerpc/mm/radix: Simplify split mapping logic
powerpc/mm/radix: Remove the retry in the split mapping logic
powerpc/mm/radix: Fix small page at boundary when splitting
powerpc/mm/radix: Fix overuse of small pages in splitting logic
powerpc/mm/radix: Fix off-by-one in split mapping logic
powerpc/ftrace: Handle large kernel configs
powerpc/mm: Fix WARN_ON with THP NUMA migration
selftests/powerpc: Fix out-of-tree build errors
powerpc/time: no steal_time when CONFIG_PPC_SPLPAR is not selected
powerpc/time: Only set CONFIG_ARCH_HAS_SCALED_CPUTIME on PPC64
powerpc/time: isolate scaled cputime accounting in dedicated functions.
...
This changes the KVM code that emulates the decrementer function to do
the conversion of decrementer values to time intervals in nanoseconds
by calling the tb_to_ns() function exported by the powerpc timer code,
in preference to open-coded arithmetic using values from the
decrementer_clockevent struct. Similarly, the HV-KVM code that did
the same conversion using arithmetic on tb_ticks_per_sec also now
uses tb_to_ns().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance is
much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular hardware
bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJb0FINAAoJEED/6hsPKofoI60IAJRS3vOAQ9Fav8cJsO1oBHcX
3+NexfnBke1bzrjIR3SUcHKGZbdnVPNZc+Q4JjIbPpPmmOMU5jc9BC1dmd5f4Vzh
BMnQ0yCvgFv3A3fy/Icx1Z8NJppxosdmqdQLrQrNo8aD3cjnqY2yQixdXrAfzLzw
XEgKdIFCCz8oVN/C9TT4wwJn6l9OE7BM5bMKGFy5VNXzMu7t64UDOLbbjZxNgi1g
teYvfVGdt5mH0N7b2GPPWRbJmgnz5ygVVpVNQUEFrdKZoCm6r5u9d19N+RRXAwan
ZYFj10W2T8pJOUf3tryev4V33X7MRQitfJBo4tP5hZfi9uRX89np5zP1CFE7AtY=
=yEPW
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance
is much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular
hardware bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups"
* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
Revert "kvm: x86: optimize dr6 restore"
KVM: PPC: Optimize clearing TCEs for sparse tables
x86/kvm/nVMX: tweak shadow fields
selftests/kvm: add missing executables to .gitignore
KVM: arm64: Safety check PSTATE when entering guest and handle IL
KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
arm/arm64: KVM: Enable 32 bits kvm vcpu events support
arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
KVM: arm64: Fix caching of host MDCR_EL2 value
KVM: VMX: enable nested virtualization by default
KVM/x86: Use 32bit xor to clear registers in svm.c
kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
kvm: vmx: Defer setting of DR6 until #DB delivery
kvm: x86: Defer setting of CR2 until #PF delivery
kvm: x86: Add payload operands to kvm_multiple_exception
kvm: x86: Add exception payload fields to kvm_vcpu_events
kvm: x86: Add has_payload and payload to kvm_queued_exception
KVM: Documentation: Fix omission in struct kvm_vcpu_events
KVM: selftests: add Enlightened VMCS test
...
The powernv platform maintains 2 TCE tables for VFIO - a hardware TCE
table and a table with userspace addresses. These tables are radix trees,
we allocate indirect levels when they are written to. Since
the memory allocation is problematic in real mode, we have 2 accessors
to the entries:
- for virtual mode: it allocates the memory and it is always expected
to return non-NULL;
- fr real mode: it does not allocate and can return NULL.
Also, DMA windows can span to up to 55 bits of the address space and since
we never have this much RAM, such windows are sparse. However currently
the SPAPR TCE IOMMU driver walks through all TCEs to unpin DMA memory.
Since we maintain a userspace addresses table for VFIO which is a mirror
of the hardware table, we can use it to know which parts of the DMA
window have not been mapped and skip these so does this patch.
The bare metal systems do not have this problem as they use a bypass mode
of a PHB which maps RAM directly.
This helps a lot with sparse DMA windows, reducing the shutdown time from
about 3 minutes per 1 billion TCEs to a few seconds for 32GB sparse guest.
Just skipping the last level seems to be good enough.
As non-allocating accessor is used now in virtual mode as well, rename it
from IOMMU_TABLE_USERSPACE_ENTRY_RM (real mode) to _RO (read only).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This disables the use of the streamlined entry path for radix guests
on early POWER9 chips that need the workaround added in commit
a25bd72bad ("powerpc/mm/radix: Workaround prefetch issue with KVM",
2017-07-24), because the streamlined entry path does not include
that workaround. This also means that we can't do nested HV-KVM
on those chips.
Since the chips that need that workaround are the same ones that can't
run both radix and HPT guests at the same time on different threads of
a core, we use the existing 'no_mixing_hpt_and_radix' variable that
identifies those chips to identify when we can't use the new guest
entry path, and when we can't do nested virtualization.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Back when I added -Werror in commit ba55bd7436 ("powerpc: Add
configurable -Werror for arch/powerpc") I did it by adding it to most
of the arch Makefiles.
At the time we excluded math-emu, because apparently it didn't build
cleanly. But that seems to have been fixed somewhere in the interim.
So move the -Werror addition to the top-level of the arch, this saves
us from repeating it in every Makefile and means we won't forget to
add it to any new sub-dirs.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds a KVM_PPC_NO_HASH flag to the flags field of the
kvm_ppc_smmu_info struct, and arranges for it to be set when
running as a nested hypervisor, as an unambiguous indication
to userspace that HPT guests are not supported. Reporting the
KVM_CAP_PPC_MMU_HASH_V3 capability as false could be taken as
indicating only that the new HPT features in ISA V3.0 are not
supported, leaving it ambiguous whether pre-V3.0 HPT features
are supported.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
With this, userspace can enable a KVM-HV guest to run nested guests
under it.
The administrator can control whether any nested guests can be run;
setting the "nested" module parameter to false prevents any guests
becoming nested hypervisors (that is, any attempt to enable the nested
capability on a guest will fail). Guests which are already nested
hypervisors will continue to be so.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>