Skylake systems will receive a microcode update to address a TSX
errata. This microcode will (by default) clobber PMC3 when TSX
instructions are (speculatively or not) executed.
It also provides an MSR to cause all TSX transaction to abort and
preserve PMC3.
Add the CPUID enumeration and MSR definition.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
single-stepping fixes, improved tracing, various timer and vGIC
fixes
* x86: Processor Tracing virtualization, STIBP support, some correctness fixes,
refactorings and splitting of vmx.c, use the Hyper-V range TLB flush hypercall,
reduce order of vcpu struct, WBNOINVD support, do not use -ftrace for __noclone
functions, nested guest support for PAUSE filtering on AMD, more Hyper-V
enlightenments (direct mode for synthetic timers)
* PPC: nested VFIO
* s390: bugfixes only this time
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJcH0vFAAoJEL/70l94x66Dw/wH/2FZp1YOM5OgiJzgqnXyDbyf
dNEfWo472MtNiLsuf+ZAfJojVIu9cv7wtBfXNzW+75XZDfh/J88geHWNSiZDm3Fe
aM4MOnGG0yF3hQrRQyEHe4IFhGFNERax8Ccv+OL44md9CjYrIrsGkRD08qwb+gNh
P8T/3wJEKwUcVHA/1VHEIM8MlirxNENc78p6JKd/C7zb0emjGavdIpWFUMr3SNfs
CemabhJUuwOYtwjRInyx1y34FzYwW3Ejuc9a9UoZ+COahUfkuxHE8u+EQS7vLVF6
2VGVu5SA0PqgmLlGhHthxLqVgQYo+dB22cRnsLtXlUChtVAq8q9uu5sKzvqEzuE=
=b4Jx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- selftests improvements
- large PUD support for HugeTLB
- single-stepping fixes
- improved tracing
- various timer and vGIC fixes
x86:
- Processor Tracing virtualization
- STIBP support
- some correctness fixes
- refactorings and splitting of vmx.c
- use the Hyper-V range TLB flush hypercall
- reduce order of vcpu struct
- WBNOINVD support
- do not use -ftrace for __noclone functions
- nested guest support for PAUSE filtering on AMD
- more Hyper-V enlightenments (direct mode for synthetic timers)
PPC:
- nested VFIO
s390:
- bugfixes only this time"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: x86: Add CPUID support for new instruction WBNOINVD
kvm: selftests: ucall: fix exit mmio address guessing
Revert "compiler-gcc: disable -ftracer for __noclone functions"
KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
KVM: Make kvm_set_spte_hva() return int
KVM: Replace old tlb flush function with new one to flush a specified range.
KVM/MMU: Add tlb flush with range helper function
KVM/VMX: Add hv tlb range flush support
x86/hyper-v: Add HvFlushGuestAddressList hypercall support
KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
KVM: x86: Disable Intel PT when VMXON in L1 guest
KVM: x86: Set intercept for Intel PT MSRs read/write
KVM: x86: Implement Intel PT MSRs read/write emulation
...
Intel Processor Trace virtualization can be work in one
of 2 possible modes:
a. System-Wide mode (default):
When the host configures Intel PT to collect trace packets
of the entire system, it can leave the relevant VMX controls
clear to allow VMX-specific packets to provide information
across VMX transitions.
KVM guest will not aware this feature in this mode and both
host and KVM guest trace will output to host buffer.
b. Host-Guest mode:
Host can configure trace-packet generation while in
VMX non-root operation for guests and root operation
for native executing normally.
Intel PT will be exposed to KVM guest in this mode, and
the trace output to respective buffer of host and guest.
In this mode, tht status of PT will be saved and disabled
before VM-entry and restored after VM-exit if trace
a virtual machine.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add bit definitions for Intel PT MSRs to support trace output
directed to the memeory subsystem and holds a count if packet
bytes that have been sent out.
These are required by the upcoming PT support in KVM guests
for MSRs read/write emulation.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Intel Processor Trace (PT) MSR bit defines are in a private
header. The upcoming support for PT virtualization requires these defines
to be accessible from KVM code.
Move them to the global MSR header file.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some guests OSes (including Windows 10) write to MSR 0xc001102c
on some cases (possibly while trying to apply a CPU errata).
Make KVM ignore reads and writes to that MSR, so the guest won't
crash.
The MSR is documented as "Execution Unit Configuration (EX_CFG)",
at AMD's "BIOS and Kernel Developer's Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors".
Cc: stable@vger.kernel.org
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To avoid the overhead of STIBP always on, it's necessary to allow per task
control of STIBP.
Add a new task flag TIF_SPEC_IB and evaluate it during context switch if
SMT is active and flag evaluation is enabled by the speculation control
code. Add the conditional evaluation to x86_virt_spec_ctrl() as well so the
guest/host switch works properly.
This has no effect because TIF_SPEC_IB cannot be set yet and the static key
which controls evaluation is off. Preparatory patch for adding the control
code.
[ tglx: Simplify the context switch logic and make the TIF evaluation
depend on SMP=y and on the static key controlling the conditional
update. Rename it to TIF_SPEC_IB because it controls both STIBP and
IBPB ]
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.176917199@linutronix.de
Implements counter freezing for Arch Perfmon v4 (Skylake and
newer). This allows to speed up the PMI handler by avoiding
unnecessary MSR writes and make it more accurate.
The Arch Perfmon v4 PMI handler is substantially different than
the older PMI handler.
Differences to the old handler:
- It relies on counter freezing, which eliminates several MSR
writes from the PMI handler and lowers the overhead significantly.
It makes the PMI handler more accurate, as all counters get
frozen atomically as soon as any counter overflows. So there is
much less counting of the PMI handler itself.
With the freezing we don't need to disable or enable counters or
PEBS. Only BTS which does not support auto-freezing still needs to
be explicitly managed.
- The PMU acking is done at the end, not the beginning.
This makes it possible to avoid manual enabling/disabling
of the PMU, instead we just rely on the freezing/acking.
- The APIC is acked before reenabling the PMU, which avoids
problems with LBRs occasionally not getting unfreezed on Skylake.
- Looping is only needed to workaround a corner case which several PMIs
are very close to each other. For common cases, the counters are freezed
during PMI handler. It doesn't need to do re-check.
This patch:
- Adds code to enable v4 counter freezing
- Fork <=v3 and >=v4 PMI handlers into separate functions.
- Add kernel parameter to disable counter freezing. It took some time to
debug counter freezing, so in case there are new problems we added an
option to turn it off. Would not expect this to be used until there
are new bugs.
- Only for big core. The patch for small core will be posted later
separately.
Performance:
When profiling a kernel build on Kabylake with different perf options,
measuring the length of all NMI handlers using the nmi handler
trace point:
V3 is without counter freezing.
V4 is with counter freezing.
The value is the average cost of the PMI handler.
(lower is better)
perf options ` V3(ns) V4(ns) delta
-c 100000 1088 894 -18%
-g -c 100000 1862 1646 -12%
--call-graph lbr -c 100000 3649 3367 -8%
--c.g. dwarf -c 100000 2248 1982 -12%
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bit 3 of ARCH_CAPABILITIES tells a hypervisor that L1D flush on vmentry is
not needed. Add a new value to enum vmx_l1d_flush_state, which is used
either if there is no L1TF bug at all, or if bit 3 is set in ARCH_CAPABILITIES.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR
(IA32_FLUSH_CMD aka 0x10B) which has similar write-only semantics to other
MSRs defined in the document.
The semantics of this MSR is to allow "finer granularity invalidation of
caching structures than existing mechanisms like WBINVD. It will writeback
and invalidate the L1 data cache, including all cachelines brought in by
preceding instructions, without invalidating all caches (eg. L2 or
LLC). Some processors may also invalidate the first level level instruction
cache on a L1D_FLUSH command. The L1 data and instruction caches may be
shared across the logical processors of a core."
Use it instead of the loop based L1 flush algorithm.
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199511
[ tglx: Avoid allocating pages when the MSR is available ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
According to the Intel Software Developers' Manual, Vol. 4, Order No.
335592, these macros have been reversed since they were added in the
initial turbostat commit. The reversed definitions were presumably
copied from turbostat.c to this file.
Fixes: 9c63a650bb ("tools/power/x86/turbostat: share kernel MSR #defines")
Signed-off-by: Matt Turner <mattst88@gmail.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Len Brown <len.brown@intel.com>
The "336996 Speculative Execution Side Channel Mitigations" from
May defines this as SSB_NO, hence lets sync-up.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some AMD processors only support a non-architectural means of enabling
speculative store bypass disable (SSBD). To allow a simplified view of
this to a guest, an architectural definition has been created through a new
CPUID bit, 0x80000008_EBX[25], and a new MSR, 0xc001011f. With this, a
hypervisor can virtualize the existence of this definition and provide an
architectural method for using SSBD to a guest.
Add the new CPUID feature, the new MSR and update the existing SSBD
support to use this MSR when present.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2]
as SSBD (Speculative Store Bypass Disable).
Hence changing it.
It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name
is going to be. Following the rename it would be SSBD_NO but that rolls out
to Speculative Store Bypass Disable No.
Also fixed the missing space in X86_FEATURE_AMD_SSBD.
[ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The Speculative Store Bypass vulnerability can be mitigated with the
Reduced Data Speculation (RDS) feature. To allow finer grained control of
this eventually expensive mitigation a per task mitigation control is
required.
Add a new TIF_RDS flag and put it into the group of TIF flags which are
evaluated for mismatch in switch_to(). If these bits differ in the previous
and the next task, then the slow path function __switch_to_xtra() is
invoked. Implement the TIF_RDS dependent mitigation control in the slow
path.
If the prctl for controlling Speculative Store Bypass is disabled or no
task uses the prctl then there is no overhead in the switch_to() fast
path.
Update the KVM related speculation control functions to take TID_RDS into
account as well.
Based on a patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Intel CPUs expose methods to:
- Detect whether RDS capability is available via CPUID.7.0.EDX[31],
- The SPEC_CTRL MSR(0x48), bit 2 set to enable RDS.
- MSR_IA32_ARCH_CAPABILITIES, Bit(4) no need to enable RRS.
With that in mind if spec_store_bypass_disable=[auto,on] is selected set at
boot-time the SPEC_CTRL MSR to enable RDS if the platform requires it.
Note that this does not fix the KVM case where the SPEC_CTRL is exposed to
guests which can muck with it, see patch titled :
KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS.
And for the firmware (IBRS to be set), see patch titled:
x86/spectre_v2: Read SPEC_CTRL MSR during boot and re-use reserved bits
[ tglx: Distangled it from the intel implementation and kept the call order ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Pull x86/pti updates from Thomas Gleixner:
"Another set of melted spectrum related changes:
- Code simplifications and cleanups for RSB and retpolines.
- Make the indirect calls in KVM speculation safe.
- Whitelist CPUs which are known not to speculate from Meltdown and
prepare for the new CPUID flag which tells the kernel that a CPU is
not affected.
- A less rigorous variant of the module retpoline check which merily
warns when a non-retpoline protected module is loaded and reflects
that fact in the sysfs file.
- Prepare for Indirect Branch Prediction Barrier support.
- Prepare for exposure of the Speculation Control MSRs to guests, so
guest OSes which depend on those "features" can use them. Includes
a blacklist of the broken microcodes. The actual exposure of the
MSRs through KVM is still being worked on"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Simplify indirect_branch_prediction_barrier()
x86/retpoline: Simplify vmexit_fill_RSB()
x86/cpufeatures: Clean up Spectre v2 related CPUID flags
x86/cpu/bugs: Make retpoline module warning conditional
x86/bugs: Drop one "mitigation" from dmesg
x86/nospec: Fix header guards names
x86/alternative: Print unadorned pointers
x86/speculation: Add basic IBPB (Indirect Branch Prediction Barrier) support
x86/cpufeature: Blacklist SPEC_CTRL/PRED_CMD on early Spectre v2 microcodes
x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown
x86/msr: Add definitions for new speculation control MSRs
x86/cpufeatures: Add AMD feature bits for Speculation Control
x86/cpufeatures: Add Intel feature bits for Speculation Control
x86/cpufeatures: Add CPUID_7_EDX CPUID leaf
module/retpoline: Warn about missing retpoline in module
KVM: VMX: Make indirect call speculation safe
KVM: x86: Make indirect calls in emulator speculation safe
Pull x86 pti updates from Thomas Gleixner:
"This contains:
- a PTI bugfix to avoid setting reserved CR3 bits when PCID is
disabled. This seems to cause issues on a virtual machine at least
and is incorrect according to the AMD manual.
- a PTI bugfix which disables the perf BTS facility if PTI is
enabled. The BTS AUX buffer is not globally visible and causes the
CPU to fault when the mapping disappears on switching CR3 to user
space. A full fix which restores BTS on PTI is non trivial and will
be worked on.
- PTI bugfixes for EFI and trusted boot which make sure that the user
space visible page table entries have the NX bit cleared
- removal of dead code in the PTI pagetable setup functions
- add PTI documentation
- add a selftest for vsyscall to verify that the kernel actually
implements what it advertises.
- a sysfs interface to expose vulnerability and mitigation
information so there is a coherent way for users to retrieve the
status.
- the initial spectre_v2 mitigations, aka retpoline:
+ The necessary ASM thunk and compiler support
+ The ASM variants of retpoline and the conversion of affected ASM
code
+ Make LFENCE serializing on AMD so it can be used as speculation
trap
+ The RSB fill after vmexit
- initial objtool support for retpoline
As I said in the status mail this is the most of the set of patches
which should go into 4.15 except two straight forward patches still on
hold:
- the retpoline add on of LFENCE which waits for ACKs
- the RSB fill after context switch
Both should be ready to go early next week and with that we'll have
covered the major holes of spectre_v2 and go back to normality"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86,perf: Disable intel_bts when PTI
security/Kconfig: Correct the Documentation reference for PTI
x86/pti: Fix !PCID and sanitize defines
selftests/x86: Add test_vsyscall
x86/retpoline: Fill return stack buffer on vmexit
x86/retpoline/irq32: Convert assembler indirect jumps
x86/retpoline/checksum32: Convert assembler indirect jumps
x86/retpoline/xen: Convert Xen hypercall indirect jumps
x86/retpoline/hyperv: Convert assembler indirect jumps
x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
x86/retpoline/entry: Convert entry assembler indirect jumps
x86/retpoline/crypto: Convert crypto assembler indirect jumps
x86/spectre: Add boot time option to select Spectre v2 mitigation
x86/retpoline: Add initial retpoline support
objtool: Allow alternatives to be ignored
objtool: Detect jumps to retpoline thunks
x86/pti: Make unpoison of pgd for trusted boot work for real
x86/alternatives: Fix optimize_nops() checking
sysfs/cpu: Fix typos in vulnerability documentation
x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
...
With LFENCE now a serializing instruction, use LFENCE_RDTSC in preference
to MFENCE_RDTSC. However, since the kernel could be running under a
hypervisor that does not support writing that MSR, read the MSR back and
verify that the bit has been set successfully. If the MSR can be read
and the bit is set, then set the LFENCE_RDTSC feature, otherwise set the
MFENCE_RDTSC feature.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/20180108220932.12580.52458.stgit@tlendack-t1.amdoffice.net
To aid in speculation control, make LFENCE a serializing instruction
since it has less overhead than MFENCE. This is done by setting bit 1
of MSR 0xc0011029 (DE_CFG). Some families that support LFENCE do not
have this MSR. For these families, the LFENCE instruction is already
serializing.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/20180108220921.12580.71694.stgit@tlendack-t1.amdoffice.net
Update the CPU features to include identifying and reporting on the
Secure Encrypted Virtualization (SEV) feature. SEV is identified by
CPUID 0x8000001f, but requires BIOS support to enable it (set bit 23 of
MSR_K8_SYSCFG and set bit 0 of MSR_K7_HWCR). Only show the SEV feature
as available if reported by CPUID and enabled by BIOS.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Early in the boot process, add checks to determine if the kernel is
running with Secure Encrypted Virtualization (SEV) active.
Checking for SEV requires checking that the kernel is running under a
hypervisor (CPUID 0x00000001, bit 31), that the SEV feature is available
(CPUID 0x8000001f, bit 1) and then checking a non-interceptable SEV MSR
(0xc0010131, bit 0).
This check is required so that during early compressed kernel booting the
pagetables (both the boot pagetables and KASLR pagetables (if enabled) are
updated to include the encryption mask so that when the kernel is
decompressed into encrypted memory, it can boot properly.
After the kernel is decompressed and continues booting the same logic is
used to check if SEV is active and set a flag indicating so. This allows
to distinguish between SME and SEV, each of which have unique differences
in how certain things are handled: e.g. DMA (always bounce buffered with
SEV) or EFI tables (always access decrypted with SME).
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: kvm@vger.kernel.org
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20171020143059.3291-13-brijesh.singh@amd.com
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Update the CPU features to include identifying and reporting on the
Secure Memory Encryption (SME) feature. SME is identified by CPUID
0x8000001f, but requires BIOS support to enable it (set bit 23 of
MSR_K8_SYSCFG). Only show the SME feature as available if reported by
CPUID, enabled by BIOS and not configured as CONFIG_X86_32=y.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/85c17ff450721abccddc95e611ae8df3f4d9718b.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements
There is a small conflict in arch/s390 due to an arch-wide field rename.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZW4XTAAoJEL/70l94x66DkhMH/izpk54KI17PtyQ9VYI2sYeZ
BWK6Kl886g3ij4pFi3pECqjDJzWaa3ai+vFfzzpJJ8OkCJT5Rv4LxC5ERltVVmR8
A3T1I/MRktSC0VJLv34daPC2z4Lco/6SPipUpPnL4bE2HATKed4vzoOjQ3tOeGTy
dwi7TFjKwoVDiM7kPPDRnTHqCe5G5n13sZ49dBe9WeJ7ttJauWqoxhlYosCGNPEj
g8ZX8+cvcAhVnz5uFL8roqZ8ygNEQq2mgkU18W8ZZKuiuwR0gdsG0gSBFNTdwIMK
NoreRKMrw0+oLXTIB8SZsoieU6Qi7w3xMAMabe8AJsvYtoersugbOmdxGCr1lsA=
=OD7H
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC:
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
Update my email address
kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS
x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12
kvm: x86: mmu: allow A/D bits to be disabled in an mmu
x86: kvm: mmu: make spte mmio mask more explicit
x86: kvm: mmu: dead code thanks to access tracking
KVM: PPC: Book3S: Fix typo in XICS-on-XIVE state saving code
KVM: PPC: Book3S HV: Close race with testing for signals on guest entry
KVM: PPC: Book3S HV: Simplify dynamic micro-threading code
KVM: x86: remove ignored type attribute
KVM: LAPIC: Fix lapic timer injection delay
KVM: lapic: reorganize restart_apic_timer
KVM: lapic: reorganize start_hv_timer
kvm: nVMX: Check memory operand to INVVPID
KVM: s390: Inject machine check into the nested guest
KVM: s390: Inject machine check into the guest
tools/kvm_stat: add new interactive command 'b'
tools/kvm_stat: add new command line switch '-i'
tools/kvm_stat: fix error on interactive command 'g'
KVM: SVM: suppress unnecessary NMI singlestep on GIF=0 and nested exit
...
- Rework suspend-to-idle to allow it to take wakeup events signaled
by the EC into account on ACPI-based platforms in order to properly
support power button wakeup from suspend-to-idle on recent Dell
laptops (Rafael Wysocki).
That includes the core suspend-to-idle code rework, support for
the Low Power S0 _DSM interface, and support for the ACPI INT0002
Virtual GPIO device from Hans de Goede (required for USB keyboard
wakeup from suspend-to-idle to work on some machines).
- Stop trying to export the current CPU frequency via /proc/cpuinfo
on x86 as that is inaccurate and confusing (Len Brown).
- Rework the way in which the current CPU frequency is exported by
the kernel (over the cpufreq sysfs interface) on x86 systems with
the APERF and MPERF registers by always using values read from
these registers, when available, to compute the current frequency
regardless of which cpufreq driver is in use (Len Brown).
- Rework the PCI/ACPI device wakeup infrastructure to remove the
questionable and artificial distinction between "devices that
can wake up the system from sleep states" and "devices that can
generate wakeup signals in the working state" from it, which
allows the code to be simplified quite a bit (Rafael Wysocki).
- Fix the wakeup IRQ framework by making it use SRCU instead of
RCU which doesn't allow sleeping in the read-side critical
sections, but which in turn is expected to be allowed by the
IRQ bus locking infrastructure (Thomas Gleixner).
- Modify some computations in the intel_pstate driver to avoid
rounding errors resulting from them (Srinivas Pandruvada).
- Reduce the overhead of the intel_pstate driver in the HWP
(hardware-managed P-states) mode and when the "performance"
P-state selection algorithm is in use by making it avoid
registering scheduler callbacks in those cases (Len Brown).
- Rework the energy_performance_preference sysfs knob in
intel_pstate by changing the values that correspond to
different symbolic hint names used by it (Len Brown).
- Make it possible to use more than one cpuidle driver at the same
time on ARM (Daniel Lezcano).
- Make it possible to prevent the cpuidle menu governor from using
the 0 state by disabling it via sysfs (Nicholas Piggin).
- Add support for FFH (Fixed Functional Hardware) MWAIT in ACPI C1
on AMD systems (Yazen Ghannam).
- Make the CPPC cpufreq driver take the lowest nonlinear performance
information into account (Prashanth Prakash).
- Add support for hi3660 to the cpufreq-dt driver, fix the
imx6q driver and clean up the sfi, exynos5440 and intel_pstate
drivers (Colin Ian King, Krzysztof Kozlowski, Octavian Purdila,
Rafael Wysocki, Tao Wang).
- Fix a few minor issues in the generic power domains (genpd)
framework and clean it up somewhat (Krzysztof Kozlowski,
Mikko Perttunen, Viresh Kumar).
- Fix a couple of minor issues in the operating performance points
(OPP) framework and clean it up somewhat (Viresh Kumar).
- Fix a CONFIG dependency in the hibernation core and clean it up
slightly (Balbir Singh, Arvind Yadav, BaoJun Luo).
- Add rk3228 support to the rockchip-io adaptive voltage scaling
(AVS) driver (David Wu).
- Fix an incorrect bit shift operation in the RAPL power capping
driver (Adam Lessnau).
- Add support for the EPP field in the HWP (hardware managed
P-states) control register, HWP.EPP, to the x86_energy_perf_policy
tool and update msr-index.h with HWP.EPP values (Len Brown).
- Fix some minor issues in the turbostat tool (Len Brown).
- Add support for AMD family 0x17 CPUs to the cpupower tool and fix
a minor issue in it (Sherry Hurwitz).
- Assorted cleanups, mostly related to the constification of some
data structures (Arvind Yadav, Joe Perches, Kees Cook, Krzysztof
Kozlowski).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJZWrICAAoJEILEb/54YlRxZYMQAIRhfbyDxKq+ByvSilUS8kTA
AItwJ8FFzykhiwN75Cqabg4rAGyWma7IRs1vzU7zeC1aEQIn+bTQtvk+utZNI+g2
ANFlDha20q/sXsP/CDMMTIAdW9tSOC0TOvFI9s2V2Y8dJZhoekO4ctx34FAfUS5d
Ao6rwSAWCMsCXcGaTAlqTA+TEJmBG7u6Iq6hq6ngltoFwOv3mWWBVn52VVaJ7SMp
9/IPbbLGMFAedrgEBRGCR+MME1xZZpvcZIJaTt1Mgn7Cx3cJaysIUAvqY/SsvFGq
5FcUTcF2qpK3+AGawiAxZIjvOBsGRtIwqKinNIzYWs/NjiIdzmgVAmTeuPtTqp+5
HFehUdtkFcnuDnLqSNzAaZUa7tw84cJkwnbVMnesx0MkG6rZ1SeL22E2Sabpcdsh
3Yo1ThzJSxi59DhiiE92EQnNCEjmCldRy+8q5Ag035muxl6EJYvuNBMnZv/BMCUn
ltSNOrmps1DlN+Col8ORIeNzQ1YjYzWMqKAYzSbyccm4ug/iSHx0/DuESmQ4GTlF
YCwkmqyWiHrBwpl51jc+4a7SGlMmKRqU+MJes0CjagaaqoUAb8qeBOpzEJ0yNwjZ
wtI41l6blE6kbMD3yqGdCfiB2S7GlPVoxa15eX1wRyLH3fLjwwrzJirEaiBS86tI
1PzHZEOmBlh3DYC6DBKA
=Wsph
-----END PGP SIGNATURE-----
Merge tag 'pm-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The big ticket items here are the rework of suspend-to-idle in order
to add proper support for power button wakeup from it on recent Dell
laptops and the rework of interfaces exporting the current CPU
frequency on x86.
In addition to that, support for a few new pieces of hardware is
added, the PCI/ACPI device wakeup infrastructure is simplified
significantly and the wakeup IRQ framework is fixed to unbreak the IRQ
bus locking infrastructure.
Also, there are some functional improvements for intel_pstate, tools
updates and small fixes and cleanups all over.
Specifics:
- Rework suspend-to-idle to allow it to take wakeup events signaled
by the EC into account on ACPI-based platforms in order to properly
support power button wakeup from suspend-to-idle on recent Dell
laptops (Rafael Wysocki).
That includes the core suspend-to-idle code rework, support for the
Low Power S0 _DSM interface, and support for the ACPI INT0002
Virtual GPIO device from Hans de Goede (required for USB keyboard
wakeup from suspend-to-idle to work on some machines).
- Stop trying to export the current CPU frequency via /proc/cpuinfo
on x86 as that is inaccurate and confusing (Len Brown).
- Rework the way in which the current CPU frequency is exported by
the kernel (over the cpufreq sysfs interface) on x86 systems with
the APERF and MPERF registers by always using values read from
these registers, when available, to compute the current frequency
regardless of which cpufreq driver is in use (Len Brown).
- Rework the PCI/ACPI device wakeup infrastructure to remove the
questionable and artificial distinction between "devices that can
wake up the system from sleep states" and "devices that can
generate wakeup signals in the working state" from it, which allows
the code to be simplified quite a bit (Rafael Wysocki).
- Fix the wakeup IRQ framework by making it use SRCU instead of RCU
which doesn't allow sleeping in the read-side critical sections,
but which in turn is expected to be allowed by the IRQ bus locking
infrastructure (Thomas Gleixner).
- Modify some computations in the intel_pstate driver to avoid
rounding errors resulting from them (Srinivas Pandruvada).
- Reduce the overhead of the intel_pstate driver in the HWP
(hardware-managed P-states) mode and when the "performance" P-state
selection algorithm is in use by making it avoid registering
scheduler callbacks in those cases (Len Brown).
- Rework the energy_performance_preference sysfs knob in intel_pstate
by changing the values that correspond to different symbolic hint
names used by it (Len Brown).
- Make it possible to use more than one cpuidle driver at the same
time on ARM (Daniel Lezcano).
- Make it possible to prevent the cpuidle menu governor from using
the 0 state by disabling it via sysfs (Nicholas Piggin).
- Add support for FFH (Fixed Functional Hardware) MWAIT in ACPI C1 on
AMD systems (Yazen Ghannam).
- Make the CPPC cpufreq driver take the lowest nonlinear performance
information into account (Prashanth Prakash).
- Add support for hi3660 to the cpufreq-dt driver, fix the imx6q
driver and clean up the sfi, exynos5440 and intel_pstate drivers
(Colin Ian King, Krzysztof Kozlowski, Octavian Purdila, Rafael
Wysocki, Tao Wang).
- Fix a few minor issues in the generic power domains (genpd)
framework and clean it up somewhat (Krzysztof Kozlowski, Mikko
Perttunen, Viresh Kumar).
- Fix a couple of minor issues in the operating performance points
(OPP) framework and clean it up somewhat (Viresh Kumar).
- Fix a CONFIG dependency in the hibernation core and clean it up
slightly (Balbir Singh, Arvind Yadav, BaoJun Luo).
- Add rk3228 support to the rockchip-io adaptive voltage scaling
(AVS) driver (David Wu).
- Fix an incorrect bit shift operation in the RAPL power capping
driver (Adam Lessnau).
- Add support for the EPP field in the HWP (hardware managed
P-states) control register, HWP.EPP, to the x86_energy_perf_policy
tool and update msr-index.h with HWP.EPP values (Len Brown).
- Fix some minor issues in the turbostat tool (Len Brown).
- Add support for AMD family 0x17 CPUs to the cpupower tool and fix a
minor issue in it (Sherry Hurwitz).
- Assorted cleanups, mostly related to the constification of some
data structures (Arvind Yadav, Joe Perches, Kees Cook, Krzysztof
Kozlowski)"
* tag 'pm-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (69 commits)
cpufreq: Update scaling_cur_freq documentation
cpufreq: intel_pstate: Clean up after performance governor changes
PM: hibernate: constify attribute_group structures.
cpuidle: menu: allow state 0 to be disabled
intel_idle: Use more common logging style
PM / Domains: Fix missing default_power_down_ok comment
PM / Domains: Fix unsafe iteration over modified list of domains
PM / Domains: Fix unsafe iteration over modified list of domain providers
PM / Domains: Fix unsafe iteration over modified list of device links
PM / Domains: Handle safely genpd_syscore_switch() call on non-genpd device
PM / Domains: Call driver's noirq callbacks
PM / core: Drop run_wake flag from struct dev_pm_info
PCI / PM: Simplify device wakeup settings code
PCI / PM: Drop pme_interrupt flag from struct pci_dev
ACPI / PM: Consolidate device wakeup settings code
ACPI / PM: Drop run_wake from struct acpi_device_wakeup_flags
PM / QoS: constify *_attribute_group.
PM / AVS: rockchip-io: add io selectors and supplies for rk3228
powercap/RAPL: prevent overridding bits outside of the mask
PM / sysfs: Constify attribute groups
...
Bits 11:2 must be zero and the linear addess in bits 63:12 must be
canonical. Otherwise, WRMSR(BNDCFGS) should raise #GP.
Fixes: 0dd376e709 ("KVM: x86: add MSR_IA32_BNDCFGS to msrs_to_save")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Currently, the SMIs are visible to all performance counters, because
many users want to measure everything including SMIs. But in some
cases, the SMI cycles should not be counted - for example, to calculate
the cost of an SMI itself. So a knob is needed.
When setting FREEZE_WHILE_SMM bit in IA32_DEBUGCTL, all performance
counters will be effected. There is no way to do per-counter freeze
on SMI. So it should not use the per-event interface (e.g. ioctl or
event attribute) to set FREEZE_WHILE_SMM bit.
Adds sysfs entry /sys/device/cpu/freeze_on_smi to set FREEZE_WHILE_SMM
bit in IA32_DEBUGCTL. When set, freezes perfmon and trace messages
while in SMM.
Value has to be 0 or 1. It will be applied to all processors.
Also serialize the entire setting so we don't get multiple concurrent
threads trying to update to different values.
Signed-off-by: Kan Liang <Kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: bp@alien8.de
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/1494600673-244667-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x = 1
ulong_long = x << 32;
results in:
warning: left shift count >= width of type
x = 8
ulong_long = x << 24;
results in a sign extended ulong_long
Cast x to unsigned long long in these macros
to prevent these errors.
Signed-off-by: Len Brown <len.brown@intel.com>
The Hardware Performance State request MSR has a field
to express the "Energy Performance Preference" (HWP.EPP).
Decode that field so the definition may be shared by
by the intel_pstate driver and any utilities that
decode the same register.
Signed-off-by: Len Brown <len.brown@intel.com>
Intel supports faulting on the CPUID instruction beginning with Ivy Bridge.
When enabled, the processor will fault on attempts to execute the CPUID
instruction with CPL>0. Exposing this feature to userspace will allow a
ptracer to trap and emulate the CPUID instruction.
When supported, this feature is controlled by toggling bit 0 of
MSR_MISC_FEATURES_ENABLES. It is documented in detail in Section 2.3.2 of
https://bugzilla.kernel.org/attachment.cgi?id=243991
Implement a new pair of arch_prctls, available on both x86-32 and x86-64.
ARCH_GET_CPUID: Returns the current CPUID state, either 0 if CPUID faulting
is enabled (and thus the CPUID instruction is not available) or 1 if
CPUID faulting is not enabled.
ARCH_SET_CPUID: Set the CPUID state to the second argument. If
cpuid_enabled is 0 CPUID faulting will be activated, otherwise it will
be deactivated. Returns ENODEV if CPUID faulting is not supported on
this system.
The state of the CPUID faulting flag is propagated across forks, but reset
upon exec.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: linux-kselftest@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: David Matlack <dmatlack@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: linux-fsdevel@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170320081628.18952-9-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel supports faulting on the CPUID instruction beginning with Ivy Bridge.
When enabled, the processor will fault on attempts to execute the CPUID
instruction with CPL>0. This will allow a ptracer to emulate the CPUID
instruction.
Bit 31 of MSR_PLATFORM_INFO advertises support for this feature. It is
documented in detail in Section 2.3.2 of
https://bugzilla.kernel.org/attachment.cgi?id=243991
Detect support for this feature and expose it as X86_FEATURE_CPUID_FAULT.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: linux-kselftest@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: David Matlack <dmatlack@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: linux-fsdevel@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170320081628.18952-8-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This matches the only public Intel documentation of this MSR, in the
"Virtualization Technology FlexMigration Application Note"
(preserved at https://bugzilla.kernel.org/attachment.cgi?id=243991)
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: linux-kselftest@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: David Matlack <dmatlack@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: linux-fsdevel@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170320081628.18952-2-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The debug control MSR is "highly magical" as the blockstep bit can be
cleared by hardware under not well documented circumstances.
So a task switch relying on the bit set by the previous task (according to
the previous tasks thread flags) can trip over this and not update the flag
for the next task.
To fix this its required to handle DEBUGCTLMSR_BTF when either the previous
or the next or both tasks have the TIF_BLOCKSTEP flag set.
While at it avoid branching within the TIF_BLOCKSTEP case and evaluating
boot_cpu_data twice in kernels without CONFIG_X86_DEBUGCTLMSR.
x86_64: arch/x86/kernel/process.o
text data bss dec hex
3024 8577 16 11617 2d61 Before
3008 8577 16 11601 2d51 After
i386: No change
[ tglx: Made the shift value explicit, use a local variable to make the
code readable and massaged changelog]
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Link: http://lkml.kernel.org/r/20170214081104.9244-3-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull changes related to turbostat for v4.11 from Len Brown.
* 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux: (44 commits)
tools/power turbostat: version 17.02.24
tools/power turbostat: bugfix: --add u32 was printed as u64
tools/power turbostat: show error on exec
tools/power turbostat: dump p-state software config
tools/power turbostat: show package number, even without --debug
tools/power turbostat: support "--hide C1" etc.
tools/power turbostat: move --Package and --processor into the --cpu option
tools/power turbostat: turbostat.8 update
tools/power turbostat: update --list feature
tools/power turbostat: use wide columns to display large numbers
tools/power turbostat: Add --list option to show available header names
tools/power turbostat: fix zero IRQ count shown in one-shot command mode
tools/power turbostat: add --cpu parameter
tools/power turbostat: print sysfs C-state stats
tools/power turbostat: extend --add option to accept /sys path
tools/power turbostat: skip unused counters on BDX
tools/power turbostat: fix decoding for GLM, DNV, SKX turbo-ratio limits
tools/power turbostat: skip unused counters on SKX
tools/power turbostat: Denverton: use HW CC1 counter, skip C3, C7
tools/power turbostat: initial Gemini Lake SOC support
...
This non-architectural MSR has disable bits
for various prefetchers on modern processors.
While these bits are generally touched only by the BIOS,
say, via BIOS SETUP, it is useful to dump them
when examining options that can alter performance.
Cc: x86@kernel.org
Signed-off-by: Len Brown <len.brown@intel.com>
The Baytrail SOC, with its Silvermont core, has some unique properties:
1. a hardware CC1 residency counter
2. a module-c6 residency counter
3. a package-c6 counter at traditional package-c7 counter address.
The SOC does not support c3, pc3, c7 or pc7 counters.
Signed-off-by: Len Brown <len.brown@intel.com>
The two users, intel_idle driver and turbostat utility
are using the new name, MSR_PKG_CST_CONFIG_CONTROL
Cc: x86@kernel.org
Signed-off-by: Len Brown <len.brown@intel.com>
define MSR_PKG_CST_CONFIG_CONTROL (0xE2),
which is the string used by Intel Documentation.
We use this MSR in intel_idle and turbostat by a previous name,
to be updated in the next patch.
Cc: x86@kernel.org
Signed-off-by: Len Brown <len.brown@intel.com>
Define new MSR MISC_FEATURE_ENABLES (0x140).
On supported CPUs if bit 1 of this MSR is set, then calling MONITOR and
MWAIT instructions outside of ring 0 will not cause invalid-opcode
exception.
The MSR MISC_FEATURE_ENABLES is not yet documented in the SDM. Here is the
relevant documentation:
Hex Dec Name Scope
140H 320 MISC_FEATURE_ENABLES Thread
0 Reserved
1 If set to 1, the MONITOR and MWAIT instructions do not
cause invalid-opcode exceptions when executed with CPL > 0
or in virtual-8086 mode. If MWAIT is executed when CPL > 0
or in virtual-8086 mode, and if EAX indicates a C-state
other than C0 or C1, the instruction operates as if EAX
indicated the C-state C1.
63:2 Reserved
Signed-off-by: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: Piotr.Luc@intel.com
Cc: dave.hansen@linux.intel.com
Link: http://lkml.kernel.org/r/1484918557-15481-2-git-send-email-grzegorz.andrejczuk@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel Xeons from Ivy Bridge onwards support a processor identification
number set in the factory. To the user this is a handy unique number to
identify a particular CPU. Intel can decode this to the fab/production
run to track errors. On systems that have it, include it in the machine
check record. I'm told that this would be helpful for users that run
large data centers with multi-socket servers to keep track of which CPUs
are seeing errors.
Boris:
* Add some clarifying comments and spacing.
* Mask out [63:2] in the disabled-but-not-locked case
* Call the MSR variable "val" for more readability.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20161123114855.njguoaygp3qnbkia@pd.tnic
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove MSR_NHM_TURBO_RATIO_LIMIT and MSR_IVT_TURBO_RATIO_LIMIT as
they are duplicate.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>