Commit Graph

184 Commits

Author SHA1 Message Date
David Howells
68d6d1ae5c rxrpc: Separate the connection's protocol service ID from the lookup ID
Keep the rxrpc_connection struct's idea of the service ID that is exposed
in the protocol separate from the service ID that's used as a lookup key.

This allows the protocol service ID on a client connection to get upgraded
without making the connection unfindable for other client calls that also
would like to use the upgraded connection.

The connection's actual service ID is then returned through recvmsg() by
way of msg_name.

Whilst we're at it, we get rid of the last_service_id field from each
channel.  The service ID is per-connection, not per-call and an entire
connection is upgraded in one go.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-06-05 14:30:49 +01:00
David Howells
2baec2c3f8 rxrpc: Support network namespacing
Support network namespacing in AF_RXRPC with the following changes:

 (1) All the local endpoint, peer and call lists, locks, counters, etc. are
     moved into the per-namespace record.

 (2) All the connection tracking is moved into the per-namespace record
     with the exception of the client connection ID tree, which is kept
     global so that connection IDs are kept unique per-machine.

 (3) Each namespace gets its own epoch.  This allows each network namespace
     to pretend to be a separate client machine.

 (4) The /proc/net/rxrpc_xxx files are now called /proc/net/rxrpc/xxx and
     the contents reflect the namespace.

fs/afs/ should be okay with this patch as it explicitly requires the current
net namespace to be init_net to permit a mount to proceed at the moment.  It
will, however, need updating so that cells, IP addresses and DNS records are
per-namespace also.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-25 13:15:11 -04:00
David Howells
fb46f6ee10 rxrpc: Trace protocol errors in received packets
Add a tracepoint (rxrpc_rx_proto) to record protocol errors in received
packets.  The following changes are made:

 (1) Add a function, __rxrpc_abort_eproto(), to note a protocol error on a
     call and mark the call aborted.  This is wrapped by
     rxrpc_abort_eproto() that makes the why string usable in trace.

 (2) Add trace_rxrpc_rx_proto() or rxrpc_abort_eproto() to protocol error
     generation points, replacing rxrpc_abort_call() with the latter.

 (3) Only send an abort packet in rxkad_verify_packet*() if we actually
     managed to abort the call.

Note that a trace event is also emitted if a kernel user (e.g. afs) tries
to send data through a call when it's not in the transmission phase, though
it's not technically a receive event.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-04-06 11:09:39 +01:00
David Howells
540b1c48c3 rxrpc: Fix deadlock between call creation and sendmsg/recvmsg
All the routines by which rxrpc is accessed from the outside are serialised
by means of the socket lock (sendmsg, recvmsg, bind,
rxrpc_kernel_begin_call(), ...) and this presents a problem:

 (1) If a number of calls on the same socket are in the process of
     connection to the same peer, a maximum of four concurrent live calls
     are permitted before further calls need to wait for a slot.

 (2) If a call is waiting for a slot, it is deep inside sendmsg() or
     rxrpc_kernel_begin_call() and the entry function is holding the socket
     lock.

 (3) sendmsg() and recvmsg() or the in-kernel equivalents are prevented
     from servicing the other calls as they need to take the socket lock to
     do so.

 (4) The socket is stuck until a call is aborted and makes its slot
     available to the waiter.

Fix this by:

 (1) Provide each call with a mutex ('user_mutex') that arbitrates access
     by the users of rxrpc separately for each specific call.

 (2) Make rxrpc_sendmsg() and rxrpc_recvmsg() unlock the socket as soon as
     they've got a call and taken its mutex.

     Note that I'm returning EWOULDBLOCK from recvmsg() if MSG_DONTWAIT is
     set but someone else has the lock.  Should I instead only return
     EWOULDBLOCK if there's nothing currently to be done on a socket, and
     sleep in this particular instance because there is something to be
     done, but we appear to be blocked by the interrupt handler doing its
     ping?

 (3) Make rxrpc_new_client_call() unlock the socket after allocating a new
     call, locking its user mutex and adding it to the socket's call tree.
     The call is returned locked so that sendmsg() can add data to it
     immediately.

     From the moment the call is in the socket tree, it is subject to
     access by sendmsg() and recvmsg() - even if it isn't connected yet.

 (4) Lock new service calls in the UDP data_ready handler (in
     rxrpc_new_incoming_call()) because they may already be in the socket's
     tree and the data_ready handler makes them live immediately if a user
     ID has already been preassigned.

     Note that the new call is locked before any notifications are sent
     that it is live, so doing mutex_trylock() *ought* to always succeed.
     Userspace is prevented from doing sendmsg() on calls that are in a
     too-early state in rxrpc_do_sendmsg().

 (5) Make rxrpc_new_incoming_call() return the call with the user mutex
     held so that a ping can be scheduled immediately under it.

     Note that it might be worth moving the ping call into
     rxrpc_new_incoming_call() and then we can drop the mutex there.

 (6) Make rxrpc_accept_call() take the lock on the call it is accepting and
     release the socket after adding the call to the socket's tree.  This
     is slightly tricky as we've dequeued the call by that point and have
     to requeue it.

     Note that requeuing emits a trace event.

 (7) Make rxrpc_kernel_send_data() and rxrpc_kernel_recv_data() take the
     new mutex immediately and don't bother with the socket mutex at all.

This patch has the nice bonus that calls on the same socket are now to some
extent parallelisable.

Note that we might want to move rxrpc_service_prealloc() calls out from the
socket lock and give it its own lock, so that we don't hang progress in
other calls because we're waiting for the allocator.

We probably also want to avoid calling rxrpc_notify_socket() from within
the socket lock (rxrpc_accept_call()).

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.c.dionne@auristor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-01 09:50:58 -08:00
David Howells
210f035316 rxrpc: Allow listen(sock, 0) to be used to disable listening
Allow listen() with a backlog of 0 to be used to disable listening on an
AF_RXRPC socket.  This also releases any preallocation, thereby making it
easier for a kernel service to account for all allocated call structures
when shutting down the service.

The socket cannot thereafter have listening reenabled, but must rather be
closed and reopened.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-01-09 11:10:02 +00:00
David Howells
b54a134a7d rxrpc: Fix handling of enums-to-string translation in tracing
Fix the way enum values are translated into strings in AF_RXRPC
tracepoints.  The problem with just doing a lookup in a normal flat array
of strings or chars is that external tracing infrastructure can't find it.
Rather, TRACE_DEFINE_ENUM must be used.

Also sort the enums and string tables to make it easier to keep them in
order so that a future patch to __print_symbolic() can be optimised to try
a direct lookup into the table first before iterating over it.

A couple of _proto() macro calls are removed because they refered to tables
that got moved to the tracing infrastructure.  The relevant data can be
found by way of tracing.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-01-05 10:38:33 +00:00
David Howells
9749fd2bea rxrpc: Need to produce an ACK for service op if op takes a long time
We need to generate a DELAY ACK from the service end of an operation if we
start doing the actual operation work and it takes longer than expected.
This will hard-ACK the request data and allow the client to release its
resources.

To make this work:

 (1) We have to set the ack timer and propose an ACK when the call moves to
     the RXRPC_CALL_SERVER_ACK_REQUEST and clear the pending ACK and cancel
     the timer when we start transmitting the reply (the first DATA packet
     of the reply implicitly ACKs the request phase).

 (2) It must be possible to set the timer when the caller is holding
     call->state_lock, so split the lock-getting part of the timer function
     out.

 (3) Add trace notes for the ACK we're requesting and the timer we clear.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-10-06 08:11:50 +01:00
David Howells
a5af7e1fc6 rxrpc: Fix loss of PING RESPONSE ACK production due to PING ACKs
Separate the output of PING ACKs from the output of other sorts of ACK so
that if we receive a PING ACK and schedule transmission of a PING RESPONSE
ACK, the response doesn't get cancelled by a PING ACK we happen to be
scheduling transmission of at the same time.

If a PING RESPONSE gets lost, the other side might just sit there waiting
for it and refuse to proceed otherwise.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-10-06 08:11:49 +01:00
David Howells
26cb02aa6d rxrpc: Fix warning by splitting rxrpc_send_call_packet()
Split rxrpc_send_data_packet() to separate ACK generation (which is more
complicated) from ABORT generation.  This simplifies the code a bit and
fixes the following warning:

In file included from ../net/rxrpc/output.c:20:0:
net/rxrpc/output.c: In function 'rxrpc_send_call_packet':
net/rxrpc/ar-internal.h:1187:27: error: 'top' may be used uninitialized in this function [-Werror=maybe-uninitialized]
net/rxrpc/output.c:103:24: note: 'top' was declared here
net/rxrpc/output.c:225:25: error: 'hard_ack' may be used uninitialized in this function [-Werror=maybe-uninitialized]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
2016-10-06 08:11:49 +01:00
David Howells
19c0dbd540 rxrpc: Fix duplicate const
Remove a duplicate const keyword.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-10-06 08:11:48 +01:00
David Howells
df0adc788a rxrpc: Keep the call timeouts as ktimes rather than jiffies
Keep that call timeouts as ktimes rather than jiffies so that they can be
expressed as functions of RTT.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-30 14:40:11 +01:00
David Howells
c31410ea00 rxrpc: Remove error from struct rxrpc_skb_priv as it is unused
Remove error from struct rxrpc_skb_priv as it is no longer used.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-30 14:39:32 +01:00
David Howells
775e5b71db rxrpc: The offset field in struct rxrpc_skb_priv is unnecessary
The offset field in struct rxrpc_skb_priv is unnecessary as the value can
always be calculated.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-30 14:39:28 +01:00
David Howells
1e9e5c9521 rxrpc: Reduce the rxrpc_local::services list to a pointer
Reduce the rxrpc_local::services list to just a pointer as we don't permit
multiple service endpoints to bind to a single transport endpoints (this is
excluded by rxrpc_lookup_local()).

The reason we don't allow this is that if you send a request to an AFS
filesystem service, it will try to talk back to your cache manager on the
port you sent from (this is how file change notifications are handled).  To
prevent someone from stealing your CM callbacks, we don't let AF_RXRPC
sockets share a UDP socket if at least one of them has a service bound.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-29 22:57:47 +01:00
David Howells
a1767077b0 rxrpc: Make Tx loss-injection go through normal return and adjust tracing
In rxrpc_send_data_packet() make the loss-injection path return through the
same code as the transmission path so that the RTT determination is
initiated and any future timer shuffling will be done, despite the packet
having been binned.

Whilst we're at it:

 (1) Add to the tx_data tracepoint an indication of whether or not we're
     retransmitting a data packet.

 (2) When we're deciding whether or not to request an ACK, rather than
     checking if we're in fast-retransmit mode check instead if we're
     retransmitting.

 (3) Don't invoke the lose_skb tracepoint when losing a Tx packet as we're
     not altering the sk_buff refcount nor are we just seeing it after
     getting it off the Tx list.

 (4) The rxrpc_skb_tx_lost note is then no longer used so remove it.

 (5) rxrpc_lose_skb() no longer needs to deal with rxrpc_skb_tx_lost.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-29 22:37:15 +01:00
David Howells
57494343cb rxrpc: Implement slow-start
Implement RxRPC slow-start, which is similar to RFC 5681 for TCP.  A
tracepoint is added to log the state of the congestion management algorithm
and the decisions it makes.

Notes:

 (1) Since we send fixed-size DATA packets (apart from the final packet in
     each phase), counters and calculations are in terms of packets rather
     than bytes.

 (2) The ACK packet carries the equivalent of TCP SACK.

 (3) The FLIGHT_SIZE calculation in RFC 5681 doesn't seem particularly
     suited to SACK of a small number of packets.  It seems that, almost
     inevitably, by the time three 'duplicate' ACKs have been seen, we have
     narrowed the loss down to one or two missing packets, and the
     FLIGHT_SIZE calculation ends up as 2.

 (4) In rxrpc_resend(), if there was no data that apparently needed
     retransmission, we transmit a PING ACK to ask the peer to tell us what
     its Rx window state is.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-24 23:49:46 +01:00
David Howells
0d967960d3 rxrpc: Schedule an ACK if the reply to a client call appears overdue
If we've sent all the request data in a client call but haven't seen any
sign of the reply data yet, schedule an ACK to be sent to the server to
find out if the reply data got lost.

If the server hasn't yet hard-ACK'd the request data, we send a PING ACK to
demand a response to find out whether we need to retransmit.

If the server says it has received all of the data, we send an IDLE ACK to
tell the server that we haven't received anything in the receive phase as
yet.

To make this work, a non-immediate PING ACK must carry a delay.  I've chosen
the same as the IDLE ACK for the moment.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-24 23:49:46 +01:00
David Howells
31a1b98950 rxrpc: Generate a summary of the ACK state for later use
Generate a summary of the Tx buffer packet state when an ACK is received
for use in a later patch that does congestion management.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-24 23:49:46 +01:00
David Howells
dd7c1ee59a rxrpc: Reinitialise the call ACK and timer state for client reply phase
Clear the ACK reason, ACK timer and resend timer when entering the client
reply phase when the first DATA packet is received.  New ACKs will be
proposed once the data is queued.

The resend timer is no longer relevant and we need to cancel ACKs scheduled
to probe for a lost reply.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-24 23:49:46 +01:00
David Howells
805b21b929 rxrpc: Send an ACK after every few DATA packets we receive
Send an ACK if we haven't sent one for the last two packets we've received.
This keeps the other end apprised of where we've got to - which is
important if they're doing slow-start.

We do this in recvmsg so that we can dispatch a packet directly without the
need to wake up the background thread.

This should possibly be made configurable in future.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-24 18:05:26 +01:00
David Howells
9c7ad43444 rxrpc: Add tracepoint for ACK proposal
Add a tracepoint to log proposed ACKs, including whether the proposal is
used to update a pending ACK or is discarded in favour of an easlier,
higher priority ACK.

Whilst we're at it, get rid of the rxrpc_acks() function and access the
name array directly.  We do, however, need to validate the ACK reason
number given to trace_rxrpc_rx_ack() to make sure we don't overrun the
array.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 15:49:19 +01:00
David Howells
fc7ab6d29a rxrpc: Add a tracepoint for the call timer
Add a tracepoint to log call timer initiation, setting and expiry.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 15:49:19 +01:00
David Howells
70790dbe3f rxrpc: Pass the last Tx packet marker in the annotation buffer
When the last packet of data to be transmitted on a call is queued, tx_top
is set and then the RXRPC_CALL_TX_LAST flag is set.  Unfortunately, this
leaves a race in the ACK processing side of things because the flag affects
the interpretation of tx_top and also allows us to start receiving reply
data before we've finished transmitting.

To fix this, make the following changes:

 (1) rxrpc_queue_packet() now sets a marker in the annotation buffer
     instead of setting the RXRPC_CALL_TX_LAST flag.

 (2) rxrpc_rotate_tx_window() detects the marker and sets the flag in the
     same context as the routines that use it.

 (3) rxrpc_end_tx_phase() is simplified to just shift the call state.
     The Tx window must have been rotated before calling to discard the
     last packet.

 (4) rxrpc_receiving_reply() is added to handle the arrival of the first
     DATA packet of a reply to a client call (which is an implicit ACK of
     the Tx phase).

 (5) The last part of rxrpc_input_ack() is reordered to perform Tx
     rotation, then soft-ACK application and then to end the phase if we've
     rotated the last packet.  In the event of a terminal ACK, the soft-ACK
     application will be skipped as nAcks should be 0.

 (6) rxrpc_input_ackall() now has to rotate as well as ending the phase.

In addition:

 (7) Alter the transmit tracepoint to log the rotation of the last packet.

 (8) Remove the no-longer relevant queue_reqack tracepoint note.  The
     ACK-REQUESTED packet header flag is now set as needed when we actually
     transmit the packet and may vary by retransmission.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 15:49:19 +01:00
David Howells
dfc3da4404 rxrpc: Need to start the resend timer on initial transmission
When a DATA packet has its initial transmission, we may need to start or
adjust the resend timer.  Without this we end up relying on being sent a
NACK to initiate the resend.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 14:05:12 +01:00
David Howells
c0d058c21c rxrpc: Make sure sendmsg() is woken on call completion
Make sure that sendmsg() gets woken up if the call it is waiting for
completes abnormally.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 13:23:09 +01:00
David Howells
0d4b103c00 rxrpc: Reduce the number of ACK-Requests sent
Reduce the number of ACK-Requests we set on DATA packets that we're sending
to reduce network traffic.  We set the flag on odd-numbered DATA packets to
start off the RTT cache until we have at least three entries in it and then
probe once per second thereafter to keep it topped up.

This could be made tunable in future.

Note that from this point, the RXRPC_REQUEST_ACK flag is set on DATA
packets as we transmit them and not stored statically in the sk_buff.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 08:49:20 +01:00
David Howells
50235c4b5a rxrpc: Obtain RTT data by requesting ACKs on DATA packets
In addition to sending a PING ACK to gain RTT data, we can set the
RXRPC_REQUEST_ACK flag on a DATA packet and get a REQUESTED-ACK ACK.  The
ACK packet contains the serial number of the packet it is in response to,
so we can look through the Tx buffer for a matching DATA packet.

This requires that the data packets be stamped with the time of
transmission as a ktime rather than having the resend_at time in jiffies.

This further requires the resend code to do the resend determination in
ktimes and convert to jiffies to set the timer.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 08:21:24 +01:00
David Howells
8e83134db4 rxrpc: Send pings to get RTT data
Send a PING ACK packet to the peer when we get a new incoming call from a
peer we don't have a record for.  The PING RESPONSE ACK packet will tell us
the following about the peer:

 (1) its receive window size

 (2) its MTU sizes

 (3) its support for jumbo DATA packets

 (4) if it supports slow start (similar to RFC 5681)

 (5) an estimate of the RTT

This is necessary because the peer won't normally send us an ACK until it
gets to the Rx phase and we send it a packet, but we would like to know
some of this information before we start sending packets.

A pair of tracepoints are added so that RTT determination can be observed.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 08:21:24 +01:00
David Howells
cf1a6474f8 rxrpc: Add per-peer RTT tracker
Add a function to track the average RTT for a peer.  Sources of RTT data
will be added in subsequent patches.

The RTT data will be useful in the future for determining resend timeouts
and for handling the slow-start part of the Rx protocol.

Also add a pair of tracepoints, one to log transmissions to elicit a
response for RTT purposes and one to log responses that contribute RTT
data.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 01:26:25 +01:00
David Howells
f07373ead4 rxrpc: Add re-sent Tx annotation
Add a Tx-phase annotation for packet buffers to indicate that a buffer has
already been retransmitted.  This will be used by future congestion
management.  Re-retransmissions of a packet don't affect the congestion
window managment in the same way as initial retransmissions.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 01:23:50 +01:00
David Howells
5a924b8951 rxrpc: Don't store the rxrpc header in the Tx queue sk_buffs
Don't store the rxrpc protocol header in sk_buffs on the transmit queue,
but rather generate it on the fly and pass it to kernel_sendmsg() as a
separate iov.  This reduces the amount of storage required.

Note that the security header is still stored in the sk_buff as it may get
encrypted along with the data (and doesn't change with each transmission).

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 01:23:50 +01:00
David Howells
71f3ca408f rxrpc: Improve skb tracing
Improve sk_buff tracing within AF_RXRPC by the following means:

 (1) Use an enum to note the event type rather than plain integers and use
     an array of event names rather than a big multi ?: list.

 (2) Distinguish Rx from Tx packets and account them separately.  This
     requires the call phase to be tracked so that we know what we might
     find in rxtx_buffer[].

 (3) Add a parameter to rxrpc_{new,see,get,free}_skb() to indicate the
     event type.

 (4) A pair of 'rotate' events are added to indicate packets that are about
     to be rotated out of the Rx and Tx windows.

 (5) A pair of 'lost' events are added, along with rxrpc_lose_skb() for
     packet loss injection recording.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:04 +01:00
David Howells
849979051c rxrpc: Add a tracepoint to follow what recvmsg does
Add a tracepoint to follow what recvmsg does within AF_RXRPC.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:03 +01:00
David Howells
58dc63c998 rxrpc: Add a tracepoint to follow packets in the Rx buffer
Add a tracepoint to follow the life of packets that get added to a call's
receive buffer.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:03 +01:00
David Howells
a124fe3ee5 rxrpc: Add a tracepoint to follow the life of a packet in the Tx buffer
Add a tracepoint to follow the insertion of a packet into the transmit
buffer, its transmission and its rotation out of the buffer.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:03 +01:00
David Howells
363deeab6d rxrpc: Add connection tracepoint and client conn state tracepoint
Add a pair of tracepoints, one to track rxrpc_connection struct ref
counting and the other to track the client connection cache state.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:03 +01:00
David Howells
a84a46d730 rxrpc: Add some additional call tracing
Add additional call tracepoint points for noting call-connected,
call-released and connection-failed events.

Also fix one tracepoint that was using an integer instead of the
corresponding enum value as the point type.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:03 +01:00
David Howells
a3868bfc8d rxrpc: Print the packet type name in the Rx packet trace
Print a symbolic packet type name for each valid received packet in the
trace output, not just a number.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:03 +01:00
David Howells
75e4212639 rxrpc: Correctly initialise, limit and transmit call->rx_winsize
call->rx_winsize should be initialised to the sysctl setting and the sysctl
setting should be limited to the maximum we want to permit.  Further, we
need to place this in the ACK info instead of the sysctl setting.

Furthermore, discard the idea of accepting the subpackets of a jumbo packet
that lie beyond the receive window when the first packet of the jumbo is
within the window.  Just discard the excess subpackets instead.  This
allows the receive window to be opened up right to the buffer size less one
for the dead slot.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-13 22:38:45 +01:00
David Howells
cbd00891de rxrpc: Adjust the call ref tracepoint to show kernel API refs
Adjust the call ref tracepoint to show references held on a call by the
kernel API separately as much as possible and add an additional trace to at
the allocation point from the preallocation buffer for an incoming call.

Note that this doesn't show the allocation of a client call for the kernel
separately at the moment.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-13 22:38:30 +01:00
David Howells
248f219cb8 rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:

 (1) Parsing of received ACK and ABORT packets and the distribution and the
     filing of DATA packets happens entirely within the data_ready context
     called from the UDP socket.  This allows us to process and discard ACK
     and ABORT packets much more quickly (they're no longer stashed on a
     queue for a background thread to process).

 (2) We avoid calling skb_clone(), pskb_pull() and pskb_trim().  We instead
     keep track of the offset and length of the content of each packet in
     the sk_buff metadata.  This means we don't do any allocation in the
     receive path.

 (3) Jumbo DATA packet parsing is now done in data_ready context.  Rather
     than cloning the packet once for each subpacket and pulling/trimming
     it, we file the packet multiple times with an annotation for each
     indicating which subpacket is there.  From that we can directly
     calculate the offset and length.

 (4) A call's receive queue can be accessed without taking locks (memory
     barriers do have to be used, though).

 (5) Incoming calls are set up from preallocated resources and immediately
     made live.  They can than have packets queued upon them and ACKs
     generated.  If insufficient resources exist, DATA packet #1 is given a
     BUSY reply and other DATA packets are discarded).

 (6) sk_buffs no longer take a ref on their parent call.

To make this work, the following changes are made:

 (1) Each call's receive buffer is now a circular buffer of sk_buff
     pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
     between the call and the socket.  This permits each sk_buff to be in
     the buffer multiple times.  The receive buffer is reused for the
     transmit buffer.

 (2) A circular buffer of annotations (rxtx_annotations) is kept parallel
     to the data buffer.  Transmission phase annotations indicate whether a
     buffered packet has been ACK'd or not and whether it needs
     retransmission.

     Receive phase annotations indicate whether a slot holds a whole packet
     or a jumbo subpacket and, if the latter, which subpacket.  They also
     note whether the packet has been decrypted in place.

 (3) DATA packet window tracking is much simplified.  Each phase has just
     two numbers representing the window (rx_hard_ack/rx_top and
     tx_hard_ack/tx_top).

     The hard_ack number is the sequence number before base of the window,
     representing the last packet the other side says it has consumed.
     hard_ack starts from 0 and the first packet is sequence number 1.

     The top number is the sequence number of the highest-numbered packet
     residing in the buffer.  Packets between hard_ack+1 and top are
     soft-ACK'd to indicate they've been received, but not yet consumed.

     Four macros, before(), before_eq(), after() and after_eq() are added
     to compare sequence numbers within the window.  This allows for the
     top of the window to wrap when the hard-ack sequence number gets close
     to the limit.

     Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
     to indicate when rx_top and tx_top point at the packets with the
     LAST_PACKET bit set, indicating the end of the phase.

 (4) Calls are queued on the socket 'receive queue' rather than packets.
     This means that we don't need have to invent dummy packets to queue to
     indicate abnormal/terminal states and we don't have to keep metadata
     packets (such as ABORTs) around

 (5) The offset and length of a (sub)packet's content are now passed to
     the verify_packet security op.  This is currently expected to decrypt
     the packet in place and validate it.

     However, there's now nowhere to store the revised offset and length of
     the actual data within the decrypted blob (there may be a header and
     padding to skip) because an sk_buff may represent multiple packets, so
     a locate_data security op is added to retrieve these details from the
     sk_buff content when needed.

 (6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
     individually secured and needs to be individually decrypted.  The code
     to do this is broken out into rxrpc_recvmsg_data() and shared with the
     kernel API.  It now iterates over the call's receive buffer rather
     than walking the socket receive queue.

Additional changes:

 (1) The timers are condensed to a single timer that is set for the soonest
     of three timeouts (delayed ACK generation, DATA retransmission and
     call lifespan).

 (2) Transmission of ACK and ABORT packets is effected immediately from
     process-context socket ops/kernel API calls that cause them instead of
     them being punted off to a background work item.  The data_ready
     handler still has to defer to the background, though.

 (3) A shutdown op is added to the AF_RXRPC socket so that the AFS
     filesystem can shut down the socket and flush its own work items
     before closing the socket to deal with any in-progress service calls.

Future additional changes that will need to be considered:

 (1) Make sure that a call doesn't hog the front of the queue by receiving
     data from the network as fast as userspace is consuming it to the
     exclusion of other calls.

 (2) Transmit delayed ACKs from within recvmsg() when we've consumed
     sufficiently more packets to avoid the background work item needing to
     run.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
David Howells
00e907127e rxrpc: Preallocate peers, conns and calls for incoming service requests
Make it possible for the data_ready handler called from the UDP transport
socket to completely instantiate an rxrpc_call structure and make it
immediately live by preallocating all the memory it might need.  The idea
is to cut out the background thread usage as much as possible.

[Note that the preallocated structs are not actually used in this patch -
 that will be done in a future patch.]

If insufficient resources are available in the preallocation buffers, it
will be possible to discard the DATA packet in the data_ready handler or
schedule a BUSY packet without the need to schedule an attempt at
allocation in a background thread.

To this end:

 (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a
     maximum number each of the listen backlog size.  The backlog size is
     limited to a maxmimum of 32.  Only this many of each can be in the
     preallocation buffer.

 (2) For userspace sockets, the preallocation is charged initially by
     listen() and will be recharged by accepting or rejecting pending
     new incoming calls.

 (3) For kernel services {,re,dis}charging of the preallocation buffers is
     handled manually.  Two notifier callbacks have to be provided before
     kernel_listen() is invoked:

     (a) An indication that a new call has been instantiated.  This can be
     	 used to trigger background recharging.

     (b) An indication that a call is being discarded.  This is used when
     	 the socket is being released.

     A function, rxrpc_kernel_charge_accept() is called by the kernel
     service to preallocate a single call.  It should be passed the user ID
     to be used for that call and a callback to associate the rxrpc call
     with the kernel service's side of the ID.

 (4) Discard the preallocation when the socket is closed.

 (5) Temporarily bump the refcount on the call allocated in
     rxrpc_incoming_call() so that rxrpc_release_call() can ditch the
     preallocation ref on service calls unconditionally.  This will no
     longer be necessary once the preallocation is used.

Note that this does not yet control the number of active service calls on a
client - that will come in a later patch.

A future development would be to provide a setsockopt() call that allows a
userspace server to manually charge the preallocation buffer.  This would
allow user call IDs to be provided in advance and the awkward manual accept
stage to be bypassed.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
David Howells
2ab27215ea rxrpc: Remove skb_count from struct rxrpc_call
Remove the sk_buff count from the rxrpc_call struct as it's less useful
once we stop queueing sk_buffs.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
David Howells
de8d6c7401 rxrpc: Convert rxrpc_local::services to an hlist
Convert the rxrpc_local::services list to an hlist so that it can be
accessed under RCU conditions more readily.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:11 +01:00
David Howells
cf13258fd4 rxrpc: Fix ASSERTCMP and ASSERTIFCMP to handle signed values
Fix ASSERTCMP and ASSERTIFCMP to be able to handle signed values by casting
both parameters to the type of the first before comparing.  Without this,
both values are cast to unsigned long, which means that checks for values
less than zero don't work.

The downside of this is that the state enum values in struct rxrpc_call and
struct rxrpc_connection can't be bitfields as __typeof__ can't handle them.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:11 +01:00
David Howells
5a42976d4f rxrpc: Add tracepoint for working out where aborts happen
Add a tracepoint for working out where local aborts happen.  Each
tracepoint call is labelled with a 3-letter code so that they can be
distinguished - and the DATA sequence number is added too where available.

rxrpc_kernel_abort_call() also takes a 3-letter code so that AFS can
indicate the circumstances when it aborts a call.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 16:34:40 +01:00
David Howells
e8d6bbb05a rxrpc: Fix returns of call completion helpers
rxrpc_set_call_completion() returns bool, not int, so the ret variable
should match this.

rxrpc_call_completed() and __rxrpc_call_completed() should return the value
of rxrpc_set_call_completion().

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 16:34:30 +01:00
David Howells
8d94aa381d rxrpc: Calls shouldn't hold socket refs
rxrpc calls shouldn't hold refs on the sock struct.  This was done so that
the socket wouldn't go away whilst the call was in progress, such that the
call could reach the socket's queues.

However, we can mark the socket as requiring an RCU release and rely on the
RCU read lock.

To make this work, we do:

 (1) rxrpc_release_call() removes the call's call user ID.  This is now
     only called from socket operations and not from the call processor:

	rxrpc_accept_call() / rxrpc_kernel_accept_call()
	rxrpc_reject_call() / rxrpc_kernel_reject_call()
	rxrpc_kernel_end_call()
	rxrpc_release_calls_on_socket()
	rxrpc_recvmsg()

     Though it is also called in the cleanup path of
     rxrpc_accept_incoming_call() before we assign a user ID.

 (2) Pass the socket pointer into rxrpc_release_call() rather than getting
     it from the call so that we can get rid of uninitialised calls.

 (3) Fix call processor queueing to pass a ref to the work queue and to
     release that ref at the end of the processor function (or to pass it
     back to the work queue if we have to requeue).

 (4) Skip out of the call processor function asap if the call is complete
     and don't requeue it if the call is complete.

 (5) Clean up the call immediately that the refcount reaches 0 rather than
     trying to defer it.  Actual deallocation is deferred to RCU, however.

 (6) Don't hold socket refs for allocated calls.

 (7) Use the RCU read lock when queueing a message on a socket and treat
     the call's socket pointer according to RCU rules and check it for
     NULL.

     We also need to use the RCU read lock when viewing a call through
     procfs.

 (8) Transmit the final ACK/ABORT to a client call in rxrpc_release_call()
     if this hasn't been done yet so that we can then disconnect the call.
     Once the call is disconnected, it won't have any access to the
     connection struct and the UDP socket for the call work processor to be
     able to send the ACK.  Terminal retransmission will be handled by the
     connection processor.

 (9) Release all calls immediately on the closing of a socket rather than
     trying to defer this.  Incomplete calls will be aborted.

The call refcount model is much simplified.  Refs are held on the call by:

 (1) A socket's user ID tree.

 (2) A socket's incoming call secureq and acceptq.

 (3) A kernel service that has a call in progress.

 (4) A queued call work processor.  We have to take care to put any call
     that we failed to queue.

 (5) sk_buffs on a socket's receive queue.  A future patch will get rid of
     this.

Whilst we're at it, we can do:

 (1) Get rid of the RXRPC_CALL_EV_RELEASE event.  Release is now done
     entirely from the socket routines and never from the call's processor.

 (2) Get rid of the RXRPC_CALL_DEAD state.  Calls now end in the
     RXRPC_CALL_COMPLETE state.

 (3) Get rid of the rxrpc_call::destroyer work item.  Calls are now torn
     down when their refcount reaches 0 and then handed over to RCU for
     final cleanup.

 (4) Get rid of the rxrpc_call::deadspan timer.  Calls are cleaned up
     immediately they're finished with and don't hang around.
     Post-completion retransmission is handled by the connection processor
     once the call is disconnected.

 (5) Get rid of the dead call expiry setting as there's no longer a timer
     to set.

 (6) rxrpc_destroy_all_calls() can just check that the call list is empty.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 15:33:20 +01:00
David Howells
278ac0cdd5 rxrpc: Cache the security index in the rxrpc_call struct
Cache the security index in the rxrpc_call struct so that we can get at it
even when the call has been disconnected and the connection pointer
cleared.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 15:30:22 +01:00
David Howells
fff72429c2 rxrpc: Improve the call tracking tracepoint
Improve the call tracking tracepoint by showing more differentiation
between some of the put and get events, including:

  (1) Getting and putting refs for the socket call user ID tree.

  (2) Getting and putting refs for queueing and failing to queue the call
      processor work item.

Note that these aren't necessarily used in this patch, but will be taken
advantage of in future patches.

An enum is added for the event subtype numbers rather than coding them
directly as decimal numbers and a table of 3-letter strings is provided
rather than a sequence of ?: operators.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 15:30:22 +01:00
David Howells
71a17de307 rxrpc: Whitespace cleanup
Remove some whitespace.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 14:43:39 +01:00
David Howells
3dc20f090d rxrpc Move enum rxrpc_command to sendmsg.c
Move enum rxrpc_command to sendmsg.c as it's now only used in that file.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-04 21:41:39 +01:00
David Howells
0b58b8a18b rxrpc: Split sendmsg from packet transmission code
Split the sendmsg code from the packet transmission code (mostly to be
found in output.c).

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-04 21:41:39 +01:00
David Howells
d001648ec7 rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.

This makes the following possibilities more achievable:

 (1) Call refcounting can be made simpler if skbs don't hold refs to calls.

 (2) skbs referring to non-data events will be able to be freed much sooner
     rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
     will be able to consult the call state.

 (3) We can shortcut the receive phase when a call is remotely aborted
     because we don't have to go through all the packets to get to the one
     cancelling the operation.

 (4) It makes it easier to do encryption/decryption directly between AFS's
     buffers and sk_buffs.

 (5) Encryption/decryption can more easily be done in the AFS's thread
     contexts - usually that of the userspace process that issued a syscall
     - rather than in one of rxrpc's background threads on a workqueue.

 (6) AFS will be able to wait synchronously on a call inside AF_RXRPC.

To make this work, the following interface function has been added:

     int rxrpc_kernel_recv_data(
		struct socket *sock, struct rxrpc_call *call,
		void *buffer, size_t bufsize, size_t *_offset,
		bool want_more, u32 *_abort_code);

This is the recvmsg equivalent.  It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.

afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them.  They don't wait synchronously yet because the socket
lock needs to be dealt with.

Five interface functions have been removed:

	rxrpc_kernel_is_data_last()
    	rxrpc_kernel_get_abort_code()
    	rxrpc_kernel_get_error_number()
    	rxrpc_kernel_free_skb()
    	rxrpc_kernel_data_consumed()

As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user.  To process the queue internally, a temporary function,
temp_deliver_data() has been added.  This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-01 16:43:27 -07:00
David Howells
e34d4234b0 rxrpc: Trace rxrpc_call usage
Add a trace event for debuging rxrpc_call struct usage.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-30 16:02:36 +01:00
David Howells
f5c17aaeb2 rxrpc: Calls should only have one terminal state
Condense the terminal states of a call state machine to a single state,
plus a separate completion type value.  The value is then set, along with
error and abort code values, only when the call is transitioned to the
completion state.

Helpers are provided to simplify this.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-30 15:58:31 +01:00
David Howells
45025bceef rxrpc: Improve management and caching of client connection objects
Improve the management and caching of client rxrpc connection objects.
From this point, client connections will be managed separately from service
connections because AF_RXRPC controls the creation and re-use of client
connections but doesn't have that luxury with service connections.

Further, there will be limits on the numbers of client connections that may
be live on a machine.  No direct restriction will be placed on the number
of client calls, excepting that each client connection can support a
maximum of four concurrent calls.

Note that, for a number of reasons, we don't want to simply discard a
client connection as soon as the last call is apparently finished:

 (1) Security is negotiated per-connection and the context is then shared
     between all calls on that connection.  The context can be negotiated
     again if the connection lapses, but that involves holding up calls
     whilst at least two packets are exchanged and various crypto bits are
     performed - so we'd ideally like to cache it for a little while at
     least.

 (2) If a packet goes astray, we will need to retransmit a final ACK or
     ABORT packet.  To make this work, we need to keep around the
     connection details for a little while.

 (3) The locally held structures represent some amount of setup time, to be
     weighed against their occupation of memory when idle.


To this end, the client connection cache is managed by a state machine on
each connection.  There are five states:

 (1) INACTIVE - The connection is not held in any list and may not have
     been exposed to the world.  If it has been previously exposed, it was
     discarded from the idle list after expiring.

 (2) WAITING - The connection is waiting for the number of client conns to
     drop below the maximum capacity.  Calls may be in progress upon it
     from when it was active and got culled.

     The connection is on the rxrpc_waiting_client_conns list which is kept
     in to-be-granted order.  Culled conns with waiters go to the back of
     the queue just like new conns.

 (3) ACTIVE - The connection has at least one call in progress upon it, it
     may freely grant available channels to new calls and calls may be
     waiting on it for channels to become available.

     The connection is on the rxrpc_active_client_conns list which is kept
     in activation order for culling purposes.

 (4) CULLED - The connection got summarily culled to try and free up
     capacity.  Calls currently in progress on the connection are allowed
     to continue, but new calls will have to wait.  There can be no waiters
     in this state - the conn would have to go to the WAITING state
     instead.

 (5) IDLE - The connection has no calls in progress upon it and must have
     been exposed to the world (ie. the EXPOSED flag must be set).  When it
     expires, the EXPOSED flag is cleared and the connection transitions to
     the INACTIVE state.

     The connection is on the rxrpc_idle_client_conns list which is kept in
     order of how soon they'll expire.

A connection in the ACTIVE or CULLED state must have at least one active
call upon it; if in the WAITING state it may have active calls upon it;
other states may not have active calls.

As long as a connection remains active and doesn't get culled, it may
continue to process calls - even if there are connections on the wait
queue.  This simplifies things a bit and reduces the amount of checking we
need do.


There are a couple flags of relevance to the cache:

 (1) EXPOSED - The connection ID got exposed to the world.  If this flag is
     set, an extra ref is added to the connection preventing it from being
     reaped when it has no calls outstanding.  This flag is cleared and the
     ref dropped when a conn is discarded from the idle list.

 (2) DONT_REUSE - The connection should be discarded as soon as possible and
     should not be reused.


This commit also provides a number of new settings:

 (*) /proc/net/rxrpc/max_client_conns

     The maximum number of live client connections.  Above this number, new
     connections get added to the wait list and must wait for an active
     conn to be culled.  Culled connections can be reused, but they will go
     to the back of the wait list and have to wait.

 (*) /proc/net/rxrpc/reap_client_conns

     If the number of desired connections exceeds the maximum above, the
     active connection list will be culled until there are only this many
     left in it.

 (*) /proc/net/rxrpc/idle_conn_expiry

     The normal expiry time for a client connection, provided there are
     fewer than reap_client_conns of them around.

 (*) /proc/net/rxrpc/idle_conn_fast_expiry

     The expedited expiry time, used when there are more than
     reap_client_conns of them around.


Note that I combined the Tx wait queue with the channel grant wait queue to
save space as only one of these should be in use at once.

Note also that, for the moment, the service connection cache still uses the
old connection management code.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-24 15:17:14 +01:00
David Howells
4d028b2c82 rxrpc: Dup the main conn list for the proc interface
The main connection list is used for two independent purposes: primarily it
is used to find connections to reap and secondarily it is used to list
connections in procfs.

Split the procfs list out from the reap list.  This allows us to stop using
the reap list for client connections when they acquire a separate
management strategy from service collections.

The client connections will not be on a management single list, and sometimes
won't be on a management list at all.  This doesn't leave them floating,
however, as they will also be on an rb-tree rooted on the socket so that the
socket can find them to dispatch calls.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-24 15:17:14 +01:00
David Howells
df5d8bf70f rxrpc: Make /proc/net/rxrpc_calls safer
Make /proc/net/rxrpc_calls safer by stashing a copy of the peer pointer in
the rxrpc_call struct and checking in the show routine that the peer
pointer, the socket pointer and the local pointer obtained from the socket
pointer aren't NULL before we use them.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-24 15:15:59 +01:00
David Howells
18bfeba50d rxrpc: Perform terminal call ACK/ABORT retransmission from conn processor
Perform terminal call ACK/ABORT retransmission in the connection processor
rather than in the call processor.  With this change, once last_call is
set, no more incoming packets will be routed to the corresponding call or
any earlier calls on that channel (call IDs must only increase on a channel
on a connection).

Further, if a packet's callNumber is before the last_call ID or a packet is
aimed at successfully completed service call then that packet is discarded
and ignored.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-23 16:02:35 +01:00
David Howells
563ea7d5d4 rxrpc: Calculate serial skew on packet reception
Calculate the serial number skew in the data_ready handler when a packet
has been received and a connection looked up.  The skew is cached in the
sk_buff's priority field.

The connection highest received serial number is updated at this time also.
This can be done without locks or atomic instructions because, at this
point, the code is serialised by the socket.

This generates more accurate skew data because if the packet is offloaded
to a work queue before this is determined, more packets may come in,
bumping the highest serial number and thereby increasing the apparent skew.

This also removes some unnecessary atomic ops.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-23 16:02:35 +01:00
David Howells
f51b448002 rxrpc: Set connection expiry on idle, not put
Set the connection expiry time when a connection becomes idle rather than
doing this in rxrpc_put_connection().  This makes the put path more
efficient (it is likely to be called occasionally whilst a connection has
outstanding calls because active workqueue items needs to be given a ref).

The time is also preset in the connection allocator in case the connection
never gets used.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-23 16:02:35 +01:00
David Howells
df844fd46b rxrpc: Use a tracepoint for skb accounting debugging
Use a tracepoint to log various skb accounting points to help in debugging
refcounting errors.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-23 15:27:24 +01:00
David Howells
01a90a4598 rxrpc: Drop channel number field from rxrpc_call struct
Drop the channel number (channel) field from the rxrpc_call struct to
reduce the size of the call struct.  The field is redundant: if the call is
attached to a connection, the channel can be obtained from there by AND'ing
with RXRPC_CHANNELMASK.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-23 15:27:24 +01:00
David Howells
dabe5a7906 rxrpc: Tidy up the rxrpc_call struct a bit
Do a little tidying of the rxrpc_call struct:

 (1) in_clientflag is no longer compared against the value that's in the
     packet, so keeping it in this form isn't necessary.  Use a flag in
     flags instead and provide a pair of wrapper functions.

 (2) We don't read the epoch value, so that can go.

 (3) Move what remains of the data that were used for hashing up in the
     struct to be with the channel number.

 (4) Get rid of the local pointer.  We can get at this via the socket
     struct and we only use this in the procfs viewer.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-23 15:27:24 +01:00
David Howells
26164e77ca rxrpc: Remove RXRPC_CALL_PROC_BUSY
Remove RXRPC_CALL_PROC_BUSY as work queue items are now 100% non-reentrant.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-23 15:27:23 +01:00
David Howells
372ee16386 rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.

Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released.  The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb.  ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.

To this end, the following changes are made:

 (1) kernel_rxrpc_data_consumed() is added.  This should be called whenever
     an skb is emptied so as to crank the ACK and call states.  This does
     not release the skb, however.  kernel_rxrpc_free_skb() must now be
     called to achieve that.  These together replace
     rxrpc_kernel_data_delivered().

 (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().

     This makes afs_deliver_to_call() easier to work as the skb can simply
     be discarded unconditionally here without trying to work out what the
     return value of the ->deliver() function means.

     The ->deliver() functions can, via afs_data_complete(),
     afs_transfer_reply() and afs_extract_data() mark that an skb has been
     consumed (thereby cranking the state) without the need to
     conditionally free the skb to make sure the state is correct on an
     incoming call for when the call processor tries to send the reply.

 (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
     has finished with a packet and MSG_PEEK isn't set.

 (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().

     Because of this, we no longer need to clear the destructor and put the
     call before we free the skb in cases where we don't want the ACK/call
     state to be cranked.

 (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
     than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
     the delivery function already), and the caller is now responsible for
     producing an abort if that was the last packet.

 (6) There are many bits of unmarshalling code where:

 		ret = afs_extract_data(call, skb, last, ...);
		switch (ret) {
		case 0:		break;
		case -EAGAIN:	return 0;
		default:	return ret;
		}

     is to be found.  As -EAGAIN can now be passed back to the caller, we
     now just return if ret < 0:

 		ret = afs_extract_data(call, skb, last, ...);
		if (ret < 0)
			return ret;

 (7) Checks for trailing data and empty final data packets has been
     consolidated as afs_data_complete().  So:

		if (skb->len > 0)
			return -EBADMSG;
		if (!last)
			return 0;

     becomes:

		ret = afs_data_complete(call, skb, last);
		if (ret < 0)
			return ret;

 (8) afs_transfer_reply() now checks the amount of data it has against the
     amount of data desired and the amount of data in the skb and returns
     an error to induce an abort if we don't get exactly what we want.

Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:

general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G            E   4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>]  [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0  EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS:  0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
 0000000000000006 000000000be04930 0000000000000000 ffff880400000000
 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
 [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6
 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
 [<ffffffff814c928f>] skb_dequeue+0x18/0x61
 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
 [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
 [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
 [<ffffffff81063a3a>] process_one_work+0x29d/0x57c
 [<ffffffff81064ac2>] worker_thread+0x24a/0x385
 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
 [<ffffffff810696f5>] kthread+0xf3/0xfb
 [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-06 00:08:40 -04:00
David Howells
d440a1ce5d rxrpc: Kill off the call hash table
The call hash table is now no longer used as calls are looked up directly
by channel slot on the connection, so kill it off.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 11:23:54 +01:00
David Howells
8496af50eb rxrpc: Use RCU to access a peer's service connection tree
Move to using RCU access to a peer's service connection tree when routing
an incoming packet.  This is done using a seqlock to trigger retrying of
the tree walk if a change happened.

Further, we no longer get a ref on the connection looked up in the
data_ready handler unless we queue the connection's work item - and then
only if the refcount > 0.


Note that I'm avoiding the use of a hash table for service connections
because each service connection is addressed by a 62-bit number
(constructed from epoch and connection ID >> 2) that would allow the client
to engage in bucket stuffing, given knowledge of the hash algorithm.
Peers, however, are hashed as the network address is less controllable by
the client.  The total number of peers will also be limited in a future
commit.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:51:14 +01:00
David Howells
1291e9d108 rxrpc: Move data_ready peer lookup into rxrpc_find_connection()
Move the peer lookup done in input.c by data_ready into
rxrpc_find_connection().

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:51:14 +01:00
David Howells
e8d70ce177 rxrpc: Prune the contents of the rxrpc_conn_proto struct
Prune the contents of the rxrpc_conn_proto struct.  Most of the fields aren't
used anymore.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:51:14 +01:00
David Howells
001c112249 rxrpc: Maintain an extra ref on a conn for the cache list
Overhaul the usage count accounting for the rxrpc_connection struct to make
it easier to implement RCU access from the data_ready handler.

The problem is that currently we're using a lock to prevent the garbage
collector from trying to clean up a connection that we're contemplating
unidling.  We could just stick incoming packets on the connection we find,
but we've then got a problem that we may race when dispatching a work item
to process it as we need to give that a ref to prevent the rxrpc_connection
struct from disappearing in the meantime.

Further, incoming packets may get discarded if attached to an
rxrpc_connection struct that is going away.  Whilst this is not a total
disaster - the client will presumably resend - it would delay processing of
the call.  This would affect the AFS client filesystem's service manager
operation.

To this end:

 (1) We now maintain an extra count on the connection usage count whilst it
     is on the connection list.  This mean it is not in use when its
     refcount is 1.

 (2) When trying to reuse an old connection, we only increment the refcount
     if it is greater than 0.  If it is 0, we replace it in the tree with a
     new candidate connection.

 (3) Two connection flags are added to indicate whether or not a connection
     is in the local's client connection tree (used by sendmsg) or the
     peer's service connection tree (used by data_ready).  This makes sure
     that we don't try and remove a connection if it got replaced.

     The flags are tested under lock with the removal operation to prevent
     the reaper from killing the rxrpc_connection struct whilst someone
     else is trying to effect a replacement.

     This could probably be alleviated by using memory barriers between the
     flag set/test and the rb_tree ops.  The rb_tree op would still need to
     be under the lock, however.

 (4) When trying to reap an old connection, we try to flip the usage count
     from 1 to 0.  If it's not 1 at that point, then it must've come back
     to life temporarily and we ignore it.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:50:04 +01:00
David Howells
d991b4a32f rxrpc: Move peer lookup from call-accept to new-incoming-conn
Move the lookup of a peer from a call that's being accepted into the
function that creates a new incoming connection.  This will allow us to
avoid incrementing the peer's usage count in some cases in future.

Note that I haven't bother to integrate rxrpc_get_addr_from_skb() with
rxrpc_extract_addr_from_skb() as I'm going to delete the former in the very
near future.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:49:57 +01:00
David Howells
7877a4a4bd rxrpc: Split service connection code out into its own file
Split the service-specific connection code out into into its own file.  The
client-specific code has already been split out.  This will leave just the
common code in the original file.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:49:35 +01:00
David Howells
c6d2b8d764 rxrpc: Split client connection code out into its own file
Split the client-specific connection code out into its own file.  It will
behave somewhat differently from the service-specific connection code, so
it makes sense to separate them.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:43:52 +01:00
David Howells
a1399f8bb0 rxrpc: Call channels should have separate call number spaces
Each channel on a connection has a separate, independent number space from
which to allocate callNumber values.  It is entirely possible, for example,
to have a connection with four active calls, each with call number 1.

Note that the callNumber values for any particular channel don't have to
start at 1, but they are supposed to increment monotonically for that
channel from a client's perspective and may not be reused once the call
number is transmitted (until the epoch cycles all the way back round).

Currently, however, call numbers are allocated on a per-connection basis
and, further, are held in an rb-tree.  The rb-tree is redundant as the four
channel pointers in the rxrpc_connection struct are entirely capable of
pointing to all the calls currently in progress on a connection.

To this end, make the following changes:

 (1) Handle call number allocation independently per channel.

 (2) Get rid of the conn->calls rb-tree.  This is overkill as a connection
     may have a maximum of four calls in progress at any one time.  Use the
     pointers in the channels[] array instead, indexed by the channel
     number from the packet.

 (3) For each channel, save the result of the last call that was in
     progress on that channel in conn->channels[] so that the final ACK or
     ABORT packet can be replayed if necessary.  Any call earlier than that
     is just ignored.  If we've seen the next call number in a packet, the
     last one is most definitely defunct.

 (4) When generating a RESPONSE packet for a connection, the call number
     counter for each channel must be included in it.

 (5) When parsing a RESPONSE packet for a connection, the call number
     counters contained therein should be used to set the minimum expected
     call numbers on each channel.

To do in future commits:

 (1) Replay terminal packets based on the last call stored in
     conn->channels[].

 (2) Connections should be retired before the callNumber space on any
     channel runs out.

 (3) A server is expected to disregard or reject any new incoming call that
     has a call number less than the current call number counter.  The call
     number counter for that channel must be advanced to the new call
     number.

     Note that the server cannot just require that the next call that it
     sees on a channel be exactly the call number counter + 1 because then
     there's a scenario that could cause a problem: The client transmits a
     packet to initiate a connection, the network goes out, the server
     sends an ACK (which gets lost), the client sends an ABORT (which also
     gets lost); the network then reconnects, the client then reuses the
     call number for the next call (it doesn't know the server already saw
     the call number), but the server thinks it already has the first
     packet of this call (it doesn't know that the client doesn't know that
     it saw the call number the first time).

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:43:52 +01:00
David Howells
dee46364ce rxrpc: Add RCU destruction for connections and calls
Add RCU destruction for connections and calls as the RCU lookup from the
transport socket data_ready handler is going to come along shortly.

Whilst we're at it, move the cleanup workqueue flushing and RCU barrierage
into the destruction code for the objects that need it (locals and
connections) and add the extra RCU barrier required for connection cleanup.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:43:51 +01:00
David Howells
2c4579e4b1 rxrpc: Move usage count getting into rxrpc_queue_conn()
Rather than calling rxrpc_get_connection() manually before calling
rxrpc_queue_conn(), do it inside the queue wrapper.

This allows us to do some important fixes:

 (1) If the usage count is 0, do nothing.  This prevents connections from
     being reanimated once they're dead.

 (2) If rxrpc_queue_work() fails because the work item is already queued,
     retract the usage count increment which would otherwise be lost.

 (3) Don't take a ref on the connection in the work function.  By passing
     the ref through the work item, this is unnecessary.  Doing it in the
     work function is too late anyway.  Previously, connection-directed
     packets held a ref on the connection, but that's not really the best
     idea.

And another useful changes:

 (*) Don't need to take a refcount on the connection in the data_ready
     handler unless we invoke the connection's work item.  We're using RCU
     there so that's otherwise redundant.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:43:51 +01:00
David Howells
eb9b9d2275 rxrpc: Check that the client conns cache is empty before module removal
Check that the client conns cache is empty before module removal and bug if
not, listing any offending connections that are still present.  Unfortunately,
if there are connections still around, then the transport socket is still
unexpectedly open and active, so we can't just unallocate the connections.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:43:51 +01:00
David Howells
bba304db34 rxrpc: Turn connection #defines into enums and put outside struct def
Turn the connection event and state #define lists into enums and move
outside of the struct definition.

Whilst we're at it, change _SERVER to _SERVICE in those identifiers and add
EV_ into the event name to distinguish them from flags and states.

Also add a symbol indicating the number of states and use that in the state
text array.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:43:51 +01:00
David Howells
5acbee4648 rxrpc: Provide queuing helper functions
Provide queueing helper functions so that the queueing of local and
connection objects can be fixed later.

The issue is that a ref on the object needs to be passed to the work queue,
but the act of queueing the object may fail because the object is already
queued.  Testing the queuedness of an object before hand doesn't work
because there can be a race with someone else trying to queue it.  What
will have to be done is to adjust the refcount depending on the result of
the queue operation.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:43:05 +01:00
Herbert Xu
a263629da5 rxrpc: Avoid using stack memory in SG lists in rxkad
rxkad uses stack memory in SG lists which would not work if stacks were
allocated from vmalloc memory.  In fact, in most cases this isn't even
necessary as the stack memory ends up getting copied over to kmalloc
memory.

This patch eliminates all the unnecessary stack memory uses by supplying
the final destination directly to the crypto API.  In two instances where a
temporary buffer is actually needed we also switch use a scratch area in
the rxrpc_call struct (only one DATA packet will be being secured or
verified at a time).

Finally there is no need to split a split-page buffer into two SG entries
so code dealing with that has been removed.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
2016-07-06 10:43:05 +01:00
David Howells
aa390bbe21 rxrpc: Kill off the rxrpc_transport struct
The rxrpc_transport struct is now redundant, given that the rxrpc_peer
struct is now per peer port rather than per peer host, so get rid of it.

Service connection lists are transferred to the rxrpc_peer struct, as is
the conn_lock.  Previous patches moved the client connection handling out
of the rxrpc_transport struct and discarded the connection bundling code.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-22 14:00:23 +01:00
David Howells
999b69f892 rxrpc: Kill the client connection bundle concept
Kill off the concept of maintaining a bundle of connections to a particular
target service to increase the number of call slots available for any
beyond four for that service (there are four call slots per connection).

This will make cleaning up the connection handling code easier and
facilitate removal of the rxrpc_transport struct.  Bundling can be
reintroduced later if necessary.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-22 09:20:55 +01:00
David Howells
5627cc8b96 rxrpc: Provide more refcount helper functions
Provide refcount helper functions for connections so that the code doesn't
touch local or connection usage counts directly.

Also make it such that local and peer put functions can take a NULL
pointer.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-22 09:17:51 +01:00
David Howells
985a5c824a rxrpc: Make rxrpc_send_packet() take a connection not a transport
Make rxrpc_send_packet() take a connection not a transport as part of the
phasing out of the rxrpc_transport struct.

Whilst we're at it, rename the function to rxrpc_send_data_packet() to
differentiate it from the other packet sending functions.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-22 09:17:51 +01:00
David Howells
4a3388c803 rxrpc: Use IDR to allocate client conn IDs on a machine-wide basis
Use the IDR facility to allocate client connection IDs on a machine-wide
basis so that each client connection has a unique identifier.  When the
connection ID space wraps, we advance the epoch by 1, thereby effectively
having a 62-bit ID space.  The IDR facility is then used to look up client
connections during incoming packet routing instead of using an rbtree
rooted on the transport.

This change allows for the removal of the transport in the future and also
means that client connections can be looked up directly in the data-ready
handler by connection ID.

The ID management code is placed in a new file, conn-client.c, to which all
the client connection-specific code will eventually move.

Note that the IDR tree gets very expensive on memory if the connection IDs
are widely scattered throughout the number space, so we shall need to
retire connections that have, say, an ID more than four times the maximum
number of client conns away from the current allocation point to try and
keep the IDs concentrated.  We will also need to retire connections from an
old epoch.

Also note that, for the moment, a pointer to the transport has to be passed
through into the ID allocation function so that we can take a BH lock to
prevent a locking issue against in-BH lookup of client connections.  This
will go away later when RCU is used for server connections also.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-22 09:10:02 +01:00
David Howells
42886ffe77 rxrpc: Pass sk_buff * rather than rxrpc_host_header * to functions
Pass a pointer to struct sk_buff rather than struct rxrpc_host_header to
functions so that they can in the future get at transport protocol parameters
rather than just RxRPC parameters.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-22 09:10:01 +01:00
David Howells
cc8feb8edd rxrpc: Fix exclusive connection handling
"Exclusive connections" are meant to be used for a single client call and
then scrapped.  The idea is to limit the use of the negotiated security
context.  The current code, however, isn't doing this: it is instead
restricting the socket to a single virtual connection and doing all the
calls over that.

This is changed such that the socket no longer maintains a special virtual
connection over which it will do all the calls, but rather gets a new one
each time a new exclusive call is made.

Further, using a socket option for this is a poor choice.  It should be
done on sendmsg with a control message marker instead so that calls can be
marked exclusive individually.  To that end, add RXRPC_EXCLUSIVE_CALL
which, if passed to sendmsg() as a control message element, will cause the
call to be done on an single-use connection.

The socket option (RXRPC_EXCLUSIVE_CONNECTION) still exists and, if set,
will override any lack of RXRPC_EXCLUSIVE_CALL being specified so that
programs using the setsockopt() will appear to work the same.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-22 09:10:00 +01:00
David Howells
19ffa01c9c rxrpc: Use structs to hold connection params and protocol info
Define and use a structure to hold connection parameters.  This makes it
easier to pass multiple connection parameters around.

Define and use a structure to hold protocol information used to hash a
connection for lookup on incoming packet.  Most of these fields will be
disposed of eventually, including the duplicate local pointer.

Whilst we're at it rename "proto" to "family" when referring to a protocol
family.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-22 09:09:59 +01:00
David Howells
4f95dd78a7 rxrpc: Rework local endpoint management
Rework the local RxRPC endpoint management.

Local endpoint objects are maintained in a flat list as before.  This
should be okay as there shouldn't be more than one per open AF_RXRPC socket
(there can be fewer as local endpoints can be shared if their local service
ID is 0 and they share the same local transport parameters).

Changes:

 (1) Local endpoints may now only be shared if they have local service ID 0
     (ie. they're not being used for listening).

     This prevents a scenario where process A is listening of the Cache
     Manager port and process B contacts a fileserver - which may then
     attempt to send CM requests back to B.  But if A and B are sharing a
     local endpoint, A will get the CM requests meant for B.

 (2) We use a mutex to handle lookups and don't provide RCU-only lookups
     since we only expect to access the list when opening a socket or
     destroying an endpoint.

     The local endpoint object is pointed to by the transport socket's
     sk_user_data for the life of the transport socket - allowing us to
     refer to it directly from the sk_data_ready and sk_error_report
     callbacks.

 (3) atomic_inc_not_zero() now exists and can be used to only share a local
     endpoint if the last reference hasn't yet gone.

 (4) We can remove rxrpc_local_lock - a spinlock that had to be taken with
     BH processing disabled given that we assume sk_user_data won't change
     under us.

 (5) The transport socket is shut down before we clear the sk_user_data
     pointer so that we can be sure that the transport socket's callbacks
     won't be invoked once the RCU destruction is scheduled.

 (6) Local endpoints have a work item that handles both destruction and
     event processing.  The means that destruction doesn't then need to
     wait for event processing.  The event queues can then be cleared after
     the transport socket is shut down.

 (7) Local endpoints are no longer available for resurrection beyond the
     life of the sockets that had them open.  As soon as their last ref
     goes, they are scheduled for destruction and may not have their usage
     count moved from 0.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-15 15:38:17 +01:00
David Howells
875636163b rxrpc: Separate local endpoint event handling out into its own file
Separate local endpoint event handling out into its own file preparatory to
overhauling the object management aspect (which remains in the original
file).

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-15 15:37:12 +01:00
David Howells
f66d749019 rxrpc: Use the peer record to distribute network errors
Use the peer record to distribute network errors rather than the transport
object (which I want to get rid of).  An error from a particular peer
terminates all calls on that peer.

For future consideration:

 (1) For ICMP-induced errors it might be worth trying to extract the RxRPC
     header from the offending packet, if one is returned attached to the
     ICMP packet, to better direct the error.

     This may be overkill, though, since an ICMP packet would be expected
     to be relating to the destination port, machine or network.  RxRPC
     ABORT and BUSY packets give notice at RxRPC level.

 (2) To also abort connection-level communications (such as CHALLENGE
     packets) where indicted by an error - but that requires some revamping
     of the connection event handling first.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-15 10:15:16 +01:00
David Howells
abe89ef0ed rxrpc: Rename rxrpc_UDP_error_report() to rxrpc_error_report()
Rename rxrpc_UDP_error_report() to rxrpc_error_report() as it might get
called for something other than UDP.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-15 10:14:37 +01:00
David Howells
be6e6707f6 rxrpc: Rework peer object handling to use hash table and RCU
Rework peer object handling to use a hash table instead of a flat list and
to use RCU.  Peer objects are no longer destroyed by passing them to a
workqueue to process, but rather are just passed to the RCU garbage
collector as kfree'able objects.

The hash function uses the local endpoint plus all the components of the
remote address, except for the RxRPC service ID.  Peers thus represent a
UDP port on the remote machine as contacted by a UDP port on this machine.

The RCU read lock is used to handle non-creating lookups so that they can
be called from bottom half context in the sk_error_report handler without
having to lock the hash table against modification.
rxrpc_lookup_peer_rcu() *does* take a reference on the peer object as in
the future, this will be passed to a work item for error distribution in
the error_report path and this function will cease being used in the
data_ready path.

Creating lookups are done under spinlock rather than mutex as they might be
set up due to an external stimulus if the local endpoint is a server.

Captured network error messages (ICMP) are handled with respect to this
struct and MTU size and RTT are cached here.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-15 10:12:33 +01:00
David Howells
0d81a51ab9 rxrpc: Update the comments in ar-internal.h to reflect renames
Update the section comments in ar-internal.h that indicate the locations of
the referenced items to reflect the renames done to the .c files in
net/rxrpc/.

This also involves some rearrangement to reflect keep the sections in order
of filename.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-13 13:38:51 +01:00
David Howells
0e119b41b7 rxrpc: Limit the listening backlog
Limit the socket incoming call backlog queue size so that a remote client
can't pump in sufficient new calls that the server runs out of memory.  Note
that this is partially theoretical at the moment since whilst the number of
calls is limited, the number of packets trying to set up new calls is not.
This will be addressed in a later patch.

If the caller of listen() specifies a backlog INT_MAX, then they get the
current maximum; anything else greater than max_backlog or anything
negative incurs EINVAL.

The limit on the maximum queue size can be set by:

	echo N >/proc/sys/net/rxrpc/max_backlog

where 4<=N<=32.

Further, set the default backlog to 0, requiring listen() to be called
before we start actually queueing new calls.  Whilst this kind of is a
change in the UAPI, the caller can't actually *accept* new calls anyway
unless they've first called listen() to put the socket into the LISTENING
state - thus the aforementioned new calls would otherwise just sit there,
eating up kernel memory.  (Note that sockets that don't have a non-zero
service ID bound don't get incoming calls anyway.)

Given that the default backlog is now 0, make the AFS filesystem call
kernel_listen() to set the maximum backlog for itself.

Possible improvements include:

 (1) Trimming a too-large backlog to max_backlog when listen is called.

 (2) Trimming the backlog value whenever the value is used so that changes
     to max_backlog are applied to an open socket automatically.  Note that
     the AFS filesystem opens one socket and keeps it open for extended
     periods, so would miss out on changes to max_backlog.

 (3) Having a separate setting for the AFS filesystem.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-10 18:14:47 -07:00
David Howells
2341e07757 rxrpc: Simplify connect() implementation and simplify sendmsg() op
Simplify the RxRPC connect() implementation.  It will just note the
destination address it is given, and if a sendmsg() comes along with no
address, this will be assigned as the address.  No transport struct will be
held internally, which will allow us to remove this later.

Simplify sendmsg() also.  Whilst a call is active, userspace refers to it
by a private unique user ID specified in a control message.  When sendmsg()
sees a user ID that doesn't map to an extant call, it creates a new call
for that user ID and attempts to add it.  If, when we try to add it, the
user ID is now registered, we now reject the message with -EEXIST.  We
should never see this situation unless two threads are racing, trying to
create a call with the same ID - which would be an error.

It also isn't required to provide sendmsg() with an address - provided the
control message data holds a user ID that maps to a currently active call.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-09 23:30:12 -07:00
Joe Perches
9b6d53985f rxrpc: Use pr_<level> and pr_fmt, reduce object size a few KB
Use the more common kernel logging style and reduce object size.

The logging message prefix changes from a mixture of
"RxRPC:" and "RXRPC:" to "af_rxrpc: ".

$ size net/rxrpc/built-in.o*
   text	   data	    bss	    dec	    hex	filename
  64172	   1972	   8304	  74448	  122d0	net/rxrpc/built-in.o.new
  67512	   1972	   8304	  77788	  12fdc	net/rxrpc/built-in.o.old

Miscellanea:

o Consolidate the ASSERT macros to use a single pr_err call with
  decimal and hexadecimal output and a stringified #OP argument

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-03 19:41:31 -04:00
David Howells
e0e4d82f3b rxrpc: Create a null security type and get rid of conditional calls
Create a null security type for security index 0 and get rid of all
conditional calls to the security operations.  We expect normally to be
using security, so this should be of little negative impact.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-11 15:34:41 -04:00