Commit Graph

969 Commits

Author SHA1 Message Date
Vincent Guittot
bef69dd878 sched/cpufreq: Move the cfs_rq_util_change() call to cpufreq_update_util()
update_cfs_rq_load_avg() calls cfs_rq_util_change() every time PELT decays,
which might be inefficient when the cpufreq driver has rate limitation.

When a task is attached on a CPU, we have this call path:

update_load_avg()
  update_cfs_rq_load_avg()
    cfs_rq_util_change -- > trig frequency update
  attach_entity_load_avg()
    cfs_rq_util_change -- > trig frequency update

The 1st frequency update will not take into account the utilization of the
newly attached task and the 2nd one might be discarded because of rate
limitation of the cpufreq driver.

update_cfs_rq_load_avg() is only called by update_blocked_averages()
and update_load_avg() so we can move the call to
cfs_rq_util_change/cpufreq_update_util() into these two functions.

It's also interesting to note that update_load_avg() already calls
cfs_rq_util_change() directly for the !SMP case.

This change will also ensure that cpufreq_update_util() is called even
when there is no more CFS rq in the leaf_cfs_rq_list to update, but only
IRQ, RT or DL PELT signals.

[ mingo: Minor updates. ]

Reported-by: Doug Smythies <dsmythies@telus.net>
Tested-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@redhat.com
Cc: linux-pm@vger.kernel.org
Cc: mgorman@suse.de
Cc: rostedt@goodmis.org
Cc: sargun@sargun.me
Cc: srinivas.pandruvada@linux.intel.com
Cc: tj@kernel.org
Cc: xiexiuqi@huawei.com
Cc: xiezhipeng1@huawei.com
Fixes: 039ae8bcf7 ("sched/fair: Fix O(nr_cgroups) in the load balancing path")
Link: https://lkml.kernel.org/r/1574083279-799-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-18 14:42:26 +01:00
Ingo Molnar
b21feab0b8 Linux 5.4-rc8
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl3RzgkeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGN18H/0JZbfIpy8/4Irol
 0va7Aj2fBi1a5oxfqYsMKN0u3GKbN3OV9tQ+7w1eBNGvL72TGadgVTzTY+Im7A9U
 UjboAc7jDPCG+YhIwXFufMiIAq5jDIj6h0LDas7ALsMfsnI/RhTwgNtLTAkyI3dH
 YV/6ljFULwueJHCxzmrYbd1x39PScj3kCNL2pOe6On7rXMKOemY/nbbYYISxY30E
 GMgKApSS+li7VuSqgrKoq5Qaox26LyR2wrXB1ij4pqEJ9xgbnKRLdHuvXZnE+/5p
 46EMirt+yeSkltW3d2/9MoCHaA76ESzWMMDijLx7tPgoTc3RB3/3ZLsm3rYVH+cR
 cRlNNSk=
 =0+Cg
 -----END PGP SIGNATURE-----

Merge tag 'v5.4-rc8' into sched/core, to pick up fixes and dependencies

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-18 14:41:02 +01:00
Vincent Guittot
a9723389cc sched/fair: Add comments for group_type and balancing at SD_NUMA level
Add comments to describe each state of goup_type and to add some details
about the load balance at NUMA level.

[ Valentin Schneider: Updates to the comments. ]
[ mingo: Other updates to the comments. ]

Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1573570243-1903-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-18 14:33:12 +01:00
Vincent Guittot
3318544b72 sched/fair: Fix rework of find_idlest_group()
The task, for which the scheduler looks for the idlest group of CPUs, must
be discounted from all statistics in order to get a fair comparison
between groups. This includes utilization, load, nr_running and idle_cpus.

Such unfairness can be easily highlighted with the unixbench execl 1 task.
This test continuously call execve() and the scheduler looks for the idlest
group/CPU on which it should place the task. Because the task runs on the
local group/CPU, the latter seems already busy even if there is nothing
else running on it. As a result, the scheduler will always select another
group/CPU than the local one.

This recovers most of the performance regression on my system from the
recent load-balancer rewrite.

[ mingo: Minor cleanups. ]

Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Fixes: 57abff067a ("sched/fair: Rework find_idlest_group()")
Link: https://lkml.kernel.org/r/1571762798-25900-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-18 14:11:56 +01:00
Vincent Guittot
b90f7c9d21 sched/pelt: Fix update of blocked PELT ordering
update_cfs_rq_load_avg() can call cpufreq_update_util() to trigger an
update of the frequency. Make sure that RT, DL and IRQ PELT signals have
been updated before calling cpufreq.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: dsmythies@telus.net
Cc: juri.lelli@redhat.com
Cc: mgorman@suse.de
Cc: rostedt@goodmis.org
Fixes: 371bf42732 ("sched/rt: Add rt_rq utilization tracking")
Fixes: 3727e0e163 ("sched/dl: Add dl_rq utilization tracking")
Fixes: 91c27493e7 ("sched/irq: Add IRQ utilization tracking")
Link: https://lkml.kernel.org/r/1572434309-32512-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-13 08:01:31 +01:00
Peter Zijlstra
a0e813f26e sched/core: Further clarify sched_class::set_next_task()
It turns out there really is something special to the first
set_next_task() invocation. In specific the 'change' pattern really
should not cause balance callbacks.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Fixes: f95d4eaee6 ("sched/{rt,deadline}: Fix set_next_task vs pick_next_task")
Link: https://lkml.kernel.org/r/20191108131909.775434698@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-11 08:35:21 +01:00
Peter Zijlstra
2eeb01a28c sched/fair: Use mul_u32_u32()
While reading the code I encountered another site where we should be
using mul_u32_u32() because GCC just won't take a hint.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.717931380@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-11 08:35:20 +01:00
Peter Zijlstra
98c2f700ed sched/core: Simplify sched_class::pick_next_task()
Now that the indirect class call never uses the last two arguments of
pick_next_task(), remove them.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.660595546@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-11 08:35:20 +01:00
Peter Zijlstra
5d7d605642 sched/core: Optimize pick_next_task()
Ever since we moved the sched_class definitions into their own files,
the constant expression {fair,idle}_sched_class.pick_next_task() is
not in fact a compile time constant anymore and results in an indirect
call (barring LTO).

Fix that by exposing pick_next_task_{fair,idle}() directly, this gets
rid of the indirect call (and RETPOLINE) on the fast path.

Also remove the unlikely() from the idle case, it is in fact /the/ way
we select idle -- and that is a very common thing to do.

Performance for will-it-scale/sched_yield improves by 2% (as reported
by 0-day).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.603037345@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-11 08:35:19 +01:00
Peter Zijlstra
7277a34c6b sched/fair: Better document newidle_balance()
Whilst chasing the pick_next_task() race, there was some confusion
about the newidle_balance() return values. Document them.

[ mingo: Minor edits. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.488364308@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-11 08:35:18 +01:00
Ingo Molnar
6d5a763c30 Linux 5.4-rc7
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl3IqJQeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGOiUH+gOEDwid5OODaFAd
 CggXugdFIlBZefKqGVNW5sjgX8pxFWHXuEMC8iNb6QXtQZdFrI6LFf9hhUDmzQtm
 6y1LPxxEiTZjObMEsBNylb7tyzgujFHcAlp0Zro3w/HLCqmYTSP3FF46i2u6KZfL
 XhkpM4X7R7qxlfpdhlfESv/ElRGocZe6SwXfC7pcPo5flFcmkdu9ijqhNd/6CZ/h
 Nf9rTsD/wEDVUelFbgVN+LJzlaB0tsyc4Zbof07n8OsFZjhdEOop8gfM/kTBLcyY
 6bh66SfDScdsNnC/l8csbPjSZRx+i+nQs67DyhGNnsSAFgHBZdC4Tb/2mDCwhCLR
 dUvuYZc=
 =1N6F
 -----END PGP SIGNATURE-----

Merge tag 'v5.4-rc7' into sched/core, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-11 08:34:59 +01:00
Peter Zijlstra
6e2df0581f sched: Fix pick_next_task() vs 'change' pattern race
Commit 67692435c4 ("sched: Rework pick_next_task() slow-path")
inadvertly introduced a race because it changed a previously
unexplored dependency between dropping the rq->lock and
sched_class::put_prev_task().

The comments about dropping rq->lock, in for example
newidle_balance(), only mentions the task being current and ->on_cpu
being set. But when we look at the 'change' pattern (in for example
sched_setnuma()):

	queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
	running = task_current(rq, p); /* rq->curr == p */

	if (queued)
		dequeue_task(...);
	if (running)
		put_prev_task(...);

	/* change task properties */

	if (queued)
		enqueue_task(...);
	if (running)
		set_next_task(...);

It becomes obvious that if we do this after put_prev_task() has
already been called on @p, things go sideways. This is exactly what
the commit in question allows to happen when it does:

	prev->sched_class->put_prev_task(rq, prev, rf);
	if (!rq->nr_running)
		newidle_balance(rq, rf);

The newidle_balance() call will drop rq->lock after we've called
put_prev_task() and that allows the above 'change' pattern to
interleave and mess up the state.

Furthermore, it turns out we lost the RT-pull when we put the last DL
task.

Fix both problems by extracting the balancing from put_prev_task() and
doing a multi-class balance() pass before put_prev_task().

Fixes: 67692435c4 ("sched: Rework pick_next_task() slow-path")
Reported-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Quentin Perret <qperret@google.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
2019-11-08 22:34:14 +01:00
Patrick Bellasi
b8c9636140 sched/fair/util_est: Implement faster ramp-up EWMA on utilization increases
The estimated utilization for a task:

   util_est = max(util_avg, est.enqueue, est.ewma)

is defined based on:

 - util_avg: the PELT defined utilization
 - est.enqueued: the util_avg at the end of the last activation
 - est.ewma:     a exponential moving average on the est.enqueued samples

According to this definition, when a task suddenly changes its bandwidth
requirements from small to big, the EWMA will need to collect multiple
samples before converging up to track the new big utilization.

This slow convergence towards bigger utilization values is not
aligned to the default scheduler behavior, which is to optimize for
performance. Moreover, the est.ewma component fails to compensate for
temporarely utilization drops which spans just few est.enqueued samples.

To let util_est do a better job in the scenario depicted above, change
its definition by making util_est directly follow upward motion and
only decay the est.ewma on downward.

Signed-off-by: Patrick Bellasi <patrick.bellasi@matbug.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Douglas Raillard <douglas.raillard@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <qperret@google.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191023205630.14469-1-patrick.bellasi@matbug.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-29 10:01:07 +01:00
Vincent Guittot
57abff067a sched/fair: Rework find_idlest_group()
The slow wake up path computes per sched_group statisics to select the
idlest group, which is quite similar to what load_balance() is doing
for selecting busiest group. Rework find_idlest_group() to classify the
sched_group and select the idlest one following the same steps as
load_balance().

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-12-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:55 +02:00
Vincent Guittot
fc1273f4ce sched/fair: Optimize find_idlest_group()
find_idlest_group() now reads CPU's load_avg in two different ways.

Consolidate the function to read and use load_avg only once and simplify
the algorithm to only look for the group with lowest load_avg.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-11-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:55 +02:00
Vincent Guittot
11f10e5420 sched/fair: Use load instead of runnable load in wakeup path
Runnable load was originally introduced to take into account the case where
blocked load biases the wake up path which may end to select an overloaded
CPU with a large number of runnable tasks instead of an underutilized
CPU with a huge blocked load.

Tha wake up path now starts looking for idle CPUs before comparing
runnable load and it's worth aligning the wake up path with the
load_balance() logic.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-10-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:55 +02:00
Vincent Guittot
c63be7be59 sched/fair: Use utilization to select misfit task
Utilization is used to detect a misfit task but the load is then used to
select the task on the CPU which can lead to select a small task with
high weight instead of the task that triggered the misfit migration.

Check that task can't fit the CPU's capacity when selecting the misfit
task instead of using the load.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/1571405198-27570-9-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:54 +02:00
Vincent Guittot
2ab4092fc8 sched/fair: Spread out tasks evenly when not overloaded
When there is only one CPU per group, using the idle CPUs to evenly spread
tasks doesn't make sense and nr_running is a better metrics.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-8-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:54 +02:00
Vincent Guittot
b0fb1eb4f0 sched/fair: Use load instead of runnable load in load_balance()
'runnable load' was originally introduced to take into account the case
where blocked load biases the load balance decision which was selecting
underutilized groups with huge blocked load whereas other groups were
overloaded.

The load is now only used when groups are overloaded. In this case,
it's worth being conservative and taking into account the sleeping
tasks that might wake up on the CPU.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:54 +02:00
Vincent Guittot
5e23e47443 sched/fair: Use rq->nr_running when balancing load
CFS load_balance() only takes care of CFS tasks whereas CPUs can be used by
other scheduling classes. Typically, a CFS task preempted by an RT or deadline
task will not get a chance to be pulled by another CPU because
load_balance() doesn't take into account tasks from other classes.
Add sum of nr_running in the statistics and use it to detect such
situations.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-6-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:54 +02:00
Vincent Guittot
0b0695f2b3 sched/fair: Rework load_balance()
The load_balance() algorithm contains some heuristics which have become
meaningless since the rework of the scheduler's metrics like the
introduction of PELT.

Furthermore, load is an ill-suited metric for solving certain task
placement imbalance scenarios.

For instance, in the presence of idle CPUs, we should simply try to get at
least one task per CPU, whereas the current load-based algorithm can actually
leave idle CPUs alone simply because the load is somewhat balanced.

The current algorithm ends up creating virtual and meaningless values like
the avg_load_per_task or tweaks the state of a group to make it overloaded
whereas it's not, in order to try to migrate tasks.

load_balance() should better qualify the imbalance of the group and clearly
define what has to be moved to fix this imbalance.

The type of sched_group has been extended to better reflect the type of
imbalance. We now have:

	group_has_spare
	group_fully_busy
	group_misfit_task
	group_asym_packing
	group_imbalanced
	group_overloaded

Based on the type of sched_group, load_balance now sets what it wants to
move in order to fix the imbalance. It can be some load as before but also
some utilization, a number of task or a type of task:

	migrate_task
	migrate_util
	migrate_load
	migrate_misfit

This new load_balance() algorithm fixes several pending wrong tasks
placement:

 - the 1 task per CPU case with asymmetric system
 - the case of cfs task preempted by other class
 - the case of tasks not evenly spread on groups with spare capacity

Also the load balance decisions have been consolidated in the 3 functions
below after removing the few bypasses and hacks of the current code:

 - update_sd_pick_busiest() select the busiest sched_group.
 - find_busiest_group() checks if there is an imbalance between local and
   busiest group.
 - calculate_imbalance() decides what have to be moved.

Finally, the now unused field total_running of struct sd_lb_stats has been
removed.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-5-git-send-email-vincent.guittot@linaro.org
[ Small readability and spelling updates. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:53 +02:00
Vincent Guittot
fcf0553db6 sched/fair: Remove meaningless imbalance calculation
Clean up load_balance() and remove meaningless calculation and fields before
adding a new algorithm.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:53 +02:00
Vincent Guittot
a349834703 sched/fair: Rename sg_lb_stats::sum_nr_running to sum_h_nr_running
Rename sum_nr_running to sum_h_nr_running because it effectively tracks
cfs->h_nr_running so we can use sum_nr_running to track rq->nr_running
when needed.

There are no functional changes.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: srikar@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/1571405198-27570-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:53 +02:00
Vincent Guittot
490ba971d8 sched/fair: Clean up asym packing
Clean up asym packing to follow the default load balance behavior:

- classify the group by creating a group_asym_packing field.
- calculate the imbalance in calculate_imbalance() instead of bypassing it.

We don't need to test twice same conditions anymore to detect asym packing
and we consolidate the calculation of imbalance in calculate_imbalance().

There is no functional changes.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-21 09:40:53 +02:00
Xuewei Zhang
4929a4e6fa sched/fair: Scale bandwidth quota and period without losing quota/period ratio precision
The quota/period ratio is used to ensure a child task group won't get
more bandwidth than the parent task group, and is calculated as:

  normalized_cfs_quota() = [(quota_us << 20) / period_us]

If the quota/period ratio was changed during this scaling due to
precision loss, it will cause inconsistency between parent and child
task groups.

See below example:

A userspace container manager (kubelet) does three operations:

 1) Create a parent cgroup, set quota to 1,000us and period to 10,000us.
 2) Create a few children cgroups.
 3) Set quota to 1,000us and period to 10,000us on a child cgroup.

These operations are expected to succeed. However, if the scaling of
147/128 happens before step 3, quota and period of the parent cgroup
will be changed:

  new_quota: 1148437ns,   1148us
 new_period: 11484375ns, 11484us

And when step 3 comes in, the ratio of the child cgroup will be
104857, which will be larger than the parent cgroup ratio (104821),
and will fail.

Scaling them by a factor of 2 will fix the problem.

Tested-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Xuewei Zhang <xueweiz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Fixes: 2e8e192263 ("sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup")
Link: https://lkml.kernel.org/r/20191004001243.140897-1-xueweiz@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-09 12:38:02 +02:00
Quentin Perret
4892f51ad5 sched/fair: Avoid redundant EAS calculation
The EAS wake-up path computes the system energy for several CPU
candidates: the CPU with maximum spare capacity in each performance
domain, and the prev_cpu. However, if prev_cpu also happens to be the
CPU with maximum spare capacity in its performance domain, the energy
calculation is still done twice, unnecessarily.

Add a condition to filter out this corner case before doing the energy
calculation.

Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Quentin Perret <qperret@qperret.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: qais.yousef@arm.com
Cc: rjw@rjwysocki.net
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Fixes: eb92692b25 ("sched/fair: Speed-up energy-aware wake-ups")
Link: https://lkml.kernel.org/r/20190920094115.GA11503@qperret.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-25 17:42:32 +02:00
Qian Cai
763a9ec06c sched/fair: Fix -Wunused-but-set-variable warnings
Commit:

   de53fd7aed ("sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices")

introduced a few compilation warnings:

  kernel/sched/fair.c: In function '__refill_cfs_bandwidth_runtime':
  kernel/sched/fair.c:4365:6: warning: variable 'now' set but not used [-Wunused-but-set-variable]
  kernel/sched/fair.c: In function 'start_cfs_bandwidth':
  kernel/sched/fair.c:4992:6: warning: variable 'overrun' set but not used [-Wunused-but-set-variable]

Also, __refill_cfs_bandwidth_runtime() does no longer update the
expiration time, so fix the comments accordingly.

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Dave Chiluk <chiluk+linux@indeed.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pauld@redhat.com
Fixes: de53fd7aed ("sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices")
Link: https://lkml.kernel.org/r/1566326455-8038-1-git-send-email-cai@lca.pw
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-25 17:42:31 +02:00
Eric W. Biederman
154abafc68 tasks, sched/core: With a grace period after finish_task_switch(), remove unnecessary code
Remove work arounds that were written before there was a grace period
after tasks left the runqueue in finish_task_switch().

In particular now that there tasks exiting the runqueue exprience
a RCU grace period none of the work performed by task_rcu_dereference()
excpet the rcu_dereference() is necessary so replace task_rcu_dereference()
with rcu_dereference().

Remove the code in rcuwait_wait_event() that checks to ensure the current
task has not exited.  It is no longer necessary as it is guaranteed
that any running task will experience a RCU grace period after it
leaves the run queueue.

Remove the comment in rcuwait_wake_up() as it is no longer relevant.

Ref: 8f95c90ceb ("sched/wait, RCU: Introduce rcuwait machinery")
Ref: 150593bf86 ("sched/api: Introduce task_rcu_dereference() and try_get_task_struct()")
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/87lfurdpk9.fsf_-_@x220.int.ebiederm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-25 17:42:29 +02:00
Qian Cai
dac9f027b1 sched/fair: Remove unused cfs_rq_clock_task() function
cfs_rq_clock_task() was first introduced and used in:

  f1b17280ef ("sched: Maintain runnable averages across throttled periods")

Over time its use has been graduately removed by the following commits:

  d31b1a66cb ("sched/fair: Factorize PELT update")
  2312729688 ("sched/fair: Update scale invariance of PELT")

Today, there is no single user left, so it can be safely removed.

Found via the -Wunused-function build warning.

Signed-off-by: Qian Cai <cai@lca.pw>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/1568668775-2127-1-git-send-email-cai@lca.pw
[ Rewrote the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-17 09:55:02 +02:00
Linus Torvalds
7e67a85999 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:

 - MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
   Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
   Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.

   As perf and the scheduler is getting bigger and more complex,
   document the status quo of current responsibilities and interests,
   and spread the review pain^H^H^H^H fun via an increase in the Cc:
   linecount generated by scripts/get_maintainer.pl. :-)

 - Add another series of patches that brings the -rt (PREEMPT_RT) tree
   closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
   into a new CONFIG_PREEMPTION category that will allow the eventual
   introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
   to go though.

 - Extend the CPU cgroup controller with uclamp.min and uclamp.max to
   allow the finer shaping of CPU bandwidth usage.

 - Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).

 - Improve the behavior of high CPU count, high thread count
   applications running under cpu.cfs_quota_us constraints.

 - Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.

 - Improve CPU isolation housekeeping CPU allocation NUMA locality.

 - Fix deadline scheduler bandwidth calculations and logic when cpusets
   rebuilds the topology, or when it gets deadline-throttled while it's
   being offlined.

 - Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
   setscheduler() system calls without creating global serialization.
   Add new synchronization between cpuset topology-changing events and
   the deadline acceptance tests in setscheduler(), which were broken
   before.

 - Rework the active_mm state machine to be less confusing and more
   optimal.

 - Rework (simplify) the pick_next_task() slowpath.

 - Improve load-balancing on AMD EPYC systems.

 - ... and misc cleanups, smaller fixes and improvements - please see
   the Git log for more details.

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
  sched/psi: Correct overly pessimistic size calculation
  sched/fair: Speed-up energy-aware wake-ups
  sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
  sched/uclamp: Update CPU's refcount on TG's clamp changes
  sched/uclamp: Use TG's clamps to restrict TASK's clamps
  sched/uclamp: Propagate system defaults to the root group
  sched/uclamp: Propagate parent clamps
  sched/uclamp: Extend CPU's cgroup controller
  sched/topology: Improve load balancing on AMD EPYC systems
  arch, ia64: Make NUMA select SMP
  sched, perf: MAINTAINERS update, add submaintainers and reviewers
  sched/fair: Use rq_lock/unlock in online_fair_sched_group
  cpufreq: schedutil: fix equation in comment
  sched: Rework pick_next_task() slow-path
  sched: Allow put_prev_task() to drop rq->lock
  sched/fair: Expose newidle_balance()
  sched: Add task_struct pointer to sched_class::set_curr_task
  sched: Rework CPU hotplug task selection
  sched/{rt,deadline}: Fix set_next_task vs pick_next_task
  sched: Fix kerneldoc comment for ia64_set_curr_task
  ...
2019-09-16 17:25:49 -07:00
Ingo Molnar
563c4f85f9 Merge branch 'sched/rt' into sched/core, to pick up -rt changes
Pick up the first couple of patches working towards PREEMPT_RT.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-16 14:05:04 +02:00
Quentin Perret
eb92692b25 sched/fair: Speed-up energy-aware wake-ups
EAS computes the energy impact of migrating a waking task when deciding
on which CPU it should run. However, the current approach is known to
have a high algorithmic complexity, which can result in prohibitively
high wake-up latencies on systems with complex energy models, such as
systems with per-CPU DVFS. On such systems, the algorithm complexity is
in O(n^2) (ignoring the cost of searching for performance states in the
EM) with 'n' the number of CPUs.

To address this, re-factor the EAS wake-up path to compute the energy
'delta' (with and without the task) on a per-performance domain basis,
rather than system-wide, which brings the complexity down to O(n).

No functional changes intended.

Test results
~~~~~~~~~~~~

* Setup: Tested on a Google Pixel 3, with a Snapdragon 845 (4+4 CPUs,
  A55/A75). Base kernel is 5.3-rc5 + Pixel3 specific patches. Android
  userspace, no graphics.

* Test case:  Run a periodic rt-app task, with 16ms period, ramping down
  from 70% to 10%, in 5% steps of 500 ms each (json avail. at [1]).
  Frequencies of all CPUs are pinned to max (using scaling_min_freq
  CPUFreq sysfs entries) to reduce variability. The time to run
  select_task_rq_fair() is measured using the function profiler
  (/sys/kernel/debug/tracing/trace_stat/function*). See the test script
  for more details [2].

Test 1:

I hacked the DT to 'fake' per-CPU DVFS. That is, we end up with one
CPUFreq policy per CPU (8 policies in total). Since all frequencies are
pinned to max for the test, this should have no impact on the actual
frequency selection, but it does in the EAS calculation.

      +---------------------------+----------------------------------+
      | Without patch             | With patch                       |
+-----+-----+----------+----------+-----+-----------------+----------+
| CPU | Hit | Avg (us) | s^2 (us) | Hit | Avg (us)        | s^2 (us) |
|-----+-----+----------+----------+-----+-----------------+----------+
|  0  | 274 | 38.303   | 1750.239 | 401 | 14.126 (-63.1%) | 146.625  |
|  1  | 197 | 49.529   | 1695.852 | 314 | 16.135 (-67.4%) | 167.525  |
|  2  | 142 | 34.296   | 1758.665 | 302 | 14.133 (-58.8%) | 130.071  |
|  3  | 172 | 31.734   | 1490.975 | 641 | 14.637 (-53.9%) | 139.189  |
|  4  | 316 | 7.834    | 178.217  | 425 | 5.413  (-30.9%) | 20.803   |
|  5  | 447 | 8.424    | 144.638  | 556 | 5.929  (-29.6%) | 27.301   |
|  6  | 581 | 14.886   | 346.793  | 456 | 5.711  (-61.6%) | 23.124   |
|  7  | 456 | 10.005   | 211.187  | 997 | 4.708  (-52.9%) | 21.144   |
+-----+-----+----------+----------+-----+-----------------+----------+
             * Hit, Avg and s^2 are as reported by the function profiler

Test 2:
I also ran the same test with a normal DT, with 2 CPUFreq policies, to
see if this causes regressions in the most common case.

      +---------------------------+----------------------------------+
      | Without patch             | With patch                       |
+-----+-----+----------+----------+-----+-----------------+----------+
| CPU | Hit | Avg (us) | s^2 (us) | Hit | Avg (us)        | s^2 (us) |
|-----+-----+----------+----------+-----+-----------------+----------+
|  0  | 345 | 22.184   | 215.321  | 580 | 18.635 (-16.0%) | 146.892  |
|  1  | 358 | 18.597   | 200.596  | 438 | 12.934 (-30.5%) | 104.604  |
|  2  | 359 | 25.566   | 200.217  | 397 | 10.826 (-57.7%) | 74.021   |
|  3  | 362 | 16.881   | 200.291  | 718 | 11.455 (-32.1%) | 102.280  |
|  4  | 457 | 3.822    | 9.895    | 757 | 4.616  (+20.8%) | 13.369   |
|  5  | 344 | 4.301    | 7.121    | 594 | 5.320  (+23.7%) | 18.798   |
|  6  | 472 | 4.326    | 7.849    | 464 | 5.648  (+30.6%) | 22.022   |
|  7  | 331 | 4.630    | 13.937   | 408 | 5.299  (+14.4%) | 18.273   |
+-----+-----+----------+----------+-----+-----------------+----------+
             * Hit, Avg and s^2 are as reported by the function profiler

In addition to these two tests, I also ran 50 iterations of the Lisa
EAS functional test suite [3] with this patch applied on Arm Juno r0,
Arm Juno r2, Arm TC2 and Hikey960, and could not see any regressions
(all EAS functional tests are passing).

 [1] https://paste.debian.net/1100055/
 [2] https://paste.debian.net/1100057/
 [3] https://github.com/ARM-software/lisa/blob/master/lisa/tests/scheduler/eas_behaviour.py

Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: qais.yousef@arm.com
Cc: qperret@qperret.net
Cc: rjw@rjwysocki.net
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190912094404.13802-1-qperret@qperret.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-13 07:45:17 +02:00
Liangyan
5e2d2cc258 sched/fair: Don't assign runtime for throttled cfs_rq
do_sched_cfs_period_timer() will refill cfs_b runtime and call
distribute_cfs_runtime to unthrottle cfs_rq, sometimes cfs_b->runtime
will allocate all quota to one cfs_rq incorrectly, then other cfs_rqs
attached to this cfs_b can't get runtime and will be throttled.

We find that one throttled cfs_rq has non-negative
cfs_rq->runtime_remaining and cause an unexpetced cast from s64 to u64
in snippet:

  distribute_cfs_runtime() {
    runtime = -cfs_rq->runtime_remaining + 1;
  }

The runtime here will change to a large number and consume all
cfs_b->runtime in this cfs_b period.

According to Ben Segall, the throttled cfs_rq can have
account_cfs_rq_runtime called on it because it is throttled before
idle_balance, and the idle_balance calls update_rq_clock to add time
that is accounted to the task.

This commit prevents cfs_rq to be assgined new runtime if it has been
throttled until that distribute_cfs_runtime is called.

Signed-off-by: Liangyan <liangyan.peng@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: shanpeic@linux.alibaba.com
Cc: stable@vger.kernel.org
Cc: xlpang@linux.alibaba.com
Fixes: d3d9dc3302 ("sched: Throttle entities exceeding their allowed bandwidth")
Link: https://lkml.kernel.org/r/20190826121633.6538-1-liangyan.peng@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-03 08:55:07 +02:00
Phil Auld
a46d14eca7 sched/fair: Use rq_lock/unlock in online_fair_sched_group
Enabling WARN_DOUBLE_CLOCK in /sys/kernel/debug/sched_features causes
warning to fire in update_rq_clock. This seems to be caused by onlining
a new fair sched group not using the rq lock wrappers.

  [] rq->clock_update_flags & RQCF_UPDATED
  [] WARNING: CPU: 5 PID: 54385 at kernel/sched/core.c:210 update_rq_clock+0xec/0x150

  [] Call Trace:
  []  online_fair_sched_group+0x53/0x100
  []  cpu_cgroup_css_online+0x16/0x20
  []  online_css+0x1c/0x60
  []  cgroup_apply_control_enable+0x231/0x3b0
  []  cgroup_mkdir+0x41b/0x530
  []  kernfs_iop_mkdir+0x61/0xa0
  []  vfs_mkdir+0x108/0x1a0
  []  do_mkdirat+0x77/0xe0
  []  do_syscall_64+0x55/0x1d0
  []  entry_SYSCALL_64_after_hwframe+0x44/0xa9

Using the wrappers in online_fair_sched_group instead of the raw locking
removes this warning.

[ tglx: Use rq_*lock_irq() ]

Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20190801133749.11033-1-pauld@redhat.com
2019-08-12 14:45:34 +02:00
Peter Zijlstra
67692435c4 sched: Rework pick_next_task() slow-path
Avoid the RETRY_TASK case in the pick_next_task() slow path.

By doing the put_prev_task() early, we get the rt/deadline pull done,
and by testing rq->nr_running we know if we need newidle_balance().

This then gives a stable state to pick a task from.

Since the fast-path is fair only; it means the other classes will
always have pick_next_task(.prev=NULL, .rf=NULL) and we can simplify.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/aa34d24b36547139248f32a30138791ac6c02bd6.1559129225.git.vpillai@digitalocean.com
2019-08-08 09:09:31 +02:00
Peter Zijlstra
5f2a45fc9e sched: Allow put_prev_task() to drop rq->lock
Currently the pick_next_task() loop is convoluted and ugly because of
how it can drop the rq->lock and needs to restart the picking.

For the RT/Deadline classes, it is put_prev_task() where we do
balancing, and we could do this before the picking loop. Make this
possible.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/e4519f6850477ab7f3d257062796e6425ee4ba7c.1559129225.git.vpillai@digitalocean.com
2019-08-08 09:09:31 +02:00
Peter Zijlstra
5ba553eff0 sched/fair: Expose newidle_balance()
For pick_next_task_fair() it is the newidle balance that requires
dropping the rq->lock; provided we do put_prev_task() early, we can
also detect the condition for doing newidle early.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/9e3eb1859b946f03d7e500453a885725b68957ba.1559129225.git.vpillai@digitalocean.com
2019-08-08 09:09:31 +02:00
Peter Zijlstra
03b7fad167 sched: Add task_struct pointer to sched_class::set_curr_task
In preparation of further separating pick_next_task() and
set_curr_task() we have to pass the actual task into it, while there,
rename the thing to better pair with put_prev_task().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/a96d1bcdd716db4a4c5da2fece647a1456c0ed78.1559129225.git.vpillai@digitalocean.com
2019-08-08 09:09:31 +02:00
Dave Chiluk
de53fd7aed sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices
It has been observed, that highly-threaded, non-cpu-bound applications
running under cpu.cfs_quota_us constraints can hit a high percentage of
periods throttled while simultaneously not consuming the allocated
amount of quota. This use case is typical of user-interactive non-cpu
bound applications, such as those running in kubernetes or mesos when
run on multiple cpu cores.

This has been root caused to cpu-local run queue being allocated per cpu
bandwidth slices, and then not fully using that slice within the period.
At which point the slice and quota expires. This expiration of unused
slice results in applications not being able to utilize the quota for
which they are allocated.

The non-expiration of per-cpu slices was recently fixed by
'commit 512ac999d2 ("sched/fair: Fix bandwidth timer clock drift
condition")'. Prior to that it appears that this had been broken since
at least 'commit 51f2176d74 ("sched/fair: Fix unlocked reads of some
cfs_b->quota/period")' which was introduced in v3.16-rc1 in 2014. That
added the following conditional which resulted in slices never being
expired.

if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
	/* extend local deadline, drift is bounded above by 2 ticks */
	cfs_rq->runtime_expires += TICK_NSEC;

Because this was broken for nearly 5 years, and has recently been fixed
and is now being noticed by many users running kubernetes
(https://github.com/kubernetes/kubernetes/issues/67577) it is my opinion
that the mechanisms around expiring runtime should be removed
altogether.

This allows quota already allocated to per-cpu run-queues to live longer
than the period boundary. This allows threads on runqueues that do not
use much CPU to continue to use their remaining slice over a longer
period of time than cpu.cfs_period_us. However, this helps prevent the
above condition of hitting throttling while also not fully utilizing
your cpu quota.

This theoretically allows a machine to use slightly more than its
allotted quota in some periods. This overflow would be bounded by the
remaining quota left on each per-cpu runqueueu. This is typically no
more than min_cfs_rq_runtime=1ms per cpu. For CPU bound tasks this will
change nothing, as they should theoretically fully utilize all of their
quota in each period. For user-interactive tasks as described above this
provides a much better user/application experience as their cpu
utilization will more closely match the amount they requested when they
hit throttling. This means that cpu limits no longer strictly apply per
period for non-cpu bound applications, but that they are still accurate
over longer timeframes.

This greatly improves performance of high-thread-count, non-cpu bound
applications with low cfs_quota_us allocation on high-core-count
machines. In the case of an artificial testcase (10ms/100ms of quota on
80 CPU machine), this commit resulted in almost 30x performance
improvement, while still maintaining correct cpu quota restrictions.
That testcase is available at https://github.com/indeedeng/fibtest.

Fixes: 512ac999d2 ("sched/fair: Fix bandwidth timer clock drift condition")
Signed-off-by: Dave Chiluk <chiluk+linux@indeed.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: John Hammond <jhammond@indeed.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kyle Anderson <kwa@yelp.com>
Cc: Gabriel Munos <gmunoz@netflix.com>
Cc: Peter Oskolkov <posk@posk.io>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Brendan Gregg <bgregg@netflix.com>
Link: https://lkml.kernel.org/r/1563900266-19734-2-git-send-email-chiluk+linux@indeed.com
2019-08-08 09:09:30 +02:00
Thomas Gleixner
c1a280b68d sched/preempt: Use CONFIG_PREEMPTION where appropriate
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.

Switch the preemption code, scheduler and init task over to use
CONFIG_PREEMPTION.

That's the first step towards RT in that area. The more complex changes are
coming separately.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-31 19:03:34 +02:00
Viresh Kumar
60e17f5cef sched/fair: Introduce fits_capacity()
The same formula to check utilization against capacity (after
considering capacity_margin) is already used at 5 different locations.

This patch creates a new macro, fits_capacity(), which can be used from
all these locations without exposing the details of it and hence
simplify code.

All the 5 code locations are updated as well to use it..

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/b477ac75a2b163048bdaeb37f57b4c3f04f75a31.1559631700.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:56 +02:00
Viresh Kumar
3c29e651e1 sched/fair: Fall back to sched-idle CPU if idle CPU isn't found
We try to find an idle CPU to run the next task, but in case we don't
find an idle CPU it is better to pick a CPU which will run the task the
soonest, for performance reason.

A CPU which isn't idle but has only SCHED_IDLE activity queued on it
should be a good target based on this criteria as any normal fair task
will most likely preempt the currently running SCHED_IDLE task
immediately. In fact, choosing a SCHED_IDLE CPU over a fully idle one
shall give better results as it should be able to run the task sooner
than an idle CPU (which requires to be woken up from an idle state).

This patch updates both fast and slow paths with this optimization.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: chris.redpath@arm.com
Cc: quentin.perret@linaro.org
Cc: songliubraving@fb.com
Cc: steven.sistare@oracle.com
Cc: subhra.mazumdar@oracle.com
Cc: tkjos@google.com
Link: https://lkml.kernel.org/r/eeafa25fdeb6f6edd5b2da716bc8f0ba7708cbcf.1561523542.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:54 +02:00
Viresh Kumar
43e9f7f231 sched/fair: Start tracking SCHED_IDLE tasks count in cfs_rq
Track how many tasks are present with SCHED_IDLE policy in each cfs_rq.
This will be used by later commits.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: chris.redpath@arm.com
Cc: quentin.perret@linaro.org
Cc: songliubraving@fb.com
Cc: steven.sistare@oracle.com
Cc: subhra.mazumdar@oracle.com
Cc: tkjos@google.com
Link: https://lkml.kernel.org/r/0d3cdc427fc68808ad5bccc40e86ed0bf9da8bb4.1561523542.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:53 +02:00
Vincent Guittot
f6cad8df6b sched/fair: Fix imbalance due to CPU affinity
The load_balance() has a dedicated mecanism to detect when an imbalance
is due to CPU affinity and must be handled at parent level. In this case,
the imbalance field of the parent's sched_group is set.

The description of sg_imbalanced() gives a typical example of two groups
of 4 CPUs each and 4 tasks each with a cpumask covering 1 CPU of the first
group and 3 CPUs of the second group. Something like:

	{ 0 1 2 3 } { 4 5 6 7 }
	        *     * * *

But the load_balance fails to fix this UC on my octo cores system
made of 2 clusters of quad cores.

Whereas the load_balance is able to detect that the imbalanced is due to
CPU affinity, it fails to fix it because the imbalance field is cleared
before letting parent level a chance to run. In fact, when the imbalance is
detected, the load_balance reruns without the CPU with pinned tasks. But
there is no other running tasks in the situation described above and
everything looks balanced this time so the imbalance field is immediately
cleared.

The imbalance field should not be cleared if there is no other task to move
when the imbalance is detected.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1561996022-28829-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:52 +02:00
Valentin Schneider
9434f9f5d1 sched/fair: Change task_numa_work() storage to static
There are no callers outside of fair.c.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Cc: riel@surriel.com
Link: https://lkml.kernel.org/r/20190715102508.32434-4-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:52 +02:00
Valentin Schneider
b34920d4ce sched/fair: Move task_numa_work() init to init_numa_balancing()
We only need to set the callback_head worker function once, do it
during sched_fork().

While at it, move the comment regarding double task_work addition to
init_numa_balancing(), since the double add sentinel is first set there.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Cc: riel@surriel.com
Link: https://lkml.kernel.org/r/20190715102508.32434-3-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:51 +02:00
Valentin Schneider
d35927a144 sched/fair: Move init_numa_balancing() below task_numa_work()
To reference task_numa_work() from within init_numa_balancing(), we
need the former to be declared before the latter. Do just that.

This is a pure code movement.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Cc: riel@surriel.com
Link: https://lkml.kernel.org/r/20190715102508.32434-2-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:51 +02:00
Jann Horn
cb361d8cde sched/fair: Use RCU accessors consistently for ->numa_group
The old code used RCU annotations and accessors inconsistently for
->numa_group, which can lead to use-after-frees and NULL dereferences.

Let all accesses to ->numa_group use proper RCU helpers to prevent such
issues.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes: 8c8a743c50 ("sched/numa: Use {cpu, pid} to create task groups for shared faults")
Link: https://lkml.kernel.org/r/20190716152047.14424-3-jannh@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:37:05 +02:00
Jann Horn
16d51a590a sched/fair: Don't free p->numa_faults with concurrent readers
When going through execve(), zero out the NUMA fault statistics instead of
freeing them.

During execve, the task is reachable through procfs and the scheduler. A
concurrent /proc/*/sched reader can read data from a freed ->numa_faults
allocation (confirmed by KASAN) and write it back to userspace.
I believe that it would also be possible for a use-after-free read to occur
through a race between a NUMA fault and execve(): task_numa_fault() can
lead to task_numa_compare(), which invokes task_weight() on the currently
running task of a different CPU.

Another way to fix this would be to make ->numa_faults RCU-managed or add
extra locking, but it seems easier to wipe the NUMA fault statistics on
execve.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes: 82727018b0 ("sched/numa: Call task_numa_free() from do_execve()")
Link: https://lkml.kernel.org/r/20190716152047.14424-1-jannh@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:37:04 +02:00
Linus Torvalds
dad1c12ed8 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:

 - Remove the unused per rq load array and all its infrastructure, by
   Dietmar Eggemann.

 - Add utilization clamping support by Patrick Bellasi. This is a
   refinement of the energy aware scheduling framework with support for
   boosting of interactive and capping of background workloads: to make
   sure critical GUI threads get maximum frequency ASAP, and to make
   sure background processing doesn't unnecessarily move to cpufreq
   governor to higher frequencies and less energy efficient CPU modes.

 - Add the bare minimum of tracepoints required for LISA EAS regression
   testing, by Qais Yousef - which allows automated testing of various
   power management features, including energy aware scheduling.

 - Restructure the former tsk_nr_cpus_allowed() facility that the -rt
   kernel used to modify the scheduler's CPU affinity logic such as
   migrate_disable() - introduce the task->cpus_ptr value instead of
   taking the address of &task->cpus_allowed directly - by Sebastian
   Andrzej Siewior.

 - Misc optimizations, fixes, cleanups and small enhancements - see the
   Git log for details.

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
  sched/uclamp: Add uclamp support to energy_compute()
  sched/uclamp: Add uclamp_util_with()
  sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
  sched/uclamp: Set default clamps for RT tasks
  sched/uclamp: Reset uclamp values on RESET_ON_FORK
  sched/uclamp: Extend sched_setattr() to support utilization clamping
  sched/core: Allow sched_setattr() to use the current policy
  sched/uclamp: Add system default clamps
  sched/uclamp: Enforce last task's UCLAMP_MAX
  sched/uclamp: Add bucket local max tracking
  sched/uclamp: Add CPU's clamp buckets refcounting
  sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
  sched/debug: Export the newly added tracepoints
  sched/debug: Add sched_overutilized tracepoint
  sched/debug: Add new tracepoint to track PELT at se level
  sched/debug: Add new tracepoints to track PELT at rq level
  sched/debug: Add a new sched_trace_*() helper functions
  sched/autogroup: Make autogroup_path() always available
  sched/wait: Deduplicate code with do-while
  sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
  ...
2019-07-08 16:39:53 -07:00
Patrick Bellasi
af24bde8df sched/uclamp: Add uclamp support to energy_compute()
The Energy Aware Scheduler (EAS) estimates the energy impact of waking
up a task on a given CPU. This estimation is based on:

 a) an (active) power consumption defined for each CPU frequency
 b) an estimation of which frequency will be used on each CPU
 c) an estimation of the busy time (utilization) of each CPU

Utilization clamping can affect both b) and c).

A CPU is expected to run:

 - on an higher than required frequency, but for a shorter time, in case
   its estimated utilization will be smaller than the minimum utilization
   enforced by uclamp
 - on a smaller than required frequency, but for a longer time, in case
   its estimated utilization is bigger than the maximum utilization
   enforced by uclamp

While compute_energy() already accounts clamping effects on busy time,
the clamping effects on frequency selection are currently ignored.

Fix it by considering how CPU clamp values will be affected by a
task waking up and being RUNNABLE on that CPU.

Do that by refactoring schedutil_freq_util() to take an additional
task_struct* which allows EAS to evaluate the impact on clamp values of
a task being eventually queued in a CPU. Clamp values are applied to the
RT+CFS utilization only when a FREQUENCY_UTIL is required by
compute_energy().

Do note that switching from ENERGY_UTIL to FREQUENCY_UTIL in the
computation of the cpu_util signal implies that we are more likely to
estimate the highest OPP when a RT task is running in another CPU of
the same performance domain. This can have an impact on energy
estimation but:

 - it's not easy to say which approach is better, since it depends on
   the use case
 - the original approach could still be obtained by setting a smaller
   task-specific util_min whenever required

Since we are at that:

 - rename schedutil_freq_util() into schedutil_cpu_util(),
   since it's not only used for frequency selection.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-12-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:49 +02:00
Patrick Bellasi
982d9cdc22 sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
Each time a frequency update is required via schedutil, a frequency is
selected to (possibly) satisfy the utilization reported by each
scheduling class and irqs. However, when utilization clamping is in use,
the frequency selection should consider userspace utilization clamping
hints.  This will allow, for example, to:

 - boost tasks which are directly affecting the user experience
   by running them at least at a minimum "requested" frequency

 - cap low priority tasks not directly affecting the user experience
   by running them only up to a maximum "allowed" frequency

These constraints are meant to support a per-task based tuning of the
frequency selection thus supporting a fine grained definition of
performance boosting vs energy saving strategies in kernel space.

Add support to clamp the utilization of RUNNABLE FAIR and RT tasks
within the boundaries defined by their aggregated utilization clamp
constraints.

Do that by considering the max(min_util, max_util) to give boosted tasks
the performance they need even when they happen to be co-scheduled with
other capped tasks.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-10-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:48 +02:00
Dietmar Eggemann
a3df067974 sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
The term 'weighted' is not needed since there is no 'unweighted' load.
Instead use the term 'runnable' to distinguish 'runnable' load
(avg.runnable_load_avg) used in load balance from load (avg.load_avg)
which is the sum of 'runnable' and 'blocked' load.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/57f27a7f-2775-d832-e965-0f4d51bb1954@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:43 +02:00
Qais Yousef
f9f240f96e sched/debug: Add sched_overutilized tracepoint
The new tracepoint allows us to track the changes in overutilized
status.

Overutilized status is associated with EAS. It indicates that the system
is in high performance state. EAS is disabled when the system is in this
state since there's not much energy savings while high performance tasks
are pushing the system to the limit and it's better to default to the
spreading behavior of the scheduler.

This tracepoint helps understanding and debugging the conditions under
which this happens.

Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-6-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:42 +02:00
Qais Yousef
8de6242cca sched/debug: Add new tracepoint to track PELT at se level
The new tracepoint allows tracking PELT signals at sched_entity level.
Which is supported in CFS tasks and taskgroups only.

Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-5-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:42 +02:00
Qais Yousef
ba19f51fcb sched/debug: Add new tracepoints to track PELT at rq level
The new tracepoints allow tracking PELT signals at rq level for all
scheduling classes + irq.

Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-4-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:41 +02:00
Qais Yousef
3c93a0c04d sched/debug: Add a new sched_trace_*() helper functions
The new functions allow modules to access internal data structures of
unexported struct cfs_rq and struct rq to extract important information
from the tracepoints to be introduced in later patches.

While at it fix alphabetical order of struct declarations in sched.h

Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-3-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:41 +02:00
Vincent Guittot
8ec59c0f5f sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
The 'struct sched_domain *sd' parameter to arch_scale_cpu_capacity() is
unused since commit:

  765d0af19f ("sched/topology: Remove the ::smt_gain field from 'struct sched_domain'")

Remove it.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: gregkh@linuxfoundation.org
Cc: linux@armlinux.org.uk
Cc: quentin.perret@arm.com
Cc: rafael@kernel.org
Link: https://lkml.kernel.org/r/1560783617-5827-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:39 +02:00
Peter Zijlstra
8dc2d993cf x86/percpu, sched/fair: Avoid local_clock()
Nadav reported that code-gen changed because of the this_cpu_*()
constraints, avoid this for select_idle_cpu() because that runs with
preemption (and IRQs) disabled anyway.

Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-17 12:43:43 +02:00
bsegall@google.com
66567fcbae sched/fair: Don't push cfs_bandwith slack timers forward
When a cfs_rq sleeps and returns its quota, we delay for 5ms before
waking any throttled cfs_rqs to coalesce with other cfs_rqs going to
sleep, as this has to be done outside of the rq lock we hold.

The current code waits for 5ms without any sleeps, instead of waiting
for 5ms from the first sleep, which can delay the unthrottle more than
we want. Switch this around so that we can't push this forward forever.

This requires an extra flag rather than using hrtimer_active, since we
need to start a new timer if the current one is in the process of
finishing.

Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Xunlei Pang <xlpang@linux.alibaba.com>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/xm26a7euy6iq.fsf_-_@bsegall-linux.svl.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-17 12:16:01 +02:00
Valentin Schneider
b0c7922441 sched/fair: Clean up definition of NOHZ blocked load functions
cfs_rq_has_blocked() and others_have_blocked() are only used within
update_blocked_averages(). The !CONFIG_FAIR_GROUP_SCHED version of the
latter calls them within a #define CONFIG_NO_HZ_COMMON block, whereas
the CONFIG_FAIR_GROUP_SCHED one calls them unconditionnally.

As reported by Qian, the above leads to this warning in
!CONFIG_NO_HZ_COMMON configs:

  kernel/sched/fair.c: In function 'update_blocked_averages':
  kernel/sched/fair.c:7750:7: warning: variable 'done' set but not used [-Wunused-but-set-variable]

It wouldn't be wrong to keep cfs_rq_has_blocked() and
others_have_blocked() as they are, but since their only current use is
to figure out when we can stop calling update_blocked_averages() on
fully decayed NOHZ idle CPUs, we can give them a new definition for
!CONFIG_NO_HZ_COMMON.

Change the definition of cfs_rq_has_blocked() and
others_have_blocked() for !CONFIG_NO_HZ_COMMON so that the
NOHZ-specific blocks of update_blocked_averages() become no-ops and
the 'done' variable gets optimised out.

While at it, remove the CONFIG_NO_HZ_COMMON block from the
!CONFIG_FAIR_GROUP_SCHED definition of update_blocked_averages() by
using the newly-introduced update_blocked_load_status() helper.

No change in functionality intended.

[ Additions by Peter Zijlstra. ]

Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190603115424.7951-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-17 12:15:57 +02:00
Dietmar Eggemann
af75d1a9a9 sched/fair: Remove sgs->sum_weighted_load
Since sg_lb_stats::sum_weighted_load is now identical with
sg_lb_stats::group_load remove it and replace its use case
(calculating load per task) with the latter.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20190527062116.11512-7-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:49:41 +02:00
Dietmar Eggemann
1c1b8a7b03 sched/fair: Replace source_load() & target_load() with weighted_cpuload()
With LB_BIAS disabled, source_load() & target_load() return
weighted_cpuload(). Replace both with calls to weighted_cpuload().

The function to obtain the load index (sd->*_idx) for an sd,
get_sd_load_idx(), can be removed as well.

Finally, get rid of the sched feature LB_BIAS.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-3-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:49:39 +02:00
Dietmar Eggemann
5e83eafbfd sched/fair: Remove the rq->cpu_load[] update code
With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx]
any more.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-2-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:49:38 +02:00
Dietmar Eggemann
f2bedc4705 sched/fair: Remove rq->load
The CFS class is the only one maintaining and using the CPU wide load
(rq->load(.weight)). The last use case of the CPU wide load in CFS's
set_next_entity() can be replaced by using the load of the CFS class
(rq->cfs.load(.weight)) instead.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190424084556.604-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:49:37 +02:00
Sebastian Andrzej Siewior
3bd3706251 sched/core: Provide a pointer to the valid CPU mask
In commit:

  4b53a3412d ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper")

the tsk_nr_cpus_allowed() wrapper was removed. There was not
much difference in !RT but in RT we used this to implement
migrate_disable(). Within a migrate_disable() section the CPU mask is
restricted to single CPU while the "normal" CPU mask remains untouched.

As an alternative implementation Ingo suggested to use:

	struct task_struct {
		const cpumask_t		*cpus_ptr;
		cpumask_t		cpus_mask;
        };
with
	t->cpus_ptr = &t->cpus_mask;

In -RT we then can switch the cpus_ptr to:

	t->cpus_ptr = &cpumask_of(task_cpu(p));

in a migration disabled region. The rules are simple:

 - Code that 'uses' ->cpus_allowed would use the pointer.
 - Code that 'modifies' ->cpus_allowed would use the direct mask.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:49:37 +02:00
Ingo Molnar
176d2323c7 Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-03 12:52:45 +02:00
Nicholas Piggin
9b019acb72 sched/nohz: Run NOHZ idle load balancer on HK_FLAG_MISC CPUs
The NOHZ idle balancer runs on the lowest idle CPU. This can
interfere with isolated CPUs, so confine it to HK_FLAG_MISC
housekeeping CPUs.

HK_FLAG_SCHED is not used for this because it is not set anywhere
at the moment. This could be folded into HK_FLAG_SCHED once that
option is fixed.

The problem was observed with increased jitter on an application
running on CPU0, caused by NOHZ idle load balancing being run on
CPU1 (an SMT sibling).

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190412042613.28930-1-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-29 08:27:03 +02:00
Xie XiuQi
a860fa7b96 sched/numa: Fix a possible divide-by-zero
sched_clock_cpu() may not be consistent between CPUs. If a task
migrates to another CPU, then se.exec_start is set to that CPU's
rq_clock_task() by update_stats_curr_start(). Specifically, the new
value might be before the old value due to clock skew.

So then if in numa_get_avg_runtime() the expression:

  'now - p->last_task_numa_placement'

ends up as -1, then the divider '*period + 1' in task_numa_placement()
is 0 and things go bang. Similar to update_curr(), check if time goes
backwards to avoid this.

[ peterz: Wrote new changelog. ]
[ mingo: Tweaked the code comment. ]

Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cj.chengjian@huawei.com
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20190425080016.GX11158@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-25 19:58:54 +02:00
YueHaibing
b1546edcf2 sched/core: Make some functions static
Fix these sparse warnings:

  kernel/sched/core.c:6577:11: warning: symbol 'min_cfs_quota_period' was not declared. Should it be static?
  kernel/sched/core.c:6657:5: warning: symbol 'tg_set_cfs_quota' was not declared. Should it be static?
  kernel/sched/core.c:6670:6: warning: symbol 'tg_get_cfs_quota' was not declared. Should it be static?
  kernel/sched/core.c:6683:5: warning: symbol 'tg_set_cfs_period' was not declared. Should it be static?
  kernel/sched/core.c:6693:6: warning: symbol 'tg_get_cfs_period' was not declared. Should it be static?
  kernel/sched/fair.c:2596:6: warning: symbol 'task_tick_numa' was not declared. Should it be static?

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190418144713.34332-1-yuehaibing@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-18 20:28:02 +02:00
Peter Zijlstra
7dd7788411 sched/core: Unify p->on_rq updates
Almost all {,de}activate_task() invocations pair with p->on_rq
updates, the exception being the usage in rt/deadline which hold both
rq locks and therefore don't strictly need to set
TASK_ON_RQ_MIGRATING, but it is harmless if we do anyway.

Put the updates in {,de}activate_task() and cut down on repetition.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 16:55:17 +02:00
Phil Auld
2e8e192263 sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup
With extremely short cfs_period_us setting on a parent task group with a large
number of children the for loop in sched_cfs_period_timer() can run until the
watchdog fires. There is no guarantee that the call to hrtimer_forward_now()
will ever return 0.  The large number of children can make
do_sched_cfs_period_timer() take longer than the period.

 NMI watchdog: Watchdog detected hard LOCKUP on cpu 24
 RIP: 0010:tg_nop+0x0/0x10
  <IRQ>
  walk_tg_tree_from+0x29/0xb0
  unthrottle_cfs_rq+0xe0/0x1a0
  distribute_cfs_runtime+0xd3/0xf0
  sched_cfs_period_timer+0xcb/0x160
  ? sched_cfs_slack_timer+0xd0/0xd0
  __hrtimer_run_queues+0xfb/0x270
  hrtimer_interrupt+0x122/0x270
  smp_apic_timer_interrupt+0x6a/0x140
  apic_timer_interrupt+0xf/0x20
  </IRQ>

To prevent this we add protection to the loop that detects when the loop has run
too many times and scales the period and quota up, proportionally, so that the timer
can complete before then next period expires.  This preserves the relative runtime
quota while preventing the hard lockup.

A warning is issued reporting this state and the new values.

Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190319130005.25492-1-pauld@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 16:50:05 +02:00
Valentin Schneider
e2abb39811 sched/fair: Remove unneeded prototype of capacity_of()
The prototype of that function was already hoisted up in:

  commit 3b1baa6496 ("sched/fair: Add 'group_misfit_task' load-balance type")

but that seems to have been missed. Get rid of the extra prototype.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Quentin Perret <quentin.perret@arm.com>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Fixes: 2802bf3cd9 ("sched/fair: Add over-utilization/tipping point indicator")
Link: http://lkml.kernel.org/r/20190416140621.19884-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 16:48:51 +02:00
YueHaibing
71b47eaf6f sched/fair: Make sync_entity_load_avg() and remove_entity_load_avg() static
Fix these sparse warnigs:

  kernel/sched/fair.c:3570:6: warning: symbol 'sync_entity_load_avg' was not declared. Should it be static?
  kernel/sched/fair.c:3583:6: warning: symbol 'remove_entity_load_avg' was not declared. Should it be static?

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190320133839.21392-1-yuehaibing@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 12:34:31 +02:00
Mel Gorman
0e9f02450d sched/fair: Do not re-read ->h_load_next during hierarchical load calculation
A NULL pointer dereference bug was reported on a distribution kernel but
the same issue should be present on mainline kernel. It occured on s390
but should not be arch-specific.  A partial oops looks like:

  Unable to handle kernel pointer dereference in virtual kernel address space
  ...
  Call Trace:
    ...
    try_to_wake_up+0xfc/0x450
    vhost_poll_wakeup+0x3a/0x50 [vhost]
    __wake_up_common+0xbc/0x178
    __wake_up_common_lock+0x9e/0x160
    __wake_up_sync_key+0x4e/0x60
    sock_def_readable+0x5e/0x98

The bug hits any time between 1 hour to 3 days. The dereference occurs
in update_cfs_rq_h_load when accumulating h_load. The problem is that
cfq_rq->h_load_next is not protected by any locking and can be updated
by parallel calls to task_h_load. Depending on the compiler, code may be
generated that re-reads cfq_rq->h_load_next after the check for NULL and
then oops when reading se->avg.load_avg. The dissassembly showed that it
was possible to reread h_load_next after the check for NULL.

While this does not appear to be an issue for later compilers, it's still
an accident if the correct code is generated. Full locking in this path
would have high overhead so this patch uses READ_ONCE to read h_load_next
only once and check for NULL before dereferencing. It was confirmed that
there were no further oops after 10 days of testing.

As Peter pointed out, it is also necessary to use WRITE_ONCE() to avoid any
potential problems with store tearing.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Fixes: 685207963b ("sched: Move h_load calculation to task_h_load()")
Link: https://lkml.kernel.org/r/20190319123610.nsivgf3mjbjjesxb@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 09:50:22 +02:00
Linus Torvalds
231c807a60 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
 "Third more careful attempt for this set of fixes:

   - Prevent a 32bit math overflow in the cpufreq code

   - Fix a buffer overflow when scanning the cgroup2 cpu.max property

   - A set of fixes for the NOHZ scheduler logic to prevent waking up
     CPUs even if the capacity of the busy CPUs is sufficient along with
     other tweaks optimizing the behaviour for asymmetric systems
     (big/little)"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/fair: Skip LLC NOHZ logic for asymmetric systems
  sched/fair: Tune down misfit NOHZ kicks
  sched/fair: Comment some nohz_balancer_kick() kick conditions
  sched/core: Fix buffer overflow in cgroup2 property cpu.max
  sched/cpufreq: Fix 32-bit math overflow
2019-03-24 11:42:10 -07:00
Valentin Schneider
b9a7b88316 sched/fair: Skip LLC NOHZ logic for asymmetric systems
The LLC NOHZ condition will become true as soon as >=2 CPUs in a
single LLC domain are busy. On big.LITTLE systems, this translates to
two or more CPUs of a "cluster" (big or LITTLE) being busy.

Issuing a NOHZ kick in these conditions isn't desired for asymmetric
systems, as if the busy CPUs can provide enough compute capacity to
the running tasks, then we can leave the NOHZ CPUs in peace.

Skip the LLC NOHZ condition for asymmetric systems, and rely on
nr_running & capacity checks to trigger NOHZ kicks when the system
actually needs them.

Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dietmar.Eggemann@arm.com
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190211175946.4961-4-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-03-19 12:06:15 +01:00
Valentin Schneider
a0fe2cf086 sched/fair: Tune down misfit NOHZ kicks
In this commit:

  3b1baa6496 ("sched/fair: Add 'group_misfit_task' load-balance type")

we set rq->misfit_task_load whenever the current running task has a
utilization greater than 80% of rq->cpu_capacity. A non-zero value in
this field enables misfit load balancing.

However, if the task being looked at is already running on a CPU of
highest capacity, there's nothing more we can do for it. We can
currently spot this in update_sd_pick_busiest(), which prevents us
from selecting a sched_group of group_type == group_misfit_task as the
busiest group, but we don't do any of that in nohz_balancer_kick().

This means that we could repeatedly kick NOHZ CPUs when there's no
improvements in terms of load balance to be done.

Introduce a check_misfit_status() helper that returns true iff there
is a CPU in the system that could give more CPU capacity to a rq's
misfit task - IOW, there exists a CPU of higher capacity_orig or the
rq's CPU is severely pressured by rt/IRQ.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dietmar.Eggemann@arm.com
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190211175946.4961-3-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-03-19 12:06:15 +01:00
Valentin Schneider
e25a7a944f sched/fair: Comment some nohz_balancer_kick() kick conditions
We now have a comment explaining the first sched_domain based NOHZ kick,
so might as well comment them all.

While at it, unwrap a line that fits under 80 characters.

Co-authored-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dietmar.Eggemann@arm.com
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190211175946.4961-2-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-03-19 12:06:15 +01:00
Linus Torvalds
8dcd175bc3 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:

 - a few misc things

 - ocfs2 updates

 - most of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits)
  tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include
  proc: more robust bulk read test
  proc: test /proc/*/maps, smaps, smaps_rollup, statm
  proc: use seq_puts() everywhere
  proc: read kernel cpu stat pointer once
  proc: remove unused argument in proc_pid_lookup()
  fs/proc/thread_self.c: code cleanup for proc_setup_thread_self()
  fs/proc/self.c: code cleanup for proc_setup_self()
  proc: return exit code 4 for skipped tests
  mm,mremap: bail out earlier in mremap_to under map pressure
  mm/sparse: fix a bad comparison
  mm/memory.c: do_fault: avoid usage of stale vm_area_struct
  writeback: fix inode cgroup switching comment
  mm/huge_memory.c: fix "orig_pud" set but not used
  mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
  mm/memcontrol.c: fix bad line in comment
  mm/cma.c: cma_declare_contiguous: correct err handling
  mm/page_ext.c: fix an imbalance with kmemleak
  mm/compaction: pass pgdat to too_many_isolated() instead of zone
  mm: remove zone_lru_lock() function, access ->lru_lock directly
  ...
2019-03-06 10:31:36 -08:00
Anshuman Khandual
98fa15f34c mm: replace all open encodings for NUMA_NO_NODE
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.

All these places for replacement were found by running the following
grep patterns on the entire kernel code.  Please let me know if this
might have missed some instances.  This might also have replaced some
false positives.  I will appreciate suggestions, inputs and review.

1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"

This patch (of 2):

At present there are multiple places where invalid node number is
encoded as -1.  Even though implicitly understood it is always better to
have macros in there.  Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE.  This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.

Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>	[ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk>			[mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org>			[dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au>		[powerpc]
Acked-by: Doug Ledford <dledford@redhat.com>		[drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:14 -08:00
Viresh Kumar
c89d92eddf sched/fair: Use non-atomic cpumask_{set,clear}_cpu()
The cpumasks updated here are not subject to concurrency and using
atomic bitops for them is pointless and expensive. Use the non-atomic
variants instead.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/2e2a10f84b9049a81eef94ed6d5989447c21e34a.1549963617.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-13 08:34:13 +01:00
Viresh Kumar
1b5500d734 sched/fair: Remove unused 'sd' parameter from select_idle_smt()
The 'sd' parameter isn't getting used in select_idle_smt(), drop it.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/f91c5e118183e79d4a982e9ac4ce5e47948f6c1b.1549536337.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:48:27 +01:00
Valentin Schneider
9f132742d5 sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block
The comment block for that function lists the heuristics for
triggering a nohz kick, but the most recent ones (blocked load
updates, misfit) aren't included, and some of them (LLC nohz logic,
asym packing) are no longer in sync with the code.

The conditions are either simple enough or properly commented, so get
rid of that list instead of letting it grow.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190117153411.2390-4-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:02:18 +01:00
Valentin Schneider
892d59c222 sched/fair: Explain LLC nohz kick condition
Provide a comment explaining the LLC related nohz kick in
nohz_balancer_kick().

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190117153411.2390-3-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:02:17 +01:00
Valentin Schneider
7edab78d74 sched/fair: Simplify nohz_balancer_kick()
Calling 'nohz_balance_exit_idle(rq)' will always clear 'rq->cpu' from
'nohz.idle_cpus_mask' if it is set. Since it is called at the top of
'nohz_balancer_kick()', 'rq->cpu' will never be set in
'nohz.idle_cpus_mask' if it is accessed in the rest of the function.

Combine the 'sched_domain_span()' with 'nohz.idle_cpus_mask' and drop the
'(i == cpu)' check since 'rq->cpu' will never be iterated over.

While at it, clean up a condition alignment.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190117153411.2390-2-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:02:16 +01:00
Dietmar Eggemann
d0fe0b9c45 sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
Since commit:

  d03266910a ("sched/fair: Fix task group initialization")

the utilization of a sched entity representing a task group is no longer
initialized to any other value than 0. So post_init_entity_util_avg() is
only used for tasks, not for sched_entities.

Make this clear by calling it with a task_struct pointer argument which
also eliminates the entity_is_task(se) if condition in the fork path and
get rid of the stale comment in remove_entity_load_avg() accordingly.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190122162501.12000-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:02:14 +01:00
Vincent Guittot
039ae8bcf7 sched/fair: Fix O(nr_cgroups) in the load balancing path
This re-applies the commit reverted here:

  commit c40f7d74c7 ("sched/fair: Fix infinite loop in update_blocked_averages() by reverting a9e7f6544b9c")

I.e. now that cfs_rq can be safely removed/added in the list, we can re-apply:

 commit a9e7f6544b ("sched/fair: Fix O(nr_cgroups) in load balance path")

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: sargun@sargun.me
Cc: tj@kernel.org
Cc: xiexiuqi@huawei.com
Cc: xiezhipeng1@huawei.com
Link: https://lkml.kernel.org/r/1549469662-13614-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:02:13 +01:00
Vincent Guittot
31bc6aeaab sched/fair: Optimize update_blocked_averages()
Removing a cfs_rq from rq->leaf_cfs_rq_list can break the parent/child
ordering of the list when it will be added back. In order to remove an
empty and fully decayed cfs_rq, we must remove its children too, so they
will be added back in the right order next time.

With a normal decay of PELT, a parent will be empty and fully decayed
if all children are empty and fully decayed too. In such a case, we just
have to ensure that the whole branch will be added when a new task is
enqueued. This is default behavior since :

  commit f678331973 ("sched/fair: Fix insertion in rq->leaf_cfs_rq_list")

In case of throttling, the PELT of throttled cfs_rq will not be updated
whereas the parent will. This breaks the assumption made above unless we
remove the children of a cfs_rq that is throttled. Then, they will be
added back when unthrottled and a sched_entity will be enqueued.

As throttled cfs_rq are now removed from the list, we can remove the
associated test in update_blocked_averages().

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: sargun@sargun.me
Cc: tj@kernel.org
Cc: xiexiuqi@huawei.com
Cc: xiezhipeng1@huawei.com
Link: https://lkml.kernel.org/r/1549469662-13614-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:02:12 +01:00
Ingo Molnar
c9ba7560c5 Linux 5.0-rc6
-----BEGIN PGP SIGNATURE-----
 
 iQFRBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlxgqNUeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGwsoH+OVXu0NQofwTvVru
 8lgF3BSDG2mhf7mxbBBlBizGVy9jnjRNGCFMC+Jq8IwiFLwprja/G27kaDTkpuF1
 PHC3yfjKvjTeUP5aNdHlmxv6j1sSJfZl0y46DQal4UeTG/Giq8TFTi+Tbz7Wb/WV
 yCx4Lr8okAwTuNhnL8ojUCVIpd3c8QsyR9v6nEQ14Mj+MvEbokyTkMJV0bzOrM38
 JOB+/X1XY4JPZ6o3MoXrBca3bxbAJzMneq+9CWw1U5eiIG3msg4a+Ua3++RQMDNr
 8BP0yCZ6wo32S8uu0PI6HrZaBnLYi5g9Wh7Q7yc0mn1Uh1zWFykA6TtqK90agJeR
 A6Ktjw==
 =scY4
 -----END PGP SIGNATURE-----

Merge tag 'v5.0-rc6' into sched/core, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:01:50 +01:00
Vincent Guittot
f678331973 sched/fair: Fix insertion in rq->leaf_cfs_rq_list
Sargun reported a crash:

  "I picked up c40f7d74c7 sched/fair: Fix
   infinite loop in update_blocked_averages() by reverting a9e7f6544b
   and put it on top of 4.19.13. In addition to this, I uninlined
   list_add_leaf_cfs_rq for debugging.

   This revealed a new bug that we didn't get to because we kept getting
   crashes from the previous issue. When we are running with cgroups that
   are rapidly changing, with CFS bandwidth control, and in addition
   using the cpusets cgroup, we see this crash. Specifically, it seems to
   occur with cgroups that are throttled and we change the allowed
   cpuset."

The algorithm used to order cfs_rq in rq->leaf_cfs_rq_list assumes that
it will walk down to root the 1st time a cfs_rq is used and we will finish
to add either a cfs_rq without parent or a cfs_rq with a parent that is
already on the list. But this is not always true in presence of throttling.
Because a cfs_rq can be throttled even if it has never been used but other CPUs
of the cgroup have already used all the bandwdith, we are not sure to go down to
the root and add all cfs_rq in the list.

Ensure that all cfs_rq will be added in the list even if they are throttled.

[ mingo: Fix !CGROUPS build. ]

Reported-by: Sargun Dhillon <sargun@sargun.me>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: tj@kernel.org
Fixes: 9c2791f936 ("Fix hierarchical order in rq->leaf_cfs_rq_list")
Link: https://lkml.kernel.org/r/1548825767-10799-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:14:48 +01:00
Peter Zijlstra
5d299eabea sched/fair: Add tmp_alone_branch assertion
The magic in list_add_leaf_cfs_rq() requires that at the end of
enqueue_task_fair():

  rq->tmp_alone_branch == &rq->lead_cfs_rq_list

If this is violated, list integrity is compromised for list entries
and the tmp_alone_branch pointer might dangle.

Also, reflow list_add_leaf_cfs_rq() while there. This looses one
indentation level and generates a form that's convenient for the next
patch.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Vincent Guittot
10a35e6812 sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
util_est is mainly meant to be a lower-bound for tasks utilization.
That's why task_util_est() returns the actual util_avg when it's higher
than the estimated utilization.

With new invaraince signal and without any special check on samples
collection, if a task is limited because of thermal capping for
example, we could end up overestimating its utilization and thus
perhaps generating an unwanted frequency spike when the capping is
relaxed... and (even worst) it will take some more activations for the
estimated utilization to converge back to the actual utilization.

Since we cannot easily know if there is idle time in a CPU when a task
completes an activation with a utilization higher then the CPU capacity,
we skip the sampling when utilization is higher than CPU's capacity.

Suggested-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Vincent Guittot
2312729688 sched/fair: Update scale invariance of PELT
The current implementation of load tracking invariance scales the
contribution with current frequency and uarch performance (only for
utilization) of the CPU. One main result of this formula is that the
figures are capped by current capacity of CPU. Another one is that the
load_avg is not invariant because not scaled with uarch.

The util_avg of a periodic task that runs r time slots every p time slots
varies in the range :

    U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p)

with U is the max util_avg value = SCHED_CAPACITY_SCALE

At a lower capacity, the range becomes:

    U * C * (1-y^r')/(1-y^p) * y^i' < Utilization <  U * C * (1-y^r')/(1-y^p)

with C reflecting the compute capacity ratio between current capacity and
max capacity.

so C tries to compensate changes in (1-y^r') but it can't be accurate.

Instead of scaling the contribution value of PELT algo, we should scale the
running time. The PELT signal aims to track the amount of computation of
tasks and/or rq so it seems more correct to scale the running time to
reflect the effective amount of computation done since the last update.

In order to be fully invariant, we need to apply the same amount of
running time and idle time whatever the current capacity. Because running
at lower capacity implies that the task will run longer, we have to ensure
that the same amount of idle time will be applied when system becomes idle
and no idle time has been "stolen". But reaching the maximum utilization
value (SCHED_CAPACITY_SCALE) means that the task is seen as an
always-running task whatever the capacity of the CPU (even at max compute
capacity). In this case, we can discard this "stolen" idle times which
becomes meaningless.

In order to achieve this time scaling, a new clock_pelt is created per rq.
The increase of this clock scales with current capacity when something
is running on rq and synchronizes with clock_task when rq is idle. With
this mechanism, we ensure the same running and idle time whatever the
current capacity. This also enables to simplify the pelt algorithm by
removing all references of uarch and frequency and applying the same
contribution to utilization and loads. Furthermore, the scaling is done
only once per update of clock (update_rq_clock_task()) instead of during
each update of sched_entities and cfs/rt/dl_rq of the rq like the current
implementation. This is interesting when cgroup are involved as shown in
the results below:

On a hikey (octo Arm64 platform).
Performance cpufreq governor and only shallowest c-state to remove variance
generated by those power features so we only track the impact of pelt algo.

each test runs 16 times:

	./perf bench sched pipe
	(higher is better)
	kernel	tip/sched/core     + patch
	        ops/seconds        ops/seconds         diff
	cgroup
	root    59652(+/- 0.18%)   59876(+/- 0.24%)    +0.38%
	level1  55608(+/- 0.27%)   55923(+/- 0.24%)    +0.57%
	level2  52115(+/- 0.29%)   52564(+/- 0.22%)    +0.86%

	hackbench -l 1000
	(lower is better)
	kernel	tip/sched/core     + patch
	        duration(sec)      duration(sec)        diff
	cgroup
	root    4.453(+/- 2.37%)   4.383(+/- 2.88%)     -1.57%
	level1  4.859(+/- 8.50%)   4.830(+/- 7.07%)     -0.60%
	level2  5.063(+/- 9.83%)   4.928(+/- 9.66%)     -2.66%

Then, the responsiveness of PELT is improved when CPU is not running at max
capacity with this new algorithm. I have put below some examples of
duration to reach some typical load values according to the capacity of the
CPU with current implementation and with this patch. These values has been
computed based on the geometric series and the half period value:

  Util (%)     max capacity  half capacity(mainline)  half capacity(w/ patch)
  972 (95%)    138ms         not reachable            276ms
  486 (47.5%)  30ms          138ms                     60ms
  256 (25%)    13ms           32ms                     26ms

On my hikey (octo Arm64 platform) with schedutil governor, the time to
reach max OPP when starting from a null utilization, decreases from 223ms
with current scale invariance down to 121ms with the new algorithm.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Vincent Guittot
62478d9911 sched/fair: Move the rq_of() helper function
Move rq_of() helper function so it can be used in pelt.c

[ mingo: Improve readability while at it. ]

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Elena Reshetova
c45a779524 sched/fair: Convert numa_group.refcount to refcount_t
atomic_t variables are currently used to implement reference
counters with the following properties:

 - counter is initialized to 1 using atomic_set()
 - a resource is freed upon counter reaching zero
 - once counter reaches zero, its further
   increments aren't allowed
 - counter schema uses basic atomic operations
   (set, inc, inc_not_zero, dec_and_test, etc.)

Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.

The variable numa_group.refcount is used as pure reference counter.
Convert it to refcount_t and fix up the operations.

** Important note for maintainers:

Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.

The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.

Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.

Please double check that you don't have some undocumented
memory guarantees for this variable usage.

For the numa_group.refcount it might make a difference
in following places:

 - get_numa_group(): increment in refcount_inc_not_zero() only
   guarantees control dependency on success vs. fully ordered
   atomic counterpart
 - put_numa_group(): decrement in refcount_dec_and_test() only
   provides RELEASE ordering and control dependency on success
   vs. fully ordered atomic counterpart

Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1547814450-18902-4-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 08:53:54 +01:00
Josh Poimboeuf
b284909aba cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVM
With the following commit:

  73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")

... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled.  However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.

The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case.  So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.

Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:

  1) /sys/devices/system/cpu/smt/control showed "on" instead of
     "notsupported"; and

  2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.

I'd propose that we instead consider #1 above to not actually be a
problem.  Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later.  So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).

The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.

So fix it by:

  a) reverting the original "fix" and its followup fix:

     73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
     bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")

     and

  b) changing vmx_vm_init() to query the actual current SMT state --
     instead of the sysfs control value -- to determine whether the L1TF
     warning is needed.  This also requires the 'sched_smt_present'
     variable to exported, instead of 'cpu_smt_control'.

Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
2019-01-30 19:27:00 +01:00
Vincent Guittot
46a745d905 sched/fair: Fix unnecessary increase of balance interval
In case of active balancing, we increase the balance interval to cover
pinned tasks cases not covered by all_pinned logic. Neverthless, the
active migration triggered by asym packing should be treated as the normal
unbalanced case and reset the interval to default value, otherwise active
migration for asym_packing can be easily delayed for hundreds of ms
because of this pinned task detection mechanism.

The same happens to other conditions tested in need_active_balance() like
misfit task and when the capacity of src_cpu is reduced compared to
dst_cpu (see comments in need_active_balance() for details).

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: valentin.schneider@arm.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-27 12:29:37 +01:00
Vincent Guittot
4ad4e481bd sched/fair: Fix rounding bug for asym packing
When check_asym_packing() is triggered, the imbalance is set to:

  busiest_stat.avg_load * busiest_stat.group_capacity / SCHED_CAPACITY_SCALE

But busiest_stat.avg_load equals:

  sgs->group_load * SCHED_CAPACITY_SCALE / sgs->group_capacity

These divisions can generate a rounding that will make imbalance
slightly lower than the weighted load of the cfs_rq.  But this is
enough to skip the rq in find_busiest_queue() and prevents asym
migration from happening.

Directly set imbalance to busiest's sgs->group_load to remove the
rounding.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: valentin.schneider@arm.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-27 12:29:37 +01:00
Vincent Guittot
a062d16449 sched/fair: Trigger asym_packing during idle load balance
Newly idle load balancing is not always triggered when a CPU becomes idle.
This prevents the scheduler from getting a chance to migrate the task
for asym packing.

Enable active migration during idle load balance too.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: valentin.schneider@arm.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-27 12:29:37 +01:00