Commit aaac3ba95e ("bpf: charge user for creation of BPF maps and
programs") made a wrong assumption of charging against prog->pages.
Unlike map->pages, prog->pages are still subject to change when we
need to expand the program through bpf_prog_realloc().
This can for example happen during verification stage when we need to
expand and rewrite parts of the program. Should the required space
cross a page boundary, then prog->pages is not the same anymore as
its original value that we used to bpf_prog_charge_memlock() on. Thus,
we'll hit a wrap-around during bpf_prog_uncharge_memlock() when prog
is freed eventually. I noticed this that despite having unlimited
memlock, programs suddenly refused to load with EPERM error due to
insufficient memlock.
There are two ways to fix this issue. One would be to add a cached
variable to struct bpf_prog that takes a snapshot of prog->pages at the
time of charging. The other approach is to also account for resizes. I
chose to go with the latter for a couple of reasons: i) We want accounting
rather to be more accurate instead of further fooling limits, ii) adding
yet another page counter on struct bpf_prog would also be a waste just
for this purpose. We also do want to charge as early as possible to
avoid going into the verifier just to find out later on that we crossed
limits. The only place that needs to be fixed is bpf_prog_realloc(),
since only here we expand the program, so we try to account for the
needed delta and should we fail, call-sites check for outcome anyway.
On cBPF to eBPF migrations, we don't grab a reference to the user as
they are charged differently. With that in place, my test case worked
fine.
Fixes: aaac3ba95e ("bpf: charge user for creation of BPF maps and programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Geert rightfully complained that 7bd509e311 ("bpf: add prog_digest
and expose it via fdinfo/netlink") added a too large allocation of
variable 'raw' from bss section, and should instead be done dynamically:
# ./scripts/bloat-o-meter kernel/bpf/core.o.1 kernel/bpf/core.o.2
add/remove: 3/0 grow/shrink: 0/0 up/down: 33291/0 (33291)
function old new delta
raw - 32832 +32832
[...]
Since this is only relevant during program creation path, which can be
considered slow-path anyway, lets allocate that dynamically and be not
implicitly dependent on verifier mutex. Move bpf_prog_calc_digest() at
the beginning of replace_map_fd_with_map_ptr() and also error handling
stays straight forward.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When loading a BPF program via bpf(2), calculate the digest over
the program's instruction stream and store it in struct bpf_prog's
digest member. This is done at a point in time before any instructions
are rewritten by the verifier. Any unstable map file descriptor
number part of the imm field will be zeroed for the hash.
fdinfo example output for progs:
# cat /proc/1590/fdinfo/5
pos: 0
flags: 02000002
mnt_id: 11
prog_type: 1
prog_jited: 1
prog_digest: b27e8b06da22707513aa97363dfb11c7c3675d28
memlock: 4096
When programs are pinned and retrieved by an ELF loader, the loader
can check the program's digest through fdinfo and compare it against
one that was generated over the ELF file's program section to see
if the program needs to be reloaded. Furthermore, this can also be
exposed through other means such as netlink in case of a tc cls/act
dump (or xdp in future), but also through tracepoints or other
facilities to identify the program. Other than that, the digest can
also serve as a base name for the work in progress kallsyms support
of programs. The digest doesn't depend/select the crypto layer, since
we need to keep dependencies to a minimum. iproute2 will get support
for this facility.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Helpers like bpf_prog_add(), bpf_prog_inc(), bpf_map_inc() can fail
with an error, so make sure the caller properly checks their return
value and not just ignores it, which could worst-case lead to use
after free.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 67f8b1dcb9 ("net/mlx4_en: Refactor the XDP forwarding rings
scheme") added a bug in that the prog's reference count is not dropped
in the error path when mlx4_en_try_alloc_resources() is failing from
mlx4_xdp_set().
We previously took bpf_prog_add(prog, priv->rx_ring_num - 1), that we
need to release again. Earlier in the call path, dev_change_xdp_fd()
itself holds a reference to the prog as well (hence the '- 1' in the
bpf_prog_add()), so a simple atomic_sub() is safe to use here. When
an error is propagated, then bpf_prog_put() is called eventually from
dev_change_xdp_fd()
Fixes: 67f8b1dcb9 ("net/mlx4_en: Refactor the XDP forwarding rings scheme")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use case is mainly for soreuseport to select sockets for the local
numa node, but since generic, lets also add this for other networking
and tracing program types.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Suppose you have a map array value that is something like this
struct foo {
unsigned iter;
int array[SOME_CONSTANT];
};
You can easily insert this into an array, but you cannot modify the contents of
foo->array[] after the fact. This is because we have no way to verify we won't
go off the end of the array at verification time. This patch provides a start
for this work. We accomplish this by keeping track of a minimum and maximum
value a register could be while we're checking the code. Then at the time we
try to do an access into a MAP_VALUE we verify that the maximum offset into that
region is a valid access into that memory region. So in practice, code such as
this
unsigned index = 0;
if (foo->iter >= SOME_CONSTANT)
foo->iter = index;
else
index = foo->iter++;
foo->array[index] = bar;
would be allowed, as we can verify that index will always be between 0 and
SOME_CONSTANT-1. If you wish to use signed values you'll have to have an extra
check to make sure the index isn't less than 0, or do something like index %=
SOME_CONSTANT.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work implements direct packet access for helpers and direct packet
write in a similar fashion as already available for XDP types via commits
4acf6c0b84 ("bpf: enable direct packet data write for xdp progs") and
6841de8b0d ("bpf: allow helpers access the packet directly"), and as a
complementary feature to the already available direct packet read for tc
(cls/act) programs.
For enabling this, we need to introduce two helpers, bpf_skb_pull_data()
and bpf_csum_update(). The first is generally needed for both, read and
write, because they would otherwise only be limited to the current linear
skb head. Usually, when the data_end test fails, programs just bail out,
or, in the direct read case, use bpf_skb_load_bytes() as an alternative
to overcome this limitation. If such data sits in non-linear parts, we
can just pull them in once with the new helper, retest and eventually
access them.
At the same time, this also makes sure the skb is uncloned, which is, of
course, a necessary condition for direct write. As this needs to be an
invariant for the write part only, the verifier detects writes and adds
a prologue that is calling bpf_skb_pull_data() to effectively unclone the
skb from the very beginning in case it is indeed cloned. The heuristic
makes use of a similar trick that was done in 233577a220 ("net: filter:
constify detection of pkt_type_offset"). This comes at zero cost for other
programs that do not use the direct write feature. Should a program use
this feature only sparsely and has read access for the most parts with,
for example, drop return codes, then such write action can be delegated
to a tail called program for mitigating this cost of potential uncloning
to a late point in time where it would have been paid similarly with the
bpf_skb_store_bytes() as well. Advantage of direct write is that the
writes are inlined whereas the helper cannot make any length assumptions
and thus needs to generate a call to memcpy() also for small sizes, as well
as cost of helper call itself with sanity checks are avoided. Plus, when
direct read is already used, we don't need to cache or perform rechecks
on the data boundaries (due to verifier invalidating previous checks for
helpers that change skb->data), so more complex programs using rewrites
can benefit from switching to direct read plus write.
For direct packet access to helpers, we save the otherwise needed copy into
a temp struct sitting on stack memory when use-case allows. Both facilities
are enabled via may_access_direct_pkt_data() in verifier. For now, we limit
this to map helpers and csum_diff, and can successively enable other helpers
where we find it makes sense. Helpers that definitely cannot be allowed for
this are those part of bpf_helper_changes_skb_data() since they can change
underlying data, and those that write into memory as this could happen for
packet typed args when still cloned. bpf_csum_update() helper accommodates
for the fact that we need to fixup checksum_complete when using direct write
instead of bpf_skb_store_bytes(), meaning the programs can use available
helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(),
csum_block_add(), csum_block_sub() equivalents in eBPF together with the
new helper. A usage example will be provided for iproute2's examples/bpf/
directory.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow attaching BPF_PROG_TYPE_PERF_EVENT programs to sw and hw perf events
via overflow_handler mechanism.
When program is attached the overflow_handlers become stacked.
The program acts as a filter.
Returning zero from the program means that the normal perf_event_output handler
will not be called and sampling event won't be stored in the ring buffer.
The overflow_handler_context==NULL is an additional safety check
to make sure programs are not attached to hw breakpoints and watchdog
in case other checks (that prevent that now anyway) get accidentally
relaxed in the future.
The program refcnt is incremented in case perf_events are inhereted
when target task is forked.
Similar to kprobe and tracepoint programs there is no ioctl to
detach the program or swap already attached program. The user space
expected to close(perf_event_fd) like it does right now for kprobe+bpf.
That restriction simplifies the code quite a bit.
The invocation of overflow_handler in __perf_event_overflow() is now
done via READ_ONCE, since that pointer can be replaced when the program
is attached while perf_event itself could have been active already.
There is no need to do similar treatment for event->prog, since it's
assigned only once before it's accessed.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch fixes the __output_custom() routine we currently use with
bpf_skb_copy(). I missed that when len is larger than the size of the
current handle, we can issue multiple invocations of copy_func, and
__output_custom() advances destination but also source buffer by the
written amount of bytes. When we have __output_custom(), this is actually
wrong since in that case the source buffer points to a non-linear object,
in our case an skb, which the copy_func helper is supposed to walk.
Therefore, since this is non-linear we thus need to pass the offset into
the helper, so that copy_func can use it for extracting the data from
the source object.
Therefore, adjust the callback signatures properly and pass offset
into the skb_header_pointer() invoked from bpf_skb_copy() callback. The
__DEFINE_OUTPUT_COPY_BODY() is adjusted to accommodate for two things:
i) to pass in whether we should advance source buffer or not; this is
a compile-time constant condition, ii) to pass in the offset for
__output_custom(), which we do with help of __VA_ARGS__, so everything
can stay inlined as is currently. Both changes allow for adapting the
__output_* fast-path helpers w/o extra overhead.
Fixes: 555c8a8623 ("bpf: avoid stack copy and use skb ctx for event output")
Fixes: 7e3f977edd ("perf, events: add non-linear data support for raw records")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
For the ifndef case of CONFIG_BPF_SYSCALL, an inline version of
bpf_prog_add needs to exist otherwise the build breaks on some configs.
drivers/net/ethernet/mellanox/mlx4/en_netdev.c:2544:10: error: implicit declaration of function 'bpf_prog_add'
prog = bpf_prog_add(prog, priv->rx_ring_num - 1);
The function is introduced in
59d3656d5b ("bpf: add bpf_prog_add api for bulk prog refcnt")
and first used in
47f1afdba2b87 ("net/mlx4_en: add support for fast rx drop bpf program").
Fixes: 47f1afdba2b87 ("net/mlx4_en: add support for fast rx drop bpf program")
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Reported-by: Tariq Toukan <ttoukan.linux@gmail.com>
Signed-off-by: Brenden Blanco <bblanco@plumgrid.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
A subsystem may need to store many copies of a bpf program, each
deserving its own reference. Rather than requiring the caller to loop
one by one (with possible mid-loop failure), add a bulk bpf_prog_add
api.
Signed-off-by: Brenden Blanco <bblanco@plumgrid.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work addresses a couple of issues bpf_skb_event_output()
helper currently has: i) We need two copies instead of just a
single one for the skb data when it should be part of a sample.
The data can be non-linear and thus needs to be extracted via
bpf_skb_load_bytes() helper first, and then copied once again
into the ring buffer slot. ii) Since bpf_skb_load_bytes()
currently needs to be used first, the helper needs to see a
constant size on the passed stack buffer to make sure BPF
verifier can do sanity checks on it during verification time.
Thus, just passing skb->len (or any other non-constant value)
wouldn't work, but changing bpf_skb_load_bytes() is also not
the proper solution, since the two copies are generally still
needed. iii) bpf_skb_load_bytes() is just for rather small
buffers like headers, since they need to sit on the limited
BPF stack anyway. Instead of working around in bpf_skb_load_bytes(),
this work improves the bpf_skb_event_output() helper to address
all 3 at once.
We can make use of the passed in skb context that we have in
the helper anyway, and use some of the reserved flag bits as
a length argument. The helper will use the new __output_custom()
facility from perf side with bpf_skb_copy() as callback helper
to walk and extract the data. It will pass the data for setup
to bpf_event_output(), which generates and pushes the raw record
with an additional frag part. The linear data used in the first
frag of the record serves as programmatically defined meta data
passed along with the appended sample.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since bpf_prog_get() and program type check is used in a couple of places,
refactor this into a small helper function that we can make use of. Since
the non RO prog->aux part is not used in performance critical paths and a
program destruction via RCU is rather very unlikley when doing the put, we
shouldn't have an issue just doing the bpf_prog_get() + prog->type != type
check, but actually not taking the ref at all (due to being in fdget() /
fdput() section of the bpf fd) is even cleaner and makes the diff smaller
as well, so just go for that. Callsites are changed to make use of the new
helper where possible.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Jann Horn reported following analysis that could potentially result
in a very hard to trigger (if not impossible) UAF race, to quote his
event timeline:
- Set up a process with threads T1, T2 and T3
- Let T1 set up a socket filter F1 that invokes another filter F2
through a BPF map [tail call]
- Let T1 trigger the socket filter via a unix domain socket write,
don't wait for completion
- Let T2 call PERF_EVENT_IOC_SET_BPF with F2, don't wait for completion
- Now T2 should be behind bpf_prog_get(), but before bpf_prog_put()
- Let T3 close the file descriptor for F2, dropping the reference
count of F2 to 2
- At this point, T1 should have looked up F2 from the map, but not
finished executing it
- Let T3 remove F2 from the BPF map, dropping the reference count of
F2 to 1
- Now T2 should call bpf_prog_put() (wrong BPF program type), dropping
the reference count of F2 to 0 and scheduling bpf_prog_free_deferred()
via schedule_work()
- At this point, the BPF program could be freed
- BPF execution is still running in a freed BPF program
While at PERF_EVENT_IOC_SET_BPF time it's only guaranteed that the perf
event fd we're doing the syscall on doesn't disappear from underneath us
for whole syscall time, it may not be the case for the bpf fd used as
an argument only after we did the put. It needs to be a valid fd pointing
to a BPF program at the time of the call to make the bpf_prog_get() and
while T2 gets preempted, F2 must have dropped reference to 1 on the other
CPU. The fput() from the close() in T3 should also add additionally delay
to the reference drop via exit_task_work() when bpf_prog_release() gets
called as well as scheduling bpf_prog_free_deferred().
That said, it makes nevertheless sense to move the BPF prog destruction
generally after RCU grace period to guarantee that such scenario above,
but also others as recently fixed in ceb5607035 ("bpf, perf: delay release
of BPF prog after grace period") with regards to tail calls won't happen.
Integrating bpf_prog_free_deferred() directly into the RCU callback is
not allowed since the invocation might happen from either softirq or
process context, so we're not permitted to block. Reviewing all bpf_prog_put()
invocations from eBPF side (note, cBPF -> eBPF progs don't use this for
their destruction) with call_rcu() look good to me.
Since we don't know whether at the time of attaching the program, we're
already part of a tail call map, we need to use RCU variant. However, due
to this, there won't be severely more stress on the RCU callback queue:
situations with above bpf_prog_get() and bpf_prog_put() combo in practice
normally won't lead to releases, but even if they would, enough effort/
cycles have to be put into loading a BPF program into the kernel already.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Several cases of overlapping changes, except the packet scheduler
conflicts which deal with the addition of the free list parameter
to qdisc_enqueue().
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit dead9f29dd ("perf: Fix race in BPF program unregister") moved
destruction of BPF program from free_event_rcu() callback to __free_event(),
which is problematic if used with tail calls: if prog A is attached as
trace event directly, but at the same time present in a tail call map used
by another trace event program elsewhere, then we need to delay destruction
via RCU grace period since it can still be in use by the program doing the
tail call (the prog first needs to be dropped from the tail call map, then
trace event with prog A attached destroyed, so we get immediate destruction).
Fixes: dead9f29dd ("perf: Fix race in BPF program unregister")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Jann Horn <jann@thejh.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The behavior of perf event arrays are quite different from all
others as they are tightly coupled to perf event fds, f.e. shown
recently by commit e03e7ee34f ("perf/bpf: Convert perf_event_array
to use struct file") to make refcounting on perf event more robust.
A remaining issue that the current code still has is that since
additions to the perf event array take a reference on the struct
file via perf_event_get() and are only released via fput() (that
cleans up the perf event eventually via perf_event_release_kernel())
when the element is either manually removed from the map from user
space or automatically when the last reference on the perf event
map is dropped. However, this leads us to dangling struct file's
when the map gets pinned after the application owning the perf
event descriptor exits, and since the struct file reference will
in such case only be manually dropped or via pinned file removal,
it leads to the perf event living longer than necessary, consuming
needlessly resources for that time.
Relations between perf event fds and bpf perf event map fds can be
rather complex. F.e. maps can act as demuxers among different perf
event fds that can possibly be owned by different threads and based
on the index selection from the program, events get dispatched to
one of the per-cpu fd endpoints. One perf event fd (or, rather a
per-cpu set of them) can also live in multiple perf event maps at
the same time, listening for events. Also, another requirement is
that perf event fds can get closed from application side after they
have been attached to the perf event map, so that on exit perf event
map will take care of dropping their references eventually. Likewise,
when such maps are pinned, the intended behavior is that a user
application does bpf_obj_get(), puts its fds in there and on exit
when fd is released, they are dropped from the map again, so the map
acts rather as connector endpoint. This also makes perf event maps
inherently different from program arrays as described in more detail
in commit c9da161c65 ("bpf: fix clearing on persistent program
array maps").
To tackle this, map entries are marked by the map struct file that
added the element to the map. And when the last reference to that map
struct file is released from user space, then the tracked entries
are purged from the map. This is okay, because new map struct files
instances resp. frontends to the anon inode are provided via
bpf_map_new_fd() that is called when we invoke bpf_obj_get_user()
for retrieving a pinned map, but also when an initial instance is
created via map_create(). The rest is resolved by the vfs layer
automatically for us by keeping reference count on the map's struct
file. Any concurrent updates on the map slot are fine as well, it
just means that perf_event_fd_array_release() needs to delete less
of its own entires.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch extends map_fd_get_ptr() callback that is used by fd array
maps, so that struct file pointer from the related map can be passed
in. It's safe to remove map_update_elem() callback for the two maps since
this is only allowed from syscall side, but not from eBPF programs for these
two map types. Like in per-cpu map case, bpf_fd_array_map_update_elem()
needs to be called directly here due to the extra argument.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a release callback for maps that is invoked when the last
reference to its struct file is gone and the struct file about
to be released by vfs. The handler will be used by fd array maps.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ctx structure passed into bpf programs is different depending on bpf
program type. The verifier incorrectly marked ctx->data and ctx->data_end
access based on ctx offset only. That caused loads in tracing programs
int bpf_prog(struct pt_regs *ctx) { .. ctx->ax .. }
to be incorrectly marked as PTR_TO_PACKET which later caused verifier
to reject the program that was actually valid in tracing context.
Fix this by doing program type specific matching of ctx offsets.
Fixes: 969bf05eb3 ("bpf: direct packet access")
Reported-by: Sasha Goldshtein <goldshtn@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 0fc174dea5 ("ebpf: make internal bpf API independent of
CONFIG_BPF_SYSCALL ifdefs") introduced usage of ERR_PTR() in
bpf_prog_get(), however did not include linux/err.h.
Without this patch, when compiling arm64 BPF without CONFIG_BPF_SYSCALL:
...
In file included from arch/arm64/net/bpf_jit_comp.c:21:0:
include/linux/bpf.h: In function 'bpf_prog_get':
include/linux/bpf.h:235:9: error: implicit declaration of function 'ERR_PTR' [-Werror=implicit-function-declaration]
return ERR_PTR(-EOPNOTSUPP);
^
include/linux/bpf.h:235:9: warning: return makes pointer from integer without a cast [-Wint-conversion]
In file included from include/linux/rwsem.h:17:0,
from include/linux/mm_types.h:10,
from include/linux/sched.h:27,
from arch/arm64/include/asm/compat.h:25,
from arch/arm64/include/asm/stat.h:23,
from include/linux/stat.h:5,
from include/linux/compat.h:12,
from include/linux/filter.h:10,
from arch/arm64/net/bpf_jit_comp.c:22:
include/linux/err.h: At top level:
include/linux/err.h:23:35: error: conflicting types for 'ERR_PTR'
static inline void * __must_check ERR_PTR(long error)
^
In file included from arch/arm64/net/bpf_jit_comp.c:21:0:
include/linux/bpf.h:235:9: note: previous implicit declaration of 'ERR_PTR' was here
return ERR_PTR(-EOPNOTSUPP);
^
...
Fixes: 0fc174dea5 ("ebpf: make internal bpf API independent of CONFIG_BPF_SYSCALL ifdefs")
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
net/ipv4/ip_gre.c
Minor conflicts between tunnel bug fixes in net and
ipv6 tunnel cleanups in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK,
the malicious application may overflow 32-bit bpf program refcnt.
It's also possible to overflow map refcnt on 1Tb system.
Impose 32k hard limit which means that the same bpf program or
map cannot be shared by more than 32k processes.
Fixes: 1be7f75d16 ("bpf: enable non-root eBPF programs")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a new helper for cls/act programs that can push events
to user space applications. For networking, this can be f.e. for sampling,
debugging, logging purposes or pushing of arbitrary wake-up events. The
idea is similar to a43eec3042 ("bpf: introduce bpf_perf_event_output()
helper") and 39111695b1 ("samples: bpf: add bpf_perf_event_output example").
The eBPF program utilizes a perf event array map that user space populates
with fds from perf_event_open(), the eBPF program calls into the helper
f.e. as skb_event_output(skb, &my_map, BPF_F_CURRENT_CPU, raw, sizeof(raw))
so that the raw data is pushed into the fd f.e. at the map index of the
current CPU.
User space can poll/mmap/etc on this and has a data channel for receiving
events that can be post-processed. The nice thing is that since the eBPF
program and user space application making use of it are tightly coupled,
they can define their own arbitrary raw data format and what/when they
want to push.
While f.e. packet headers could be one part of the meta data that is being
pushed, this is not a substitute for things like packet sockets as whole
packet is not being pushed and push is only done in a single direction.
Intention is more of a generically usable, efficient event pipe to applications.
Workflow is that tc can pin the map and applications can attach themselves
e.g. after cls/act setup to one or multiple map slots, demuxing is done by
the eBPF program.
Adding this facility is with minimal effort, it reuses the helper
introduced in a43eec3042 ("bpf: introduce bpf_perf_event_output() helper")
and we get its functionality for free by overloading its BPF_FUNC_ identifier
for cls/act programs, ctx is currently unused, but will be made use of in
future. Example will be added to iproute2's BPF example files.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When passing buffers from eBPF stack space into a helper function, we have
ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure
that such buffers are initialized, within boundaries, etc.
However, the downside with this is that we have a couple of helper functions
such as bpf_skb_load_bytes() that fill out the passed buffer in the expected
success case anyway, so zero initializing them prior to the helper call is
unneeded/wasted instructions in the eBPF program that can be avoided.
Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK.
The idea is to skip the STACK_MISC check in check_stack_boundary() and color
the related stack slots as STACK_MISC after we checked all call arguments.
Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of
the helper function will fill the provided buffer area, so that we cannot leak
any uninitialized stack memory. This f.e. means that error paths need to
memset() the buffers, but the expected fast-path doesn't have to do this
anymore.
Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK
argument, we can keep it simple and don't need to check for multiple areas.
Should in future such a use-case really appear, we have check_raw_mode() that
will make sure we implement support for it first.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
during bpf program loading remember the last byte of ctx access
and at the time of attaching the program to tracepoint check that
the program doesn't access bytes beyond defined in tracepoint fields
This also disallows access to __dynamic_array fields, but can be
relaxed in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
needs two wrapper functions to fetch 'struct pt_regs *' to convert
tracepoint bpf context into kprobe bpf context to reuse existing
helper functions
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
It was observed that calling bpf_get_stackid() from a kprobe inside
slub or from spin_unlock causes similar deadlock as with hashmap,
therefore convert stackmap to use pre-allocated memory.
The call_rcu is no longer feasible mechanism, since delayed freeing
causes bpf_get_stackid() to fail unpredictably when number of actual
stacks is significantly less than user requested max_entries.
Since elements are no longer freed into slub, we can push elements into
freelist immediately and let them be recycled.
However the very unlikley race between user space map_lookup() and
program-side recycling is possible:
cpu0 cpu1
---- ----
user does lookup(stackidX)
starts copying ips into buffer
delete(stackidX)
calls bpf_get_stackid()
which recyles the element and
overwrites with new stack trace
To avoid user space seeing a partial stack trace consisting of two
merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket);
to preserve consistent stack trace delivery to user space.
Now we can move memset(,0) of left-over element value from critical
path of bpf_get_stackid() into slow-path of user space lookup.
Also disallow lookup() from bpf program, since it's useless and
program shouldn't be messing with collected stack trace.
Note that similar race between user space lookup and kernel side updates
is also present in hashmap, but it's not a new race. bpf programs were
always allowed to modify hash and array map elements while user space
is copying them.
Fixes: d5a3b1f691 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
If kprobe is placed on spin_unlock then calling kmalloc/kfree from
bpf programs is not safe, since the following dead lock is possible:
kfree->spin_lock(kmem_cache_node->lock)...spin_unlock->kprobe->
bpf_prog->map_update->kmalloc->spin_lock(of the same kmem_cache_node->lock)
and deadlocks.
The following solutions were considered and some implemented, but
eventually discarded
- kmem_cache_create for every map
- add recursion check to slow-path of slub
- use reserved memory in bpf_map_update for in_irq or in preempt_disabled
- kmalloc via irq_work
At the end pre-allocation of all map elements turned out to be the simplest
solution and since the user is charged upfront for all the memory, such
pre-allocation doesn't affect the user space visible behavior.
Since it's impossible to tell whether kprobe is triggered in a safe
location from kmalloc point of view, use pre-allocation by default
and introduce new BPF_F_NO_PREALLOC flag.
While testing of per-cpu hash maps it was discovered
that alloc_percpu(GFP_ATOMIC) has odd corner cases and often
fails to allocate memory even when 90% of it is free.
The pre-allocation of per-cpu hash elements solves this problem as well.
Turned out that bpf_map_update() quickly followed by
bpf_map_lookup()+bpf_map_delete() is very common pattern used
in many of iovisor/bcc/tools, so there is additional benefit of
pre-allocation, since such use cases are must faster.
Since all hash map elements are now pre-allocated we can remove
atomic increment of htab->count and save few more cycles.
Also add bpf_map_precharge_memlock() to check rlimit_memlock early to avoid
large malloc/free done by users who don't have sufficient limits.
Pre-allocation is done with vmalloc and alloc/free is done
via percpu_freelist. Here are performance numbers for different
pre-allocation algorithms that were implemented, but discarded
in favor of percpu_freelist:
1 cpu:
pcpu_ida 2.1M
pcpu_ida nolock 2.3M
bt 2.4M
kmalloc 1.8M
hlist+spinlock 2.3M
pcpu_freelist 2.6M
4 cpu:
pcpu_ida 1.5M
pcpu_ida nolock 1.8M
bt w/smp_align 1.7M
bt no/smp_align 1.1M
kmalloc 0.7M
hlist+spinlock 0.2M
pcpu_freelist 2.0M
8 cpu:
pcpu_ida 0.7M
bt w/smp_align 0.8M
kmalloc 0.4M
pcpu_freelist 1.5M
32 cpu:
kmalloc 0.13M
pcpu_freelist 0.49M
pcpu_ida nolock is a modified percpu_ida algorithm without
percpu_ida_cpu locks and without cross-cpu tag stealing.
It's faster than existing percpu_ida, but not as fast as pcpu_freelist.
bt is a variant of block/blk-mq-tag.c simlified and customized
for bpf use case. bt w/smp_align is using cache line for every 'long'
(similar to blk-mq-tag). bt no/smp_align allocates 'long'
bitmasks continuously to save memory. It's comparable to percpu_ida
and in some cases faster, but slower than percpu_freelist
hlist+spinlock is the simplest free list with single spinlock.
As expeceted it has very bad scaling in SMP.
kmalloc is existing implementation which is still available via
BPF_F_NO_PREALLOC flag. It's significantly slower in single cpu and
in 8 cpu setup it's 3 times slower than pre-allocation with pcpu_freelist,
but saves memory, so in cases where map->max_entries can be large
and number of map update/delete per second is low, it may make
sense to use it.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
if kprobe is placed within update or delete hash map helpers
that hold bucket spin lock and triggered bpf program is trying to
grab the spinlock for the same bucket on the same cpu, it will
deadlock.
Fix it by extending existing recursion prevention mechanism.
Note, map_lookup and other tracing helpers don't have this problem,
since they don't hold any locks and don't modify global data.
bpf_trace_printk has its own recursive check and ok as well.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, when we pass a buffer from the eBPF stack into a helper
function, the function proto indicates argument types as ARG_PTR_TO_STACK
and ARG_CONST_STACK_SIZE pair. If R<X> contains the former, then R<X+1>
must be of the latter type. Then, verifier checks whether the buffer
points into eBPF stack, is initialized, etc. The verifier also guarantees
that the constant value passed in R<X+1> is greater than 0, so helper
functions don't need to test for it and can always assume a non-NULL
initialized buffer as well as non-0 buffer size.
This patch adds a new argument types ARG_CONST_STACK_SIZE_OR_ZERO that
allows to also pass NULL as R<X> and 0 as R<X+1> into the helper function.
Such helper functions, of course, need to be able to handle these cases
internally then. Verifier guarantees that either R<X> == NULL && R<X+1> == 0
or R<X> != NULL && R<X+1> != 0 (like the case of ARG_CONST_STACK_SIZE), any
other combinations are not possible to load.
I went through various options of extending the verifier, and introducing
the type ARG_CONST_STACK_SIZE_OR_ZERO seems to have most minimal changes
needed to the verifier.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
add new map type to store stack traces and corresponding helper
bpf_get_stackid(ctx, map, flags) - walk user or kernel stack and return id
@ctx: struct pt_regs*
@map: pointer to stack_trace map
@flags: bits 0-7 - numer of stack frames to skip
bit 8 - collect user stack instead of kernel
bit 9 - compare stacks by hash only
bit 10 - if two different stacks hash into the same stackid
discard old
other bits - reserved
Return: >= 0 stackid on success or negative error
stackid is a 32-bit integer handle that can be further combined with
other data (including other stackid) and used as a key into maps.
Userspace will access stackmap using standard lookup/delete syscall commands to
retrieve full stack trace for given stackid.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The functions bpf_map_lookup_elem(map, key, value) and
bpf_map_update_elem(map, key, value, flags) need to get/set
values from all-cpus for per-cpu hash and array maps,
so that user space can aggregate/update them as necessary.
Example of single counter aggregation in user space:
unsigned int nr_cpus = sysconf(_SC_NPROCESSORS_CONF);
long values[nr_cpus];
long value = 0;
bpf_lookup_elem(fd, key, values);
for (i = 0; i < nr_cpus; i++)
value += values[i];
The user space must provide round_up(value_size, 8) * nr_cpus
array to get/set values, since kernel will use 'long' copy
of per-cpu values to try to copy good counters atomically.
It's a best-effort, since bpf programs and user space are racing
to access the same memory.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Primary use case is a histogram array of latency
where bpf program computes the latency of block requests or other
events and stores histogram of latency into array of 64 elements.
All cpus are constantly running, so normal increment is not accurate,
bpf_xadd causes cache ping-pong and this per-cpu approach allows
fastest collision-free counters.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, when having map file descriptors pointing to program arrays,
there's still the issue that we unconditionally flush program array
contents via bpf_fd_array_map_clear() in bpf_map_release(). This happens
when such a file descriptor is released and is independent of the map's
refcount.
Having this flush independent of the refcount is for a reason: there
can be arbitrary complex dependency chains among tail calls, also circular
ones (direct or indirect, nesting limit determined during runtime), and
we need to make sure that the map drops all references to eBPF programs
it holds, so that the map's refcount can eventually drop to zero and
initiate its freeing. Btw, a walk of the whole dependency graph would
not be possible for various reasons, one being complexity and another
one inconsistency, i.e. new programs can be added to parts of the graph
at any time, so there's no guaranteed consistent state for the time of
such a walk.
Now, the program array pinning itself works, but the issue is that each
derived file descriptor on close would nevertheless call unconditionally
into bpf_fd_array_map_clear(). Instead, keep track of users and postpone
this flush until the last reference to a user is dropped. As this only
concerns a subset of references (f.e. a prog array could hold a program
that itself has reference on the prog array holding it, etc), we need to
track them separately.
Short analysis on the refcounting: on map creation time usercnt will be
one, so there's no change in behaviour for bpf_map_release(), if unpinned.
If we already fail in map_create(), we are immediately freed, and no
file descriptor has been made public yet. In bpf_obj_pin_user(), we need
to probe for a possible map in bpf_fd_probe_obj() already with a usercnt
reference, so before we drop the reference on the fd with fdput().
Therefore, if actual pinning fails, we need to drop that reference again
in bpf_any_put(), otherwise we keep holding it. When last reference
drops on the inode, the bpf_any_put() in bpf_evict_inode() will take
care of dropping the usercnt again. In the bpf_obj_get_user() case, the
bpf_any_get() will grab a reference on the usercnt, still at a time when
we have the reference on the path. Should we later on fail to grab a new
file descriptor, bpf_any_put() will drop it, otherwise we hold it until
bpf_map_release() time.
Joint work with Alexei.
Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds support for "persistent" eBPF maps/programs. The term
"persistent" is to be understood that maps/programs have a facility
that lets them survive process termination. This is desired by various
eBPF subsystem users.
Just to name one example: tc classifier/action. Whenever tc parses
the ELF object, extracts and loads maps/progs into the kernel, these
file descriptors will be out of reach after the tc instance exits.
So a subsequent tc invocation won't be able to access/relocate on this
resource, and therefore maps cannot easily be shared, f.e. between the
ingress and egress networking data path.
The current workaround is that Unix domain sockets (UDS) need to be
instrumented in order to pass the created eBPF map/program file
descriptors to a third party management daemon through UDS' socket
passing facility. This makes it a bit complicated to deploy shared
eBPF maps or programs (programs f.e. for tail calls) among various
processes.
We've been brainstorming on how we could tackle this issue and various
approches have been tried out so far, which can be read up further in
the below reference.
The architecture we eventually ended up with is a minimal file system
that can hold map/prog objects. The file system is a per mount namespace
singleton, and the default mount point is /sys/fs/bpf/. Any subsequent
mounts within a given namespace will point to the same instance. The
file system allows for creating a user-defined directory structure.
The objects for maps/progs are created/fetched through bpf(2) with
two new commands (BPF_OBJ_PIN/BPF_OBJ_GET). I.e. a bpf file descriptor
along with a pathname is being passed to bpf(2) that in turn creates
(we call it eBPF object pinning) the file system nodes. Only the pathname
is being passed to bpf(2) for getting a new BPF file descriptor to an
existing node. The user can use that to access maps and progs later on,
through bpf(2). Removal of file system nodes is being managed through
normal VFS functions such as unlink(2), etc. The file system code is
kept to a very minimum and can be further extended later on.
The next step I'm working on is to add dump eBPF map/prog commands
to bpf(2), so that a specification from a given file descriptor can
be retrieved. This can be used by things like CRIU but also applications
can inspect the meta data after calling BPF_OBJ_GET.
Big thanks also to Alexei and Hannes who significantly contributed
in the design discussion that eventually let us end up with this
architecture here.
Reference: https://lkml.org/lkml/2015/10/15/925
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a bpf_map_get() function that we're going to use later on and
align/clean the remaining helpers a bit so that we have them a bit
more consistent:
- __bpf_map_get() and __bpf_prog_get() that both work on the fd
struct, check whether the descriptor is eBPF and return the
pointer to the map/prog stored in the private data.
Also, we can return f.file->private_data directly, the function
signature is enough of a documentation already.
- bpf_map_get() and bpf_prog_get() that both work on u32 user fd,
call their respective __bpf_map_get()/__bpf_prog_get() variants,
and take a reference.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix safety checks for bpf_perf_event_read():
- only non-inherited events can be added to perf_event_array map
(do this check statically at map insertion time)
- dynamically check that event is local and !pmu->count
Otherwise buggy bpf program can cause kernel splat.
Also fix error path after perf_event_attrs()
and remove redundant 'extern'.
Fixes: 35578d7984 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
since eBPF programs and maps use kernel memory consider it 'locked' memory
from user accounting point of view and charge it against RLIMIT_MEMLOCK limit.
This limit is typically set to 64Kbytes by distros, so almost all
bpf+tracing programs would need to increase it, since they use maps,
but kernel charges maximum map size upfront.
For example the hash map of 1024 elements will be charged as 64Kbyte.
It's inconvenient for current users and changes current behavior for root,
but probably worth doing to be consistent root vs non-root.
Similar accounting logic is done by mmap of perf_event.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to let unprivileged users load and execute eBPF programs
teach verifier to prevent pointer leaks.
Verifier will prevent
- any arithmetic on pointers
(except R10+Imm which is used to compute stack addresses)
- comparison of pointers
(except if (map_value_ptr == 0) ... )
- passing pointers to helper functions
- indirectly passing pointers in stack to helper functions
- returning pointer from bpf program
- storing pointers into ctx or maps
Spill/fill of pointers into stack is allowed, but mangling
of pointers stored in the stack or reading them byte by byte is not.
Within bpf programs the pointers do exist, since programs need to
be able to access maps, pass skb pointer to LD_ABS insns, etc
but programs cannot pass such pointer values to the outside
or obfuscate them.
Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs,
so that socket filters (tcpdump), af_packet (quic acceleration)
and future kcm can use it.
tracing and tc cls/act program types still require root permissions,
since tracing actually needs to be able to see all kernel pointers
and tc is for root only.
For example, the following unprivileged socket filter program is allowed:
int bpf_prog1(struct __sk_buff *skb)
{
u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
u64 *value = bpf_map_lookup_elem(&my_map, &index);
if (value)
*value += skb->len;
return 0;
}
but the following program is not:
int bpf_prog1(struct __sk_buff *skb)
{
u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
u64 *value = bpf_map_lookup_elem(&my_map, &index);
if (value)
*value += (u64) skb;
return 0;
}
since it would leak the kernel address into the map.
Unprivileged socket filter bpf programs have access to the
following helper functions:
- map lookup/update/delete (but they cannot store kernel pointers into them)
- get_random (it's already exposed to unprivileged user space)
- get_smp_processor_id
- tail_call into another socket filter program
- ktime_get_ns
The feature is controlled by sysctl kernel.unprivileged_bpf_disabled.
This toggle defaults to off (0), but can be set true (1). Once true,
bpf programs and maps cannot be accessed from unprivileged process,
and the toggle cannot be set back to false.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
eBPF socket filter programs may see junk in 'u32 cb[5]' area,
since it could have been used by protocol layers earlier.
For socket filter programs used in af_packet we need to clean
20 bytes of skb->cb area if it could be used by the program.
For programs attached to TCP/UDP sockets we need to save/restore
these 20 bytes, since it's used by protocol layers.
Remove SK_RUN_FILTER macro, since it's no longer used.
Long term we may move this bpf cb area to per-cpu scratch, but that
requires addition of new 'per-cpu load/store' instructions,
so not suitable as a short term fix.
Fixes: d691f9e8d4 ("bpf: allow programs to write to certain skb fields")
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While recently arguing on a seccomp discussion that raw prandom_u32()
access shouldn't be exposed to unpriviledged user space, I forgot the
fact that SKF_AD_RANDOM extension actually already does it for some time
in cBPF via commit 4cd3675ebf ("filter: added BPF random opcode").
Since prandom_u32() is being used in a lot of critical networking code,
lets be more conservative and split their states. Furthermore, consolidate
eBPF and cBPF prandom handlers to use the new internal PRNG. For eBPF,
bpf_get_prandom_u32() was only accessible for priviledged users, but
should that change one day, we also don't want to leak raw sequences
through things like eBPF maps.
One thought was also to have own per bpf_prog states, but due to ABI
reasons this is not easily possible, i.e. the program code currently
cannot access bpf_prog itself, and copying the rnd_state to/from the
stack scratch space whenever a program uses the prng seems not really
worth the trouble and seems too hacky. If needed, taus113 could in such
cases be implemented within eBPF using a map entry to keep the state
space, or get_random_bytes() could become a second helper in cases where
performance would not be critical.
Both sides can trigger a one-time late init via prandom_init_once() on
the shared state. Performance-wise, there should even be a tiny gain
as bpf_user_rnd_u32() saves one function call. The PRNG needs to live
inside the BPF core since kernels could have a NET-less config as well.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Cc: Chema Gonzalez <chema@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit ea317b267e ("bpf: Add new bpf map type to store the pointer
to struct perf_event") added perf_event.h to the main eBPF header, so
it gets included for all users. perf_event.h is actually only needed
from array map side, so lets sanitize this a bit.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Kaixu Xia <xiakaixu@huawei.com>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
According to the perf_event_map_fd and index, the function
bpf_perf_event_read() can convert the corresponding map
value to the pointer to struct perf_event and return the
Hardware PMU counter value.
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce a new bpf map type 'BPF_MAP_TYPE_PERF_EVENT_ARRAY'.
This map only stores the pointer to struct perf_event. The
user space event FDs from perf_event_open() syscall are converted
to the pointer to struct perf_event and stored in map.
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All the map backends are of generic nature. In order to avoid
adding much special code into the eBPF core, rewrite part of
the bpf_prog_array map code and make it more generic. So the
new perf_event_array map type can reuse most of code with
bpf_prog_array map and add fewer lines of special code.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow eBPF programs attached to TC qdiscs call skb_vlan_push/pop via
helper functions. These functions may change skb->data/hlen which are
cached by some JITs to improve performance of ld_abs/ld_ind instructions.
Therefore JITs need to recognize bpf_skb_vlan_push/pop() calls,
re-compute header len and re-cache skb->data/hlen back into cpu registers.
Note, skb->data/hlen are not directly accessible from the programs,
so any changes to skb->data done either by these helpers or by other
TC actions are safe.
eBPF JIT supported by three architectures:
- arm64 JIT is using bpf_load_pointer() without caching, so it's ok as-is.
- x64 JIT re-caches skb->data/hlen unconditionally after vlan_push/pop calls
(experiments showed that conditional re-caching is slower).
- s390 JIT falls back to interpreter for now when bpf_skb_vlan_push() is present
in the program (re-caching is tbd).
These helpers allow more scalable handling of vlan from the programs.
Instead of creating thousands of vlan netdevs on top of eth0 and attaching
TC+ingress+bpf to all of them, the program can be attached to eth0 directly
and manipulate vlans as necessary.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
bpf_trace_printk() is a helper function used to debug eBPF programs.
Let socket and TC programs use it as well.
Note, it's DEBUG ONLY helper. If it's used in the program,
the kernel will print warning banner to make sure users don't use
it in production.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
eBPF programs attached to kprobes need to filter based on
current->pid, uid and other fields, so introduce helper functions:
u64 bpf_get_current_pid_tgid(void)
Return: current->tgid << 32 | current->pid
u64 bpf_get_current_uid_gid(void)
Return: current_gid << 32 | current_uid
bpf_get_current_comm(char *buf, int size_of_buf)
stores current->comm into buf
They can be used from the programs attached to TC as well to classify packets
based on current task fields.
Update tracex2 example to print histogram of write syscalls for each process
instead of aggregated for all.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>